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Abstract: The article features the structure and functions of plant synthetic promoters frequently exercised to 
precisely regulate complex regulatory routes. The composition of plant native promoters together with 
interacting proteins is presented to provide a beĴer understanding of tasks associated with synthetic promoter 
development. The production of synthetic promoters is conferred on relatively small libraries produced 
generally by basic molecular or genetic engineering methods such as cis-element shuffling or domain 
swapping. Moreover, the preparation of large-scale libraries supported by synthetic DNA fragments, directed 
evolution, and machine or deep learning methodologies is presented. A particularly interesting group of 
synthetic promoters are bidirectional forms that enable the putative expression of up to 6–8 genes by one 
regulatory element. The introduction and controlled expression of several genes after one transgenic event 
strongly decreases the frequency of such problems as complex segregation paĴerns and random integration of 
multiple transgenes. These complications are commonly observed during transgenic crop development 
through traditional, multistep transformation by genetic constructs containing a single gene. Another path to 
solving problems associated with the low complexity and homology of already tested DNA fragments is 
through orthogonal expression systems composed of synthetic promoters and trans-factors that do not occur 
in nature or arise from different species. Their structure, functions, and applications are rendered in the article. 
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1. Introduction 
Global climate changes increased the role of sustainable agriculture, resulting in the growing 

demand for novel plant genotypes or genetically modified plants with increased tolerance to biotic 
and abiotic stresses or the production of valuable plant secondary metabolites [1–10]. These 
requirements are met by the expression of foreign genes that mediate the plant's resistance to insects, 
herbicides, and glyphosphate, or by enabling the engineered carotenes or astaxanthin biosynthesis in 
rice [11–19]. Usually, these modifications use the constitutive CAMV35S or native plant promoters to 
drive transgene expression, often resulting in silencing, toxicity, or decreased viability effects in 
modified plants [20–26]. Gene regulatory problems arise when the simultaneous and precise spatio-
temporal or development stage-dependent regulation of numerous transgenes is required to avoid 
unnecessary feed-back regulations or energy losses [27]. Such a fine-tuning of transgene expression 
could be addressed by orthogonal synthetic activators, repressors, and promoter systems containing 
the introduced cis-active elements to control the binding of transcription regulators and the gene 
expression rate [28,29]. 

In a traditional and general point of view, the promoters could be recognized as 5′-terminal gene 
fragments that control expression through the coordinated recruitment of particular proteins known 
as trans-factors, recognizing cis-active oligonucleotide sequences in the DNA (Figure 1) [30–35]. The 
trans-factor is organized around the promoter through interaction with a particular cis-active element 
to build up a protein complex with RNA polymerase II, resulting in the creation of the polymerase 
RNA II preinitiation complex [36–42]. 
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Figure 1. Structure of the plant core, proximal, entire promoter, and enhancer. Localization of representative cis-
active motifs was provided together with corresponding trans-factors. 

However, the precise description of the presented gene-regulatory element functions is impaired 
by the incomplete understanding of such a basic issue as the cis-element informative content. 
Although the position weight matrices (PWM) of cis-elements have been characterized, the real, in 
vivo-occurring regulatory functions are usually provided by imperfectly matched, DNA or protein 
modification-dependent, weak, and cooperative DNA-protein interactions [43–47]. Interactions 
between cis-active elements and trans-factors are also strongly regulated by the local 3D shape of DNA 
[48]. 

In the broader context, gene expression is regulated by the different coding and non-coding 
regions encompassing far-localized elements such as enhancers, silencers, insulators, gene-
embedded promoters, introns, 3’ and 5’ untranslated regions (UTRs), and terminators, affecting not 
only the chromatin state or assembly of the polymerase RNA II preinitiation complex but also the 3′-
end processing, stability, translation efficiency, and nuclear to cytoplasmic export of mRNAs [49–54]. 

Assuming that the trans-factors could be further regulated through such post-translational 
modifications as ubiquitination, acetylation, and phosphorylation, these molecular developments 
connect the gene expression rate with a plethora of signaling events occurring within the plant cell 
after exposure to biotic or abiotic stresses [43,55–61]. Therefore, the trans-factor-dependent changes in 
promoter activity induce gene expression variability, leaning toward adjustment to current plant cell 
metabolic demand or external regulatory events [62–64]. Coordinated gene expression, stimulated by 
numerous signaling routes, is reflected in the organized promoter structure, where the cis-active 
motifs are not distributed statistically. Instead, they typically form the evolution-conserved clusters 
known as cis-regulatory modules (CRM), containing cis-active elements assembled closely enough to 
support the interaction between recognizing trans-factors [65–72]. Such promoter structure-
dependent dimerization or oligomerization of trans-factors could further increase the complexity of 
the biological response to the particular changes within plant cells [31,67]. According to BlancheĴe et 
al. (2006), the CRM could be found as far as over 100 kb upstream from TSS and within 1–10 kb 
downstream from the 3’ end of the gene [73]. 

The gene expression regulation mediated by promoter regions and other regulatory DNA 
sequences as enhancers, silencers, or insulators is recognized as a necessary, but still rough, 
adjustment of plant metabolic machinery to a particular demand that is further refined through post-
translational protein modifications or precise enzyme regulation [72,74–79]. Therefore, the changes 
in gene expression are not directly associated with modifications of the encoded protein 
concentration or enzyme activity. Despite these limitations, the presented article will concentrate on 
advances in synthetic promoter research that are systematically designed and reconstructed to 
properly reshape the gene expression rate in genetically modified plants.  
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2. Sections of Plant Promoters 
2.1. Core Promoter 

Studies on the A. thaliana genome suggest that the plant promoters of complex transcriptional 
regulation, common in the stress-responsive genes, are approximately longer (1672 bp) as compared 
to the remaining genes, responding to few signals (1113 bp) [80]. The segment of promoter localized 
approximately 50–100 bp upstream and downstream from the transcription start site (TSS) is 
recognized as a core or minimal promoter, where transcription initiation occurs (Figure 1) [81]. 

The first core promoter component that was identified in the SV40 early region is TATA-box [82]. 
Such an element is localized approximately 32 bp upstream to the transcription start site in plant 
genes (Figure 1) [83,84]. The species-specific distribution of TATA-box in several plants showed a 
peak ~30 bp upstream of the TSS. In the sorghum, the peak was found ~40 bp upstream of the TSS, 
with an additional lower peak at ~30 bp upstream of the TSS. In the maize genome, two additional 
peaks of TATA-box localization were observed at ~55 and ~70 bp upstream of the TSS. Core promoters 
containing a TATA box were up to fourfold stronger as compared to the TATA-less ones, particularly 
when the TATA box is located within the region from 23 to 59 bp upstream of the TSS. Therefore, 
increasing the distance from TATA-box to TSS decreases the strength of maize promoters [85]. 

The consensus sequence of TATA-box in plants is TATAWAW (W =  A/T) [86]. However, the 
computational analyses of 79 plant promoters suggest that the TATA-box consensus sequence is 
TCACTATATATAG [87]. The TATA-box is bound by a subunit of TFIID known as TATA-box binding 
protein (TBP), enabling the assembly of the RNA polymerase II preinitiation complex [81,88]. The 
relative stability of TATA-box localization in relation to TSS, combined with the chromatography of 
interacting proteins, distinguishes TATA-box among other regulatory DNA sequences in the core 
promoter. 

The importance of the TATA-box sequence for proper gene expression regulation was confirmed 
by Amack et al. (2023) [89]. The authors used PCR and specific primers to introduce single nucleotide 
substitutions to the CaMV35S promoter’s TATA box. The obtained library of 21 variants was assigned 
to measure promoter activity using firefly luciferase assays in transgenic protoplasts and the RT-PCR 
method in transformed A. thaliana plants. Two obtained variants, A4T and T5A, showed respectively 
1.2 and 1.1-fold higher activity in plant protoplasts as compared to the wild-type TATA-box sequence. 
Moreover, eight mutants (T1G, A4C, A4G, T5A, A6G, A7C, A7G, and A7T) presented similar or 
higher activity as the wild-type TATA-box in transgenic A. thaliana. Among them, the T5A variant 
indicated a 2.89-fold larger activity in transgenic plants as compared to the native TATA-box [89]. The 
TATA box is required not only for accurate transcription initiation but also to determine the level and 
selectivity of gene expression in plants [90–92]. Molina et al. (2005) found that among the 12749 tested 
dicot A. thaliana genes, only approximately 29% indicated TATA-box [83]. Even a lower 19% 
proportion of monocot Oryzae sativa genes possess the TATA-box element [93]. Moreover, TATA-box 
genes are less frequently found in genes present in EST databases and have shorter 5’UTRs (108 bp) 
as compared to TATA-less promoters (138 bp), lacking the TATA-box element [83]. The presence of 
TATA-box is also common in gene promoters regulated by light or biotic and abiotic stress [92,94]. 

Nucleotide frequency matrices within TSS in dicot and monocot plants and different promoters 
were described by Shahmuradov et al. (2003) [95]. Analysis of promoters from 217 unrelated dicot 
plants revealed the sequence WnT/aC/tA/cw (-4 to +2), while in 70 unrelated monocot plant 
promoters the TSS sequence was aNnCA (-2 to +3) [95]. In the same way, the 171 TATA-box promoters 
showed T/cCAnM, while 130 TATA-less promoters indicated T/a/cYA/ca/c/Ĵ/a/g (-2 to +3), where 
W=A or T, N=any nucleotide of A, C, T, or G, Y=C or T, and M=A or C [95]. A general rule of TSS in 
Arabidopsis thaliana and rice is the localization of Y (C or T) at -1 and R (A or G) at +1 [96]. 

Besides the TATA-box, an important constituent required for plant transcription initiation is the 
Inr of the PyTCANTPyPy consensus sequence, usually overlapping the TSS (Figure 1) [90,91]. In plant 
photosynthesis nuclear genes, the TATA-box is frequently lacking, and its role is played by Inr 
interacting with the TFIID trans-factor [90,96]. This interaction is supported by the evolution-
conserved downstream promoter element (DPE) A/GGA/TCGTG (D. melanogaster) interacting with 
subunits of TFIID in the form of the heterotetramer dTAFII60–dTAFII40 [97]. 

Another regulatory sequence found in plant promoters is the Y Patch, built from repeated 
pyrimidine CT or TC dimers, alternatively adopting the form of the Y Patch-related motif 
(TTTCTTCTTC) (Figure 1) [96]. The fraction of Y-Patches in plant promoters, which have distribution 
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peaks around TSS, is directionally oriented, contrary tothe fact that CpG elements are methylation-
insensitive [96]. Some elements of core promoters observed in humans and D. melanogaster were not 
found in A. thaliana as the Sp1 binding sites or CpG and BRE elements [96,98]. Plant promoters with 
Y-Patch and Inr sequences are also generally stronger than those lacking them [85]. 

Analysis of both core promoter types, TATA-box and TATA-less containing Inr, suggests that 
TATA and Inr are not swappable and regulate light-responsive gene expression in a different way. 
Moreover, the TATA-box core promoters are enriched in AC/CA-augmented motifs, conserved 
around the TSS and immediately downstream in the 5′-UTR region. However, TATA-less promoters 
showed a higher percentage of pyrimidine-rich TC/CT motifs around the TSS and immediately 
downstream in the 5′-UTR region [99].  

In A. thaliana, three types of core promoters were identified: TATA, GA, and Coreless (Figure 1). 
Analysis of 10285 gene promoters indicated that the TATA-containing promoters are relatively long 
and of short distance to TSS or CDS. Moreover, their expression profile is high and regulated. 
Contrary to this, the coreless promoters do not contain any elements such as TATA, Y Patch, GA, or 
CA and are relatively short promoters of long distance from TSS or CDS. The expression level of these 
promoters is low, and they are constitutive in nature. Another GA type of plant core promoter 
regulates the expression of constitutive genes and is characterized by a short distance from TSS or 
CDS [100]. 

Combining the cap-trapper and massively parallel signature sequencing methods (CT-MPSS) 
enabled us to identify 158 237 Arabidopsis transcription start site (TSS) tags corresponding to 38 311 
TSS loci [101]. The TATA-type promoters (25.1%) are enriched in Y Patch and the Inr motif and cause 
a high gene expression rate with sharp-peak TSS clusters. By contrast, the GA type, representing 21.6 
percent of A. thaliana core promoters, is not associated with Y Patch and the Inr, which contain broad-
type TSS clusters [101]. The distribution of TSS and corresponding core promoters in the plant 
genome should not be seen as a stable process but rather as a dynamic process that could be altered 
by the introduction of foreign DNA into the genome [102]. 

The association of TATA-box promoters with conditional, regulated gene expression was 
confirmed in the recent work of Yang et al. (2023) [103]. Moreover, the Coreless promoters indicated 
a bias towards uniform expression regulation only in dicots but not in monocot plants. A comparison 
of different plant species showed a tendency to maintain the expression paĴern of a particular 
promoter. However, the orthologs of the uniformly expressed genes could be found easier as 
compared to conditional genes. Moreover, none of the screened core promoter types is consistently 
associated with changes in gene expression paĴerns. Therefore, only a correlation occurs between the 
promoter architecture and expression parameters [103]. 

The last cis-active element observed in plant core promoters is the CCAAT motif, which is 
localized on its borders, predominantly in positions -120 to -40 in dicot and more broadly in monocot 
promoters within -460 to -140 (Figure 1) [104]. The CCAAT motif is also observed in plant enhancers 
[105]. The CCAAT cis-element is bound by the CCAAT-binding factor (CBF), also known as nuclear 
transcription factor Y (NF-Y) [106]. The NF-Y transcription factor is composed of three subunits: NF-
YA, NF-YB, and NF-YC [107]. Two of them, NF-YB and NF-YC, dimerize through their histone fold 
domain (HFD), which can bind DNA in a non-sequence-specific fashion. Obtained DNA-protein 
complexes are bound by NF-YA to build trimeric structures. Upon trimerization, NF-YA specifically 
recognizes the CCAAT box [105]. In soybean (Glycine max), the NFYA interacts with FVE, which is 
complexed with histone deacetylase HDA13 for putative transcriptional repression by reducing 
H3K9 acetylation at target loci [108]. 

An important role in regulation of gene expression is played by 5′UTR regions. Some of the trans-
factor binding sites, such as those for ERF, SBP, G2-like, GATA, and ARR-B, are concentrated within 
the region localized 200 bp downstream from TSS in A. thaliana [109,110]. 

2.2. Proximal Promoter  
In the proximal promoter, encompassing the region within up to 300 bp upstream from TSS, 

most of the functional cis-active elements required for the proper spatio-temporal or stress-responsive 
gene expression regulation (Figure 1) [67,81,111–113]. According to Yu et al. (2016), 63% of all A. 
thaliana cis-active elements are concentrated within a region slightly exceeding the proximal promoter, 
up to 400 bp upstream from TSS [109]. Also in the peach (Prunus persica), cis-active motifs are 
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concentrated within -500 to +200 in relation to TSS [114]. Moreover, the results of Keilwagen et al. 
(2011) clearly show the preferred localization of AuxRE (TGTSTSB, where S = C or G and B=C, G, or 
T) within the proximal promoter, 250 bp upstream from TSS [115]. More significantly, these cis-active 
motifs are gathered within conserved cis-regulatory modules (CCRM), enabling interactions between 
trans-factors bound by neighboring, closely-spaced cis-active motifs [67,113,116]. Results of Jo et al. 
(2020) suggest that LEC1 interacts with ABA-Responsive Element Binding Protein3 (AREB3), Basic 
Leucin Zipper67 (bZIP67), and ABA-Insensitive (ABI3) trans-factors to regulate different sets of genes 
controlling morphogenesis, gibberellin signaling, photosynthesis, and maturation-related processes 
during soybean seed development [117]. Similarly, the TaNAC100 trans-factor could orchestrate the 
expression of starch synthesis genes in wheat [118]. Also, the responsiveness to auxin is mediated not 
only by a single AuxRE but also by multiple AuxREs. In the composite AuxRE elements associated 
with auxin response, ABRE-like and Y-Patch are 5’-flanking or overlapping AuxRE, whereas the 
AuxRE-like motif is 3′-flanking [110]. 

An interplay between trans-factor concentration, dimerization efficiency, and affinity to cis-active 
elements was studied among trans-factors in the CCRM-1 of the Glu gene that are responsible for the 
biosynthesis of high-molecular-weight glutenin subunits (HMW-GS) [113]. The concentration of the 
WUSCHEL trans-factor could regulate its amount in a monomer or dimer state through the binding 
of corresponding cis-element firstly by monomers and then switches to forming dimers at increasing 
concentrations [119]. The transition from monomer to dimer WUSCHEL state in telementsata3 (Clv3) 
gene promoter is correlated with the transcriptional switch from activation to repression of Clv3 [119]. 

2.3. Plant Enhancers 
Enhancers can regulate gene expression over large distances, independent of orientation [120–

123]. Although the plant enhancers stimulate the target gene expression over the distance of up to 
140 kb, they could also be found within up to 400 bp from TSS (Figure 1) [124–128]. Moreover, 
differences between enhancers and promoters are often fuzzy, and their roles are interchangeable, as 
some promoters (epromoters) could function as enhancers [129]. 

Activation of enhancers requires the binding of an initial set of trans-factors, recognizing their 
cognate cis-elements on DNA wrapped in nucleosomes [130–132]. Then, the signal-dependent trans-
factors interact with cis-elements that are more degenerate at enhacers as compared to promoters to 
support the protein-protein interactions and strengthen the cooperativity of their binding to DNA 
[123,133–136]. Together with trans-factors are recruited coactivators such as the Mediator complex, 
lysine acetyltransferases p300, and CREB-binding protein (CBP) to maintain the nucleosome-free 
chromatin state (Figure 1) [137–141]. As a result, the plant active enhancers pea PetE and maize b1 
are enriched in H3/H4ac and H3K9/K14ac, respectively [127,142]. However, the increased level of 
H3K27ac is a marker of active enhancers in animals but not in plants [143,144]. Another epigenetic 
modification typical for active enhancers is the monometylation of H3K4 (H3K4me1) [145]. 
Putatively, H3K4me1 is required for nucleosome removal, while H3K27ac is pivotal for the 
production of the short, approximately 200-nt-long transcripts known as enhancer RNA (eRNA) 
[145,146]. Nascent eRNA in active enhancers recruits repressive histone and DNA modificators-
polycomb repressive complex 2 (PRC2) and DNA methyltransferase 1 (DNMT1) to further protect 
the open DNA state from their suppressive influence [147,148]. 

Enhancers communicate with promoters mostly through looping interactions, engaging also the 
nuclear matrix components as CTCF or lamins, to bring both gene elements in close proximity in 3D 
space (Figure 1) [127,149]. Although the relationship between these interactions and gene activity is 
unclear, several models suggest that the pivotal role in creating linking contact is played by 
cohesin/CTCF, Mediator/RNA PolII, Polycomb repressive complex, or trans-factor dimerization. 
Moreover, low-affinity interactions or trans-factors, transcriptional co-actvators, and other proteins 
can create protein aggregates, promoting and reinforcing enhancer-promoter association [150,151]. 

3. Objectives and General Methodology of Synthetic Promoter Creating 
Current biotechnology tasks require plant genetic modification of approximately up to 15 genes 

[152]. Coordinated expression of numerous genes is necessary to engineer complex regulatory 
networks underlying almost every metabolic and signaling pathway in plants [152–155]. Therefore, 
sets of different regulatory elements as synthetic promoters are required to facilitate such complex 
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multigene engineering. Another reason to develop the novel synthetic promoters are problems 
observed after repeated application of the same synthetic promoters, such as plasmid instability or 
homology-based gene silencing [156,157]. 

Genetically modified plants could produce valuable metabolites, acquire resistance to herbicidal, 
insect, or fungal infections, and efficiently grow under abiotic stress conditions [155,158]. Although 
the final outcome of such approaches is the modification of metabolic fluxes adopting sessile plants 
to external conditions, the starting point is the precise and simultaneous expression control of 
numerous genes [159–162]. 

Stacking of numerous genes in transgenic plants requires sequential transformation by single 
gene vectors or multiple separate gene expression vectors [163,164]. Multiple rounds of crossing of 
different transgenic events are mandatory for conventional breeding techniques. These traditional 
strategies suffer from inherent pitfalls such as complex segregation paĴerns and random integration 
of multiple transgenes, resulting in non-stoichiometric and variable transgene expression [165,166]. 

An efficient approach to addressing such an issue is the coordinated expression of multiple 
transgenes by the minimum number of regulatory elements in a single transgenic event [160,167]. 
Therefore, stacking is the optimal method of simultaneous gene set expression due to their 
integration into adjacent regions of the genome and reducing the probability of transgene segregation 
in the fortcoming generations [168,169]. Multicistronic, versatile plant expression vector systems are 
developed to realize such a task [170–172]. 

Particularly helpful for the controlled expression of numerous genes are bidirectional promoter 
systems. [173–176]. Contrary to tandemly repeated monodirectional expression casseĴes, 
bidirectional promoters offer a solution to identify optimal promoter contributions for transgene co-
expression, available in a single round of cloning, expression, and screening experiments. However, 
a library of synthetic promoters is required to study their different expression levels and regulatory 
profiles in both expression directions [177]. According to Kumar et al. (2015), the gene stacking 
approach could potentially be extended to express 6–8 genes with a single bidirectional promoter 
[173]. 

Synthetic promoters join different cis-regulatory elements with the core promoter to combine 
tissue specificity with an increased or precisely tuned expression level within the same construct 
[85,178–181]. Cis-active elements within synthetic promoters are introduced accordingly to their 
positions, copy number, spacing, and orientation to promote optimum spacing among cis-motifs and 
corresponding trans-factors [182–188]. 

Obtained promoters indicate different tissue-specific, strength, and inducibility properties to 
enable the co-expression of numerous genes at different levels, as is required by the complex 
biosynthesis traits or regulatory circuits responding to different environmental conditions, i.e., biotic, 
abiotic, tissue-specific, light-stress, or hormonal-stimulation conditions [184,185,189–194]. To avoid 
unwanted recombination or homology-dependent gene silencing, the expression of each gene is 
regulated by a different promoter [189,195]. 

A promising tool to increase the diversity of available synthetic promoters as a remedy to 
decreasing plasmid stability and homology-based gene silencing are orthogonal expression systems 
based on promoters and trans-factors that do not occur in nature or originate from different species 
(Figure 2) [28,29,157,196–199]. Expression of such an orthogonal system is usually controlled by a 
tissue-specific or inducible promoter, enabling the biosynthesis of the orthogonal trans-factor. 
Produced trans-factors recognize cis-elements in promoters that are absent in native gene, to avoid the 
off-targets effects [28,29,196,199,200]. As an orthogonal trans-factors, they could also be adapted as 
transcription activator-like effectors (TALEs) due to the modular structure of their DNA-binding site 
(Figure 3). Such DNA-binding domains could be engineered to recognize a DNA sequence that does 
not occur in the genome [199,201]. Moreover, orthogonal expression systems are also based on 
artificial transcription factors (ATFs) built from the deactivated form of the Cas9 protein (dCas9) and 
the transcriptional activator domains VP64 or EDLL, repressor domain SRDX, or DNA epigenetic 
modifiers [196,202,203]. 
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Figure 2. Structure of an orthogonal trans-factor. NLS-Nuclear localization signal, TAD-trans-activating domain, 
containing plant- or virus-derived elements, and DBD-DNA-binding domain not existing in plants and 
originating from the yeast of bacteria. 

 
Figure 3. Structure of synthetic promoters recognized by transcription activator-like effectors (TALEs). The 19-
base-long degenerate sequence is followed by the 18-base-long TALE-site, a TATA-box, a 43-base-long 
degenerate sequence, and the reporter gene. The presence of the 43-base-long degenerate sequence is consistent 
with the observation that TALE’s site localization, approximately within -55 or -40, is optimal to confer TALE-
mediated inducibility. . 

3.1. Methods of Synthetic Promoter Generating 
As a method of choice to produce relatively small synthetic promoter sets, PCR-based techniques 

[204–209] are exercised. Recently, plant synthetic promoters were prepared by PCR-based deletion 
mutagenesis and subsequent GUS activity assays. In this way, two core promoters were obtained 
from the Stellaria media Antimicrobial Peptide1 (AMP1) and Antimicrobial Peptide2 (AMP2) genes. 
Although the shorter versions of the pro-SmAMP1 and pro-SmAMP2 promoters, represented by the 
−58 and −60 bp fragments, were weak, the longer fragments of 102 and 104 bp were used as core 
promoters, largely retaining the properties of the original promoters [210]. Another application of 
primer-driven PCR mutagenesis enabled the obtaining variants of the synthetic promoter pCL 
suitable to regulate the cold-induced sweetening of potatoes. Several point mutations were 
introduced into the region encompassing the 5′ and 3′ sides of the C-repeat/dehydration-responsive 
element (CRT/DRT), localized within -490 to -500 bp from TSS. Moreover, the additional casseĴe of 
27 bp containing the second CRT/DRT element was placed at a distance of 31 bb from the existing 
CRT/DRE site [211]. 

Results presented by Zhang et al. (2019) suggest that even discrete point mutations of repeated 
G-box (CACGTG) and its 2-4 bp long flanking regions could significantly increase the reporter GFP 
gene expression level, opening the potential for useful and predictable genome editing approaches 
in the promoter regions [212]. 

Besides the presented approaches dealing with the mutagenesis of a single promoter, providing 
a relatively small number of variants, the larger libraries are produced by the stepwise directed 
evolution of the promoter sequence using error-prone PCR. Perfoming the 83 cycyles of mutation, 
construction, screening, and property characterization of the 74-bp-long Ptrc promoter, combined 
with sampling 10–20 variants of the lowest and highest activity after each step, resulted in a library 
of 3665 clones. Among them, a 454-fold difference was found between the strongest and weakest 
expression rates [213]. A smaller library containing hundreds of variants is obtained by shuffling the 
Figwort mosaic virus full-length transcript promoter (F) and the sub-genomic transcript promoter 
(FS) sequences. Shuffled promoters were weaker as compared to those prepared by hybridization. 
However, shuffled libraries contained promoters with a broad spectrum of activities, enabling the 
application of both weaker and stronger variants in metabolic engineering approaches [209]. To 
significantly increase the complexity of synthetic promoter libraries, a combination of site-directed 
mutation with degenerate primers, overlap-extension PCR, and Gibson assembly was proposed. 
Prepared libraries showed a diversity in the order of 10⁴–10⁷ variants and were screened rapidly by 
performing fluorescence-activated cell sorting (FACS) of transformed yeast cells [214]. 
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Construction of larger synthetic promoter libraries composed of over 108 elements is possible 
after avoiding the use of already-known DNA sequences. Random, 80-bp-long DNA oligos are 
synthesized and used to build such complex libraries in yeast, enabling the putative study of all 
pairwise interactions between TF (trans-factor) binding sites in the context of orientation and specific 
spacing constraints. Analysis of such large synthetic promoter libraries induces analytical problems 
as the complexity of the synthetic promoter library (>108) exceeds the number of sorted yeast cells 
(<108). Also, the analysis of such large libraries using simplified TF binding models, assuming their 
position, orientation, and TF-TF interaction independence, explained nearly 93% of the variation in 
gene expression in tested libraries and proved to be insufficient in relation to native yeast genes, 
where only ~16% of the variability was demonstrated [46]. 

3.2. Cis-Elements Juggling and Domain Swapping 
As components to build the synthetic promoters, they typically engage the existing 

oligonuclotide cis-elements that are juggled or shuffled. However, larger promoter domains with 
known regulatory properties could be exchanged in the process of domain swapping [215–220]. 
Alternatively, completely novel cis-elements or domain variants identified by searches of available 
promoter databases or obtained through artificial intelligence support could be experimentally 
validated in plant material and then employed to construct synthetic promoters [221]. An example of 
cis-element shuffling is placing the cis-elements of known functions in a novel or synthetic stretch of 
DNA. Optionally, fragments of one promoter could be exchanged with functionally equivalent 
domains from other heterologous promoters [195]. The last approach is often practiced as ligating the 
upstream activation sequence (UAS) from one promoter to the TATA box-containing domain of 
another promoter. It is expected that the transfer of the cis-element or upstream DNA sequence from 
one promoter into a different promoter containing the TATA sequence could provide a novel 
transcription regulatory mechanism [128,181,222]. 

Placing the TATA-box of the CAMV35S promoter (TATATAA) in a synthetic stretch of DNA 
provided the synthetic core promoter, indicating the 85% activity of the native sequence. However, 
core promoters prepared by domain swapping were significantly weaker, indicating only 20–68% of 
CAMV35S activity. These relatively weaker synthetic promoters could be important for complex 
metabolic engineering approaches, where the decreased or precisely tuned load of heterologously 
expressed genes could be salutary to host primary metabolic routes [195,223–227]. Further 
applications of the domain hybridization generated many superior plant promoters 
[128,181,209,222,228–230]. 

Viral and plant pathogen genomes are exercised as a relatively simple and easily available source 
of naturally occurring cis-active elements to prepare novel synthetic promoters through domain 
hybridization [181,183,222,230]. These synthetic promoters could indicate the higher activity of 
CAMV35S. That was seen for two recombinant promoters, S100 and D100, prepared from the 
Strawberry Vein Banding Virus, demonstrating 1.8 and 2.2 times stronger activities in tobacco 
(Nicotiana tabacum) than that of the CaMV35S promoter. The S100 recombinant promoter (621 bp) was 
obtained from the 250-bp-long upstream activation sequence (UAS) of the Strawberry Vein Banding 
Virus (SV10UAS; − 352 to − 102 relative to TSS) and the 371-bp-long TATA-containing core promoter 
domain (SV10CP; − 352 to +19) of the same gene. Correspondingly, the 726-bp-long D100 promoter 
was assembled by fusion of the 170-bp-long UAS of the Dahlia Mosaic Virus (DaMV14UAS; − 203 to − 
33) with its 556-bp-long core promoter domain (DaMV4CP; − 474 to +82) [231]. 

In a comparable way, a synthetic promoter, FUASCsV8C, was designed by placing the Upstream 
Activation Sequence (UAS) of Figwort Mosaic Virus (FMV; -249 to -54) at the 5′-end of the Cassava 
Vein Mosaic Virus (CsVMV) promoter fragment 8 (CsVMV8; -215 to +166). Such a hybridized, 
synthetic promoter exhibited approximately 2.1 and 2.0 times higher GUS activities as compared to 
the CaMV35S promoter, as assessed in tobacco protoplasts and in agroinfiltration assays, respectively 
[222]. 

The strength of synthetic promoters could be significantly higher compared to the CAMV35, as 
shown by the construction of two chimeric promoters, MBR3 and FBR3, by fusing the UASs 
(upstream activation sequences) of Mirabilis Mosaic Virus (MUAS; − 297 to + 38; 335 bp) and Figwort Mosaic 
Virus (FUAS; − 249 to + 54; 303 bp), respectively, to the core promoter domain of BR3 (BR3; − 212 to + 
160; 372 bp). The activities of MBR3 and FBR3 promoters were comparable to that of the activity of 
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the CaMV35S2 promoter and four times stronger than that of the CaMV35S, as confirmed by 
histochemical and fluorometric GUS assays [232]. 

In the building of synthetic promoters, novel cis-active elements are also utilized, such as the W-
box sequence (GACTTTT), MYB-like (TGGTTT), bZIP-related (TACGTGACG), and TACGTCACG, 
from the genome of the fungal pathogen Phytophthora sojae. These cis-active motifs, assembled in 
tetrameric mode, drove the expression of the CAMV35S core-based synthetic promoter in response 
to the elicitor peptide Pep25 (N-DVTAGAEVWNQPVRGFKVYEQTEMT-C) from Phytophthora sojae 
[183]. 

The profuse source of cis-active elements or larger promoter domains is complex and not fully 
characterized in plant genomes. In silico analyses of 63 and 183 soybean drought-inducible genes were 
a starting point to select cis-active motifs responsible for drought stress, which were fused to the 
minimal 35S promoter as concatamers of 4–7 elements [184,185]. Analogously, two cis-regulatory 
motifs M1.1 (TAAAATAAAGTTCTTTAATT) and M2.3 (ATATAATTAAGT) in the soybean (Glycine 
max) genome, reacting to the infection of cyst nematode (SCN), were exploited in the form of four-
fold repeats to develop synthetic promoters, which run the GUS expression in roots infected by 
Meloidogyne incognito [189]. Moreover, the simultaneous response to fungal pathogens SA (salicylic 
acid) and MJ (metyl jasmonate) was achieved in synthetic promoters containing core 35S placed 
downstream to dimers of both D (31 bp) and F (39 bp) cis-active motifs from the Arabidopsis AtCMPG1 
gene [190]. 

Since cis-elements in patogen genes have evolved to utilize the plant's transcriptional machinery 
as TGACG-motif binding (TGA) of basic-leucine-zipper (bZIP) TFs, they are much stronger activators 
of synthetic promoters as compared to other TFs found in plant constitutive promoters. However, the 
combination of three different plant cis-active elements recognized by weak and dissimilar activators 
resulted in the strongly increased reporter gene expression, that is putatively mediated by passive 
cooperativity and not the direct interaction between trans-factors, as suggests the result of distance 
extension between cis-active motifs [186]. 

Other properties of synthetic promoters not related to patogen resistance could be engineered 
by the application of different cis-active elements. Deployment of a 6-times repeated abscisic acid 
(ABA) responsive element (6xABRE) upstream to a minimal CAMV35S promoter -90 to -1 produced 
a system that was responsible for ABA, salt, and mannitol treatment in transformed A. thaliana roots 
[233]. Combining the more complex set of seven cis-active elements from three photorespiratory genes 
in A. thaliana (AtPLGG1, AtBASS6, AtPGLP) results in synthetic promoters that could be responsive to 
elevated temperature, low CO2, and high irradiance stress. Among the analyzed cis-responsive 
elements, MYB and b-ZIP reduced the transgene expression rate measured by luciferase activity 
through recruiting transcriptional repressors. However, bHLH and AP2 increased luciferase activity 
in response to elevated temperatures and high irradiance, respectively [192]. Studies on the role of 
UTR regions in plants and viruses suggest that plant-derived UTRs outperform viral UTRs under 
ambient conditions. However, plant-derived UTRs are more sensitive to environmental stress 
conditions compared to viral UTRs [192]. 

To construct synthetic promoters, not only cis-elements but larger fragments could be assigned 
as enhancers or entire promoters of selected crop genes, extending the number of available plant 
synthetic promoters [128,221]. To that end, the publicly available RNA-Seq datasets were searched to 
find genes indicating a high dynamic range, activity in different plant species, and ubiquitous 
expression in diverse tissues. Among the genes obtained, those of various mean abundances of 
transcripts were selected, suggesting differences in their strengths. A prepared set of 15 plant 
constitutive promoters driving these genes showed expression levels spanning nearly two orders of 
magnitude [221]. Seven of them were stronger than the NOS, and five are comparable with the 
CAMV35S promoter [221]. Moreover, Jores et al. (2020) handled the CAMV35S core enhancer 
(subdomains A1 and B1-3) and enhancers from three plant genes identified by self-transcribing active 
regulatory region sequencing (STARR-seq) to stimulate the activity of the CAMV35S minimal 
promoter independently from orientation. These enhancers efficiently stimulate synthetic expression 
systems only when positioned relatively nearly, within 500 bp from the CAMV35S minimal core 
promoter and outside of the 3’UTR [128]. 

Creating synthetic promoters opens the springboard to analyzing the subtle or mutually 
exclusive metabolic events. Endeavours to study the antagonistic pairs of plant regulators as JA/SA 
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or auxin/cytokinin were addressed by the close spacement between cis-elments bound by trans-factors 
responding to SA and JA, or alternatively auxin or cytokinin treatment. Obtained synthetic promoters 
could aĴenuate the antagonistic effects of the SA/JA and auxin/cytokinin pairs and strengthen 
responses to these stimuli [193]. Also, the feed-back-regulated catabolism of SA to 2,3-
dihydroxybenzoic acid, together with such physiologic effects as SA concentration in plant tissue, 
growth rate, leaf senescence, and pathogen resistance, was reconstructed in plants by the application 
of synthetic promoters containing the SA 3-hydroxylase (S3H) gene under the control of the SA-
inducible promoter from SA 5-hydroxylase (S5H) [193]. Furthermore, plant synthetic promoters 
based on the Q system from Neurospora crassa could be not only activated by expression QF2 and QF2w 
trans-factors but also constrained by the QS repressor, enabling the precise control of gene expression 
rate [234,235]. In addition, the precise control of three gene expression levels could modulate 
photosynthesis efficiency and plant productivity by photorespiratory bypass. Such a synthetic 
photorespiratory circumvent, known as the GMA bypass, allows the plastidial glycolate to 
decompose, leading to the release of CO2 directly into the chloroplasts and an increase in the local 
CO2/O2 ratio. To efficiently execute such a task, two different constitutive promoters, the CaMV35S 
and the maize UBIQUITIN promoter (pUbi), were exercised to avoid gene-silencing effects while 
driving Cucurbita maxima malate synthase (CmMS) and O. sativa ascorbate peroxidase 7 (OsAPX7), 
respectively. However, the third gene in the GMA bypass, known as O. sativa glycolate oxidase 1 
(OsGLO1), should be controlled by a light-inducible Rubisco small subunit promoter to dynamically 
adapt the gene expression rate to light condition changes and significantly improve the 
photosynthetic efficiency [194]. 

4. Native and Synthetic Bidirectional Promoters 
Bidirectional promoters assure the more coordinated expression of several genes compared to 

constructs containing these genes driven independently by unidirectional promoters [236]. Such a 
property indicated the bidirectional promoter obtained from the Zea mays Ubiquitin-1 (ZMUbi1) gene 
that was utilized to regulate expression of insect (cry34Ab1 and cry35Ab1) or herbicide (aad1) resistance 
and a phi-yfp reporter gene in corn (Zea mays) [173]. 

A set of green-tissue-specific, bidirectional promoters was built by combining the unidirectional 
promoter POsrbcs-550 with the inversely-oriented OsTub6 intron to increase both the transcription 
efficiency and green-tissue expression rate of the GFP in the 5’ direction. Another group of regulatory 
elements, such as the reverse-oriented core promoter of POsrbcs-550 (POsrbcs-62), or its alternative 
PD540-544, combined with the reversed first intron of OsAct (OsAct1) and four-times repated GEAT 
regulatory motif, were joined to increase the high level of the 3’-directed Gus gene expression [236]. 
The obtained constructs were tested in the transgenic O. sativa to show a generally predominant 
expression in green tissues such as leaves, stems, panicles, or sheaths and a low expression in roots 
and endosperm [236]. 

Some bidirectional promoters exist naturally as the 1156-bp-long fragment in the hot pepper 
genome localized between two head-to-head-oriented sesquiterpene cyclase (EAS) and a hydroxylase 
(EAH) genes. Analysis of promoter deletion mutant activity assessed by EGFP and shRLUC reporter 
genes, expressed in Nicotiana benthamiana leaves, showed that a 199-bp fragment containing the GCC-
box of EAH and a downstream 226-bp long fragment of EAS bearing four W-boxes are minimal 
promoters for the pathogen-inducible expression of both genes [237]. 

The naturally occurring bidirectional histone gene promoters PHTX1, PHHX1, and PHHX2 are 
much shorter and more compact as compared to monodirectional promoters and drive gene 
expression in a TATA-box-dependent manner [177]. Promoter compactness, combined with the clear 
regulatory mechanism in both directions, triggers the application of plant gene expression regulation. 
Therefore, these bidirectional promoters were used to construct a library of 168 synthetic BDPs in the 
yeast Komagataella phaffii (syn. Pichia pastoris) for the rapid screening and optimization of different 
expression ratios [177]. Prepared synthetic promoters showed not a constitutive but rather a tight 
cell-cycle-regulated expression. Such tight, temporal expression control of metabolic pathway genes 
combined with the precise regulation of subsequent gene co-expression rate protects against 
excessive loads of heterologous proteins or concentrations of toxic metabolites [177]. By truncating 
and deleting PHHX2 fragments, BDPs of varying strength were produced. Moreover, the inducibility 
property was added by shortened and bidirectionalized versions of the methanol utilization pathway 
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promoters PDAS1-DAS2, which were fused with reversely oriented histone core promoters. Such an 
inducible approach was efficiently exercised in taxadiene biosynthesis, where the CYP2D6 and CPR 
genes were controlled by methanol-inducible PDAS1-DAS2, while the GGPPS was regulated by a 
PGAP+CAT1 fusion promoter that is repressed in the presence of glucose, partially derepressed when 
the glucose is absent, and fully induced by metanol [177]. Moreover, assembly of the four carotenoid 
pathway biosynthesis genes CrtE, CrtB, CrtI, and CrtY under the control of histone BDPs enables the 
achievement of a 14.9-fold higher β-carotene yield as compared to the use of a monodirectional PGAP 
constitutive promoter [177]. 

A related approach enabled the expression of β-carotene ketolase and hydroxylase genes in the 
maize seed using a seed-specific bidirectional promoter. Obtained transgenic maize lines 
accumulated astaxanthin from 47.76 to 111.82 mg/kg DW in seeds, and the maximum level is 
approximately sixfold higher than those in previous reports (16.2–16.8 mg/kg DW) [238]. 

5. Orthogonal Expression Systems 
Recently developed, orthogonal expression systems built from over 500 elements could be 

employed to introduce complex, multi-gated logic principles such as „or”, „nor” or „kill” into genetic 
circuits. Such a broad range or regulatory effect was obtained after combining five concatenated cis-
active elements from yeast (Gal4, MCM1, ata1, Matα2, Gat1, Yap1) with the WUS minimal promoter 
(Figure 2). The regulatory properties of synthetic trans-factors were extended by the repression 
activity achieved by combining the yeast DBD from Gal4 with the SRDX repression domain (Figures 
4 and 5). Expression of synthetic trans-factors was controlled by an endosperm-specific At2S3 or 
phosphate-responsive AtPht1.1. promoter. Interestingly, the MCM1 and Yap1 containing solely 
DBDs, without the addition of TAD, preserved some trans-activity properties, suggesting the inherent 
activation functions of DBD that may be interrupted by the introduction of TAD [28]. 

 
Figure 4. Synthetic trans-factors positively regulate the orthogonal expression system. 

 
Figure 5. Synthetic trans-factors nagatively regulating the orthogonal expression system are produced by 
combining the yeast DBD from Gal4 with the SRDX repression domain. Alternatively, a STF containing only 
NLS and DBD could recognize DNA sequence downstream of the core promoter to create a steric hindrance, 
protecting against RNA polymerae II preinitiation complex formation. 

The synthetic transcription regulators were also created from bacterial TF-derived DBD, 
combined with the TAD domain from VP16 or Arabidopsis ETHYLENE RESPONSE FACTOR 2 (ERF2) 
and the SV40 nuclear localization signal (NLS). The orthogonal set of plant synthetic promoters was 
created by fusing a core plant promoter, encompassing positions -66 to +18 of the CaMV35S, with the 
six copies of the DNA sequence (operator) bound by these TFs. The repressor activity was mediated 
by synthetic regulators composed exclusively of DNA binding domains and NLS sequences, 
localized 3′ downstream to the core promoter (Figure 5). Obtained direct and layered logic gates are 
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exercised to qualitatively modify the expression of the root-specific promoters SOMBRERO (proSMB) 
and PIN-FORMED 4 (proPIN4) [29]. 

An interesting approach to developing plant synthetic promoters controlled by orthogonal 
regulators is the application of transcription activator-like effectors (dTALEs) [198]. The prepared 
synthetic dTALE activated promoters (STAPs) are composed of the 19-base-long degenerate 
sequence, followed by the 18-base-long TALE-site, a TATA-box, a 43-base-long degenerate sequence, 
and the ATG start codon (Figure 3). This is consistent with the observation that the TALE’s site 
localization approximately within -55 or -40 is sufficient to confer TALE-mediated inducibility. Forty-
three of these promoters were tested in transient assays in N. benthamiana using a GUS reporter gene 
to show their expression strength range from around 5% to almost 100% of the viral CAMV35S 
promoter activity. Moreover, these STAPs were neatly utilized to transiently express three genes for 
the production of a plant diterpenoid in N. benthamiana [201]. 

STAPs developed by Brückner et al. (2020) for application in dicot plants were the starting point 
to assemble related systems STAP1 and STAP2 in a monocot plant, Oryza sativa [197,201]. To assure 
the spatial regulation of the GUS reporter gene, the TALE-dependent expression was driven by the 
bundle sheath cell-specific Zoysia japonica PHOSPHOENOLPYRUVATE CARBOXYKINASE (ZjPCK) 
promoter (ZjPCKpro) and two PHOSPHOENOLPYRUVATE CARBOXYLASE promoters (PEPCpro), 
maintaining direct and strong mesophyll-specific gene expression in rice. The tissue gene expression 
mediated by the STAP1 and STAP2 systems was heritable and scalable enough to efficiently regulate 
up to four different genes in one genetic construct. Moreover, the relatively low off-target activity of 
dTALE1 expression was found through a comparison of RNAseq study results performed on wild-
type and T2 plants. Only 139 up- and 8 down-regulated genes could be aĴributable to the dTALE1 
expression [197]. TALES could be exercised not only for the direct regulation of STAPS but also 
indirectly for the control of orthogonal TF expression [186]. 

DNA sequences recognized and bound by TALEs, known as effector binding elements (EBEs), 
could be predicted in silico and exercised to build repeatedly repeated fragments, controlling the 
expression of reporter genes of significant biological functions such as the avrGf2 gene from the 
bacterial pathogen Xanthomonas citri. The gene could induce plant cell death, protecting against the 
development of the pathogen [239]. 

To produce an artificial trans-factor (ATF), it is broadly utilized in the deactivated form of the 
Cas9 protein (dCas9) fused to the transcriptional activator domain VP64. The ATF dCas9:VP64 
upregulates the expression of reporter genes via specific guide RNAs (gRNAs) that target the 
promoter region upstream of those genes (Figure 6). The expression of ATF is usually controlled by 
CAMV35S, while the gRNA transcription rate is regulated by Pol III (U6) [196]. The presented system 
is known as the first generation of dCas9-dependent ATFs and was further developed to achieve a 
vast modulation of target gene expression. The novel form, known as the second generation of dCas9-
dependent ATFs, contains the modified gRNA, which contains two aptamer loops to allow the 
aĴachment of the viral MS2 protein. To the MS2 protein are fused activators (VPR), transcriptional 
repressors (SRDX), or epigenetic regulators such as the catalytic core domain of Homo sapiens p300, 
H3K27 histone acetyltransferase, H3K9 histone methyltransferase, the SET domain of KRYPTONITE 
(KYP), or H3K9 methyltransferase from Arabidopsis [202,203]. 
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Figure 6. The first generation of dCas9-dependent artificial trans-factors (ATFs). The deactivated form of the Cas9 
protein (dCas9) is fused to the transcriptional activator domains VP64, ERF2, or EDLL to create ATFs. The ATF 
upregulates the expression of reporter genes via specific guide RNA (gRNA). 

To add another regulatory layer to the orthogonal systems, the expression of dCas9:EDLL and 
MS2:VPR could be regulated not by constitutive CAMV35S but by the copper-inducible promoter, 
containing the cis-active motif named copper-binding site (CBS), recognized by the copper-responsive 
factor CUP2, fused to the yeast Gal4 domain [199]. The presented system enabled a 2,600-fold and 
245-fold increase in the endogenous N. benthamiana DFR and PAL2 gene transcription, respectively, 
with the trace expression level in the absence of the copper ions [200]. Another approach to 
introducing inducibility into the orthogonal expression systems was proposed by Lopez-Salmeron et 
al. (2019) [240]. The authors developed an inducible, tissue-specific expression system based on the 
chimeric transcription factor LhG4 fused to the ligand binding domain of the rat corticoid receptor 
(GR), localized under the control of well-characterized, cell-type-specific promoters. In resting 
conditions, the GR domain is bound by the cytosolic HSP90, handling the transcription factor outside 
of the nucleus. After the addition of the synthetic ligand dexamethasone (Dex), nuclear translocation 
is induced, and LhG4 will mediate transcription of expression casseĴes under the control of a 
synthetic pOp-type promoter [240]. 

 
Figure 7. The second generation of dCas9-dependent artificial trans-factors (ATFs) contains the modified gRNA 
with two aptamer loops to allow the aĴachment of the viral MS2 protein. To the MS2 protein are fused activators 
(VPR) or other components as repressors or epigenetic regulators to increase the scope of regulatory functions 
known in the first generation of dCas9-dependent artificial trans-factors (ATFs). 

6. Machine Learning and Deep Learning Support to Synthetic Promoter Preparing 
The fast and accurate prediction of promoter strength remains challenging, resulting in time- 

and labor-consuming promoter construction and characterization processes. The main reason for the 
presented problems is the shortfall of suitable high-throughput analytical methodology and a lack of 
a large promoter library that has broad enough dynamic ranges, gradient strengths, and clear 
sequence profiles to be implemented to train machine learning (ML) or deep learning (DL) models 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 17 April 2024                   doi:10.20944/preprints202404.1084.v1

https://doi.org/10.20944/preprints202404.1084.v1


 14 

 

[49]. ML approaches offer models characterizing properties between synthetic promoter structure 
and functions [46,85,241]. Advanced ML algorithms produce highly accurate models of gene 
expression, uncovering novel regulatory features in nucleotide sequences involving multiple cis-
regulatory regions across whole genes and DNA structural properties. These details broaden our 
understanding of gene regulation and point to new principles to test and adopt in the field of plant 
science [242]. ML models as linear regression and random forests combine input data as sequences 
of promoters, distrubution of cis-active elements, DNA structural properties, position weight 
matrices, or K-mer frequencies to obtain output information as the expression paĴerns of 
corresponding synthetic promoters [46,48,50,85,242]. To beĴer predict the synthetic promoter 
strength, the EVMP (Extended Vision Mutant Priority) system was developed. The EVMP uses beĴer 
mutation information through the equivalent transformation of synthetic promoters into base 
promoters and corresponding k-mer mutations, which are input into BaseEncoder and VarEncoder, 
respectively. Therefore, the EVMP can significantly improve the prediction accuracy of promoter 
strength [243]. 

The ML systems work with the large libraries of synthetic promoter variants and corresponding 
expression data [46]. The input/output data is then split into training and testing parts for building 
the model and final validation, respectively. The model's accuracy generally increases when a greater 
number of promoter sequences and corresponding RNA-seq, ATAC-seq, and self-transcribing active 
regulatory region sequencing (STARR-seq) data are applied [85,244]. Therefore, the DL models 
implemented on over 20,000 mRNA datasets in 7 model organisms, from bacteria to humans, 
provided novel information, suggesting that the gene expression level is controlled not by a single 
regulatory motif or region but by the entire gene regulatory structure and specific combinations of 
regulatory elements [50]. 

Such basic ML approaches cannot properly predict the properties of synthetic promoter 
sequences in the context of other regulatory elements such as the position of enhancers, 3’ and 5UTR, 
DNANA methylatio or histone acetylation status [50,242,245–247]. These details should be included 
in the more advanced form of ML, known as DL, which uses neural networks such as artificial neural 
networks (ANN) and convolutional neural networks (CNN), offering multiple layers to analyze 
complex paĴerns and relationships in data [85,248,249]. 

Another limitation of ML and DL model development is the intrinsic properties of genome DNA 
sequences due to their dependency on evolution or relatively low complexity. Available ML and DL 
models are developed and trained on genomic DNA that is too short and has insufficient sequence 
diversity to learn all relevant parameters. Therefore, synthetic, random DNA sequences provide the 
opportunity to test and train a larger sequence space as compared to the genome. Models trained on 
these synthetic data can predict genomic activity beĴer than genome-trained models [250]. Moreover, 
the DL algorithms usually neglect evolutionary processes within biological systems, often resulting 
in false positives and counterfeit interpretations. Among approaches including evolutionary 
significance in machine learning are gene-family-guided spliĴing and ortholog contrasts. Analysis of 
the obtained model weight suggests that the 5′ UTR is more important for large-scale gene expression 
changes, while the 3′ UTR is more significant for fine-tuning mRNA levels [251]. 

7. Discussion 
The properties of synthetic promoters and their applications were described in several review 

articles [252–257]. However, research in this field is progressing rapidly, fueled by progressing 
climate changes, decreasing arable land area, and a fast-growing global population [1]. Plant genetic 
modication by synthetic promoters controlling the expression of particular genes is pivotal to 
introducing metabolic switches, enabling the development of novel, more efficient, or stress-resistant 
crop variants and increased biosynthesis of valuable metabolites [1,4,5,9,10]. 

Genetic modifications of common crop plants require the application of up to 15 different genes 
[13,15,16,152,155,158]. However, the repeated use of the same or related DNA promoter sequences, 
combined with conventional, multi-round breeding techniques, results in homology-based gene 
silencing, complex segregation paĴerns, and random integration of multiple transgenes that are 
expressed at different, hardy controlled levels [156,157,165,166]. Therefore, to cope with the presented 
problems, transgenes are generally stacked in a single construct controlled by a minimum number of 
synthetic promoters that should not be homologous to those already used [160,167,170–172]. The 
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necessity of gene stacking, combined with the decreasing number of available promoters, could be 
addressed by a more broad application of bidirectional promoters that are relatively short and 
compact, enabling the expression of up to 6–8 genes per one synthetic promoter [173–177,238]. 

However, the demand for novel synthetic promoters is still increasing [152–155]. The standard 
methods used to obtain them are hybridizations of existing cis-active elements with other core 
promoters or exchange of entire promoters as well as their domains [195,215–222]. Therefore, 
synthetic promoters combine different domains or cis-regulatory elements with the core promoter, 
joining tissue specificity with an increased or precisely tuned expression level in the same construct 
[85,178,180,181]. Cis-active elements are introduced accordingly to their positions, copy number, 
spacing, and orientation to promote optimum spacing among cis-motifs and corresponding trans-
factors [182–186,188]. Prepared promoters indicate different tissue-specificity, strength, and 
inducibility properties to precisely control the co-expression of numerous genes in complex 
biosynthesis traits [189–194]. 

Besides the exchange of domains or cis-elements of known properties, the novel synthetic 
promoter variants are prepared by the introduction of genetic changes into existing cis-active 
elements and core promoters [89,214]. Usually, these approaches are based on error-prone PCR [204–
212]. Larger libraries of synthetic promoters are obtained after repeated applications of the directed 
evolution methodology [213]. Further growth of libraries above 108 elements requires the application 
of synthetic DNA fragments and is not related to already known DNA genome sequences [46]. 
However, analysis of such large libraries obtained by evolution- or synthetic DNA-based methods is 
usually supported by ML or DL approaches, searching for a relation between DNA sequence 
properties and promoter activity [46,50,241–243,251,258,259]. These ML and DL approaches should 
be adopted to cope with their limitations linked to genome DNA properties, such as dependency on 
evolution or relatively low complexity, through training on synthetic, random DNA fragments to test 
a larger sequence space. Models trained on these synthetic data can predict genomic activity beĴer 
than solely genome-trained models [250]. 

Usually, information obtained from the ML and DL methods is verified experimentally to test 
the accuracy of model predictions [213,260]. Repeated application of cycles built from ML/DL models 
and promoter experimental validation lead to their stepwise improvement. However, the scale of the 
applied libraries results in problems with prompt and accurate analysis of the obtained variant 
properties. A promising solution could be the more broad application of a fluorescence-inducing laser 
projector (FLIP) platform equipped with an ultra-low-noise camera, which enabled researchers to 
discriminate between numerous fluorescent signatures under different stress conditions [261–263]. 

Besides the production of huge synthetic promoter libraries, the synthetic promoters are also 
developed on the basis of orthogonal expression systems. The main advantage of these systems is the 
general lack of similarity with existing DNA sequences, resulting in low homology-based gene 
silencing. Orthogonal expression systems could be precisely tuned and accustomed to use in complex 
logic gates to provide a very precise control of complex genetic circuits [28,29]. 

Although the research on synthetic promoter properties is progressing rapidly, some basic 
issues, such as the precise deciphering of the information present in the cis-active elements in the 
context of chromatin modification and trans-factor dimerization, are far from complete understanding 
[43,48,67,68,264]. 

8. Conclusions and Future Directions 
The main impediments to synthetic promoter development that should be addressed in future 

research are the beĴer understanding of cis-element informative content and the progress in analytical 
methodology of large-scale synthetic promoter libraries. Moreover, the development of novel 
synthetic promoters, which is already supported by ML and DL algorithms, should be less reliant on 
evolution-dependent and relatively low-complex genomic DNA sequences to provide more decent 
results. Therefore, more research based on synthetic promoters, which are completely synthetic and 
independent from genomic DNA, should be initiated to develop and train more reliable ML and DL 
for OLs. Improved ML and DL systems could further support the expansion and enrichment of 
artificial promoter libraries. These ML and DL algorithms should be trained on large, synthesized 
DNA sets to avoid evolution-based biases in genome DNA.Moreover high-throughput methods 
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based on fluorescence-inducing laser projector (FLIP) platform equipped with an ultra-low-noise 
camera, ed vaiants should be broadly applied to synthetic promoter analytical studies. 
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