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Abstract: Smart City has emerged as the mainstream paradigm for urban governance innovation, sustainable
development, and strategy upgrades, which is drawing attention from scholars worldwide. However, current
frameworks for Smart City assessment remain incomplete and simplistic. In is paper, 30 national or provincial
capitals in China were selected and we designed a tri-dimensional SPI model—Social, Physical, and
Information Space—for smart city spatial development assessment. Utilizing methods such as entropy
weighting, coupled coordination degree models, and the Dagum Gini coefficient, this study assesses the spatial
development and coupled coordination of 30 cities from 2011 to 2019. Finally, by means of BP neural networks,
the study examines the contribution of each indicator to the spatial coupled coordination. The results indicated
that with a narrowing disparity in development speeds among different regions, the spatial coupled
coordination development level of smart capitals in China has steadily increased, presenting a pattern of
staggered distribution. Moreover, the IS subsystem plays the most significant role in coupled coordination. The
significance of this research lies in its tri-dimensional spatial perspective of the spatial development and
coupled coordination differences of the Smart City, providing evidence-based support for the regional layout
and optimization in China.

Keywords: smart city; SPI model; tri-dimensional framework; Dagum Gini coefficient; BP neural networks

1. Introduction

Since the 21st century, as the process of modernization has accelerated worldwide, the economic,
social, and spatial structures of major cities have become unprecedentedly complex [1]. A series of
urban diseases, such as population expansion, uneven resource distribution, and ecological
degradation caused by urban sprawl, have become increasingly prominent. To address these
challenges and promote sustainable urban development, a series of emerging concepts such as digital
cities, smart cities, low-carbon cities, resilient cities, and knowledge cities have emerged. Among
them, smart cities, due to their ability to effectively perceive and diagnose urban problems, have
distinct advantages in resilience building[2], security risk governance[3,4], ecological environment
protection[5], and sustainable development. They are regarded as a set of technological solutions for
"comprehensive transformation, all-round empowerment, and revolutionary reshaping” of urban
governance. Consequently, governments worldwide have attached great importance to and put into
practice the concept of smart cities[6].

The concept of smart cities first appeared at the International Conference on Smart Communities
in San Francisco in 1990. After IBM clearly proposed the concept in 2008, it sparked a global trend of
smart city construction. Many developed countries and regions such as the United States, the
European Union, Japan, and Singapore have regarded the smartification of cities as the mainstream
of future urban development, actively exploring innovative models of smart urban governance and
digital technology. However, with the deepening of smart city construction, the concerns and risks
arising from the complexity of smart city governance have gradually emerged[7]. Especially under
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the influence of a construction concept dominated by technological empowerment in the long term,
problems such as digital marginalization, worsening digital inequality, misuse of citizen data, and
violations of privacy[8] and security have emerged, to a certain extent, revealing the inefficiency,
disorder, and imbalance of smart city space.

Against this backdrop, it is increasingly recognized that scientifically effective evaluation
schemes are crucial for promoting the sustainable development of smart cities. Therefore, various
smart city evaluation tools, frameworks, and indicator sets have been developed and designed[9]. On
the one hand, academia systematically interprets the development direction, value positioning, and
strategic choices of smart cities in theory, providing a theoretical basis for the design of smart city
evaluation systems. This mainly involves the theoretical framework of smart city construction[10,11],
governance innovation models[12,13], technological empowerment paths[14,15], and project
planning decisions[16]. At the same time, it pays special attention to the practical difficulties[17,18],
security risks[19], and opportunities and challenges[20] in the process of smart city construction. On
the other hand, the industry, starting from a practical orientation, guides its construction direction
by formulating norms and standard systems for smart cities. For example, in May 2023, the State
Administration for Market Regulation issued the "New Smart City Evaluation Indicators,” covering
nine indicators including benefiting the people's services, precise governance, ecological livability,
information infrastructure, information resources, industrial development, information security,
innovative development, and citizen experience. Similarly, foreign countries have also issued a series
of indicator systems, such as the Smart Sustainable City Development Index (SSCDI)[21] based on
social, economic, environmental, cultural, and living dimensions and the European Smart City
Evaluation System based on smart economy, smart public, smart governance, smart mobility, smart
environment, and smart living dimensions. At the same time, academia has proposed risk
management frameworks emphasizing security[22], NIST privacy frameworks[23], and information
security risk assessment indicator systems[24].

Overall, the smart research community formed by academia and the industry provides rich
thinking and insights for promoting the sustainable development of smart cities. However, it is easy
to find that the existing evaluation indicator systems are still in a "systematic fragmentation” state.
That is, although most evaluation indicator systems comprehensively assess the development of
smart cities from a systemic perspective, the designed indicator systems lack clear theoretical
foundations and fail to form a clear structural logic, resulting in evaluation results that can be
explained in terms of systematicity and comprehensiveness but lack sufficient evidence in terms of
structure and correlation. This provides a certain space for this study to explore the development of
smart cities from a spatial integration perspective.

This study adopts the theoretical perspective of tri-dimensional space to examine the structural
composition of smart cities. By constructing a spatially integrated evaluation indicator system for
smart city development and using a modified coupled coordination model to evaluate the coupling
coordination characteristics of smart cities in 30 provincial capitals and municipalities in China, and
through the Dagum Gini coefficient decomposition method to analyze the differentiation of coupling
coordination in different regions of China, the study explores the spatiotemporal evolution
characteristics of smart city development in China, thus providing new empirical insights for the
smart city research community.

2. Materials and Modeling
2.1. Study Area

In this study, we selected 30 national or provincial capitals as cases to analyze and evaluate their
urban spatial coupling development level, and divided them into four regions according to their
orientation: east, northeast, central and west (Figure 1). These cities are the core forces in the
development of smart cities in various regions of China, and meanwhile ideal representatives for our
research.
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Figure 1. Study Area of 30 national or provincial capitals.

2.2. Literature Review and Modeling

Urban spatial analysis has always been a crucial topic of interest and a key paradigm followed
by scholars. Starting from the 1920s, the Chicago School, represented by Georg Simmel, integrated
spatial research with sociology, pioneering a new paradigm in urban studies[25]. Entering the 21st
century, the upgrading innovation of emerging information technology has propelled the expansion
and evolution of human living space forms, gradually transitioning from binary space to tri-
dimensional space. Specifically, the transition from the past "physical-social" binary space to the
coexistence of physical space, social space, and information space forms the new tri-dimensional
space, leading to the evolution of new spatial theories.

From the perspective of smart city construction, it is inherently a process of spatial production
and reconstruction. Understanding the construction and governance effects of smart cities cannot be
separated from the analysis of urban space and its elements. In simple terms, the level of smart city
construction is largely determined by the multiple spatial structures and their elements.

To clarify the spatial structural differences and the spatiotemporal evolution laws of smart city
development, this study constructs an integrated model of smart city evaluation in tri-dimensional
space (Figure 1). As a complex giant system, a smart city is the product of the coupled coordination
of three subsystems: physical space, social space, and information space. Information space consists
of a virtual network space composed of three core elements: data, computing power, and algorithms.
Physical space is a tangible space composed of material elements in production, ecology, and daily
life. Social space is formed by the interactive activities of multiple subjects such as government,
society, and the public, including attitudes, behaviors, and values. Additionally, there is close
interaction between each subsystem, forming the "physical-social" subsystem, "information-physical"
subsystem, and "physical-social" binary subsystem.

2.3. Data Source and Processing

Considering the representativeness and availability of data, this study measures the spatial
development level of smart cities in 30 provinces in China (excluding Tibet, Hong Kong, and Macau)
from 2011 to 2019. According to the division standards of China's economic regions by the State
Council, the cities can be divided into four major regions: Eastern, Central, Western, and
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Northeastern. In terms of data sources, socio-economic and statistical indicators mainly come from
the "China Science and Technology Statistical Yearbook" and the "China Urban Statistical Yearbook"
from 2012 to 2020, as well as the statistical yearbooks of the 30 provincial capitals and municipalities
and their national economic and social development statistical bulletins. The network search index is
sourced from the public attention index of Baidu Index|[26]. The digital inclusive finance index comes
from the "Peking University Digital Inclusive Finance Index Report." In addition, for individual years
with missing data, interpolation methods are used to complete the dataset.

Informational Space
Subsystem (1S)

| Dat
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E lements
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Figure 2. SPI Model of Smart City.

Based on the SPI model, this study formulated a series of indices for smart city evaluation. As
the model shown, the information space is centered around data as the basic element. Therefore, it
focuses on information production and knowledge innovation at different stages of the data lifecycle,
using technologies such as information equipment and the internet. This space follows the path of
technical governance, and specifically extracts three major technical elements: data, algorithms, and
computing power, emphasizing the innovation and application of urban smart technology. Based on
this, three primary indicators are divided for description and subdivision, referring to existing
research[27], and constructing six tertiary indicators at the information level (Table 1).

Table 1. List of SPI-based indices for smart city evaluation of Informational Space.

i I
Target Level Standardized Index Layer ndex. Weight
Layer Properties
. Data Peking University Digital Inclusive Finance . 0167
Informational Index
Space R&D personnel ratio(%) + 0.168
su.bsystem Algorithm The pr(?portion of .enTployees in the
indices information transmission, computer + 0.163

services, and software industries(%)
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Internet penetration(%) + 0.170
Computational Per ‘ capita total telecommunications . 0.169
ower services(yuan)
P The proportion of mobile phone users at the
0.164
end of the year(%)

The physical space revolves around "objects" as the basic element. It refers to the ability to collect
information relying on the objective geographical environment and various material elements when
people are in complex urban spatial scenes, achieving resource optimization and emphasizing the
environmental adaptability and situational dependency of governance. This space follows the path
of urban planning, thus extracting three scenario elements: production, life, and ecology. Referring
to existing research [28,29], 14 tertiary indicators are constructed (Table 2).

Table 2. List of SPI-based indices for smart city evaluation of Physical Space.

Target Level Standardized Index Layer Index' Weight
Layer Properties
The proportion of production land(%) + 0.067
Production Advanced industrial structure(%) + 0.071
Upgrading of industrial structure(%) + 0.068
Population density(%) - 0.073
Public library holdings per capita (volumes) + 0.072
Living Per capita park green space area(square . 0.073
meters)
Per capita medical institutions + 0.067
Physical Per capita educational resources(persons) + 0.067
Space GDP energy intensity(yuan/billion kilowatt 0.074
subsystem hours) '
indices Industrial wastewater discharge intensity(%) - 0.074
.Indust.rlal sulfur dioxide emission B 0.074
intensity(%)
Ecology Harmless treatment rate of household . 0.074
waste(%)
Industrial smoke (powder) dust emission
. . - 0.074
intensity(%)
Comprehensive utilization rate of general . 0.073

industrial solid waste(%)

The social space is centered around "people" and aims to achieve cooperation and co-governance
among multiple subjects and across departments. In the context of diversified social governance, the
degree of coordination of interaction behaviors among various subjects will greatly affect decision-
making effectiveness. This space follows the path of collaborative governance, thus extracting three
key subject elements: government, society, and the public. Referring to previous achievements[30],
11 tertiary indicators are constructed. The specific evaluation indicators list is shown in Table 3.

Table 3. List of SPI-based indices for smart city evaluation of Social Space.

Target Level Standardized Index Layer Index. Weight
Layer Properties
Social Unemployment rate(%) - 0.096
Space Government Government 'ﬁnanc1al' support(‘/o) N . + 0.091
subsystem The proportion of insured individuals in . 0.087

indices unemployment insurance(%)
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6
The proportion of wurban employees . 0.089
participating in basic pension insurance(%) ’
The proportion of wurban employees . 0.089

participating in basic medical insurance(%)
Network search index + 0.093
The proportion of employees in public

. o + 0.093
] management and social organizations(%)
Society . .
The proportion of employees in the health,
social insurance, and social welfare + 0.091
industries(%)
Average salary of employees(yuan) + 0.091
General Public Per capl'ta education level(year) . + 0.092
Per capita year-end RMB deposit balance of . 0.090

financial institutions(yuan)

3. Methods
3.1. Entropy Weight Method

To reduce the impact of subjective factors, this study employs the entropy weight method, which
is a relatively objective weighting method. First, the data undergoes standardization processing. Since
the indicators in the list have both positive and negative attributes, different standardization formulas
are used for indicators of different attributes. The calculation steps are as follows:

Xij — min(xj)

Xij = max (x;) — min(xj) @

maX(xj) - xij

Xij = )

max(xj) - min(xj)

Secondly, the determination of indicator weights is conducted. Referring to existing research
[31,32], Formula (3) is used to calculate the proportion of the i-th sample under the j-th indicator,
which is considered as the probability used in relative entropy calculation:

Py =5 @
YT Xy

where X;; represents the standardized sample data, and P;; ranges from 0 to 1.
Formula (4) is used to calculate the information entropy of each indicator:

n
1
& = Z Py - In(Py;) 4)
i=1

“Inn

Formula (5) (6) is used to calculate the information utility value and standardize to obtain the
entropy weight of each indicator:

di=1-—¢ (5)
d.

W = ot 6

TEd ©

After multiplying the weights obtained from the above calculations by the corresponding
normalized indicator data, the parameter values of each indicator list are obtained.

3.2. Revised Coupling Coordination Model

Building upon the existing coupling coordination model, this study addresses the situation
where the coupling degree C is distributed non-uniformly[33], and simulates its distribution
uniformly. Additionally, to address the scenario where the coupling coordination model D loses the
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characteristics of coupling degree C and comprehensive evaluation index T during the analysis
process, this study corrects the coupling coordination model D from a distance perspective by
introducing the concept of norms, thereby retaining the characteristics of coupling degree C and
comprehensive evaluation index T. Based on this revised coupling degree model, the calculated
degree of coordinated development can more reasonably reflect the measure of coupling
coordination and development level. The specific formula for the revised coupling coordination
model is as follows:

VWi - U)?

TII
m1

n
C= Il_ i>j,j=1

() ”

| VU=V +VW0, - U +VUs = U)*| U U, ®)
3 Uy, " Uy

D=+CxXT )

T=0('U1+[)"U2+)/'U3 (10)

Where:

e U.,U, and U; respectively represent the comprehensive evaluation indexes of the dimensions
of information space, physical space, and social space;

e  ( represents the coupling degree of the tri-dimensional space in smart city governance;

e D represents the fusion coordination index of the tri-dimensional space in smart city
governance, with a value range of [0,1];

e T represents the comprehensive development index of the coupling system in smart city
governance, reflecting the synergistic effects among the tri-dimensional space in smart city
governance;

e a, fand y respectively refer to the contribution degrees of information space, physical space,
and social space in the coupling system;

e a+pf+y=1. The closer the value is to 1, the greater the contribution degree. This study

considers the equal importance of the tri-dimensional space, hence a = =y = %

e Drawing from Wu Chuanging[34] and Ge Shishuai[35] on the grading method of coupling
coordination, this study divides coupling coordination into three degrees: disordered decline,
transitional adjustment, and coordinated development. Furthermore, divides them into ten
levels as shown in Table 4.

Table 4. Criteria for classifying SPI-based coupling coordination levels indices.

Coordination Phase Degree of- C01-1p1ing Coordination
Coordination Index
Extremely disordered (0,0.1]
Disordered type Severely disordered (0.1,0.2]
Mildly disordered (0.2,0.3]
Endangered coordination (0.3,0.4]
Fragile coordination (0.4,0.5]
Transition type Barely coordination (0.5,0.6]
Basic coordination (0.6,0.7]
. Intermediate coordination (0.7,0.8]
Coordinated Well-coordinated (0.8,0.9]
development

High-quality coordination (0.91]
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3.3. Dagum Gini Coefficient Decomposition Method

The Dagum Gini coefficient decomposition method has unique advantages in exploring spatial
imbalance issues. The overall formula for calculating the Gini coefficient in smart cities is as follows:

nj np
Gjn = ZZb’ﬂ Yir| /"1 (% +12) (11)
i=1r=
nj k Jj-1 k Jj-1
G= Gy+Gp+ G, = ZG iPS; +Z Gjh(Pj-Sh+Ph-Sj)Djh+Z Gin(P*Sh+Pn - S)(1—Dj)  (12)
i=1 j=2h=1 j=1h=1

Where:

e n represents the number of cities;

e k represents the number of subgroups, representing the eastern, central, western, and
northeastern regions in this study;

e n;(ny,) represents the number of cities in the j(h)-th subgroup;

e  j(h) represents the number of divisions in the subgroup, and i and r represent the number of
cities within the subgroup;

e  Grepresents the overall Gini coefficient;

*  ¥;i(ynr) represents the coordination level of any city in the j(h)-th subgroup;

e Y represents the average coordination level of the tri-dimensional space for all cities, calculated
by Zhi 22, vie/n

®  Gj, represents the Gini coefficient between the j-th subgroup and the j-th subgroup;

e Y, represents the average coordination level of the j-th subgroup's tri-dimensional space;

e  Dj, represents the relative influence between region j and region h.

Therefore, we decompose the Dagum Gini coefficient into three distinct components: the
contribution of intra-group Gini coefficient G,, to the overall Gini coefficient, the contribution of
inter-group net value difference G,, to the overall Gini coefficient, and the contribution of
hyperdensity G;. Their relationship is expressed as G = G,, + G, + G..

3.4. Kernel Density Estimation Method

This study employs non-parametric Kernel density estimation to analyze the dynamic evolution
trend of spatial coupling coordination in smart cities. The Kernel density function starts from the data
itself, with weak dependence on the model and good statistical properties, making it widely used in
studies on non-uniform spatial distributions. The specific formula is as follows:

£ 00 =%i1<h<x—xi> =Nihi1<(x;xi) (13)
i=1 i=1
Where:

e N represents the number of study objects, representing the number of smart cities in the
observed area in this study;

e X; represents the observation value of each smart city's spatial coupling coordination in the
observed area;

e X represents the mean value of observation;
e  K(*) is the kernel function;
e  h represents the bandwidth which determines the precision of the Kernel density and the

4
smoothness of the density graph. h = 0.9N5 is usually adopted (N is the sample size, S is the
sample standard deviation).

3.5. BP Neural Network

The BP (Back Propagation) neural network is a non-linear adaptive information processing
system composed of a large number of processing units. It mainly processes and memorizes
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information in a way that simulates the neural network processing and memory information in the
brain. The main feature of the BP neural network is to propagate the error backward layer by layer
in the form of local gradients to all hidden nodes in the lower layer through the backpropagation
mechanism, reflected in the local gradients of the lower hidden nodes, and ultimately affect the
update of various weights and thresholds, making the loss error of the network model minimal, thus
achieving the nonlinear mapping between input and output.

In this study, 31 tertiary indicators from Table 1 of the smart city spatial list are selected as input
nodes, and coupling coordination is selected as the output node. Therefore, there are 31 input layer
nodes and 1 output layer node. The number of hidden layer nodes is determined by an empirical
formula[36]:

K=vmXxn+a (14)

Where:

e m represents the number of input layer nodes;

. n represents the number of output layer nodes;

e  «a represents a constant between [0,10];

® K represents the number of hidden layer nodes.

e By observing the trend of mean square error (MSE) under different numbers of nodes using a
step-by-step experimental method, the MSE value is minimized when the number of nodes
increases to 13. Therefore, the optimal structure of the network is determined to be "31-13-1".
Furthermore, using the constructed neural network for model training, the relationship between
various factors and coupling coordination is identified. After all samples are trained and meet
the accuracy requirements, the influence weights of various factors are obtained.

4. Results
4.1. Assessment of Smart City Spatial Development
4.1.1. Comprehensive Assessment of Smart City Spatial Development

This study employs the entropy weight method to calculate the comprehensive assessment
index of smart city spatial development in China from 2011 to 2019 (Figure 3). From the overall
growth perspective, the annual average growth rate of smart cities from 2011 to 2014 showed slight
fluctuations at a high level, followed by significant oscillations in growth after 2015, with an overall
downward trend. In terms of the mean value, the comprehensive development level of smart cities
in China steadily improved from 2011 to 2019, showing an upward trend year by year. Looking at
the median, its trend changes synchronously with the mean, except for 2012, where the mean value
was lower than the median from 2011 to 2017. However, after 2017, the mean value started to exceed
the median. The similar trend and small difference between the mean and median of the
comprehensive assessment index of smart city spatial development indicate relatively balanced
development among provincial capitals and municipalities directly under the central government in
China, with no significant disparities observed. Moreover, cities with initially lower development
levels show noticeable improvements.
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Figure 3. Comprehensive assessment of smart city spatial development.

Furthermore, this study also conducts pairwise combinations of the tri-dimensional space to
calculate the evaluation indices of the binary spatial subsystem (Figure 3). Overall, the four types of
evaluation indices show a steady upward trend from 2011 to 2019. Regarding the scale of coupling
coordination, before 2016, the "physical-social" space coupling dominated, playing a primary driving
role in smart city development. However, after 2016, with the empowerment effect of information
technology, the coupling effect of smart city spatial development becomes more prominent.
Specifically, the evaluation index of "physical-social” space increased from 0.462 to 0.560, and the
coupling coordination level rose from the "nearing disarray decline" to the "barely coordinated
fusion" stage. Similarly, the evaluation index of "information-social" space rose from 0.435 to 0.556,
with the coupling coordination level progressing from "nearing disarray decline” to "barely
coordinated fusion.” Likewise, the evaluation index of "information-physical" space increased from
0.460 to 0.539, and the coupling coordination level advanced from "nearing disarray decline" to
"barely coordinated fusion." The differences in the evaluation indices of the three binary subsystems
are not significant, indicating a relatively balanced development of the binary spatial development
in China's smart city development process. Additionally, the evaluation index of "information-
physical-social" space increased from 0.515 to 0.640, with the coupling coordination level advancing
from "barely coordinated fusion” to "primary coordinated development.” Compared to the other
three types of evaluation indices, it demonstrates certain integration advantages, suggesting that the
integration degree of China's smart city "information-physical-social" space is relatively superior.
However, the coupling coordination of these binary subsystems is lower than that of the SPI system,
indicating that the coordinated development of the "information-social" space, "physical-social"
space, and "information-physical" space has not provided strong support for the coordinated
development of the "information-physical-social" space.

4.1.2. Subsystems Assessment of Smart City Spatial Development

We evaluate the level of smart city spatial development in 2011 and 2019 (Figure 4). Compared
to 2011, there has been an overall improvement in the level of smart city spatial development in 2019.

Specifically, observing the comprehensive index of the information space, there is a clear trend
of "diffusion,” indicating significant influence from the rapid iteration and upgrade of information
technology over the past decade, particularly in reshaping the information space. Simultaneously,
there is a significant development gap among smart cities, with polarization becoming more
pronounced. In 2011, the top five cities were Shanghai (0.617), Shijiazhuang (0.615), Shenyang (0.555),
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Guangzhou (0.554), and Harbin (0.487), whereas in 2019, the top five cities were Shanghai (0.836),
Guangzhou (0.795), Harbin (0.777), Shenyang (0.771), and Shijiazhuang (0.750).

Changchun

Zhengzhou

—o—2011 Informational Space - <~ 2019 Informational Space

—o—2011 Physical Space == 2019 Physical Space —o—2011 Social Space =~ 2019 Social Space

Figure 4. The smart city spatial development assessment index of subsystems of in 2011 and 2019.

From the perspective of the comprehensive index of the physical space, there is an overall trend
of slight "fluctuation," with relatively small development gaps and a mature level of development
among smart cities. In 2011, the top five cities were Beijing (0.670), Haikou (0.644), Hohhot (0.591),
Urumgi (0.589), and Nanchang (0.588), while in 2019, the top five cities were Beijing (0.756), Haikou
(0.731), Urumgi (0.711), Guangzhou (0.679), and Lanzhou (0.662).

In terms of the comprehensive index of the social space, there is an overall trend of significant
"fluctuation,” with some smart cities exhibiting more prominent development. In 2011, the top five
cities were Beijing (0.514), Guangzhou (0.397), Shanghai (0.390), Nanjing (0.353), and Hangzhou
(0.336), while in 2019, the top five cities were Beijing (0.720), Shanghai (0.615), Guangzhou (0.609),
Urumgqi (0.522), and Hangzhou (0.521).

Furthermore, by taking the information space of the smart city spatial system as the x-axis, the
physical space as the y-axis, and the social space as the z-axis, with each axis intersecting at the mean
value, the provincial capitals and municipalities directly under the central government can be divided
into eight different quadrants (Figure 5).
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Figure 5. The average level of smart city spatial development from 2011 to 2019.

The average level of smart city spatial development from 2011 to 2019 reveals distinctive patterns
across different regions. The first quadrant, representing the top tier, includes leading cities like
Beijing, Hangzhou, and Guangzhou, forming a 'triumvirate' of development. These cities, situated in
the eastern regions of China, are either traditional economic powerhouses or provincial capitals of
economically robust provinces. They boast strong economic foundations, advanced social
governance structures, and flourishing digital economy sectors.

The second, fourth, and fifth quadrants belong to the second tier, characterized by a 'two-strong-
one-weak' pattern of development, primarily concentrated in the eastern and northeastern regions.
These cities serve as vital hubs in the northeastern, central, and western regions of China,
demonstrating significant innovative competitiveness and well-established foundations in emerging
information industries. While they possess rich historical legacies, abundant resources, and favorable
ecological environments, they exhibit relatively weaker economic development and less diversified
social governance structures.

The third, sixth, and eighth quadrants belong to the third tier, displaying a 'two-weak-one-
strong' pattern of development, with cities mostly located in the central and western regions. These
cities are often adjacent to more developed areas and benefit from the spillover effects of emerging
industries. Although they have solid foundations in the development of emerging information
industries due to favorable technological policies, their economic development lags behind, and they
face challenges in resource allocation and social governance, leading to less pronounced advantages
in physical and social spatial development.

The seventh quadrant represents the fourth tier, encompassing cities like Changchun,
Nanchang, Guiyang, Kunming, Xining, and Yinchuan, characterized by a 'three-weak' pattern of
development. These cities, often provincial capitals of provinces with relatively lower economic
development, lack distinct geographical advantages, have lower per capita resource ownership rates,
possess relatively underdeveloped economic foundations, and face challenges in establishing sound
social governance systems and upgrading industrial structures."
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4.2. Descriptive Analysis of Smart City Spatial Coupling Coordination
4.2.1. Overall Characteristics

Using the revised coupling coordination model, the spatial coupling coordination of smart cities
from 2011 to 2019 is calculated as shown in Table 5. Overall, the spatial coupling coordination of the
30 smart cities in China shows a steady upward trend. The national ranking of spatial coupling
coordination development is at a moderate level, indicating a relatively balanced development of
spatial coupling coordination among Chinese smart cities. In terms of ranking changes, compared to
2011, 13 cities had higher rankings in spatial coupling coordination in 2019. Among them,
Zhengzhou, Changsha, Guiyang, and Lanzhou rose by 8, 7, 7, and 5 places respectively, indicating
relatively rapid progress in spatial coupling coordination development in these four cities compared
to others. Four cities maintained their rankings. Thirteen cities experienced a decrease in rankings,
with Shijiazhuang, Shenyang, Chongqing, and Chengdu dropping by 14, 9, 7, and 7 places,
respectively, indicating a significant slowdown in the development of spatial coupling coordination
in these four cities compared to others.

Table 5. Spatial coupling coordination of smart cities from 2011 to 2019.

City (Ranked) 2011 2012 2013 2014 2015 2016 2017 2018 2019
Beijing 0.655 0.687 0.717 0.733 0.744 0.765 0.790 0.815 0.832
Guangzhou 0.655 0.685 0.668 0.724 0.728 0.730 0.738 0.734 0.765
Shanghai 0.602 0.614 0.659 0.647 0.663 0.696 0.709 0.721 0.725
Hangzhou 0.561 0.617 0.618 0.683 0.664 0.673 0.717 0.729 0.731
Nanjing 0.610 0.615 0.609 0.648 0.650 0.671 0.668 0.683 0.715
Jinan 0.562 0.563 0.606 0.629 0.652 0.660 0.673 0.675 0.672
Wuhan 0.562 0.580 0.608 0.652 0.642 0.649 0.663 0.662 0.666
Changsha  0.530 0.566 0.588 0.601 0.626 0.651 0.678 0.675 0.678
Shenyang  0.597 0.604 0.590 0.624 0.612 0.618 0.634 0.647 0.645
Xi'an 0.540 0.565 0.586 0.621 0.635 0.626 0.647 0.627 0.666
Lanzhou 0.521 0.528 0.570 0.585 0.627 0.625 0.641 0.641 0.664
Zhengzhou 0.523 0.527 0.561 0.567 0.606 0.619 0.657 0.647 0.673
Tianjin 0.520 0.561 0.557 0.604 0.596 0.606 0.624 0.635 0.656
Harbin 0.539 0.551 0.566 0.606 0.613 0.609 0.620 0.610 0.636
Guiyang 0.511 0.554 0.553 0.579 0.598 0.597 0.640 0.650 0.657
Average 0.515 0.534 0.551 0.574 0.580 0.596 0.621 0.625 0.640
Chongqing 0.539 0.513 0.527 0.584 0.565 0.618 0.618 0.623 0.626
Shijiazhuang 0.554 0.538 0.543 0.556 0.558 0.571 0.610 0.603 0.613
Nanning 0.495 0.531 0.553 0.559 0.571 0.585 0.603 0.608 0.624
Chengdu 0.524 0.531 0.524 0.572 0.558 0.572 0.605 0.615 0.624
Haikou 0.498 0.502 0.533 0.540 0.560 0.580 0.606 0.614 0.630
Fuzhou 0.468 0.518 0.546 0.561 0.571 0.574 0.627 0.599 0.600
Taiyuan 0.503 0.503 0.539 0.538 0.558 0.565 0.586 0.586 0.635
Changchun 0.488 0.495 0.501 0.535 0.523 0.536 0.564 0.591 0.613
Hefei 0.485 0.507 0.492 0.534 0.539 0.513 0.549 0.566 0.590
Nanchang 0.419 0.475 0.488 0.522 0.501 0.534 0.575 0.579 0.603
Urumqi 0.455 0.443 0.485 0.481 0.485 0.506 0.544 0.537 0.561
Yinchuan 0.437 0.466 0.475 0.434 0.445 0.508 0.524 0.525 0.536
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Kunming 0.373 0.396 0.450 0.479 0.469 0.475 0.528 0.548 0.564
Hohhot 0413 0.442 0.412 0.436 0.447 0.490 0.482 0.500 0.507
Xining 0.304 0.341 0.394 0.401 0.400 0.444 0.506 0.495 0.487

From 2011 to 2019, the spatial coupling coordination of smart cities witnessed an overall upward
trend, with most cities experiencing an increase of one level in coordination. Specifically, in 2011, the
spatial coupling coordination of smart cities mainly exhibited four stages: slight imbalance and
decline, imminent imbalance and decline, barely coordinated integration, and primary coordinated
development. Cities in the stages of imminent imbalance and decline and barely coordinated
integration were relatively more common, distributed across eastern, central, western, and
northeastern China. However, cities in the stages of slight imbalance and decline and primary
coordinated development were relatively fewer, with the former mainly located in western regions
and the latter mainly in eastern regions.

By 2019, the spatial coupling coordination of smart cities mainly manifested five stages:
imminent imbalance and decline, barely coordinated integration, primary coordinated development,
intermediate coordinated development, and good coordinated development. Cities in the stages of
barely coordinated integration and primary coordinated development were relatively more common,
with the former, except for Hefei, located in central regions, and the latter mainly distributed in
central, western, and northeastern China. Additionally, Xining was the only city in the stage of
imminent imbalance and decline, while Guangzhou, Nanjing, Hangzhou, and Shanghai were in the
stage of intermediate coordinated development, all situated in eastern China. Only Beijing reached
the stage of good coordinated development, indicating its significant advantage in spatial coupling
coordination development.

4.2.3. Regional Disparities

The Regional Disparities and Contribution Rate of Spatial Coupling Coordination in Smart Cities
are illustrated in Table 6. The overall Dagum Gini coefficient of spatial coupling coordination in smart
cities shows a downward trend, decreasing from 0.08 in 2011 to 0.06 in 2019. This indicates a gradual
reduction in the development disparity of spatial coupling coordination among smart cities in China.
Simultaneously, the within-group Gini coefficient, between-group Gini coefficient, and hyper-
variation density also exhibit a decreasing trend, suggesting that the development disparities in
spatial coupling coordination among and within regions are narrowing. By examining the
contribution rates of each component of the Dagum Gini coefficient, it can be observed that the
contribution rate of between-group Gini coefficient is relatively high and continuously increasing
during the study period, maintaining a level of over 60%. In contrast, the contribution rates of within-
group Gini coefficient and hyper-variation density are relatively low. This indicates that the uneven
development of spatial coupling coordination in smart cities in China mainly stems from the
between-group differences among regions, while the disparities caused by within-region variations
and overlaps between regions contribute relatively less.

Table 6. Regional Disparities of Spatial Coupling Coordination of Smart Cities.

The overall The intra-group The inter-group The contribution of

Year Gini coefficient Gini coefficient Gini coefficient hyperdensity
2011 0.080 0.020 0.047 0.013
2012 0.076 0.019 0.047 0.011
2013 0.071 0.017 0.043 0.011
2014 0.076 0.019 0.045 0.012
2015 0.077 0.019 0.044 0.014

2016 0.070 0.017 0.039 0.014



https://doi.org/10.20944/preprints202404.1168.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 17 April 2024

15
2017 0.062 0.015 0.037 0.010
2018 0.062 0.015 0.037 0.010
2019 0.060 0.015 0.036 0.009

Furthermore, from the results of Dagum Gini coefficient decomposition (Table 7), except for a
slight increase in the within-group Gini coefficient in the eastern region, the differences in spatial
coupling and coordination of smart cities within the other three major regions have all decreased. In
terms of the average within-group Gini coefficient across the four major regions, the western region
has the highest Gini coefficient, indicating the greatest disparity in spatial coupling and coordination
among smart cities within this region. The eastern region ranks second in terms of the Gini coefficient,
followed by the central region, which has a slightly higher Gini coefficient than the northeastern
region. The northeastern region has the smallest Gini coefficient, indicating the least disparity in
spatial coupling and coordination among smart cities within this region. In terms of the average
between-group Gini coefficient across the four major regions, the eastern and western regions both
have a mean between-group Gini coefficient of 0.097, significantly higher than that of other
interregional comparisons. This suggests a relatively large disparity in spatial coupling and
coordination of smart cities between the eastern and western regions. The mean between-group Gini
coefficient for the northeastern region and the central region is 0.044, lower than that of other
interregional comparisons, indicating a relatively small disparity in spatial coupling and
coordination of smart cities between the northeastern and central regions.

Table 7. Decomposition of Dagum Gini Coefficient..

Decomposition 2011 2012 2013 2014 2015 2016 2017 2018 2019

The intra- EC 0.059 0.058 0.054 0.058 0.055 0.056 0.048 0.054 0.056

group NE 0.045 0.044 0.036 0.034 0.035 0.031 0.026 0.021 0.011

Gini CI 0.048 0.039 0.046 0.043 0.049 0.051 0.044 0.038 0.029

coefficient WE 0.085 0.077 0.069 0.077 0.083 0.065 0.056 0.054 0.058
EC-

WE 0.109 0.106 0.099 0.106 0.105 0.094 0.085 0.087 0.087

The inter- EC-CI 0075 0.069 0.066 0.069 0.067 0.065 0.060 0.058 0.056

group EC-NE 0.059 0.060 0.061 0.058 0.064 0.070 0.061 0.062 0.056
Gini NE-

coefficient WE 0.088 0.081 0.066 0.077 0.077 0.058 0.049 0.048 0.047

NE-CI 0.056 0.048 0.043 0.045 0.046 0.046 0.042 0.034 0.027

CI-WE 0.073 0.068 0.067 0.074 0.078 0.066 0.060 0.057 0.055

4.2.4. Dynamic Evolution

The kernel density curve depicted in Figure 6 (A) illustrates a discernible trend in the overall
spatial coupling coordination of smart cities across China. Firstly, the curve exhibits a noticeable
rightward shift, indicating a consistent upward trajectory in the spatial coupling coordination of
smart cities throughout the research period. Secondly, it showcases a bimodal distribution, with the
primary peak height steadily increasing year by year while the secondary peak's variability
diminishes. This suggests a growing polarization in the spatial coupling coordination of smart cities
across China. Lastly, the curve's narrowing opening width and thickening left tail signify a
progressive reduction in the absolute differences of spatial coupling coordination among Chinese
cities over the years. In summary, despite a continuous improvement in China's spatial coupling
coordination of smart cities during the study period, nationwide polarization remains significant,
while disparities among cities are gradually decreasing.

d0i:10.20944/preprints202404.1168.v1
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Figure 6. The Kernel Density of Spatial Coupling Coordination of Smart Cities from 2011 to 2019.

As depicted in Figure 6 (B), the Eastern region witnesses an increase in the number of peaks,
with peak heights peaking in 2017 before gradually declining. The narrowing of the curve's opening
width from 2011 to 2015, followed by an annual expansion post-2015, coupled with a distinct right
tail, suggests a diminishing regional disparity in the spatial coupling coordination of smart cities in
the East, transitioning towards a more multipolar direction.

Figure 6 (C) indicates a progressive rightward shift in the kernel density curve for the Northeast
region, with peak heights experiencing annual growth. The narrowing opening width annually,
transition from bimodal to unimodal peaks, and shortening left tail signify an overall increase in the
spatial coupling coordination of smart cities in the Northeast, with development becoming more
concentrated.

In Figure 6 (D) the Central region's kernel density curve remains relatively steady from 2011 to
2017 before steepening annually thereafter. Peak heights decrease annually post-2013, rebounding
after 2017, with a narrowing opening width and evident left tail. This suggests a significant trend
towards multipolar development in the spatial coupling coordination of smart cities in the Central
region, accompanied by a gradual rise in regional disparities.

Figure 6 (E) illustrates a peak for the Western region in 2013, followed by a gradual annual
decline. The expanding opening width of the kernel density curve post-2013 and thickening left tail
indicate a growing absolute difference in the spatial coupling coordination of smart cities in the
Western region, with minimal variation in the polarization phenomenon.
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4.3. Inferential Analysis of Smart City Spatial Coupling Coordination

This study utilized the BP neural network to analyze the contribution differences of 31 indicators
in the spatial system of smart cities to coupling coordination and identified key factors. The BP neural
network algorithm was implemented using Python statistical software. Thirty-one indicators from
Tables 1-3 of the spatial system of smart cities were selected as input nodes, with coupling
coordination as the output node. After normalization, this study constructed 270 samples for 30 smart
cities from 2011 to 2019. Among these, 216 samples were used for training and 54 for testing the neural
network. After multiple simulations, satisfactory results were obtained, with the simulated values
closely matching the actual values. The fitting effect for both training and testing samples was good,
with accuracy rates of 98.7% and 97.8%, respectively (Figure 7). This indicates the feasibility of the
model. Next, the weights from the input layer to the hidden layer and from the hidden layer to the
output layer were obtained, and the contribution rates of each indicator to the coupling coordination
of the spatial system of smart cities were calculated.

Training performance of the training set(Accuracy=0.987) Predictive performance of the testing set (Accuracy=0.978}

064

0.4

coupling coordination degree
coupling coordination degree

—&—- Actual value —a Actual value
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Figure 7. The Kernel Density of Spatial Coupling Coordination of Smart Cities from 2011 to 2019.

According to Figure 8, the contribution rates of information space, physical space, and social
space to the coupling coordination are 23.07%, 40.92%, and 35.99%, respectively. From a data
perspective, the physical space of smart cities plays the most significant role in coupling coordination.
However, due to the significant differences in the number of third-level indicators divided by the
spatial systems of smart cities, this study approximates the influence level by using the average
indicator contribution rate of each unidimensional subsystem. The average indicator contribution
rates of information space, physical space, and social space to coupling coordination are 3.845%,
2.923%, and 3.272%, respectively. Thus, it can be seen that the information space of smart cities plays
the most significant role in coupling coordination, followed by social space, while physical space
plays the least role. In the modern society of rapid development of emerging digital technologies, the
empowering role of information space for smart cities is becoming increasingly apparent. Moreover,
under the trend of diversified social governance, the effective coordination and cooperation among
various governance entities can also promote the deep integration and value realization of various
resource elements in smart cities. Furthermore, physical space, as the focus of development and
planning in traditional development models of smart cities, has become relatively mature in the
development of smart cities, and its marginal benefits are relatively low.
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Figure 8. Contribution Rates of Factors in the Coupling Coordination of Smart City Spatial Systems
Analyzed Based on BP Neural Network.

5. Discussion
5.1. Pathways of Development

Since the inception of smart city pilot projects in China in 2012, more than a decade has passed.
However, as a metaphor for urban modernity, smart city construction remains vibrant and is still
highly regarded by academia as a "new, hopeful, but contentious research field" [37], reshaping the
discourse system of urban governance. It must be acknowledged that there is still a considerable
distance between the practical achievements of smart city construction and the high-perception, high-
intelligence systems defined by theoretical constructs. Combining the research conclusions, the
following three policy recommendations are proposed for the development of smart cities in China.

Firstly, attention should be paid to the coordination of smart city spatial development to
optimize spatial development patterns. There are objective differences in the resource endowments
of smart city construction in different regions of China, leading to path-dependent differences in
development. However, the realization of the value of smart city development requires the coupling
coordination of ternary space. This necessitates strengthening the interaction and complementarity
of different spatial elements in smart city planning and design. For example, in the social space, it is
necessary to enhance the digital literacy and capabilities of the public compared to the government
and enterprises.

Secondly, it is important to strengthen the synergy between regions and learn from innovations
to promote cross-regional cooperation and complementarity. As mentioned earlier, different smart
cities have different development advantages. If excellent cases, practical experiences, and common
problems of smart city construction in different regions, levels, and scales can be promptly
discovered, and if model replication and experience sharing between cities can be promoted, it may
achieve the effect of "overtaking on a bend." For example, by establishing cross-regional digital
economic cooperation platforms, mutual benefits can be achieved to jointly enhance the overall level
of smart city construction in China. In addition, emphasis should be placed on encouraging
cooperation and competition between cities to promote innovation and change.

Thirdly, efforts should be made to provide multidimensional support for the development of
smart city spatial spaces. Local governments should tilt policies towards factors that contribute
significantly, such as increasing investment in information technology infrastructure construction,
promoting the cultivation and development of high-tech industries, actively introducing and
cultivating professional talents, and providing intellectual support for smart city construction. At the
same time, smart city construction should adhere to a people-oriented planning orientation, and in
the process of development, it is necessary to implement the concept of social civilization, and
promote the coordinated development of material civilization and spiritual civilization. Additionally,
it is essential to properly address the increasingly serious aging issue, focus on the elderly
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population's pension security policies, expand social welfare coverage, and enhance public
satisfaction.

5.2. Innovations and Limitations

This study has two main innovative contributions.

For one thing, we deconstruct the spatial structure of smart cities from the perspective of ternary
space and constructs an evaluation index system of ternary space integration (SPI) to systematically
evaluate the development level of 30 smart cities in China, providing evidence-based support for
understanding the achievements and structural imbalances of China's smart city development over
the past decade.

For another, through the analysis of the coupling coordination of ternary space, it deconstructs
the important driving forces behind the development of smart cities in different regions, providing
reference for understanding the strategic choices of smart city development in China's digital era.
Additionally, this study considers the interaction among the overall system, two-dimensional
subsystems, and one-dimensional subsystems but does not consider the interaction effects among
different indicators within one-dimensional subsystems, which still needs further analysis.
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