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Abstract: The problem of normal impact of a rigid sphere onto a Maxwell viscoelastic solid half-space is considered.
The first-order asymptotic solution is constructed in the framework of Hunter’s model of viscoelastic impact
[Hunter, S.C., 1957. Energy absorbed by elastic waves during impact. Journal of the Mechanics and Physics
of Solids, 5(3), 162-171.]. In particular, simple analytical approximations have been derived for the maximum
contact force and the time to achieve it. A linear regression method is suggested for evaluating the instantaneous
elastic modulus and the mean relaxation time from a set of experimental data collected for different impactors

and impact velocities.
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1. Introduction

In his ground-laying paper [1] on the frictionless local contact of elastic solids, Heinrich Hertz
estimated the half-duration of the normal dissipationless impact as
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where Vj is the initial relative velocity of approach, and w9, is the maximum value of the contact
approach (evaluated from the initial contact moment).

Hertz’s theory of elastic impact can be represented as the initial-value problem for the second-
order nonlinear differential equation
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dZw
= kw32 = =
w dt l=o0

m@ Vo, )

’ wlt:O =0,
where w is the contact approach measured from the time, f, of initial contact, m is the equivalent mass,
k is the stiffness coefficient in Hertz’s contact law F = kw?®/2, and F is the contact force (reaction).

In the case of collision between two elastic spheres (see Figure 1a), the equivalent mass is given
by m = mymy/ (my + my), whereas the stiffness coefficient k = (4/3)E*\/R is determined in terms of
the equivalent radius, R, and the effective elastic modulus, E*, defined as

1_ 1. 1 j;zl—v%+1—@ a)
R R 'Ry  E* E; Ey °

From Egs. (2), the equation of energy conservation follows in the form

My (9 250
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which determines the maximum contact approach
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achieved at the time moment t = t;,, when dw/dt = 0.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Initial impact configuration: (a) Collision of two elastic spheres; (b) Impact of a rigid sphere
onto an elastic half-space.

The same Hertzian equations (1)—(5) also apply in the case of impact of a rigid sphere of mass
m onto an elastic half-space (see Figure 1b), as Egs. (6) allow a passage to the limit as E; — oo and
Ry — co. We recall that Hertz’s theory of frictionless contact assumes that the contact is developed
in the framework of the linear theory of elasticity, the elastic bodies are assumed to be isotropic and
homogeneous, the contact is local in a sense that the initial contact occurs at a single point only and
the elastic half-space approximation applies for evaluating the contact stresses by neglecting the effect
of global contact geometry [2].

It should be noted that some of the Hertz model’s restrictions can be relaxed. For instance, in a
routine manner Willis [3] extended Hertz's theory of impact to anisotropic bodies, using his solution
for the problem of local frictionless contact. By utilizing Bondareva’s solution [4] for a heavy elastic
sphere on a rigid plane, Villaggio [5] showed that the global contact geometry effect slightly increases
the contact duration, compared with that predicted by the classical Hertz’s theory. The inertia effect
revealing itself in the impact energy loss due to the elastic wave radiation in the impact problem for
an elastic half-space (Figure 1b) was estimated by Hunter [6] (see also [7,8]) based on the analytical
solution obtained by Miller and Pursey [9] for the elastic wave energy radiated by a rigid disk vibrating
on the half-space surface. It is pertinent to note here that the excitation of the half-space surface by a
spherical impact was considered in [10].

Hertz’s theory of impact predicts the unit coefficient of restitution, e, the symmetry of load-
ing/unloading contact process, and the duration of impact, 2, to be equal twice the time t2, to the
maximum of the contact approach w?,. It was shown by Hunter [6] and Deresiewicz [11] that the
variation of the contact approach as a function of the time of contact can be well approximated by the
simple formula

W~ sin%f, (0 — 200 ©)
C

The classical Hertz impact theory has been given substantial experimental verification [12] and,
in particular, was extended to the frictional impact of anisotropic nonlinear elastic solids [13] and
power-graded viscoelastic solids [14] as well as to tangential (oblique) impact [15-17] and impact with
adhesion [18,19].

It is known [20,21] that the coefficient of restitution in collision of two perfectly elastic bodies
equals unit (that is, e = 1), if the time of impact well exceeds the time needed for elastic waves to
traverse either body. That is why, the impact configuration shown in Figure 1b primarily differs from
that shown in Figure 1a by the presence of the energy dissipation (absorption [6]) mechanism due to
the vibrational energy radiated into the massive substrate when elastic waves propagate to the infinity.

Energy dissipation in the Hertzian impact between two spherical solids (Figure 1a) can be associ-
ated with the effects of plastic deformation or internal friction among others [21]. A phenomenological
approach (see, e.g., [22,23]) leads to the dissipative contact model

F=ka®?+ Xwﬁw, (7)
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where @ = dw/dt is the relative contact velocity, B is a dimensionless constant, and x denotes the
hysteresis damping factor. As a rule, the coefficient x is interpreted in terms of the coefficient of
restitution [24]. By adopting a constitutive law similar to the Kelvin—Voigt model 03, = 2ppezr + 21¢5;,
where 7 is the viscosity coefficient, Goldobin ef al. [25] arrived at Eq. (7) with = 1/2 and x being
proportional to a linear combination of the shear and bulk viscosity coefficients (see also [26,27]).

The impact problem becomes exceedingly hard if colliding solids are assumed to possess time-
dependent mechanical properties. The Hertz impact problem for a rigid spherical indenter and a
viscoelastic half-space was first considered by Hunter [28], who complemented the analytical solution
by Lee and Radok [29] for the Hertzian quasi-static contact problem with monotonically increasing
contact by the solution when the contact radius possesses a single maximum, which is the case in
impact problems. In the special case of a Maxwell solid, Hunter obtained the first-order perturbation
approximations for the coefficient of restitution, ¢, and the impact duration, ¢.. Later, Forney [30]
questioned Hunter’s result about the impact duration. To date, this issue remains unresolved.

The case of a Kelvin—Voigt solid was considered by Khusid [31] (see also [14]) who obtained some
numerical results for the impact duration and the coefficient of restitution. A systematic review of
modeling linear and non-linear viscoelastic contact problems was recently given by Wang el al. [32].

In what follows, we consider the normal impact of a rigid sphere on an isotropic viscoelastic
half-space with a constant Poisson’s ratio, v, and a hereditary constitutive law

£ !
oty =2 [ pe - )% ay, ®
J

where 1i(t) is the shear relaxation modulus, and 0~ indicates the instant immediately before the initial
point of contact.

In his first-order perturbation analysis of the viscoelastic Hertzian impact, Aksel [33] applied the
viscoelastic constitutive law in the form

t
0z () = 2up€zr(t) +2/ﬁ(t’)ezr(t —t)dt, ©9)
0

where 119 = 1(0) is the instantaneous shear modulus, fi(t) = du(t)/dt is the viscoelastic relaxation
kernel, and it is tentatively assumed that e,,(f) = 0 for t < 0.

The problem of material parameters identification by means of impact tests was considered
in a number of experimental studies [34-37]. Kren and Naumov [38] formulated the problem of
determining the relaxation function y(t) from the spherical impact loading history (impactor velocity,
V(t), contact force, F(t), and contact approach, w(t)) without a priori adopting any material’s model.
However, the problem with the Kren-Naumov method is that the Lee—Radok solution [29], which is
valid only for the loading contact stage, was incorrectly applied for the unloading stage as well. It is
still to note here that the approximation that utilizes for the restitution phase the same form of the
equation of motion derived for compression is sometimes used for the sake of simplicity [39? ].

2. Hunter’s Model of the Viscoelastic Impact

2.1. Viscoelastic Hertzian Impact
For the sake of simplicity, we consider the single impactor configuration (Figure 1b) and start

with Newton’s second law and the initial conditions

d?w dw

mﬁ - —F, w|t:0 - O, a t—0 - VO, (10)

where F is the contact reaction.
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Assuming a constant Poisson’s ratio v and neglecting inertia effects in the viscoelastic half-space
target, the Hertzian elastic solution can be generalized as follows [28,29]:

E(t) = M/y(t—t’)cﬁl(aa(t’))dt’, (1)
0
a?(t)
w(t) = 2, FS . (12)

Here, 1i(t) is the shear relaxation modulus that describes the material’s response to an instantaneous
unit shear deformation, a(t) is the contact radius as a function of time ¢. It is clear that Eq. (12) is the
Hertzian relation between the contact radius a and the contact approach w.

From Egs. (10)—(12), it follows that

dzw_ 8VR / n d 3/2(4/ /
m—s _3(1_V)O/y(tt)dt,(w (¢))dt’. (13)

It should be remembered that in the loading stage, the Lee—-Radok solution (11), (12) as well as
Eq. (13) are valid until the time moment, t, of maximum penetration, wy, which, in view of Eq. (12),
coincides with the moment of maximum contact radius, a,, and therefore, with the moment when the
impactor velocity vanishes, i.e.,

dw
am = u(tm)/ Wm = w(tm)/ At ey =0. (14)

In the unloading stage (tm < t < fc), Hunter’s solution is given in terms of the function 1 (¢) that
solves the equation a(t) = a(t;) for t > ty, and #; < tm. Namely, the contact reaction is given by

t1(t)
F(t) = 171/13 O/y (t—t)— (a>(t)) dt, (15)

whereas Eq. (12) is replaced with the following relation [28]:

/

t
d d
Rw(t):aZ(t)—/y-l(t—t')@ / B — )2 (aP()) At | (16)
t1(t)

Here, 1~ !(t) is the shear creep compliance (we keep the notation from [28]).
2.2. Impact for a Maxwell Solid
The reciprocal relaxation and creep functions for a Maxwell solid are

u(t) = poexp(—yt),  wl(t) = ;0<1 +t), 17)

where i is the instantaneous shear modulus, and 7 is an inverse relaxation time.
The substitution of (17); into Eq. (13), in view of the initial conditions (10), leads to the differential
equation

d’w dw 8VRuo 3,0
dfz+17(dt VO>__3(1—1/)mw , t<tm, (18)

which is an exact result.
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However, in the unloading (or withdrawal) stage, the application of Egs. (17) allows to reduce
Eq. (16) to a complicated nonlinear differential equation for #; (¢). Nevertheless, by utilizing the simple
approximation t; ~ 2ty — t, Hunter derived the resulting governing differential equation

d?w dew 8v/ Ry 3/2
a3 ) =g 1 v

which is amendable to analytical treatment, but constitutes an approximate result.
Let us introduce the auxiliary function

2
w = % £> b, (20)

which is related to the contact approach by the equation

w 2
% :exp(fZU(tftm))%<algt)>. (21)

We note that, in view of (12) and (20), the solution of Eq. (19) is subject to the boundary conditions
(or the initial conditions for the withdrawal stage)

dew
w| b=t w|t:tm’ at -t 0, (22)
The contact duration . is determined by the condition «(t.) = 0, when the contact shrinks down.
In the dimensionless variables

2 0
t Vot Vot
w:a(o)’ T_%, Tm:%, 8:%, (23)
Rwy, Wy wh, Vo

where w, is given by (5) with k being replaced by 8v/Ruo/[3(1 — v)], Egs. (18) and (19) become

d’w dw 5 3/, dw

dre(F 1) =g T elg=o Gl = 24
d%w dw 5 dw
dﬂ‘4%n+ﬁz‘4f@ T <T@l =wm G| =0 ()

where T, is the time-like point for which the solution to Eq. (24) first yields dw/dt = 0, and the
corresponding value of w(Ty ) will be denoted by w.

2.3. Asymptotic Solution for the Loading Stage

The problem with Forney’s critique [30] of Hunter’s approximate solution is in the integral
decomposition representation

wmd 1 d wmd
%:/ﬁ:/ﬁ+/¥, (26)
w w w
0 0 1

where w = dw/dTt, because the function w cannot be regarded as a perturbation of the limit (¢ = 0)
elastic solution wy(T) that is defined only on the interval [0, 73], where 73, is the dimensionless
Hertzian half duration of impact. At the same time, the second integral on the right-hand side of
Eq. (26) refers to the interval w € (1, wn), which corresponds to T € (T&, Tm), that is outside the
interval of validity of the limit solution.
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That is why, we will make use of the formula
rd B d
w / v
Tm i/ 0 0/ w'(v) o’ (27)

where w is regarded as a function of v € [0,1], w'(v) is its derivative, and v decreases from 1 to 0 as T
increases from 0 to Tm.
By setting v = dw/dt and d?w/d1? = dv/dt = vdv/dw, we reduce Eq. (24) to the first-order

differential equation

dw v
Fri _(5/4)w3/2+£(v—1)' v e (0,1). (28)

The first-order approximate solution to Eq. (28) subject to the boundary condition w| veq = 0is
given by

1
4/5 &1 -
wxwytew,  wo=(1-0)"° w = (1—v2)3/5 / 6 3/5 (29)

The substitution of (29) into Eq. (27) yields

T 'L'norl +eck, (30)

m 5 / (1— 62)3/5’

2 p0-pde P31 19
Cm_520/(1—g2)6/5_ 53 0/(1_02)8/50/(1_62)3/5 d¢ dv. (31)

Moreover, in view of (29), we obtain

1
wm =~ 1+ ec?, / o (;2 53)/5 (32)
0

It can be easily verified numerically that the first-order approximations (30); and (32); completely
agree with the corresponding results obtained by Hunter. At the same, the asymptotic formula (30),
disagrees with Forney’s result T, — 79 = O(e'/2) as e — 0.

From a practical point of view, it is of interest to evaluate the maximum contact force, Ff, and the
corresponding time moment, fys, such that Fyy = F(fy). In the case of a Maxwell solid, according to
Egs. (11), (17), (18), and (23), for T € (0, Tm) we have

5 3/2+e(d—°"—1)

mv 4 dt
~ 20 3/2 15 w20 _
~ Jw)? e Gy o 14 v), (33)

where wy and wy are given by (29), and (29)3, respectively.
It can be shown that

rg\%:fFM_Z_g(l_g) ) Zit (o k), (34)

where ¢, and ¢ are given by (31) and (32),, respectively.
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2.4. Asymptotic Solution for the Unloading Stage
Now, we transform Eq. (25) as
dv 5 372

Vi = ¥ +e(Bv+1), w € (0,wm), v}w:wm =0. (35)

The first-order approximate solution v ~ vy + €v; to Eq. (35) is given by

1 ya
vy = —\/w? — w52, vlz——/[S\/wf’,{Z—@/z—l}dQD. (36)
w15n/2 — w5/2 w

The end of the unloading stage is determined by the value

1
5
ve= v, g ~1+e|1-Tah -3 [/1-o2d8 ), (37)
0

where ¢y, is defined by formula (32).
The duration of the unloading stage can be evaluated as

Ue Wm

N _/dﬁ__/ dw

C m — v - U((,U)’
1 0

and, in view of (36), we find that
Te — Tm =~ To, — &cf, (38)

where we have introduced the notation

1

1
1 1
T_ 2. 0w _75/2 _
k= ;e +/ = /[3\/1 32 -1]dgag. (39)
0 4
Hence, the dimensional impact duration 2 = (w9, / V)1 can be represented as

40 0 (em —¢f)
te =t <1+17tc ()2 ) (40)

where 10 = 270, and 7 is given by (39).

Again, by numerical check for the involved integrals it can be easily established that formula (40)
completely agrees with the corresponding Hunter’s result.

Finally, according to Eq. (21), the rebound velocity is found to be

dw

Ve = Voexp(—21(tc — tm))g

7
T=Tc

thatis V./ V) ~ (1 —e(T. — Tm)) Uc, and, in view of (37) and (38), we arrive at the following Hunter’s
result for the coefficient of restitution: A
e~1— §1ytg. (41)

Thus, our calculations for wy, t., and e have conformed those by Hunter, obtained by different
method.
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3. Comparison with the FEM Solution
3.1. Impact for a Maxwell Solid

It is interesting that though numerical approaches for the viscoelastic Hertzian impact were
developed in a number of papers [40-42], quite general numerical results were obtained not so long
ago by Herrenbrtick et al. [43] based on finite-element simulations for both the Maxwell model and
the standard linear sold model. The numerical master curves were calculated for the maximum
penetration wp, scaled by the Hertzian elastic solution w9, for the coefficient of restitution e as well as
for the maximum acceleration, which coincides with the relative maximum contact force Fy;/m, also
scaled by the Hertzian solution Fy;/m, where

5mVg
0 _ v 0
In the case of a Maxwell solid, the creep function (17), is now represented as
1 t 1
-1
)=—(14+—), wR=—, 43
=) wmey (43)

where TR is the characteristic relaxation time, which is introduced instead of the inverse characteristic
time 7 used before.
In view of (1)1, (23)4, and (43),, we have

T 1 t9
R - = (44)
0 etd 0 R

where 70, is given by (1),.
According to relations (32), (34);, and (41), the mentioned above impact parameters can be
approximated as

Wm 8 0 PM F
—_ = 1 w, = 1 — E&— ’ - = 1 - 7 45
Wl + echy e €5 Tm F& ecy (45)
where F} is given by (42), and we have introduced the notation
4

As it is seen from Figures 2 and 3 (see the inserts), the analytical approximations (45) can be used
with less than 5% relative error for ¢ < 0.2.
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=
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Figure 2. Master curves for the Maxwell model obtained by Herrenbriick ef al. [43] using FEM
simulations and the analytical approximations (45): Relative maximum penetration (a) and relative
maximum acceleration (b) as functions of the scaled characteristic relaxation time.
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Figure 3. Master curves for the Maxwell model obtained by Herrenbriick et al. [43] using FEM
simulations and the analytical approximations (45): Coefficient of restitution as a function of the scaled
characteristic relaxation time (a) and the relative inverse relaxation time (b).

We note that for a Maxwell solid, in view of (8), (9), and (17);, we have fi(t) = —yugexp(—nt). It
can be verified that Aksel [33] obtained the approximate formula e = 1 — 2.697wY, / Vo, which can be
transformed to the form (41) with the coefficient 0.914 instead of 4/9 ~ 0.444. Thus, Aksel’s asymptotic
solution apparently contains a computational error, as it does not agree with the numerical solution
shown in Figs. 3b.

3.2. Impact for a Standard Linear Solid

By adopting the notation used in [43], the shear creep function in the case of a standard linear

solid will be .
t
y_l(t):(l_wj{laexp((la)T)}, (47)

where & = (jg — Hoo) /Mo, and e is the relaxed shear modulus.
The short-time approximation (as ¢ tends to zero) follows from (47) in the form

1 t
-1
)~ —(14+—). 4
= (14 ) (48)

By comparing formulas (43); and (48), we conclude that the first-order approximations (45) still
can be employed provided

0
e= m (49)
T

where T and & are the model parameters of a standard solid subjected to spherical impact.

As it may be seen from Figure 4, the short-time approximations can be utilized in a limited range
of the dimensionless parameter e. We note also that the Maxwell model (43) can be recovered from the
standard linear solid model in the limit as « tends to zero (see also [44]).
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a Relative characteristic time IR/at,"n b Relative characteristic time TR/MR,

Figure 4. Rescaled master curves for the standard linear solid model obtained by Herrenbriick et al. [43]
using FEM simulations and the analytical approximations (45): Coefficient of restitution (a) and relative
maximum acceleration (b) as functions of the scaled characteristic relaxation time.
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4. Material Parameters Identification via Impact Testing

Let us recall that the analytical approximations for the characteristics of impact derived in the
framework of the Maxwell viscoelastic model exploit the following expansions about t = 0:

u(t) = po(1 =yt +..), y—l(t)_:o(uqt—...). (50)
Moreover, the characteristic relaxation time 1/# is assumed to be much larger than the impact
duration, that is #7t. < 1 or, which is asymptotically the same, 72 < 1.
The analytical approximations are given in terms of the small dimensionless parameter ¢, which,
in view of (1) and (23), is proportional to 7t2, where ¢ is the Hertzian impact duration (see Egs. (1)
and (6),). Namely, Hertz’s theory of impact yields the characteristic time

0 2.1/5
Why m
Vo %O(RV()) ’ (1)

where we have introduced the notation for the compliance coefficient

(151 —v)\P°

Now, we consider the approximate formulas (34), which can be recast as

Fmn Vo /5 r
vy wT)n(Z ecly). (53)
tM = %(TO —ech ) (54)
M VO m M)
where we have introduced the short-hand notation
15 8
di=1- gcg, ¢y = 5~ Cn- (55)

We recall that F and t); denote the maximum contact force and the corresponding time moment.
We assume that at least one of these parameters of impact can be measured experimentally. The
problem is to evaluate the material parameters % and # from the impact data collected from several
tests characterized by the governing parameter

v = (%)1/5. (56)

In view of (23),, (51), and (56), formulas (53) and (54) can be represented as follows:

M _ 5,4 F
A 4%0 7 — o, (57)
tv = T9G0 7 ! — G372 (58)

First, we consider Eq. (57) and note that this formula represents a linear relation between the
relative maximum contact force Fy, /(mV})) and the variable impact parameter 7". Provided that both
of them are measured in experiment, the material parameters €, L'and 5 can be evaluated via linear
regression by means of fitting the linear formula (57) to the scaled experimental data. After that the
instantaneous shear elastic modulus will be given by

15(1 —v)

_ —-5/2
]’lO - 32 (g() s (59)
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where the material Poisson’s ratio v, as usual, is supposed to be known.
Second, in order to exhibit the method of linear regression, we transform Eq. (58) to the form

Vit = 1960 — ey Ga 7 L. (60)

By fitting Eq. (60) to the experimental data (RVy/m?)'/3ty; versus (m?/RV,)!/5, we can evaluate
®p and 16}, from where, in view of (59), we readily get 9. Meanwhile, the inverse characteristic
relaxation time 7 is simply determined from the ratio of the linear regression coefficients.

In the same way, formula (11) for the impact duration can be rewritten as

0
te= 2 (228, + ect) (61)
0
and eventually transformed to the form
Vt. = 21060 + clygir L. (62)

By comparing Egs. (60) and (62), we readily see that a similar linear regression method can be
designed for evaluating the parameters o and # from the impact duration data.

5. Discussion

The Hertzian impact assumes a paraboloidal approximation ¢(r) = r2/2R for the initial gap
between two colliding elastic solids, which eventually leads to Hertz’s contact law F = kw®/2.
Shtaerman [45] and Galin [46] obtained the force-displacement relations F = kw2 t1)/(2n) and
F = kyw*+D/A for the gap functions ¢(r) = A,r?" (n is an integer) and ¢(r) = Ayr* (A > lisa
real number). The special case of a conical gap, ¢(r) = Air and F = kyw?, was earlier considered
by Love [47]. The corresponding generalizations of the elastic Hertzian impact model was given
by Kilchevsky [48]. However, to the best of the author’s knowledge, Hunter’s model of viscoelastic
impact was not extended to the case of the Shtaerman-Galin contact law F = kjw**+1)/4,

Another open issue is to account for the target thickness, which is realized by a nonlinear force-
displacement relation that looses the self-similarity scaling. In the case of quasi-static viscoelastic
Hertzian contact, the thickness effect was considered by Argatov et al. [49]. It would be of undoubted
interest to incorporate this effect even into the elastic Hertzian impact model (see, e.g., [35,50]).

Still a puzzle remains to be solved, and this concerns the inconsistency of Hunter’s prediction for
the duration of impact (t. < t?) with the experimental observations [35] that the effect of viscoelasticity
increases the impact duration as compared to the elastic case (that is, t. > t7). For the linear viscoelastic
Maxwell impact model (see, e.g., [44,51]), though the viscoelasticity effect increases the duration of
impact, we have ty = £ (1 +0O(2)) and t. = t2(1 + O(g?)), where { is the loss factor, that is the effect
on the duration of the loading stage is much stronger than the effect of the overall contact duration.
Apparently, the answer to the raised question might be sought in the fact that Hunter’s approximation
t =~ 2ty — t is not asymptotically exact (strictly speaking, the sign ~ should be replaced with ~). At
the same time, the approximate model (18) for the loading stage and the corresponding solutions (see
Section 2.3) are asymptotically exact. It should be also noted that the FEM simulations performed
by Diani et al. [37] for a generalized Maxwell model result in the impact duration smaller than that
predicted by Hertz’s theory.

A remark should be made about numerical solutions to the unilateral viscoelastic impact problem,
where the force-displacement relation in the unloading stage is given by the two nonlinear integral
equations (15) and (16) with the function #; () being determined by the equation a(t) = a(t;), where
a(t) is the current contact radius in the unloading stage (t > tm), and a(t1) is the same value of contact
radius in the loading stage (t; < tm). A number of numerical schemes have been designed in the
literature [40—42], but still no in-depth numerical study of the impact problem (e.g., for a Maxwell
solid) has been published. It is to note that the FEM simulations, while being very useful for the overall
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analysis [43], do not suit well for verifying asymptotic solutions, if the second order smallness effects
should be spotlighted.

To conclude, in view of its practical significance, the problem of viscoelastic impact requires a
further investigation.
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