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Abstract: Smart City has emerged as the mainstream paradigm for urban governance innovation, sustainable 

development, and strategy upgrades, which is drawing attention from scholars worldwide. However, current 

frameworks for Smart City assessment remain incomplete and simplistic. In is paper, 30 national or provincial 

capitals in China were selected and we designed a tri-dimensional SPI model—Social, Physical, and 

Information Space—for smart city spatial development   assessment. Utilizing methods such as entropy 

weighting, coupled coordination degree models, and the Dagum Gini coefficient, this study assesses the spatial 

development and coupled coordination of 30 cities from 2011 to 2019. Finally, by means of BP neural networks, 

the study examines the contribution of each indicator to the spatial coupled coordination. The results indicated 

that with a narrowing disparity in development speeds among different regions, the spatial coupled 

coordination development level of smart capitals in China has steadily increased, presenting a pattern of 

staggered distribution. Moreover, the IS subsystem plays the most significant role in coupled coordination. The 

significance of this research lies in its tri-dimensional spatial perspective of the spatial development and 

coupled coordination differences of the Smart City, providing evidence-based support for the regional layout 

and optimization in China. 

Keywords: smart city; SPI model; tri-dimensional framework; Dagum Gini coefficient; BP neural networks 

 

1. Introduction 

Since the 21st century, as the process of modernization has accelerated worldwide, the economic, 

social, and spatial structures of major cities have become unprecedentedly complex [1]. A series of 

urban diseases, such as population expansion, uneven resource distribution, and ecological 

degradation caused by urban sprawl, have become increasingly prominent. To address these 

challenges and promote sustainable urban development, a series of emerging concepts such as digital 

cities, smart cities, low-carbon cities, resilient cities, and knowledge cities have emerged. Among 

them, smart cities, due to their ability to effectively perceive and diagnose urban problems, have 

distinct advantages in resilience building[2], security risk governance[3,4], ecological environment 

protection[5], and sustainable development. They are regarded as a set of technological solutions for 

"comprehensive transformation, all-round empowerment, and revolutionary reshaping" of urban 

governance. Consequently, governments worldwide have attached great importance to and put into 

practice the concept of smart cities[6]. 

The concept of smart cities first appeared at the International Conference on Smart Communities 

in San Francisco in 1990. After IBM clearly proposed the concept in 2008, it sparked a global trend of 

smart city construction. Many developed countries and regions such as the United States, the 

European Union, Japan, and Singapore have regarded the smartification of cities as the mainstream 

of future urban development, actively exploring innovative models of smart urban governance and 

digital technology. However, with the deepening of smart city construction, the concerns and risks 

arising from the complexity of smart city governance have gradually emerged[7]. Especially under 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2024                   doi:10.20944/preprints202404.1168.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202404.1168.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

the influence of a construction concept dominated by technological empowerment in the long term, 

problems such as digital marginalization, worsening digital inequality, misuse of citizen data, and 

violations of privacy[8] and security have emerged, to a certain extent, revealing the inefficiency, 

disorder, and imbalance of smart city space. 

Against this backdrop, it is increasingly recognized that scientifically effective evaluation 

schemes are crucial for promoting the sustainable development of smart cities. Therefore, various 

smart city evaluation tools, frameworks, and indicator sets have been developed and designed[9]. On 

the one hand, academia systematically interprets the development direction, value positioning, and 

strategic choices of smart cities in theory, providing a theoretical basis for the design of smart city 

evaluation systems. This mainly involves the theoretical framework of smart city construction[10,11], 

governance innovation models[12,13], technological empowerment paths[14,15], and project 

planning decisions[16]. At the same time, it pays special attention to the practical difficulties[17,18], 

security risks[19], and opportunities and challenges[20] in the process of smart city construction. On 

the other hand, the industry, starting from a practical orientation, guides its construction direction 

by formulating norms and standard systems for smart cities. For example, in May 2023, the State 

Administration for Market Regulation issued the "New Smart City Evaluation Indicators," covering 

nine indicators including benefiting the people's services, precise governance, ecological livability, 

information infrastructure, information resources, industrial development, information security, 

innovative development, and citizen experience. Similarly, foreign countries have also issued a series 

of indicator systems, such as the Smart Sustainable City Development Index (SSCDI)[21] based on 

social, economic, environmental, cultural, and living dimensions and the European Smart City 

Evaluation System based on smart economy, smart public, smart governance, smart mobility, smart 

environment, and smart living dimensions. At the same time, academia has proposed risk 

management frameworks emphasizing security[22], NIST privacy frameworks[23], and information 

security risk assessment indicator systems[24]. 

Overall, the smart research community formed by academia and the industry provides rich 

thinking and insights for promoting the sustainable development of smart cities. However, it is easy 

to find that the existing evaluation indicator systems are still in a "systematic fragmentation" state. 

That is, although most evaluation indicator systems comprehensively assess the development of 

smart cities from a systemic perspective, the designed indicator systems lack clear theoretical 

foundations and fail to form a clear structural logic, resulting in evaluation results that can be 

explained in terms of systematicity and comprehensiveness but lack sufficient evidence in terms of 

structure and correlation. This provides a certain space for this study to explore the development of 

smart cities from a spatial integration perspective. 

This study adopts the theoretical perspective of tri-dimensional space to examine the structural 

composition of smart cities. By constructing a spatially integrated evaluation indicator system for 

smart city development and using a modified coupled coordination model to evaluate the coupling 

coordination characteristics of smart cities in 30 provincial capitals and municipalities in China, and 

through the Dagum Gini coefficient decomposition method to analyze the differentiation of coupling 

coordination in different regions of China, the study explores the spatiotemporal evolution 

characteristics of smart city development in China, thus providing new empirical insights for the 

smart city research community. 

2. Materials and Modeling 

2.1. Study Area 

In this study, we selected 30 national or provincial capitals as cases to analyze and evaluate their 

urban spatial coupling development level, and divided them into four regions according to their 

orientation: east, northeast, central and west (Figure 1). These cities are the core forces in the 

development of smart cities in various regions of China, and meanwhile ideal representatives for our 

research. 
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Beijing 
39°N 116°E

Chengdu 
30°N 104°E

Fuzhou 
26°N 119°E

Guangzhou 
23°N 113°E

Changsha 
28°N 112°E

Guiyang 
27°N 107°E

Haikou 
20°N 110°E

Hangzhou 
30°N 120°E

Hefei 
32°N 117°E

Jinan 
36°N 117°E

Kunming 
25°N 102°E

Lanzhou 
36°N 103°E

Nanchang 
29°N 116°E

Nanjing 
32°N 118°E

Nanning 
28°N 108°E

Shanghai 
31°N 121°E

Shenyang 
42°N 123°E

Shijiazhuang 
38°N 114°E

Taiyuan 
38°N 112°E

Tianjin 
39°N 117°E

Wuhan
30°N 114°E

Xi an 

34°N 108°E

Xining 
36°N 102°E

Changchun 
44°N 126°E

Zhengzhou 
34°N 114°E

Yinchuan 
38°N 106°E

Hohhot 
41°N 111°E

Harbin 
45°N 127°E

Chongqing 
30°N 108°E

Urymqi 
43°N 87°E

  Northeastrn Region (NE)
  Eastern Coast Region (EC)
  Central Inland Region (CI)
  Western Region (WE)

 

Figure 1. Study Area of 30 national or provincial capitals. 

2.2. Literature Review and Modeling 

Urban spatial analysis has always been a crucial topic of interest and a key paradigm followed 

by scholars. Starting from the 1920s, the Chicago School, represented by Georg Simmel, integrated 

spatial research with sociology, pioneering a new paradigm in urban studies[25]. Entering the 21st 

century, the upgrading innovation of emerging information technology has propelled the expansion 

and evolution of human living space forms, gradually transitioning from binary space to tri-

dimensional space. Specifically, the transition from the past "physical-social" binary space to the 

coexistence of physical space, social space, and information space forms the new tri-dimensional 

space, leading to the evolution of new spatial theories. 

From the perspective of smart city construction, it is inherently a process of spatial production 

and reconstruction. Understanding the construction and governance effects of smart cities cannot be 

separated from the analysis of urban space and its elements. In simple terms, the level of smart city 

construction is largely determined by the multiple spatial structures and their elements. 

To clarify the spatial structural differences and the spatiotemporal evolution laws of smart city 

development, this study constructs an integrated model of smart city evaluation in tri-dimensional 

space (Figure 1). As a complex giant system, a smart city is the product of the coupled coordination 

of three subsystems: physical space, social space, and information space. Information space consists 

of a virtual network space composed of three core elements: data, computing power, and algorithms. 

Physical space is a tangible space composed of material elements in production, ecology, and daily 

life. Social space is formed by the interactive activities of multiple subjects such as government, 

society, and the public, including attitudes, behaviors, and values. Additionally, there is close 

interaction between each subsystem, forming the "physical-social" subsystem, "information-physical" 

subsystem, and "physical-social" binary subsystem. 

2.3. Data Source and Processing 

Considering the representativeness and availability of data, this study measures the spatial 

development level of smart cities in 30 provinces in China (excluding Tibet, Hong Kong, and Macau) 

from 2011 to 2019. According to the division standards of China's economic regions by the State 

Council, the cities can be divided into four major regions: Eastern, Central, Western, and 
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Northeastern. In terms of data sources, socio-economic and statistical indicators mainly come from 

the "China Science and Technology Statistical Yearbook" and the "China Urban Statistical Yearbook" 

from 2012 to 2020, as well as the statistical yearbooks of the 30 provincial capitals and municipalities 

and their national economic and social development statistical bulletins. The network search index is 

sourced from the public attention index of Baidu Index[26]. The digital inclusive finance index comes 

from the "Peking University Digital Inclusive Finance Index Report." In addition, for individual years 

with missing data, interpolation methods are used to complete the dataset. 

 

Figure 2. SPI Model of Smart City. 

Based on the SPI model, this study formulated a series of indices for smart city evaluation. As 

the model shown, the information space is centered around data as the basic element. Therefore, it 

focuses on information production and knowledge innovation at different stages of the data lifecycle, 

using technologies such as information equipment and the internet. This space follows the path of 

technical governance, and specifically extracts three major technical elements: data, algorithms, and 

computing power, emphasizing the innovation and application of urban smart technology. Based on 

this, three primary indicators are divided for description and subdivision, referring to existing 

research[27], and constructing six tertiary indicators at the information level (Table 1). 

Table 1. List of SPI-based indices for smart city evaluation of Informational Space. 

Target Level 
Standardized 

Layer 
Index Layer 

Index 

Properties 
Weight 

Informational 

Space 

subsystem 

indices  

Data 
Peking University Digital Inclusive Finance 

Index 
+ 0.167  

Algorithm 

R&D personnel ratio(%) + 0.168  

The proportion of employees in the 

information transmission, computer 

services, and software industries(%) 

+ 0.163 
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Computational 

power 

Internet penetration(%) + 0.170 

Per capita total telecommunications 

services(yuan) 
+ 0.169 

The proportion of mobile phone users at the 

end of the year(%) 
+ 0.164 

The physical space revolves around "objects" as the basic element. It refers to the ability to collect 

information relying on the objective geographical environment and various material elements when 

people are in complex urban spatial scenes, achieving resource optimization and emphasizing the 

environmental adaptability and situational dependency of governance. This space follows the path 

of urban planning, thus extracting three scenario elements: production, life, and ecology. Referring 

to existing research [28,29], 14 tertiary indicators are constructed (Table 2). 

Table 2. List of SPI-based indices for smart city evaluation of Physical Space. 

Target Level 
Standardized 

Layer 
Index Layer 

Index 

Properties 
Weight 

Physical  

Space 

subsystem 

indices 

Production 

The proportion of production land(%) + 0.067 

Advanced industrial structure(%) + 0.071 

Upgrading of industrial structure(%) + 0.068 

Living 

Population density(%) − 0.073 

Public library holdings per capita (volumes) + 0.072 

Per capita park green space area(square 

meters) 
+ 0.073 

Per capita medical institutions + 0.067 

Per capita educational resources(persons) + 0.067 

Ecology 

GDP energy intensity(yuan/billion kilowatt 

hours)  
− 0.074 

Industrial wastewater discharge intensity(%) − 0.074 

Industrial sulfur dioxide emission 

intensity(%) 
− 0.074 

Harmless treatment rate of household 

waste(%) 
+ 0.074 

Industrial smoke (powder) dust emission 

intensity(%) 
− 0.074 

Comprehensive utilization rate of general 

industrial solid waste(%) 
+ 0.073 

The social space is centered around "people" and aims to achieve cooperation and co-governance 

among multiple subjects and across departments. In the context of diversified social governance, the 

degree of coordination of interaction behaviors among various subjects will greatly affect decision-

making effectiveness. This space follows the path of collaborative governance, thus extracting three 

key subject elements: government, society, and the public. Referring to previous achievements[30], 

11 tertiary indicators are constructed. The specific evaluation indicators list is shown in Table 3. 

Table 3. List of SPI-based indices for smart city evaluation of Social Space. 

Target Level 
Standardized 

Layer 
Index Layer 

Index 

Properties 
Weight 

Social  

Space 

subsystem 

indices 

Government 

Unemployment rate(%) − 0.096 

Government financial support(%) + 0.091 

The proportion of insured individuals in 

unemployment insurance(%) 
+ 0.087 
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The proportion of urban employees 

participating in basic pension insurance(%) 
+ 0.089 

The proportion of urban employees 

participating in basic medical insurance(%) 
+ 0.089 

Society 

Network search index + 0.093 

The proportion of employees in public 

management and social organizations(%) 
+ 0.093 

The proportion of employees in the health, 

social insurance, and social welfare 

industries(%) 

+ 0.091 

General Public 

Average salary of employees(yuan) + 0.091 

Per capita education level(year) + 0.092 

Per capita year-end RMB deposit balance of 

financial institutions(yuan) 
+ 0.090 

3. Methods 

3.1. Entropy Weight Method 

To reduce the impact of subjective factors, this study employs the entropy weight method, which 

is a relatively objective weighting method. First, the data undergoes standardization processing. Since 

the indicators in the list have both positive and negative attributes, different standardization formulas 

are used for indicators of different attributes. The calculation steps are as follows: 

𝑋𝑖𝑗 =
𝑥𝑖𝑗 −min(𝑥𝑗)

max⁡(𝑥𝑗) − 𝑚𝑖𝑛(𝑥𝑗)
 (1) 

𝑋𝑖𝑗 =
max(𝑥𝑗) − 𝑥𝑖𝑗

max(𝑥𝑗) − min(𝑥𝑗)
 (2) 

Secondly, the determination of indicator weights is conducted. Referring to existing research 

[31,32], Formula (3) is used to calculate the proportion of the i-th sample under the j-th indicator, 

which is considered as the probability used in relative entropy calculation: 

𝑃𝑖𝑗 =
𝑋𝑖𝑗

∑ 𝑋𝑖𝑗
𝑛
𝑖=1

 (3) 

where Xij represents the standardized sample data, and 𝑃𝑖𝑗 ranges from 0 to 1.  

Formula (4) is used to calculate the information entropy of each indicator: 

𝑒𝑗 = −
1

𝑙𝑛 𝑛
∙∑𝑃𝑖𝑗 ∙ 𝑙𝑛(𝑃𝑖𝑗)

𝑛

𝑖=1

 (4) 

Formula (5) (6) is used to calculate the information utility value and standardize to obtain the 

entropy weight of each indicator: 

𝑑𝑗 = 1 − 𝑒𝑗 (5) 

𝑊𝑗 =
𝑑𝑗

∑ 𝑑𝑗
𝑚
𝑗=1

 (6) 

After multiplying the weights obtained from the above calculations by the corresponding 

normalized indicator data, the parameter values of each indicator list are obtained. 

3.2. Revised Coupling Coordination Model 

Building upon the existing coupling coordination model, this study addresses the situation 

where the coupling degree C is distributed non-uniformly[33], and simulates its distribution 

uniformly. Additionally, to address the scenario where the coupling coordination model D loses the 
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characteristics of coupling degree C and comprehensive evaluation index T during the analysis 

process, this study corrects the coupling coordination model D from a distance perspective by 

introducing the concept of norms, thereby retaining the characteristics of coupling degree C and 

comprehensive evaluation index T. Based on this revised coupling degree model, the calculated 

degree of coordinated development can more reasonably reflect the measure of coupling 

coordination and development level. The specific formula for the revised coupling coordination 

model is as follows: 

𝐶 = √[1 −
∑ √(𝑈𝑖 − 𝑈𝑗)

2𝑛
𝑖>𝑗,𝑗=1

∑ 𝑚𝑛−1
𝑚=1

] × (∏
𝑈𝑖

𝑚𝑎𝑥𝑈𝑖

𝑛

𝑖=1

)

1
𝑛−1

 (7) 

𝐶 = √[1 −
√(𝑈3 − 𝑈1)

2 +√(𝑈2 − 𝑈1)
2 +√(𝑈3 − 𝑈2)

2

3
] × √

𝑈1
𝑈3

×
𝑈2
𝑈3

 (8) 

𝐷 = √𝐶 × 𝑇 (9) 

𝑇 = 𝛼 ∙ 𝑈1 + 𝛽 ∙ 𝑈2 + 𝛾 ∙ 𝑈3 (10) 

Where: 

• 𝑈1,𝑈2 and 𝑈3 respectively represent the comprehensive evaluation indexes of the dimensions 

of information space, physical space, and social space; 

• 𝐶 represents the coupling degree of the tri-dimensional space in smart city governance; 

• 𝐷  represents the fusion coordination index of the tri-dimensional space in smart city 

governance, with a value range of [0,1]; 

• 𝑇  represents the comprehensive development index of the coupling system in smart city 

governance, reflecting the synergistic effects among the tri-dimensional space in smart city 

governance; 

• 𝛼, 𝛽⁡and 𝛾 respectively refer to the contribution degrees of information space, physical space, 

and social space in the coupling system; 

• 𝛼 + 𝛽 + 𝛾 = 1 . The closer the value is to 1, the greater the contribution degree. This study 

considers the equal importance of the tri-dimensional space, hence 𝛼 = 𝛽 = 𝛾 =
1

3
. 

• Drawing from Wu Chuanqing[34] and Ge Shishuai[35] on the grading method of coupling 

coordination, this study divides coupling coordination into three degrees: disordered decline, 

transitional adjustment, and coordinated development. Furthermore, divides them into ten 

levels as shown in Table 4. 

Table 4. Criteria for classifying SPI-based coupling coordination levels indices. 

Coordination Phase 
Degree of Coupling 

Coordination 

Coordination 

Index 

Disordered type 

Extremely disordered （0,0.1] 

Severely disordered （0.1,0.2] 

Mildly disordered （0.2,0.3] 

Endangered coordination （0.3,0.4] 

Transition type 

Fragile coordination （0.4,0.5] 

Barely coordination （0.5,0.6] 

Basic coordination （0.6,0.7] 

Coordinated 

development 

Intermediate coordination （0.7,0.8] 

Well-coordinated （0.8,0.9] 

High-quality coordination （0.9,1] 
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3.3. Dagum Gini Coefficient Decomposition Method 

The Dagum Gini coefficient decomposition method has unique advantages in exploring spatial 

imbalance issues. The overall formula for calculating the Gini coefficient in smart cities is as follows: 

𝐺𝑗ℎ = (∑∑|𝑦𝑗𝑖 − 𝑦ℎ𝑟|

𝑛ℎ

𝑟=1

𝑛𝑗

𝑖=1

) 𝑛𝑗 ∙ 𝑛ℎ⁄ (𝑌𝑗 + 𝑌ℎ) (11) 

𝐺 = ⁡𝐺𝑤 + 𝐺𝑛𝑏 + 𝐺𝑡 =∑𝐺𝑗𝑗𝑃𝑗𝑆𝑗

𝑛𝑗

𝑖=1

+∑∑𝐺𝑗ℎ(𝑃𝑗 ∙ 𝑆ℎ + 𝑃ℎ ∙ 𝑆𝑗)𝐷𝑗ℎ

𝑗−1

ℎ=1

𝑘

𝑗=2

+∑∑𝐺𝑗ℎ(𝑃𝑗 ∙ 𝑆ℎ + 𝑃ℎ ∙ 𝑆𝑗)(1 − 𝐷𝑗ℎ)

𝑗−1

ℎ=1

𝑘

𝑗=1

 (12) 

Where: 

• 𝑛 represents the number of cities; 

• 𝑘  represents the number of subgroups, representing the eastern, central, western, and 

northeastern regions in this study; 

• 𝑛𝑗(𝑛ℎ) represents the number of cities in the 𝑗(ℎ)-th subgroup; 

• 𝑗(ℎ) represents the number of divisions in the subgroup, and i and r represent the number of 

cities within the subgroup; 

• G represents the overall Gini coefficient; 

• 𝑦𝑗𝑖(𝑦ℎ𝑟) represents the coordination level of any city in the 𝑗(ℎ)-th subgroup; 

• 𝑌 represents the average coordination level of the tri-dimensional space for all cities, calculated 

by ∑ ∑ 𝑦𝑗𝑖
𝑛𝑗
𝑖=1

𝑘
𝑗=1 𝑛⁄ ; 

• 𝐺𝑗ℎ represents the Gini coefficient between the 𝑗-th subgroup and the 𝑗-th subgroup; 

• 𝑌𝑗 represents the average coordination level of the 𝑗-th subgroup's tri-dimensional space; 

• 𝐷𝑗ℎ represents the relative influence between region 𝑗 and region ℎ. 

Therefore, we decompose the Dagum Gini coefficient into three distinct components: the 

contribution of intra-group Gini coefficient 𝐺𝑤  to the overall Gini coefficient, the contribution of 

inter-group net value difference 𝐺𝑛𝑏  to the overall Gini coefficient, and the contribution of 

hyperdensity 𝐺𝑡. Their relationship is expressed as 𝐺 = 𝐺𝑤 + 𝐺𝑛𝑏 + 𝐺𝑡. 

3.4. Kernel Density Estimation Method 

This study employs non-parametric Kernel density estimation to analyze the dynamic evolution 

trend of spatial coupling coordination in smart cities. The Kernel density function starts from the data 

itself, with weak dependence on the model and good statistical properties, making it widely used in 

studies on non-uniform spatial distributions. The specific formula is as follows: 

𝑓ℎ(𝑋) =
1

𝑁
∑𝐾ℎ(𝑋 − 𝑋𝑖) =

1

𝑁ℎ
∑𝐾(

𝑋 − 𝑋𝑖
ℎ

)

𝑁

𝑖=1

𝑁

𝑖=1

 (13) 

Where: 

• 𝑁  represents the number of study objects, representing the number of smart cities in the 

observed area in this study; 

• 𝑋𝑖  represents the observation value of each smart city's spatial coupling coordination in the 

observed area; 

• 𝑋 represents the mean value of observation; 

• K(∙) is the kernel function; 

• ℎ  represents the bandwidth which determines the precision of the Kernel density and the 

smoothness of the density graph. ℎ = 0.9𝑁
4

5 is usually adopted (𝑁 is the sample size, 𝑆 is the 

sample standard deviation). 

3.5. BP Neural Network 

The BP (Back Propagation) neural network is a non-linear adaptive information processing 

system composed of a large number of processing units. It mainly processes and memorizes 
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information in a way that simulates the neural network processing and memory information in the 

brain. The main feature of the BP neural network is to propagate the error backward layer by layer 

in the form of local gradients to all hidden nodes in the lower layer through the backpropagation 

mechanism, reflected in the local gradients of the lower hidden nodes, and ultimately affect the 

update of various weights and thresholds, making the loss error of the network model minimal, thus 

achieving the nonlinear mapping between input and output. 

In this study, 31 tertiary indicators from Table 1 of the smart city spatial list are selected as input 

nodes, and coupling coordination is selected as the output node. Therefore, there are 31 input layer 

nodes and 1 output layer node. The number of hidden layer nodes is determined by an empirical 

formula[36]: 

𝐾 = √𝑚 × 𝑛 + 𝛼 (14) 

Where: 

• 𝑚 represents the number of input layer nodes; 

• 𝑛 represents the number of output layer nodes; 

• 𝛼 represents a constant between [0,10]; 

• 𝐾 represents the number of hidden layer nodes. 

• By observing the trend of mean square error (MSE) under different numbers of nodes using a 

step-by-step experimental method, the MSE value is minimized when the number of nodes 

increases to 13. Therefore, the optimal structure of the network is determined to be "31-13-1". 

Furthermore, using the constructed neural network for model training, the relationship between 

various factors and coupling coordination is identified. After all samples are trained and meet 

the accuracy requirements, the influence weights of various factors are obtained. 

4. Results 

4.1. Assessment of Smart City Spatial Development 

4.1.1. Comprehensive Assessment of Smart City Spatial Development 

This study employs the entropy weight method to calculate the comprehensive assessment 

index of smart city spatial development in China from 2011 to 2019 (Figure 3). From the overall 

growth perspective, the annual average growth rate of smart cities from 2011 to 2014 showed slight 

fluctuations at a high level, followed by significant oscillations in growth after 2015, with an overall 

downward trend. In terms of the mean value, the comprehensive development level of smart cities 

in China steadily improved from 2011 to 2019, showing an upward trend year by year. Looking at 

the median, its trend changes synchronously with the mean, except for 2012, where the mean value 

was lower than the median from 2011 to 2017. However, after 2017, the mean value started to exceed 

the median. The similar trend and small difference between the mean and median of the 

comprehensive assessment index of smart city spatial development indicate relatively balanced 

development among provincial capitals and municipalities directly under the central government in 

China, with no significant disparities observed. Moreover, cities with initially lower development 

levels show noticeable improvements. 
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Figure 3. Comprehensive assessment of smart city spatial development. 

Furthermore, this study also conducts pairwise combinations of the tri-dimensional space to 

calculate the evaluation indices of the binary spatial subsystem (Figure 3). Overall, the four types of 

evaluation indices show a steady upward trend from 2011 to 2019. Regarding the scale of coupling 

coordination, before 2016, the "physical-social" space coupling dominated, playing a primary driving 

role in smart city development. However, after 2016, with the empowerment effect of information 

technology, the coupling effect of smart city spatial development becomes more prominent. 

Specifically, the evaluation index of "physical-social" space increased from 0.462 to 0.560, and the 

coupling coordination level rose from the "nearing disarray decline" to the "barely coordinated 

fusion" stage. Similarly, the evaluation index of "information-social" space rose from 0.435 to 0.556, 

with the coupling coordination level progressing from "nearing disarray decline" to "barely 

coordinated fusion." Likewise, the evaluation index of "information-physical" space increased from 

0.460 to 0.539, and the coupling coordination level advanced from "nearing disarray decline" to 

"barely coordinated fusion." The differences in the evaluation indices of the three binary subsystems 

are not significant, indicating a relatively balanced development of the binary spatial development 

in China's smart city development process. Additionally, the evaluation index of "information-

physical-social" space increased from 0.515 to 0.640, with the coupling coordination level advancing 

from "barely coordinated fusion" to "primary coordinated development." Compared to the other 

three types of evaluation indices, it demonstrates certain integration advantages, suggesting that the 

integration degree of China's smart city "information-physical-social" space is relatively superior. 

However, the coupling coordination of these binary subsystems is lower than that of the SPI system, 

indicating that the coordinated development of the "information-social" space, "physical-social" 

space, and "information-physical" space has not provided strong support for the coordinated 

development of the "information-physical-social" space. 

4.1.2. Subsystems Assessment of Smart City Spatial Development 

We evaluate the level of smart city spatial development in 2011 and 2019 (Figure 4). Compared 

to 2011, there has been an overall improvement in the level of smart city spatial development in 2019. 

Specifically, observing the comprehensive index of the information space, there is a clear trend 

of "diffusion," indicating significant influence from the rapid iteration and upgrade of information 

technology over the past decade, particularly in reshaping the information space. Simultaneously, 

there is a significant development gap among smart cities, with polarization becoming more 

pronounced. In 2011, the top five cities were Shanghai (0.617), Shijiazhuang (0.615), Shenyang (0.555), 
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Guangzhou (0.554), and Harbin (0.487), whereas in 2019, the top five cities were Shanghai (0.836), 

Guangzhou (0.795), Harbin (0.777), Shenyang (0.771), and Shijiazhuang (0.750). 
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Figure 4. The smart city spatial development assessment index of subsystems of in 2011 and 2019. 

From the perspective of the comprehensive index of the physical space, there is an overall trend 

of slight "fluctuation," with relatively small development gaps and a mature level of development 

among smart cities. In 2011, the top five cities were Beijing (0.670), Haikou (0.644), Hohhot (0.591), 

Urumqi (0.589), and Nanchang (0.588), while in 2019, the top five cities were Beijing (0.756), Haikou 

(0.731), Urumqi (0.711), Guangzhou (0.679), and Lanzhou (0.662).  

In terms of the comprehensive index of the social space, there is an overall trend of significant 

"fluctuation," with some smart cities exhibiting more prominent development. In 2011, the top five 

cities were Beijing (0.514), Guangzhou (0.397), Shanghai (0.390), Nanjing (0.353), and Hangzhou 

(0.336), while in 2019, the top five cities were Beijing (0.720), Shanghai (0.615), Guangzhou (0.609), 

Urumqi (0.522), and Hangzhou (0.521).  

Furthermore, by taking the information space of the smart city spatial system as the x-axis, the 

physical space as the y-axis, and the social space as the z-axis, with each axis intersecting at the mean 

value, the provincial capitals and municipalities directly under the central government can be divided 

into eight different quadrants (Figure 5). 
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Figure 5. The average level of smart city spatial development from 2011 to 2019. 

The average level of smart city spatial development from 2011 to 2019 reveals distinctive patterns 

across different regions. The first quadrant, representing the top tier, includes leading cities like 

Beijing, Hangzhou, and Guangzhou, forming a 'triumvirate' of development. These cities, situated in 

the eastern regions of China, are either traditional economic powerhouses or provincial capitals of 

economically robust provinces. They boast strong economic foundations, advanced social 

governance structures, and flourishing digital economy sectors. 

The second, fourth, and fifth quadrants belong to the second tier, characterized by a 'two-strong-

one-weak' pattern of development, primarily concentrated in the eastern and northeastern regions. 

These cities serve as vital hubs in the northeastern, central, and western regions of China, 

demonstrating significant innovative competitiveness and well-established foundations in emerging 

information industries. While they possess rich historical legacies, abundant resources, and favorable 

ecological environments, they exhibit relatively weaker economic development and less diversified 

social governance structures. 

The third, sixth, and eighth quadrants belong to the third tier, displaying a 'two-weak-one-

strong' pattern of development, with cities mostly located in the central and western regions. These 

cities are often adjacent to more developed areas and benefit from the spillover effects of emerging 

industries. Although they have solid foundations in the development of emerging information 

industries due to favorable technological policies, their economic development lags behind, and they 

face challenges in resource allocation and social governance, leading to less pronounced advantages 

in physical and social spatial development. 

The seventh quadrant represents the fourth tier, encompassing cities like Changchun, 

Nanchang, Guiyang, Kunming, Xining, and Yinchuan, characterized by a 'three-weak' pattern of 

development. These cities, often provincial capitals of provinces with relatively lower economic 

development, lack distinct geographical advantages, have lower per capita resource ownership rates, 

possess relatively underdeveloped economic foundations, and face challenges in establishing sound 

social governance systems and upgrading industrial structures."  
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4.2. Descriptive Analysis of Smart City Spatial Coupling Coordination 

4.2.1. Overall Characteristics 

Using the revised coupling coordination model, the spatial coupling coordination of smart cities 

from 2011 to 2019 is calculated as shown in Table 5. Overall, the spatial coupling coordination of the 

30 smart cities in China shows a steady upward trend. The national ranking of spatial coupling 

coordination development is at a moderate level, indicating a relatively balanced development of 

spatial coupling coordination among Chinese smart cities. In terms of ranking changes, compared to 

2011, 13 cities had higher rankings in spatial coupling coordination in 2019. Among them, 

Zhengzhou, Changsha, Guiyang, and Lanzhou rose by 8, 7, 7, and 5 places respectively, indicating 

relatively rapid progress in spatial coupling coordination development in these four cities compared 

to others. Four cities maintained their rankings. Thirteen cities experienced a decrease in rankings, 

with Shijiazhuang, Shenyang, Chongqing, and Chengdu dropping by 14, 9, 7, and 7 places, 

respectively, indicating a significant slowdown in the development of spatial coupling coordination 

in these four cities compared to others. 

Table 5. Spatial coupling coordination of smart cities from 2011 to 2019. 

City (Ranked) 2011 2012 2013 2014 2015 2016 2017 2018 2019 

Beijing 0.655 0.687 0.717 0.733 0.744 0.765 0.790 0.815 0.832 

Guangzhou 0.655 0.685 0.668 0.724 0.728 0.730 0.738 0.734 0.765 

Shanghai 0.602 0.614 0.659 0.647 0.663 0.696 0.709 0.721 0.725 

Hangzhou 0.561 0.617 0.618 0.683 0.664 0.673 0.717 0.729 0.731 

Nanjing 0.610 0.615 0.609 0.648 0.650 0.671 0.668 0.683 0.715 

Jinan 0.562 0.563 0.606 0.629 0.652 0.660 0.673 0.675 0.672 

Wuhan 0.562 0.580 0.608 0.652 0.642 0.649 0.663 0.662 0.666 

Changsha 0.530 0.566 0.588 0.601 0.626 0.651 0.678 0.675 0.678 

Shenyang 0.597 0.604 0.590 0.624 0.612 0.618 0.634 0.647 0.645 

Xi'an 0.540 0.565 0.586 0.621 0.635 0.626 0.647 0.627 0.666 

Lanzhou 0.521 0.528 0.570 0.585 0.627 0.625 0.641 0.641 0.664 

Zhengzhou 0.523 0.527 0.561 0.567 0.606 0.619 0.657 0.647 0.673 

Tianjin 0.520 0.561 0.557 0.604 0.596 0.606 0.624 0.635 0.656 

Harbin 0.539 0.551 0.566 0.606 0.613 0.609 0.620 0.610 0.636 

Guiyang 0.511 0.554 0.553 0.579 0.598 0.597 0.640 0.650 0.657 

Average 0.515 0.534 0.551 0.574 0.580 0.596 0.621 0.625 0.640 

Chongqing 0.539 0.513 0.527 0.584 0.565 0.618 0.618 0.623 0.626 

Shijiazhuang 0.554 0.538 0.543 0.556 0.558 0.571 0.610 0.603 0.613 

Nanning 0.495 0.531 0.553 0.559 0.571 0.585 0.603 0.608 0.624 

Chengdu 0.524 0.531 0.524 0.572 0.558 0.572 0.605 0.615 0.624 

Haikou 0.498 0.502 0.533 0.540 0.560 0.580 0.606 0.614 0.630 

Fuzhou 0.468 0.518 0.546 0.561 0.571 0.574 0.627 0.599 0.600 

Taiyuan 0.503 0.503 0.539 0.538 0.558 0.565 0.586 0.586 0.635 

Changchun 0.488 0.495 0.501 0.535 0.523 0.536 0.564 0.591 0.613 

Hefei 0.485 0.507 0.492 0.534 0.539 0.513 0.549 0.566 0.590 

Nanchang 0.419 0.475 0.488 0.522 0.501 0.534 0.575 0.579 0.603 

Urumqi 0.455 0.443 0.485 0.481 0.485 0.506 0.544 0.537 0.561 

Yinchuan 0.437 0.466 0.475 0.434 0.445 0.508 0.524 0.525 0.536 
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Kunming 0.373 0.396 0.450 0.479 0.469 0.475 0.528 0.548 0.564 

Hohhot 0.413 0.442 0.412 0.436 0.447 0.490 0.482 0.500 0.507 

Xining 0.304 0.341 0.394 0.401 0.400 0.444 0.506 0.495 0.487 

From 2011 to 2019, the spatial coupling coordination of smart cities witnessed an overall upward 

trend, with most cities experiencing an increase of one level in coordination. Specifically, in 2011, the 

spatial coupling coordination of smart cities mainly exhibited four stages: slight imbalance and 

decline, imminent imbalance and decline, barely coordinated integration, and primary coordinated 

development. Cities in the stages of imminent imbalance and decline and barely coordinated 

integration were relatively more common, distributed across eastern, central, western, and 

northeastern China. However, cities in the stages of slight imbalance and decline and primary 

coordinated development were relatively fewer, with the former mainly located in western regions 

and the latter mainly in eastern regions.  

By 2019, the spatial coupling coordination of smart cities mainly manifested five stages: 

imminent imbalance and decline, barely coordinated integration, primary coordinated development, 

intermediate coordinated development, and good coordinated development. Cities in the stages of 

barely coordinated integration and primary coordinated development were relatively more common, 

with the former, except for Hefei, located in central regions, and the latter mainly distributed in 

central, western, and northeastern China. Additionally, Xining was the only city in the stage of 

imminent imbalance and decline, while Guangzhou, Nanjing, Hangzhou, and Shanghai were in the 

stage of intermediate coordinated development, all situated in eastern China. Only Beijing reached 

the stage of good coordinated development, indicating its significant advantage in spatial coupling 

coordination development. 

4.2.3. Regional Disparities 

The Regional Disparities and Contribution Rate of Spatial Coupling Coordination in Smart Cities 

are illustrated in Table 6. The overall Dagum Gini coefficient of spatial coupling coordination in smart 

cities shows a downward trend, decreasing from 0.08 in 2011 to 0.06 in 2019. This indicates a gradual 

reduction in the development disparity of spatial coupling coordination among smart cities in China. 

Simultaneously, the within-group Gini coefficient, between-group Gini coefficient, and hyper-

variation density also exhibit a decreasing trend, suggesting that the development disparities in 

spatial coupling coordination among and within regions are narrowing. By examining the 

contribution rates of each component of the Dagum Gini coefficient, it can be observed that the 

contribution rate of between-group Gini coefficient is relatively high and continuously increasing 

during the study period, maintaining a level of over 60%. In contrast, the contribution rates of within-

group Gini coefficient and hyper-variation density are relatively low. This indicates that the uneven 

development of spatial coupling coordination in smart cities in China mainly stems from the 

between-group differences among regions, while the disparities caused by within-region variations 

and overlaps between regions contribute relatively less. 

Table 6. Regional Disparities of Spatial Coupling Coordination of Smart Cities. 

Year 
The overall 

Gini coefficient 

The intra-group 

Gini coefficient 

The inter-group 

Gini coefficient 

The contribution of 

hyperdensity 

2011 0.080 0.020 0.047 0.013 

2012 0.076 0.019 0.047 0.011 

2013 0.071 0.017 0.043 0.011 

2014 0.076 0.019 0.045 0.012 

2015 0.077 0.019 0.044 0.014 

2016 0.070 0.017 0.039 0.014 
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2017 0.062 0.015 0.037 0.010 

2018 0.062 0.015 0.037 0.010 

2019 0.060 0.015 0.036 0.009 

Furthermore, from the results of Dagum Gini coefficient decomposition (Table 7), except for a 

slight increase in the within-group Gini coefficient in the eastern region, the differences in spatial 

coupling and coordination of smart cities within the other three major regions have all decreased. In 

terms of the average within-group Gini coefficient across the four major regions, the western region 

has the highest Gini coefficient, indicating the greatest disparity in spatial coupling and coordination 

among smart cities within this region. The eastern region ranks second in terms of the Gini coefficient, 

followed by the central region, which has a slightly higher Gini coefficient than the northeastern 

region. The northeastern region has the smallest Gini coefficient, indicating the least disparity in 

spatial coupling and coordination among smart cities within this region. In terms of the average 

between-group Gini coefficient across the four major regions, the eastern and western regions both 

have a mean between-group Gini coefficient of 0.097, significantly higher than that of other 

interregional comparisons. This suggests a relatively large disparity in spatial coupling and 

coordination of smart cities between the eastern and western regions. The mean between-group Gini 

coefficient for the northeastern region and the central region is 0.044, lower than that of other 

interregional comparisons, indicating a relatively small disparity in spatial coupling and 

coordination of smart cities between the northeastern and central regions. 

Table 7. Decomposition of Dagum Gini Coefficient.. 

Decomposition  2011 2012 2013 2014 2015 2016 2017 2018 2019 

The intra-

group 

Gini 

coefficient 

EC 0.059 0.058 0.054 0.058 0.055 0.056 0.048 0.054 0.056 

NE 0.045 0.044 0.036 0.034 0.035 0.031 0.026 0.021 0.011 

CI 0.048 0.039 0.046 0.043 0.049 0.051 0.044 0.038 0.029 

WE 0.085 0.077 0.069 0.077 0.083 0.065 0.056 0.054 0.058 

The inter-

group 

Gini 

coefficient 

EC-

WE 0.109 0.106 0.099 0.106 0.105 0.094 0.085 0.087 0.087 

EC-CI 0.075 0.069 0.066 0.069 0.067 0.065 0.060 0.058 0.056 

EC-NE 0.059 0.060 0.061 0.058 0.064 0.070 0.061 0.062 0.056 

NE-

WE 0.088 0.081 0.066 0.077 0.077 0.058 0.049 0.048 0.047 

NE-CI 0.056 0.048 0.043 0.045 0.046 0.046 0.042 0.034 0.027 

CI-WE 0.073 0.068 0.067 0.074 0.078 0.066 0.060 0.057 0.055 

4.2.4. Dynamic Evolution 

The kernel density curve depicted in Figure 6 (A) illustrates a discernible trend in the overall 

spatial coupling coordination of smart cities across China. Firstly, the curve exhibits a noticeable 

rightward shift, indicating a consistent upward trajectory in the spatial coupling coordination of 

smart cities throughout the research period. Secondly, it showcases a bimodal distribution, with the 

primary peak height steadily increasing year by year while the secondary peak's variability 

diminishes. This suggests a growing polarization in the spatial coupling coordination of smart cities 

across China. Lastly, the curve's narrowing opening width and thickening left tail signify a 

progressive reduction in the absolute differences of spatial coupling coordination among Chinese 

cities over the years. In summary, despite a continuous improvement in China's spatial coupling 

coordination of smart cities during the study period, nationwide polarization remains significant, 

while disparities among cities are gradually decreasing. 
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Figure 6. The Kernel Density of Spatial Coupling Coordination of Smart Cities from 2011 to 2019. 

As depicted in Figure 6 (B), the Eastern region witnesses an increase in the number of peaks, 

with peak heights peaking in 2017 before gradually declining. The narrowing of the curve's opening 

width from 2011 to 2015, followed by an annual expansion post-2015, coupled with a distinct right 

tail, suggests a diminishing regional disparity in the spatial coupling coordination of smart cities in 

the East, transitioning towards a more multipolar direction. 

Figure 6 (C) indicates a progressive rightward shift in the kernel density curve for the Northeast 

region, with peak heights experiencing annual growth. The narrowing opening width annually, 

transition from bimodal to unimodal peaks, and shortening left tail signify an overall increase in the 

spatial coupling coordination of smart cities in the Northeast, with development becoming more 

concentrated. 

In Figure 6 (D) the Central region's kernel density curve remains relatively steady from 2011 to 

2017 before steepening annually thereafter. Peak heights decrease annually post-2013, rebounding 

after 2017, with a narrowing opening width and evident left tail. This suggests a significant trend 

towards multipolar development in the spatial coupling coordination of smart cities in the Central 

region, accompanied by a gradual rise in regional disparities. 

Figure 6 (E) illustrates a peak for the Western region in 2013, followed by a gradual annual 

decline. The expanding opening width of the kernel density curve post-2013 and thickening left tail 

indicate a growing absolute difference in the spatial coupling coordination of smart cities in the 

Western region, with minimal variation in the polarization phenomenon. 
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4.3. Inferential Analysis of Smart City Spatial Coupling Coordination 

This study utilized the BP neural network to analyze the contribution differences of 31 indicators 

in the spatial system of smart cities to coupling coordination and identified key factors. The BP neural 

network algorithm was implemented using Python statistical software. Thirty-one indicators from 

Tables 1–3 of the spatial system of smart cities were selected as input nodes, with coupling 

coordination as the output node. After normalization, this study constructed 270 samples for 30 smart 

cities from 2011 to 2019. Among these, 216 samples were used for training and 54 for testing the neural 

network. After multiple simulations, satisfactory results were obtained, with the simulated values 

closely matching the actual values. The fitting effect for both training and testing samples was good, 

with accuracy rates of 98.7% and 97.8%, respectively (Figure 7). This indicates the feasibility of the 

model. Next, the weights from the input layer to the hidden layer and from the hidden layer to the 

output layer were obtained, and the contribution rates of each indicator to the coupling coordination 

of the spatial system of smart cities were calculated. 

 

Figure 7. The Kernel Density of Spatial Coupling Coordination of Smart Cities from 2011 to 2019. 

According to Figure 8, the contribution rates of information space, physical space, and social 

space to the coupling coordination are 23.07%, 40.92%, and 35.99%, respectively. From a data 

perspective, the physical space of smart cities plays the most significant role in coupling coordination. 

However, due to the significant differences in the number of third-level indicators divided by the 

spatial systems of smart cities, this study approximates the influence level by using the average 

indicator contribution rate of each unidimensional subsystem. The average indicator contribution 

rates of information space,  physical space, and social space to coupling coordination are 3.845%, 

2.923%, and 3.272%, respectively. Thus, it can be seen that the information space of smart cities plays 

the most significant role in coupling coordination, followed by social space, while physical space 

plays the least role. In the modern society of rapid development of emerging digital technologies, the 

empowering role of information space for smart cities is becoming increasingly apparent. Moreover, 

under the trend of diversified social governance, the effective coordination and cooperation among 

various governance entities can also promote the deep integration and value realization of various 

resource elements in smart cities. Furthermore, physical space, as the focus of development and 

planning in traditional development models of smart cities, has become relatively mature in the 

development of smart cities, and its marginal benefits are relatively low. 
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Figure 8. Contribution Rates of Factors in the Coupling Coordination of Smart City Spatial Systems 

Analyzed Based on BP Neural Network. 

5. Discussion 

5.1. Pathways of Development 

Since the inception of smart city pilot projects in China in 2012, more than a decade has passed. 

However, as a metaphor for urban modernity, smart city construction remains vibrant and is still 

highly regarded by academia as a "new, hopeful, but contentious research field" [37], reshaping the 

discourse system of urban governance. It must be acknowledged that there is still a considerable 

distance between the practical achievements of smart city construction and the high-perception, high-

intelligence systems defined by theoretical constructs. Combining the research conclusions, the 

following three policy recommendations are proposed for the development of smart cities in China. 

Firstly, attention should be paid to the coordination of smart city spatial development to 

optimize spatial development patterns. There are objective differences in the resource endowments 

of smart city construction in different regions of China, leading to path-dependent differences in 

development. However, the realization of the value of smart city development requires the coupling 

coordination of ternary space. This necessitates strengthening the interaction and complementarity 

of different spatial elements in smart city planning and design. For example, in the social space, it is 

necessary to enhance the digital literacy and capabilities of the public compared to the government 

and enterprises. 

Secondly, it is important to strengthen the synergy between regions and learn from innovations 

to promote cross-regional cooperation and complementarity. As mentioned earlier, different smart 

cities have different development advantages. If excellent cases, practical experiences, and common 

problems of smart city construction in different regions, levels, and scales can be promptly 

discovered, and if model replication and experience sharing between cities can be promoted, it may 

achieve the effect of "overtaking on a bend." For example, by establishing cross-regional digital 

economic cooperation platforms, mutual benefits can be achieved to jointly enhance the overall level 

of smart city construction in China. In addition, emphasis should be placed on encouraging 

cooperation and competition between cities to promote innovation and change. 

Thirdly, efforts should be made to provide multidimensional support for the development of 

smart city spatial spaces. Local governments should tilt policies towards factors that contribute 

significantly, such as increasing investment in information technology infrastructure construction, 

promoting the cultivation and development of high-tech industries, actively introducing and 

cultivating professional talents, and providing intellectual support for smart city construction. At the 

same time, smart city construction should adhere to a people-oriented planning orientation, and in 

the process of development, it is necessary to implement the concept of social civilization, and 

promote the coordinated development of material civilization and spiritual civilization. Additionally, 

it is essential to properly address the increasingly serious aging issue, focus on the elderly 
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population's pension security policies, expand social welfare coverage, and enhance public 

satisfaction. 

5.2. Innovations and Limitations 

This study has two main innovative contributions. 

For one thing, we deconstruct the spatial structure of smart cities from the perspective of ternary 

space and constructs an evaluation index system of ternary space integration (SPI) to systematically 

evaluate the development level of 30 smart cities in China, providing evidence-based support for 

understanding the achievements and structural imbalances of China's smart city development over 

the past decade.  

For another, through the analysis of the coupling coordination of ternary space, it deconstructs 

the important driving forces behind the development of smart cities in different regions, providing 

reference for understanding the strategic choices of smart city development in China's digital era. 

Additionally, this study considers the interaction among the overall system, two-dimensional 

subsystems, and one-dimensional subsystems but does not consider the interaction effects among 

different indicators within one-dimensional subsystems, which still needs further analysis. 
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