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Abstract: We propose a novel unsupervised semantic segmentation method for fast and accurate flood area
detection utilizing color images acquired from Unmanned Aerial Vehicles (UAVs). To the best of our knowledge,
this is the first fully unsupervised method for flood area segmentation in color images captured by UAVs, without
the need of pre-disaster images. The proposed framework addresses the problem of flood segmentation based
on parameter-free calculated masks and unsupervised image analysis techniques. First, a fully unsupervised
algorithm gradually excludes areas classified as non-flood utilizing calculated masks over each component of the
LAB colorspace, as well an RGB vegetation index and the detected edges of the original image. Unsupervised
image analysis techniques, such as distance transform, are then applied, producing a probability map for the
location of flooded areas. Finally, flood detection is obtained by applying the hysteresis thresholding segmentation.
The proposed method is tested and compared with variations, and other supervised methods in two public
datasets, consisting of 953 color images in total, yielding high-performance results, with 87.4% and 80.9% overall
accuracy and F1-Score, respectively. The results and computational efficiency of the proposed method show that it
is suitable for on board data execution and decision-making during UAVs flight.

Keywords: flood detection; image segmentation; remote sensing; unmanned aerial vehicle (UAV);

unsupervised segmentation

1. Introduction

Natural disasters had always profound and far-reaching impacts on humanity. In recent years,
we observe a climate change leading to escalating weather phenomena, which in turn facilitate natural
disasters. Floods occur in the middle of the summer season due to sudden enormous amounts of
rain, and dry weather conditions in combination with strong, out-of-season winds open the door
for catastrophic, non-controllable wildfires. Earthquakes, volcano eruptions, and hurricanes appear
with immense magnitude. All these disasters lead to loss of life and properties, disruption of services
such as water supply, electricity, and transportation with further health risks, and have an enormous
economic as well as psychological impact on the population.

Efforts to mitigate the impact of natural disasters include early warning systems, improved
infrastructure resilience, disaster preparedness education, and international cooperation for humani-
tarian assistance. Preparedness and response strategies are crucial to minimizing the human toll and
facilitating a quicker recovery from such events. Natural disaster detection systems contribute to early
warnings, risk reduction, efficient resource allocation, and community preparedness. By leveraging
technology and global cooperation, these systems play a vital role in minimizing the impact of disasters
on both human populations and the environment.

Technological advancements and collaborative technologies contribute to the sharing of disaster
information benefitting from different types of media. Deep Learning (DL) algorithms show promise
in extracting knowledge from diverse data modalities, but their application in disaster response
tasks remains largely academic. Systematic reviews evaluated the successes, challenges and future
opportunities of using DL for disaster response and management, while also examining Machine
Learning (ML) approaches, offering guidance for future research to maximize benefits in disaster
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response efforts [1,2]. In this work, we are particularly focused on floods. A concise summary of the
research conducted is shown in Table 1.

DL methods are increasingly applied to remote sensing imagery to address the limitations of
traditional flood mapping techniques. Convolutional layer-based models offer improved accuracy in
capturing spatial characteristics of flooding events, while fully connected layer-based models show
promise when coupled with statistical approaches. Remote sensing analysis, multi-criteria decision
analysis, and numerical methods are replaced with DL models for flood mapping in which flood
extent or inundation maps, susceptibility maps, and flood hazard maps determine, categorize, and
characterize the disaster, respectively [3]. Furthermore, in a recent review, current DL approaches
for flood forecasting and management are critically assessed, pointing out their advantages and
disadvantages. Challenges with data availability and potential future research directions are examined.
The current state of DL applications in this matter is comprehensively evaluated, showing that they
are a powerful tool to improve flood prediction and control [4].

Table 1. A brief overview of the research for this article depicting approach (supervised, unsupervised),
modality, and method.

Authors Year | Approach Imagery Method
Chouhan, A. et al. [5] 2023 | Supervised Sentinel-1 Multi-scale ADNet
Drakonakis, G.I. et al. [6] 2022 | Supervised Sentinel-1, 2 CNN change detection
Dong, Z. etal. [7] 2023 | Supervised Sentinel-1 STANets, SNUNet, BiT
Hinsch, R. et al. [8,9] 2022 | Supervised HR satelite RGB U-Net
Weakly- . End-to-end WSSS framework
He, Y. etal. [10] 2024 super\?,ised HR aerial RGB structure constraints and self-distillation
Hernandez, D. et al. [11] 2021 | Supervised UAV RGB Optimized DNN
Hertel, V. et al. [12] 2023 | Supervised SAR BCNN
Ibrahim, N. et al. [13] 2021 | Semi UAV RGB RGB and HSl color models,
supervised k-means clustering, region growing
Inthizami, N.S. et al. [14] 2022 | Supervised UAV video Improved ENet
Li, Z. etal. [15] 2023 | Supervised Sentinel-1 U-Net
Lo, SW. et al. [16] 2015 Semi- ' RGB (Surveillance HSV color .model, .
supervised camera) seeded region growing
Munawar, H.S. et al. [17] 2021 | Supervised | UAV RGB Landmark-based feature selection,
’ CNN hybrid
Park, J.C. et al. [18] 2023 | Supervised HR satelite RGB Swin transformer in a Siamese-UNet

InceptionNetv3, ResNet50, XceptionNet,
PSPNet, ENet, DeepLabv3+
ED network with EDR block and

Rahnemoonfar, M. et al. [19] | 2021 | Supervised UAV RGB

Sener, A. et al. [20] 2024 | Supervised UAV RGB atrous convolutions (FASegNet)
. WorldView 2, 3 . .
Shastry, A. et al. [21] 2023 | Supervised - CNN with atrous convolutions
multispectral
. True Orthophoto .
Wang, L. et al. [22] 2022 | Supervised (near infrared), DSM Swin transformer and DCFAM
Wieland, M. et al. [23] 2023 | Supervised Satelite and aerial U-Net model with MobileNet-V3

backbone pre-trained on ImageNet

Bauer-Marschallinger, Datacube, time series-based

2022 | Unsupervised | SAR

B. etal. [24] detection, Bayes classifier
Filonenko, A. et al. [25] 2015 | Unsupervised RGB (surveillance Chang&? (.:letechon, C,Ok)r
camera) probability calculation
Landuyt, L. et al. [26] 2020 | Unsupervised | Sentinel-1,2 K-means clustering, region growing
. . Sentinel-2
Li, J. etal. [27] 2022 | Unsupervised Landsat NDWI, U-Net
McCormack, T. et al. [28] 2022 | Unsupervised | Sentinel-1 Hlstggram thresholding, X
multi-temporal and contextual filters
Trombini, M. et al. [29] 2023 | Unsupervised | SAR Graph-based MRF segmentation

Convolutional Neural Networks (CNNs) proved to be effective in flood detection using satel-
lite imagery. High-quality flood maps are generated with the help of temporal differences from
various sensors after CNNs identify changes between permanent and flooded water areas utilizing
Synthetic Aperture Radar (SAR) and multispectral images [6,7]. Furthermore, the efficacy of CNNs
in semantically segmenting water bodies in highly detailed satellite and aerial images from various
sensors, with a focus on flood emergency response applications, is assessed by combining different
CNN architectures with encoder backbones to delineate inundated areas under diverse environmental
conditions and data availability scenarios. A U-Net model with a MobileNet-V3 backbone pre-trained
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on ImageNet consistently performed the best in all scenarios tested, while the integration of additional
spectral bands, slope information from digital elevation models, augmentation techniques during
training, and the inclusion of noisy data from online sources further improved model performance [23].
In addition, Bayesian convolutional neural networks (BCNN) have been recommended to quantify
the uncertainties associated with SAR-based water segmentation, because of their greater flexibility
to learn the mean and the spread of the parameter posterior [12]. Finally, a CNN employed to au-
tomatically detect inundation extents using the Deep Earth Learning, Tools, and Analysis (DELTA)
framework demonstrated high precision and recall for water segmentation despite a diverse training
dataset. Supplementary, the effects of surface obstruction due to the inability of optical remote sensing
data to observe floods under clouds or flooded vegetation are quantified, suggesting the integration of
flood models to improve segmentation accuracy [21].

Since rapid damage analysis and fast coordination of humanitarian response during extreme
weather events are crucial, flood detection, building footprint detection, and road network extraction
have been integrated into an inaugural remote sensing dataset called SpaceNet 8 and a homonym
challenge has been launched [8]. The provided satellite imagery posed real-world challenges such as
varying resolutions, misalignment, cloud cover, and lighting conditions and top performing DL ap-
proaches focusing on multi-class segmentation showed that swiftly identifying flooded infrastructures
such as buildings and roads can significantly shorten response times. The contestants found that simple
U-Net architectures yielded the best balance of accuracy, robustness, and efficiency, with strategies
such as pre-training and data augmentation proving crucial to improve model performance [9].

U-Nets and their variations were widely used to tackle the problems of water bodies segmentation
and flood extend extraction. In [27], a ResNet was used to replace the contracting path of the U-Net, due
to its ability to solve vanishing or exploding gradient issues caused by error backpropagation through
skip connections of the residual module. The normalized difference water index (NDWI) was employed
to create pseudo-labels for training, resulting in an unsupervised DL approach. In[15], another
adjusted U-Net was proposed. With carefully selected parameters and training with pre-processed for
three-category classification Sentinel-1 images, the proposed method was able to distinguish flood
pixels from permanent water and background.

Transformers have also been successfully applied for semantic segmentation in remote sensing
images. A novel transformer based scheme employing the Swin Transformer as the backbone to better
capture context information and a densely connected feature aggregation module (DCFAM) serving as
anovel decoder to restore resolution and generate accurate segmentation maps, proved to be effective
in the ISPRS Vaihingen and Potsdam datasets [22]. An improved transformer-based multiclass flood
detection model capable of predicting flood events while distinguishing between roads and buildings
was introduced, which, with an additional novel loss function and a road noise removal algorithm,
achieved superior performance, particularly in road evaluation metrics such as APLS [18]. Finally, the
Bitemporal image Transformer (BiT) model scored highest in a change detection approach capturing
the changed region better [7].

A multiscale attentive decoder-based network (ADNet) designed for automatic flood identification
using Sentinel-1 images outperforms recent DL and threshold-based methods when validated on
the Senl1floods11 benchmark dataset. Through detailed experimentation on various dataset settings,
ADNet demonstrates effective delineation of permanent water, flood water and all water pixels using
both co-polarization (VV) and cross-polarization (VH) inputs from Sentinel-1 images [5].

Dilated or atrous convolutions, which on the one hand increase the network’s receptive field
while on the other reduce the number of trained parameters needed [30], are utilized in an effort to
speed up search and rescue operations after natural disasters such as floods, high tides, and tsunamis.
FASegNet, a novel CNN-based semantic segmentation model, was introduced specifically designed
for flood and tsunami area detection. FASegNet utilizes encoder and decoder networks with an
encoder-decoder-residual (EDR) block to effectively extract local and contextual information. An
Encoder-Decoder High-Accuracy Activation Cropping (EHAAC) module minimizes information loss
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at the bottleneck, and skip connections transfer information between encoder and decoder networks,
outperforming other segmentation models [20].

A novel weak training data generation strategy and an end-to-end weakly supervised semantic
segmentation (WSSS) method called TFCSD, challenges urban flood mapping [10]. By decoupling
the acquisition of positive and negative samples, the weak label generation strategy significantly
reduces the burden of data labeling, enabling prompt flood mapping in emergencies. Additionally, the
proposed TFCSD method improves edge delineation accuracy and algorithm stability compared to
other methods, especially in emergency scenarios where pre-disaster river data is accessible, or when
using the SAM ([31]) assisted interactive labeling method when such data is unavailable.

Satellites such as Sentinel-1 and Sentinel-2 play a key role in flood mapping due to their rapid
data acquisition capabilities. Their effectiveness in mapping floods across Europe was evaluated in a
study in which the results indicate that observation capabilities vary based on catchment area size and
suggest that employing multiple satellite constellations significantly increases flood mapping coverage
[32]. The urgent need for real-time flood management systems by developing an automated imaging
system using Unmanned Aerial Vehicles (UAVs) to detect inundated areas promptly is addressed, so
that emergency relief efforts will not be hindered by current satellite-based imaging systems which
suffer from low accuracy and delayed response. By employing the Haar cascade classifier and DL
algorithms, a hybrid flood detection model combining landmark-based feature selection with a CNN
demonstrated improved performance over traditional classifiers [17].

Specially designed datasets are introduced to address the lack of high-resolution (HR) imagery
relevant to disaster scenarios. In [19], FloodNet, a high resolution (HR) UAV imagery dataset, capturing
post-flood damage, aims to detect flooded roads and buildings and distinguish between natural and
flooded water. Baseline methods for image classification, semantic segmentation, and visual question
are evaluated, highlighting its significance for analyzing disaster impacts with various DL algorithms,
such as XceptionNet and ENet. In [14], an improved Efficient Neural Network architecture was also the
choice to segment the UAV video of flood disaster. The proposed method consists of atrous separable
convolution as the encoder and depth-wise separable convolution as the decoder.

To facilitate efficient processing of disaster images captured by UAVs, an Al-based pipeline
was proposed enabling semantic segmentation with optimized deep neural networks (DNNs) for
real-time flood area detection directly on UAVs, minimizing infrastructure dependency and resource
consumption of the network. Experimental results confirm the feasibility of performing sophisticated
real-time image processing on UAVs using GPU-based edge computing platforms [11].

It becomes clear that DL methods offer improved segmentation by creating adaptive mapping
relationships based on contextual semantic information. However, these methods require extensive
manual labeling of large datasets and lack interpretability, suggesting the need to address these
limitations for further progress. Traditional ML methods, on the other hand, rely on manually
designed mappings. Systematic reviews of water body segmentation over the past 30 years examine
the application and optimization of DL methods and outline traditional methods at both the pixel
and the image levels [33]. Evaluating the strengths and weaknesses of both approaches prompts a
discussion of the importance of maintaining knowledge of classical computer vision techniques. There
remains value in understanding and utilizing these older techniques. The knowledge gained from
traditional Computer Vision (CV) methods can complement DL, expanding the available solutions.
There also exist scenarios in which traditional CV techniques can outperform DL or be integrated into
hybrid approaches for improved performance. Furthermore, traditional CV techniques have been
shown to have benefits such as reducing training time, processing, and data requirements compared to
DL applications [34].

A near decade ago, a method for automatically monitoring flood events in specific areas was
proposed using remote cyber-surveillance systems and image-processing techniques. When floods
are treated as possible intrusion objects, the intrusion detection mode is utilized to detect and verify
flood objects, enabling automatic and unattended flood risk level monitoring and urban inundation
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detection. Compared to large-area forecasting methods, this approach offered practical benefits, such
as flexibility in location selection, no requirement for real-world scale conversion, and a wider field
of view, facilitating more accurate and effective disaster warning actions in small areas [16]. Real-
time methods to detect flash floods using stationary surveillance cameras, suitable for both rural
and urban environments, became quite popular. Another method used background subtraction to
detect changes in the scene, followed by morphological closing to unite pixels belonging to the same
objects. Additionally, small separate objects are removed, and the color probability is calculated for the
foreground pixels, filtering out components with low probability values. The results are refined using
edge density and boundary roughness [25].

Unsupervised object-based clustering was also used for flood mapping in SAR images. The
framework segments the region of interest into objects, converts them into a SAR optical feature
space, and clusters them using K-means, with the resulting clusters classified based on centroids
and refined by region growing. The results showed improved performance compared to pixel and
object-based benchmarks, with additional SAR and optical features enhancing accuracy and post-
processing refinement reducing sensitivity to parameter choice even in difficult cases, including areas
with flooded vegetation [26]. The same techniques were also proposed for flood detection purposes
in UAV-captured images. Employing RGB and HSI color models and two segmentation methods:
K-means clustering and region growing in a semi-supervised scheme showed potential for accurate
flood detection [13].

There is also a datacube-based flood mapping algorithm that uses Sentinel-1 data repetition
and predefined probability parameters for flood and non-flood conditions [24]. The algorithm au-
tonomously classifies flood areas and estimates uncertainty values, demonstrating robustness and
near-real-time operational suitability. It also contributed to the Global Flood Monitoring component of
the Copernicus Emergency Management Service.

Contextual filtering on multi-temporal SAR imagery resulted in an automated method for map-
ping non-urban flood extents [28]. Using tile-based histogram thresholding and refined with post-
processing filters, including multitemporal and contextual filters, the method achieved high accuracy.
Additionally, confidence information was provided for each flood polygon, enabling stable and
systematic inter-annual flood extent comparisons at gauged and ungauged sites.

Finally, in [29] an unsupervised graph-based image segmentation method has been proposed that
aims to achieve user-defined and application-specific segmentation goals. This method utilizes a graph
structure over the input image and employs a propagation algorithm to assign costs to pixels based on
similarity and connectivity to reference seeds. Subsequently, a statistical model is estimated for each
region, and the segmentation problem is formulated within a Bayesian framework using probabilistic
Markov random field (MRF) modeling. Final segmentation is achieved through minimizing an energy
function using graph cuts and the alpha-beta swap algorithm, resulting in segmentation based on
the maximum a posteriori decision rule. In particular, the method does not rely on extensive prior
knowledge and demonstrates robustness and versatility in experimental validation with different
modalities, indicating its potential applicability across different domains. It was also successfully
applied on SAR images for flood mapping.

From our survey, it becomes clear that supervised methodologies are preferred nowadays, as they
outnumber unsupervised approaches (see Table 1). Of the unsupervised ones, we found only one that
deals with RGB images, but relies on change detection, thus is in need of the pre-disaster image as well.

In this paper, we propose a novel unsupervised method for flood segmentation utilizing color
images acquired from UAVs. Without the need of large datasets, extensive labeling, augmentation,
and training, the segmentation can be performed directly on the UAV deployed over the disaster
area. Therefore, relief efforts can be swiftly directed to damaged sites avoiding time loss, which can
be crucial in saving lives and properties. Initially, we employ parameter-free calculated masks over
each component of the LAB colorspace utilizing as well an RGB vegetation index and the detected
edges of the original image in order to provide an initial segmentation. Next, unsupervised image
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analysis techniques, such as distance transform, are adapted to the flood detection problem, producing
a probability map for the location of flooded areas. Then, the hysteresis thresholding segmentation
method is applied, resulting in the final segmentation. The main contributions of our work can be
summarized as follows:

¢ To our knowledge, this is the first fully unsupervised method for flood area segmentation
in color images captured by UAVs. The current work faces for the first time the problem of
flood segmentation based on parameter-free calculated masks and unsupervised image analysis
techniques.

* The flood areas are given as solutions of a probability optimization problem based on the
evolution of an isocontour starting from the high confidence areas and gradually growing
according to the hysteresis thresholding method.

¢ The proposed formulation yields a robust unsupervised algorithm that is simple and effective
for the flood segmentation problem.

¢ The proposed framework is suitable for on-board execution on UAVs, enabling real-time process-
ing of data and decision making during flight, since the processing time per image is about 0.5
sec without the need of substantial computational resources or specialized GPU capabilities.

The proposed system has been tested and compared with other variants and supervised methods
on the Flood Area dataset introduced in [35], consisting of 290 color images, yielding high-performance
results. Furthermore, experimental results of the proposed method are also reported on the Flood
Semantic Segmentation dataset [36], which consists of 663 color images.

The rest of this paper is organized as follows. Sections 2 introduces the datasets used for this
article. Section 3 presents our proposed unsupervised methodology. The experimental results and a
comprehensive discussion are given in Section 4. Finally, conclusions and future work are provided in
Section 5.

2. Materials

We employed two publicly available datasets for this study to demonstrate the robustness and
general applicability of our method. First, the dataset used for assessing the efficacy of our approach
and facilitating comparative analyses with alternative methodologies is called Flood Area, consisting
of color images acquired by UAVs and helicopters [35]. It contains 290 RGB images depicting flood hit
areas, as well as their corresponding mask images with the water region segmentations. The ground
truth images were annotated by the dataset creators using Label Studio, an open source data labeling
software. The images were downloaded selectively from the Internet, thus the dataset exhibits a wide
range of image variability, depicting urban, peri-urban, rural areas, greenery, rivers, buildings, roads,
mountains, and the sky. Furthermore, there are image acquisitions relatively close to the ground as
well as from a very high altitude and from diverse camera rotation angles around the X axis (roll)
and Y axis (pitch). If pitch and roll are zeros, this means that the camera is looking down (top-down
view). Hereafter, we use the term “camera rotation angle”, to present the angle between the current
view plane and the horizontal plane (top-down view). The images have different resolutions and
dimensions with height and width ranging from 219 up to 3648 and 330 up to 5472, respectively.
Representative images with their corresponding ground truths are shown in Figure 1.

Second, to confirm the universal functionality of our approach, we employed the Flood Semantic
Segmentation Dataset [36]. It consists of 600 and 63 color images for training and validation, respec-
tively. Since our method is fully unsupervised, it does not require training, and therefore we used all
663 images for evaluation. Similarly to the initial dataset, this dataset comprises images obtained from
UAVs, accompanied by their respective ground truth annotations, portraying diverse flooded scenes
captured from various camera perspectives. The image sizes and resolutions also vary, but were all
resized and, if necessary zero padded, to 512x512 by the creator, as shown in Figure 2.
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Figure 1. Sample images from the Flood Area dataset (top) and their corresponding ground truths
(bottom).

Figure 2. Sample images from the Flood Semantic Segmentation dataset (top) and their corresponding
ground truths (bottom).

3. Methodology

3.1. System Overview

We propose an approach which gradually removes image areas classified as non-flood, based
on binary masks constructed from color and edge information. Our method is fully unsupervised,
meaning that there is no training process involved, and thus no need of ground truth labeling. We use
the labels provided by the datasets only for evaluation purposes of our method. A repetitive process,
consisting of the same algorithmic steps, is applied over each of the components extracted from the
color image, in order to identify areas that are not affected by floods. For each component, as described
below, a binary map is obtained in which areas identified as non-flood are discarded, leading to a
final mask of potential flood areas (PFAs), refined by simple morphological operations. The flood’s
dominant color is calculated weighting the potential flood area pixels and a hysteresis thresholding
yields the final segmentation. An overview of our proposed methodology is graphically depicted in
Figure 3. In the following, we analytically present the proposed methodology.
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Figure 3. Graphical abstract of our proposed approach.

3.2. RGB Vegetation Index Mask

In both urban and rural areas, the landscape is lush with greenery, largely attributed to the
abundant presence of trees and vegetation. Since trees are unlikely to be fully covered by flood events,
our first concern is to rule out the greenery, noticing also in our experiments that, using only a flood
color approach, vegetation is more likely to be misclassified as flood water. Therefore, we use the RGB
Vegetation Index (RGBVI), introduced in [37]. This index was successfully applied in [38] as a first
step in detecting and counting trees using region-based circle fitting. RGBVI particularly improves
sensitivity to vegetation characteristics while mitigating the impact of interfering factors such as
reflection of the background soil and directional effects. However, as shown in Equation 1, it can be
influenced by the color quality of the image, e.g. due to bad atmospheric conditions by the time of the
image acquisition. It is defined as the normalized difference between the squared green reflectance
and the product of blue and red reflectance:

(Rg)? — (R x Rg)

RGBVI =
(Rg)?+ (Rp x RR)

1)

where R, Rp and Ry denote the red, blue and green reflectance, respectively. In [39], the authors use
a threshold of 0.15 on RGBVI for tree detection. In this work, we preferred to set a stricter threshold,
e.g. 0.2, so that any value exceeding this threshold is characterized as greenery and therefore is not
flooded, resulting in Mgrgpy; mask. With this mask, we are able to rule out a great amount of image
pixels, since visible vegetation cannot be flooded. Particularly in the Flood Area dataset in rural areas
up to 92.8% of pixels can be characterized as greenery, and thus non-flood, while on average over the
whole dataset 17.94% of pixels are ruled out this way (median value is 14.16%).
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In Figure 4, examples of RGBVI masks are shown for (a) urban and (b) rural areas from the Flood
Area dataset, where the dim gray color corresponds to the detected greenery. We can clearly notice
that, especially in rural areas, a substantial number of image pixels are rightly characterized as trees
and vegetation, and therefore these areas cannot be flooded. This technique also works in urban areas
where vegetation is present. But there are also cases where the RGB Vegetation Index is not quite
efficient, especially when image color quality is poor due to camera rotation angle and/or weather
conditions (Figure 4 (c)).

(b) Urban areas

(c) Poor greenery detection

Figure 4. The original images (from the Flood Area dataset) and the corresponding RGBVI masks on
their right side. The masks show detected greenery with dim gray color. Examples are presented for (a)
urban areas, (b) rural areas, and (c) poor or failed greenery detection. The remaining potential flood
areas are shown in cyan.

3.3. LAB Components Masks

The LAB color space offers several advantages over the RGB color space, such as perceptual
uniformity, wide color gamut, separation of color and lightness, and robustness to illumination [40].
LAB color space is designed to be perceptually uniform, which means that a small change in the LAB
values corresponds to a similar perceptual change in color across the entire color space, making it
more suitable for color-based applications where accurate perception of color differences is important.
It encompasses a wider range of colors compared to the RGB color space, particularly in terms of
the human perceptual color space. This allows for a more accurate representation of colors that fall
outside the RGB gamut. The LAB color space is less affected by changes in illumination compared
to the RGB color space, since lightness is a separate component. This separation is advantageous
when independent control over lightness and color is desired, making it more suitable for applications
where lighting conditions vary significantly [41]. Considering that the LAB color space offers greater
flexibility and accuracy in color representation and manipulation compared to the RGB color space,
and since in our application precise color information is critical, we next convert the image to the LAB
color space to process it further.

Using the L, A, and B components, we derive three more masks, where areas can potentially be
characterized as non-flood, exploiting the values standard deviation of the data relative to its central
tendency for each color component. In flooded areas, the value of each color component in the LAB
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color space is usually higher than the corresponding values of the background. So, we select a lower
threshold A¢, C € {L, A, B} to create binary masks that detect regions probably belonging to non-flood
areas. Ac is calculated by subtracting the standard deviation (o¢) from the mean value (p¢c) over each
color component (C) of the LAB color space:

Ac=pc—oc, Ce{L A B} (2)

Figure 5 shows the average value of (a) L, (b) A and (c) B color components computed on flood
(blue curve) and background (red curve) pixels for each image of the Flood Area dataset, sorted in
ascending order. The yellow curves represent the corresponding threshold Ac used to create the three
masks. Since flooded areas have elevated values observed in each component of the LAB color space,
each mask My, M4 and Mp is labeled as non-flood, when the component’s pixel value is smaller than
Ac. In the Flood Area dataset, we observed that the median value, computed over all images in the
dataset, of the percentage of pixels that belong to the non-flood class according to the mask My, M4
and M3 is only 2.3%, 1.3% and 2.0%, respectively. This means that the M, M4 and Mp masks have
a very low number of wrong-classified flood pixels, providing a robust initial segmentation for our

method.
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Figure 5. Blue and red curves correspond on the average value of (a) L, (b) A and (c) B color components
computed on flood and background pixels respectively, for each image of the Flood Area dataset,
sorted in ascending order. The yellow curves show the corresponding A threshold.

Edges often correspond to significant changes in intensity or color in an image. Detecting these
edges allows for the extraction of important features, such as object boundaries, contours, and shapes,
which are essential for further analysis and interpretation of image content. Identifying edges helps in
highlighting important structures and details, and serves as a fundamental step in image segmentation,
which involves partitioning an image into regions with similar characteristics. Edges act as boundaries
between different regions, which makes them essential for accurate segmentation and analysis of image
content [42]. It is clear that edges can be useful to locate borders between flooded and non-flooded
areas and should therefore be excluded from the flood water class. After a simple Canny edge detection
on the blurred L component so that dilated edges occur, the fifth mask Mg, is obtained, labeling
the edge pixels as non-flood. Mgy, mask is also useful, because by detecting the borders of small
objects (e.g. buildings, cars, trees, etc.), then the weights of their nearby pixels are reduced in the
flood-dominant color estimation, increasing the robustness of the estimation (see Section 3.4).

Examples from the Flood Area dataset of the four LAB component masks My, M4, Mg and Mg,
are depicted in Figure 6. We observe that each color component and the detected edges contribute
to further classifying image pixels as background (with dim gray color), thus excluding them from
potential flood areas (cyan color). Non-flood areas are strengthened, when classified so by multiple
components, but also complemented by being detected by one component when others failed to do so.
For the whole Flood Area dataset, on average 25.43%, 27.75%, 29.82% and 7.45% of pixels, respectively
for the L, A, B component and the edge image are classified as non-flood. Notice the sky in the first
image of Figure 6, detected only by the B component as non-flood, and the hill side in the second


https://doi.org/10.20944/preprints202404.1049.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 16 April 2024 d0i:10.20944/preprints202404.1049.v1

11 0f 28

image, which as a non-flood area is strengthened by all components. Under any case, the borders of
small objects are well detected by the M4y, mask, increasing the robustness of the flood-dominant
color estimation, which is described in the next Subsection.

Figure 6. Original images from the Flood area dataset and their corresponding LAB components masks
My, Ma, Mg, and Mggg, from left to right. Note that the edges in Mg, are dilated for illustration
purposes. Non-flood areas are depicted with dim gray color, whereas remaining potential flood areas

are shown in cyan.

3.4. Flood Dominant Color Estimation

As described in Sections 3.2 and 3.3, five masks with potential non-flooded areas are constructed.
There are cases where these masks describe approximately the same areas, but essentially the masks
complement each other. When all masks are robust in classifying an area as non-flood then the
conclusion for this specific area is strengthened. But if one mask is weak in characterizing the area as
non-flood, the other masks function as reinforcement. The final mask (Mg;;,,;) for the non-flood class is
derived by uniting these individual masks, as also depicted in Figure 3:

MFinat = Mrgpvr U M U Mg U Mg U MEgge 3)

The morphological operation of image closing follows, merging adjacent areas that are partially
separated and connecting nearby regions. Excluding the non-flood labeled pixels of the final mask
leaves us with potential flood areas, which of course have to be refined, as described below.

We opted for a weighted approach to estimate the dominant color of the flood in the image.
Taking into account the non-flood area derived from Mg;,,;, the Euclidean distance transform [43]
assigns to each potential flood pixel a value representing its distance to the nearest boundary pixel
(non-flood). This representation of the spatial relationship between the pixels serves as a weight map
(W), where the pixels furthest away from non-flood areas receive greater weights such that their color
(Ic) will exert a more significant influence on the process of the flood’s dominant color estimation.

The weighting variance (¢2) for each color component (C) is calculated on the potential flood area
(PFA) as follows:

o2 - N Ypepra W(p) - (Ic(p) — pc)?
CN-1 Yperea W(p)

)
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where N and p are the total amount of potential flood area pixels and an image pixel respectively. The
mean color value of the potential flood for each component C € L, A, B is represented by jc:

_ Lpepra W(p) - Ic(p)
He Yperra W(p)

®)

The estimated variance (02) can be much higher than the real one, due to the fact that PFA may also
contain non-flood pixels. Furthermore, the estimated 0'% in the PFA region should be much lower than
the corresponding variance estimated in the entire image (?%), due to the high color similarity between
the flood pixels. So, 02 is corrected to a predefined percentage (e.g. 20%) of %, when it exceeds this
value.

In this work, the probability for potential flood area pixels over each color component is defined
in Equation 6, via the exponential component of the normal probability distribution function (Gaussian
kernel) that is ranged in [0, 1]:

_ Ue(p)—pe)?

Pe(p)=e T ©6)

The decisive probability map (PM) is then constructed, as shown in Equation 7

PM(P)_<PL(P) Pa(p) PB(P)) 7)

accounting for the greater significance of the L component with exponent term one. The component A
has the second significance, with an exponent term equal to % The component B is the least significant,
with an exponent term equal to }I' In Equation 7, the exponent term % is used for normalization
purposes, giving the sum of exponent terms one. The use of different exponent terms on the three
color components slightly improves the results of the proposed method, achieving 0.5% and 0.3%
higher F1-Score (F) (see Section 4.5), compared to the version of the system having equal significance
to all color components (see Eq. 8) and equal significance to A and B color components (see Eq. 9),
respectively.

Wl

PM(p) = (PL(p)Pa(p)Ps(p)) (8)

PM(p) = (mp) PA<p>PB<p>) ' ©)

Figure 7 illustrates examples of probability maps derived after the corresponding initialization
masks and weight maps for examples from the Flood Area dataset. In fact, potential flood areas
(cyan color) have a higher probability (red color) compared to the background. Areas classified as
non-flood (dim gray color) by Equation 3 exhibit zero weights and probabilities (dark blue color) such
that they will not contribute to the flood’s dominant color estimation. However, when the flood’s
color is equivalent to the color of background areas, which were not eliminated by the masks used to
initialize our method (see Sections 3.2 and 3.3), there can be the case of high probabilities turning up in
non-flood areas, as depicted in the example in the last row, where parts of the road exhibit a tendency
towards flood.

At this point, using a single threshold value on the decisive probability map to perform the final
segmentation can lead to quite satisfactory results (see Table 3, row UFS-REM). However, we opted for
dual thresholds, as described in the following Subsection.
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Weight Map Probability Map

o : { Ba® Yoy o3 0
Figure 7. Probability maps (column 4) obtained using potential flood areas of Mg;,,,; (column 2), weight
maps (column 3), as generated by the distance transform and the corresponding images from the Flood
Area dataset (column 1). Potential flood area is shown in cyan, and non-flood area in dim gray color.
The weights and probabilities range from 0 (dark blue color) to 1 (red color).

3.5. Hysteresis Thresholding

The probability map provides a good indication of the location of flooded areas. This now defines
a probability optimization problem. To proceed to the final decision, we preferred two different
threshold values to distinguish between actual flood and background. The isocontour evolves starting
from the high-confidence areas and gradually grows to segment the flooded area. This technique is
known as hysteresis thresholding and was first implemented for edge detection [42]. The main steps
of the hysteresis thresholding method are described below:

* We adapt the process for region growing, where the high threshold Ty is applied to the entire
probability map to identify pixels with PM(p) > Tg as flood. These regions have high confidence
to belong to flood areas, so they can be used as seeds in a region-growing process that is described
below.

* Next, a connectivity-based approach is used to track the flood. Starting from the pixels identified
in the first step, the algorithm looks at neighboring pixels. If a neighboring pixel has a probability
value higher than the low threshold T}, it is considered part of the flood.

* This process continues recursively until no more connected pixels above the low threshold are
found.

The hysteresis effect prevents the algorithm from being too sensitive to small fluctuations in probability.
Pixels that fall between the low and high thresholds, but are not directly connected to strong flood
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pixels are not considered flood. However, if a weak flood pixel is connected to a strong flood pixel, it is
still considered to be part of the flood. In this way, flood continuity is maintained and false detections
are reduced, so that flood boundaries are accurately identified.

We have set the low and high thresholds to be at the 1% and 75% marks, respectively. But, as we
can observe in Figure 12, any value in the vicinity of Ty, = 0.01 and Ty = 0.75 does not change the
outcome substantially, thus making our methodology robust. The middle column of Figure 8 shows
the hysteresis thresholding process for four images of the Flood Area dataset in the second column.
For the whole set of potential flood areas, red colored are pixels with probability greater than Ty and
therefore certain to belong to the flood class, while the blue colored pixels have a probability in the
range PM(p) € (T, Ty). For the latter, the flood class inclusion is guaranteed only when they are
linked with red pixels. Cyan colored pixels belong to PFAs but fall below the lower threshold, and
therefore they will be assigned to the background class. The non-flood areas, according to the Mg;,,
mask, are colored with dim gray pixels.

3.6. Final Segmentation

The proposed methodology is completed by obtaining the final segmentation after the hysteresis
thresholding is applied to the decisive probability map. For the derived flood areas, an edge correction
is performed via the image dilation operation. The connected components of flood and non-flood
areas are calculated, and relatively small areas are removed. In particular, if a blob is considered to
be flooded but does not exceed about 0.3% of the whole image pixels, then this blob is reclassified
as background to reduce noise effects, e.g. small water pits which do not belong to the flood area.
Furthermore, background blobs with an area of 0.05% of all the pixels in the image are attributed to the
flood class. These blobs can occur midst of a flood, because of fluctuations in the values of the color
components (e.g. shadows), disrupting the continuity and were wrongly classified as background and
therefore excluded at the early stages of the method.

Figure 8 shows the final segmentation of our proposed approach (see last column). Blue and dim
gray colors represent the segmented flood and background, respectively. Cyan colored pixels from the
second column, which did not pass the thresholds, as well as blue pixels, which are not connected to
red ones are excluded from the segmented flood area. The same applies to small blue blobs connected
to red pixels, because they do not fit the aforementioned area criterion. In the next Section, we present
more results and discuss them in detail.

(a) Image (b) Hyst. Thresh. (c) Final Seg.

Figure 8. Cont.
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Figure 8. (a) Original image from the Flood Area dataset, (b) the applied hysteresis thresholding on
the decisive probability map of the potential flood area and (c) the final segmentation mask. (b) In red
and blue are the pixels with PM(p) > Ty and Ty < PM(p) < Ty respectively. Cyan colored pixels
are with PM(p) < Tp, they do not surpass the lower threshold, and are subsequently classified as
background. The non-flood areas, according to the Mp;,,; mask, are colored with dim gray pixels. (c)
The last column shows the final segmentation obtained from our proposed method, where the flood is
in blue and the background is in dim gray color.

4. Result and Discussion

In this Section, we present our proposed method’s results and compare them with selected
recent DL approaches, since we did not find any other unsupervised method to challenge this problem.
Furthermore, we have conducted an ablation study to measure the contribution of each of our method’s
modules, as described in Sections 3.2 to 3.6, with respect to performance.

4.1. Evaluation Metrics

The metrics used for evaluation purposes are Accuracy (ACC), Precision (PR), Recall (REC) and
F1-Score (Fy), as defined in Equations 10 to 13 below:

ACC= 757 II:ZI\JI—’—;—]I;II\?]%— FN (10
PR = % (11)
REC = TP];L—PFN (12)

TP,FP, TN, and FN stand for true positive, false positive, true negative, and false negative respectively.
Additionally, we have calculated the average value of F1-Score (F1) over the whole dataset, which is
given by averaging the corresponding F1-Score of each image of the dataset.
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4.2. Implementation

The proposed method has been implemented using MATLAB. All experiments were executed on
an Intel I7 CPU processor at 2.3 GHz with 40 GB RAM. The proposed algorithm achieves inference in
about half a second per image, without immense calculations that would require the power of GPU
cores to perform in the same time range. The code implementing the proposed method, together with
the dataset and results, will be publicly available (after the paper acceptance) at the following link '.

4.3. Flood Area Dataset: Experimental Results and Discussion

We showcase a series of final segmentations as a result of our proposed approach (UFS-HT-REM)
supplemented by evaluation metrics, as described above, and the original and ground-truth images.
All images have been adjusted to uniform dimensions (800 x 600) for illustration purposes only, since
our method works for any image size.

Representative outcomes from the Flood Area dataset are shown in Figures 9, 10 and 11. The
results show flood segmentation in blue overlaid on the original image with the flood’s borders
emphasized in dark blue. We also use the same technique to represent the ground truth. In Figure 9,
the results of the proposed method yield F; and ACC that exceed 90%, showing high performance
results with almost perfect flood detection. In Figure 10, F; belongs in the range [75%, 90%] providing
results, where the flood area detection accuracy is satisfactory. In Figure 11, the results of the proposed
method yield F; lower than 30%, showing poor segmentation results.

The proposed unsupervised approach works for any tint of flood water and delivers excellent
results even when a plethora of small objects protrude the flood, managing to segment around them
(see Figure 9 (b) and 10 (d)). As we can observe in the rest of the results, it achieves satisfactory results
in urban/peri-urban as well as rural environments, where it accurately segments existing flooded
areas, even when they are not labeled in the ground truth, as shown in Figure 10 (e). The method works
best, when the acquired image’s color quality and the weather, lighting conditions are good, alongside
a low camera rotation angle (top-down view). Naturally, should the assumptions underpinning the
proposed algorithm not hold, it may result in suboptimal outcomes (see Figure 11). Reasons for bad
results are due to the extreme similarity of the flood and the background color, and elevated LAB color
components’ values of background areas. It is essential that the flood is not green in color, because the
vegetation index will confuse it with greenery and therefore mainly exclude it (see Figure 11 (c)).

In the LAB colorspace, the flood has been measured to have elevated values with respect to
the background. Therefore, in cases when light is reflected on the surface or the sky is of the same
brightness, it is impossible for the method to set these two areas apart (see Figure 11 (a) and (b)).
Finally, because the method still relies on color, if there is near-identical coloration of the flood water
and other objects (e.g. buildings, rooftops), these objects will be considered part of the flood or will be
entirely mistaken as flood omitting the true flood water (see Figure 11 (d)). High ACC scores in the
poor segmentation results are due to correctly segmenting large areas of the background.

1 https:/ /sites.google.com/site/costaspanagiotakis/research/flood-detection
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UFS-HT-REM

(c) Fi = 95.8%, ACC = 95.2%, PR = 97.3%, REC = 94.4%

(e) F; =92.7%, ACC = 96.5%, PR = 95.5%, REC = 90.0%

Figure 9. High performance results of the proposed flood segmentation method from the Flood
Area dataset. Original images, ground truth, and the final segmentation of our proposed method
(UFS-HT-REM).
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Ground Truth UFS-HT-REM

) - 5 —

(e) F; =76.2%, ACC = 81.2%, PR = 69.3%, REC = 84.7%

Figure 10. Satisfactory results of the proposed flood segmentation method from the Flood Area dataset.
Original images, ground truth, and our proposed method’s (UFS-HT-REM) final segmentation.
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Image Ground Truth UFS-HT-REM

(d) F; =8.7%, ACC = 64.2%, PR = 6.6%, REC = 12.7%

Figure 11. Poor segmentations resulting from the proposed methodology (UFS-HT-REM) from the
Flood Area dataset. Original images, ground truth and the final segmentation of our proposed method.

4.4. Exploring the Impact of Environmental Zones and Camera Rotation Angle

Additionally, we study how the environmental zone and the camera rotation angle affect the
flooding segmentation by splitting the Flood Area dataset into the following categories:

1. Environmental zone:

(a) Rural, predominantly featuring fields, hills, rugged mountainsides, scattered housing
structures reminiscent of villages or rural settlements, and sparse roads depicted within the

images. It consists of 87 out of the 290 images in the dataset.
(b) Urban and peri-urban, distinctly showcasing urban landscapes characterized by well-

defined infrastructure, that conforms to urban planning guidelines, a dense network of
roads and high population density reflected in the presence of numerous buildings and
structures. It encompasses a collection of 203 images.

2. Camera rotation angle:
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(@) No sky (almost top-down view, low camera rotation angle), distinguished by the absence of
any sky elements; specifically, these images entirely lack any portion of the sky or clouding

within their composition. It comprises 182 images of the dataset.
(b) With sky (bird’s-eye view, high camera rotation angle), where elements of the sky, such

as clouds or open sky expanses, are visibly present within the image composition. It
encompasses the remaining 103 images within the dataset.

This categorization has been undertaken to emphasize that the environment, in which the flood is
situated, can play a role in the final outcome and to encourage further studies to distinguish in their
methodologies urban and rural floods, due to their different characteristics.

As we can observe, in the evaluation metrics for these categories, shown in Table 2, our method
performs well in all categories. Slightly better results are achieved when the scenery depicts a rural
landscape, with F; = 80.3% being 1.8% higher than in the urban/peri-urban category. The vast
greenery in rural areas helps discarding a great amount of pixels from the PFAs utilizing the RGBVI
mask (as described in Section 3.2). In addition, flooded areas in such environments are usually
large in size, which strengthens the dominant color estimation procedure (see Section 3.4), because
plentiful pixels are engaged (see category 1.(a) in Table 2). In urbanized areas, the presence of rooftops,
buildings and cars, which can have a similar color to flood, leads to mildly decreased performance
with F; = 78.5%, given that parts of these objects are misclassified as flood by the algorithm (see
category 1.(b) Table 2).

Table 2. Results for the categories of images existing in the Flood Area dataset. The images were
divided according to the environmental zone into 1.(a) rural, and 1.(b) urban/peri-urban, and according
to the camera rotation angle into 2.(a) no sky (low angle), and 2.(b) with sky (high angle).

Category ACC | PR REC R I3
1.(a) Rural 83.6% | 82.3% | 78.4% | 80.3% | 78.2%
1.(b) Urban/peri-urban | 85.4% | 78.4% | 78.7% | 78.5% | 76.9%
2.(a) No sky 85.2% | 81.6% | 78.0% | 79.8% | 77.9%
2.(b) With sky 84.4% | 76.1% | 79.5% | 77.7% | 76.1%

| All | 849% [ 79.5% | 78.6% | 79.1% [ 77.3% |

Furthermore, as we have stated previously, poor segmentation results have been generated when
the image featured the sky or parts of the sky. Since the sky’s LAB color component values can fall
above A¢ (as in Eq. 2), and according to our observation that flood exhibits higher values in the LAB
colorspace, parts of the sky are not excluded from the PFAs in this case. Their pixels are involved in the
dominant color estimation, and they are commonly segmented as flood. In Table 2, rows 2.(a) and 2.(b)
present the evaluation metrics for the categories no sky and with sky, with F1-Scores being 79.8% and
77.7% respectively, in which clearly the no sky group prevails by 2.1%, as expected. This categorization
culminates to the deduction that when the rotation angle of the UAV’s camera is minded, so that
the acquired image does not depict any part of the sky, but is facing only terrain (a fact that can be
controlled by the human operator or the navigation software), the segmentation result is improved.

4.5. Ablation Study

The ablation study outlines the significance of each of the proposed method’s modules and
is reported in Table 3. To do so, we have reported experiments of the proposed method variants,
conducted with the Flood Area dataset. The proposed method (UFS-HT-REM) includes all modules
and yields the best performance in the following metrics ACC = 84.9%, PR = 79.5%, F; = 79.1% and
F =77.3%.
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Table 3. Ablation study highlighting the contribution of the method’s modules. All experiments were
conducted with the Flood Area dataset.

Method ACC PR REC F F

UFS-HT-REM 84.9% | 79.5% | 78.6% | 79.1% | 77.3%
UFS-HT-REM (weights by Eq. 9) | 84.7% | 79.2% | 78.5% | 78.8% | 77.0%
UFS-HT-REM (weights by Eq. 8) | 84.2% | 78.6% | 78.7% | 78.6% | 76.7%
UFS-HT 83.4% | 76.3% | 794% | 77.8% | 75.9%
UFS-REM 82.5% | 75.7% | 791% | 77.3% | 74.9%
UFS-HT-REM - L 79.9% | 68.9% | 82.0% | 74.8% | 72.8%
UFS 78.6% | 68.9% | 81.1% | 74.5% | 71.6%
Mgy Mask 76.0% | 64.9% | 82.7% | 72.7% | 69.8%
UFS-HT-REM - B 74.6% | 66.3% | 76.1% | 70.8% | 67.8%
UFS-HT-REM - A 68.6% | 56.7% | 88.0% | 68.9% | 66.0%
UFS(Otsu)-HT-REM 72.6% | 66.9% | 36.8% | 47.5% | 43.5%

First, we examine the simplification of the probability map (PM) estimation defined in Equation 7,
including equally all the LAB color components (UFS-HT-REM weights by Eq. 8) and the AB color
components (UFS-HT-REM weights by Eq. 9) for the decisive probability map computation. In both
cases, the performance of the method is slightly degraded, since the reduction of F; is less than 0.5%.
This shows that the proposed Equation 7 is robust and can be replaced by a simpler formula without
significant changes. Additionally, it shows that the initialization process is solid, leaving in the PFAs
a majority of pixels that are truly flood. From the LAB color components, luminance L is of greater
importance, as proven by experiments exploiting only one color component:

e L (UFS-HT-REM-L with F; = 74.8%)
e A (UFS-HT-REM-A with F; = 68.9%)
e B (UFS-HT-REM-B with F; = 70.8%)

The core methodology, as described in Sections 3.2 to 3.4, performs quite adequately (UFS),
resulting 4.6% lower F; compared to UFS-HT-REM. Additionally, by adding either the small area
removal segment (UFS-REM) or the hysteresis thresholding technique (UFS-HT) separatadequately
performance is improved about 3% compared to the UFS. It holds that the hysteresis thresholding
exert slighly better influence, resulting 0.5% higher F; compared to UFS-REM. Overall, each of the
proposed components were carefully selected to enhance the final segmentation result.

Finally, the proposed initialization of pixels as potential flood or non-flood using A¢ thresholding
(see Equation 2) is replaced by the Otsu thresholding [44] (UFS(Otsu)-HT-REM), resulting 31.6% lower
F; compared to the UFS-HT-REM. This proves that exploiting the standard deviation of the color data
relative to its central tendency of the LAB components is a crucial step of the proposed method. This is
also proved by the evaluation of the Mp;,,;; Mask (see Eq. 3) without any other step of the proposed
method, which yields F; = 72.7% which is only 6.4% lower compared to the corresponding F; of
UFS-HT-REM.

To show the stability of the proposed system under different values of system parameters, we
performed the following sensitivity test on the two parameters of the hysteresis thresholding technique.
Figure 12 depicts the average values of ACC, REC, PR and F; computed on the Flood Area dataset for
different values of (a) Ty with Ty = 0.75, and (b) Ty with T; = 0.01. In any scenario, the method’s
performance measured with the values of F; and ACC is almost stable, while, as expected, only the
values of REC and PR decrease slightly and increase, respectively.
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Figure 12. The average values of ACC, REC, PR, F; and F computed on the Flood Area dataset for
different values of (a) Ty (with Ty = 0.75) and (b) Ty (with T;, = 0.01).

4.6. Comparison with DL Approaches

Compared to selected DL approaches, our results are reported in Table 4. We included the best
performing FASegNet [20] (F; = 90.9%), the intermediate scoring UNet [45] (F; = 90%) and the worst
performing so far HRNet [46] (F; = 88.3%). Although we do not outperform any DL method, UFS-HT-
REM scores in close proximity. However, our methodology does not require training. In practical terms,
it does not need a significant amount of data with an accurate labeling of the ground truth, which is
a subjective and time-consuming process. Also, our proposed approach is parameter-free, whereas
the DL methods demand at least 640 thousand to 31 million trainable parameters to be estimated. We
subside only 3.7%(9.2%) of the HRNet that performs the worst and 6.6%(11.8%) of the FASegNet in
accuracy (F1-Score), respectively. It is a good compromise taking into account the simplicity of our
methodology.

Table 4. Comparison of our proposed approach with selected DL approaches on the Flood Area dataset.
The metrics used are Accuracy (ACC), Precision (PR), Recall (REC), and F1-Score (F;) (calculated as in
Eq. 13) expressed in percentage, and Trainable Parameters (Tr. Par.) expressed in millions (M).

Method ACC PR REC F Tr. Par.
FASegNet 91.5% 91.4% 90.3% 90.9% 0.64 M

UNet 90.7% | 90.0% | 90.1% | 90.0% | 31.05M
HRNet 88.6% | 84.8% | 92.0% | 88.3% | 28.60 M
Ours 84.9% | 79.5% | 78.6% | 79.1% oM

4.7. Flood Semantic Segmentation Dataset: Experimental Results and Discussion

To demonstrate the generalization of the proposed algorithm, we used the second dataset, as
described in Section 2. It comprises more than twice the number of images compared to the initial
one. Without any image pre-processing and modification of the code or parameters, the algorithm
performed even higher, reaching 88.5% and 81.7% in accuracy and F1-Score respectively. Consequently,
we encountered a 3.6% (2.6%) increase in ACC (F;). This demonstrates that the observations on
which our method is based are universally applicable and resilient. Moreover, it proves that when
controllable variables like the camera’s rotation angle are considered, an observation we found to be
consistent within this dataset due to the reduced occurrence of sky portions in images, segmentation
outcomes exhibit enhancement. Quantitative metrics in comparison with the first dataset are presented
in Table 5. Also, we provide the weighted average in the last row to give an overview of the overall
performance of the algorithm in segmenting the flood for 953 images, which depict various scenes and
were acquired with different camera settings, e.g. camera rotation angle, focal length, etc.

Representative results for the Flood Semantic Segmentation dataset are shown in Figure 13. Flood
segmentation is shown in blue overlaid on the original image with the flood’s borders emphasized in
dark blue. The same technique is used to present the ground truth as well. The best flood segmentation
scored 99.6% in Fj. As we can observe, the excellent segmentations are able to capture the flood in
its full or almost full extend (Figure 13 (a) and (b)). Furthermore, high performing results segment
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flood details in challenging environments characterized by interference of numerous natural or man-
made obstacles (Figure 13 (c) and (d)). Of course, the same issues leading to poor performance exist,
as described in Section 4.3. Figure 13 (e) presents such a low-performance segmentation, where
the luminosity of the sky prevents its exclusion from the PFAs. This results in the sky’s pixels being
assigned significant weights consequently influencing subsequent probabilities, and ultimately causing
them to be missclassified as flood during the hysteresis thresholding isocontour evolution procedure.

Image Ground Truth UFS-HT-REM

(e) F; =10.8%, ACC = 54.6%, PR = 7.2%, REC = 21.5%

Figure 13. Representative results of the proposed methodology (UFS-HT-REM) from the Flood Semantic
Segmentation dataset. Original images, ground truth, and the final segmentation of the proposed
method are shown from left to right.
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Table 5. Quantitative findings for the Flood Semantic Segmentation dataset (FSSD) in comparison with
the Flood Area dataset (FAD) and for the union of the two datasets (calculated as the weighted average
due to the varying number of images). The number of images for each dataset (Images), Accuracy
(ACC), Precision (PR), Recall (REC), and F1-Score (F;) (calculated as in Eq. 13) expressed in percentage
are reported.

Dataset Images | ACC PR REC F F

FSSD 663 88.5% | 79.8% | 83.7% | 81.7% | 79.4%
FAD 290 84.9% | 79.5% | 78.6% | 79.1% | 77.3%
FSSD U FAD 953 87.4% | 79.7% | 82.2% | 80.9% | 78.8%

5. Conclusions and Future Work

Overall, we presented a fully unsupervised approach for flood detection in color images acquired
by flying vehicles such as UAVs and helicopters. The method progressively eliminates image regions
identified as non-flood using binary masks generated from color and edge data. Our method operates
in a fully unsupervised manner, with no need for training and ground truth labeling. We iteratively
apply the same algorithmic steps to each color component. Subsequently, a binary map is generated
for each component, discarding regions identified as non-flood and producing a final mask of potential
flood areas (PFAs), refined through basic morphological operations. By weighting the pixels within
the PFAs, we calculate an estimation of the dominant color of the flood, and a hysteresis thresholding
technique is employed to achieve the final segmentation through probabilistic region growing of an
isocontour. To the best of our knowledge, it is the first unsupervised approach to tackle this problem.

In this work, we showed that the following simple features suffice to accurately solve the problem
of unsupervised flood detection. First of all, the flood’s color is similar wherever it appears within
the image, and this color differs from the background. Almost always, the flood’s color is not green,
assuming tree-like vegetation to be covered with water is extreme. Finally, in the LAB colorspace, the
flooded area exhibits a higher value in at least one of the color components than the background. Color
quality and camera rotation angle of the captured image contribute to the solidity of our observations,
and thus a good amount of control over the flying vehicle while capturing the images will support the
aforementioned inferences.

Experimental results confirmed that our proposed approach is robust, performs well in metrics,
and is comparable to recent DL approaches, although not outperforming them. Furthermore, we
introduced a categorization of the dataset according to the depicted scenery and camera rotation
angle, into rural and urban/per-urban, and no sky and with sky, respectively. We showed that our
approach performs well in all categories, it is slightly excels in segmenting floods in rural environments
and is better suited for acquired images that do not contain sky, which is a controllable factor when
maneuvering the UAV. The inference time is about half a second and it does not require GPU core
processing capabilities. The method is suitable for on-board execution and the flood segmentation
provided can be used to better guide relief efforts preventing loss of lives and mitigating the flood’s
impact on the infrastructure.

In future research, we plan on to extend this work, detecting flooded buildings and roads. This
will lead to a refinement of already existing flood segmentations, and a correction of erroneous
segmentations, which the method now produces when the observations it relies on do not apply in the
image. Combined with suitable methodologies which identify buildings and roads, such as [47], and
cross-correlating the results, we will be able to (a) avoid missclassifications of rooftops, building, and
road pixels which have a color extremely similar to the flood, thus anticipating to attain improved
outcomes and elevated scores in accurately segmenting the flood event, and (b) identify damaged
buildings, when most of their circumference is adjacent to the flood, and flooded roads, when there
exist discontinuities in the structure. These will help to even better assess the situation in the flood hit
area and more accurately guide disaster assistance, evacuation, and recovery efforts. Furthermore, we
plan to exploit the gained knowledge, in order to construct a specialized DL architectures, directing the
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network’s attention towards the flood and even incorporating our classical computer vision approach
into hybrid deep learning frameworks, tackling the problem.
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Abbreviations

The following abbreviations are used in this manuscript:

ADNet Attentive Decoder Network

Al Artificial Intelligence

APLS Average Path Length Similarity

BCNN Bayesian Convolutional Neural Network
BiT Bitemporal image Transformer

CNN Convolutional Neural Network

Ccv Computer Vision

DCFAM  Densely Connected Feature Aggregation Module
DELTA Deep Earth Learning, Tools, and Analysis
DL Deep Learning

DNN Deep Neural Network

DSM Digital Surface Model

EDN Encoder Decoder Network

EDR Encoder Decoder Residual

EHAAC  Encoder-Decoder High-Accuracy Activation Cropping
ENet Efficient Neural Network

HR High Resolution

ISPRS International Society for Photogrammetry and Remote Sensing
LSTM Long Short-Term Memory

ML Machine Learning

MRF Markov Random Field

NDWI Normalized Difference Water Index

PFA Potential Flood Area

PSPNet  Pyramid Scene Parsing Network

RGBVI  RGB Vegetation Index

ResNet Residual Network

SAM Segment Anything Model

SAR Synthetic Aperture Radar

UAV Unmanned Aerial Vehicle

VH Vertical-Horizontal

\'AY% Vertical-Vertical

WSSS Weakly Supervised Semantic Segmentation
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