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Article

Constructing Physics from Measurements
Alexandre Harvey-Tremblay

Independent Scientist; aht@protonmail.ch

Abstract: We present a reformulation of fundamental physics from an enumeration of independent
axioms into the solution of a single optimization problem. Any experiment begins with an initial state
preparation, involves some physical operation, and ends with a final measurement. Working from this
structure, we maximize the entropy of a final measurement relative to its initial preparation subject
to a measurement constraint. Solving this optimization problem for the natural constraint –the most
permissive constraint compatible with said problem– identifies an optimal physical theory. Rather than
existing as a collection of postulates, quantum mechanics, general relativity, and Yang-Mills emerge
within a unified theory. Notably, mathematical consistency further restricts valid solutions to 3+1
dimensions only. This reformulation reveals that the apparent complexity of modern physics, with its
various forces, symmetries, and dimensional constraints, emerges as the solution to an optimization
problem constructed over all experiments realizable within the constraint of nature.

Keywords: foundations of physics

1. Introduction
Statistical mechanics (SM), in the formulation developed by E.T. Jaynes [1,2], is founded on an

entropy optimization principle. Specifically, the Boltzmann entropy is maximized under the constraint
of a fixed average energy E:

E = ∑
i

ρiEi (1)

The Lagrange multiplier equation defining the optimization problem is:

L = −kB ∑
i

ρi ln ρi + λ

(
1 − ∑

i
ρi

)
+ β

(
E − ∑

i
ρiEi

)
, (2)

where λ and β are Lagrange multipliers enforcing the normalization and average energy constraints.
Solving this optimization problem yields the Gibbs measure:

ρi =
1
Z

exp(−βEi), (3)

where Z = ∑i exp(−βEi) is the partition function.
For comparison, quantum mechanics (QM) is not formulated as the solution to an optimization

problem, but rather consists of a collection of axioms[3,4]:

QM Axiom 1 of 5 State Space: Every physical system is associated with a complex Hilbert space,
and its state is represented by a ray (an equivalence class of vectors differing by a
non-zero scalar multiple) in this space.

QM Axiom 2 of 5 Observables: Physical observables correspond to Hermitian (self-adjoint) opera-
tors acting on the Hilbert space.
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QM Axiom 3 of 5 Dynamics: The time evolution of a quantum system is governed by the
Schrödinger equation, where the Hamiltonian operator represents the system’s
total energy.

QM Axiom 4 of 5 Measurement: Measuring an observable projects the system into an eigenstate of
the corresponding operator, yielding one of its eigenvalues as the measurement
result.

QM Axiom 5 of 5 Probability Interpretation: The probability of obtaining a specific measurement
outcome is given by the squared magnitude of the projection of the state vector
onto the relevant eigenstate (Born rule).

Physical theories have traditionally been constructed in two distinct ways. Some, like QM, are
defined through a set of mathematical axioms that are first postulated and then verified against
experiments. Others, like SM, emerge as solutions to optimization problems with experimentally-
verified constraints.

We propose to generalize the optimization methodology of E.T. Jaynes to encompass all of physics,
aiming to derive a unified theory from a single optimization problem.

To that end, we introduce the following constraint:

Axiom 1 (Nature).

M = ∑
i

ρiMi

where Mi are n × n matrices, and M is their average.

This constraint, as it replaces the scalar Ei with the matrix Mi, extends E.T. Jaynes’ optimization
method to encompass non-commutative observables and symmetry group generators required for
fundamental physics.

We then construct an optimization problem:

Definition 1 (Physics). Physics is the solution to:

L︸︷︷︸
an

optimization
problem

= −∑
i

ρi ln
ρi
pi︸ ︷︷ ︸

on the entropy
of a measurement

relative to its preparation
over all

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
predictive theories

+ τ tr

(
M − ∑

i
ρiMi

)
︸ ︷︷ ︸

of nature

where λ and τ are Lagrange multipliers enforcing the normalization and natural constraints, respectively.

This single definition constitutes our complete proposal for reformulating fundamental physics—no
additional principles will be introduced. By replacing the Boltzmann entropy with the relative Shan-
non entropy, the optimization problem extends beyond thermodynamic variables to encompass any
type of experiment. This generalization occurs because relative entropy captures the essence of any
experiment: the relationship between a final measurement state and its initial preparation state.

Two key constraints shape our framework. The normalization constraint ensures we are working
with a proper predictive theory, while the natural constraint spawns the domain of applicability of the
theory. Together, they capture the complete evolution—from initial to final states—that defines any
experiment. The crucial insight is that because our formulation maintains complete generality in the
structure of experiments while optimizing over all possible predictive theories, the resulting solution
holds true, by construction, for all realizable experiments within its domain.
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The solution provides a complete structure that automatically satisfy the requirements of a
physical theory valid for the constraint: mathematical rigour, internal consistency, optimal predictive
power, and automatic validity with all realizable experiments in its domain. This approach reduces
our reliance on postulating axioms through trial and error, and simplifies the foundations of physics.
Specifically, when we employ the natural constraint (Axiom 1) –the most permissive constraint for
this problem (see Discussion for proof)–, the solution spawns its largest domain, pointing towards
a unified physics where fundamental theories emerge naturally—e.g. SM when M ∼= R, QM when
M ∼= u(1), and general relativity (on spacetime) + Yang-Mills (in its internal spaces) when M ∼=
R⊕ spinc(3, 1). These three solutions are the only possible ones, as those entailed by other algebras
encounter obstructions such as violating the axioms of probability theory.

Theorem 1. The general solution of the optimization problem is:

ρi =
pi det exp(−τMi)

∑j pj det exp
(
−τMj

)
Proof. We solve the maximization problem by setting the derivative of the Lagrangian with respect to
ρi to zero:

∂L
∂ρi

= − ln
ρi
pi

− 1 − λ − τ tr Mi = 0. (4)

=⇒ ln
ρi
pi

= −1 − λ − τ tr Mi. (5)

=⇒ ρi = pi exp(−1 − λ) exp(−τ tr Mi). (6)

Normalizing the probabilities using ∑i ρi = 1, we find:

1 = ∑
i

ρi = exp(−1 − λ)∑
i

pi exp(−τ tr Mi), (7)

=⇒ exp(1 + λ) = ∑
j

pj exp
(
−τ tr Mj

)
. (8)

Substituting back, we obtain:

ρi =
pi exp(−τ tr Mi)

∑j pj exp
(
−τ tr Mj

) . (9)

Finally, using the identity det exp(M) = exp tr M for square matrices M, we get:

ρi =
1
Z

pi det exp(−τMi). (10)

where Z = ∑j pj det exp
(
−τMj

)
.

As we will see in the results section, this solution encapsulates three distinct special cases:

1. Statistical Mechanics:
To recover SM from Equation 10, we consider the case where the matrices Mi are 1 × 1, i.e., real
scalars. Specifically, we set:

M = ∑
i

ρiMi, with Mi = Ei, (11)
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and take pi to be a uniform distribution. Then, Equation 10 reduces to the Gibbs distribution:

ρi =
1
Z

exp(−τEi), (12)

where τ corresponds to the β of SM. This demonstrates that our solution generalizes SM, as it
recovers it when Mi are scalars.

2. Quantum Mechanics:
By choosing Mi to generate the U(1) group, we derive the axioms of QM from entropy maximiza-
tion. Specifically, we set:

M = ∑
i

ρiMi, with Mi =

[
0 −Ei

Ei 0

]
, (13)

where Ei are energy levels. In the results section, we will detail how this choice leads to the the
Born rule in lieu of the Gibbs measure, and that the partition function is unitary invariant—the
solution is shown to uniquely satisfy all five axioms of QM.

3. Fundamental Physics:
Extending our approach, we choose Mi to be 4 × 4 matrices representing the R⊕ spinc(3, 1)
algebra. Specifically, we consider multivectors of the form u = a + f + b, where a is a scalar,
where f is a bivector and b is a pseudoscalar of the 3+1D geometric algebra GA(3, 1). This
constitute its even sub-algebra. The matrix representation of Mi is:

Mi =


a + f02 b − f13 − f01 + f12 f03 + f23

−b + f13 a + f02 f03 + f23 f01 − f12

− f01 − f12 f03 − f23 a − f02 −b − f13

f03 − f23 f01 + f12 b + f13 a − f02

, (14)

where f01, f02, f03, f12, f13, f23, and b correspond to the generators of the Spinc(3, 1) group, which
includes both Lorentz boosts/rotations and the four-volume orientation, and where a is the
generator of the group R+. Solving the optimization problem with this choice leads to a relativistic
quantum probability measure extending the Born rule from C to R+ × Spinc(3, 1). The solution
is shown to uniquely satisfy both general relativity (on spacetime) and Yang-Mills (within its
internal spaces).

4. Dimensional Obstructions:
Definition 1 yields valid probability measures only in specific cases of Axiom 1. Beyond the
instances of statistical mechanics and quantum mechanics, Axiom 1 produces a consistent solution
only in 3+1 dimensions. In other dimensional configurations, various obstructions arises violating
the axioms of probability theory. The following table summarizes the geometric cases and their
obstructions:
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Dimensions Optimal Predictive Theory of Nature

GA(0) Statistical Mechanics (15)

GA(0, 1) Quantum Mechanics (16)

GA(1, 0) Obstructed (Negative probabilities) (17)

GA(2, 0) Quantum Mechanics (18)

GA(1, 1) Obstructed (Negative probabilities) (19)

GA(0, 2) Obstructed (Non-real probabilities) (20)

GA(3, 0) Obstructed (Non-real probabilities) (21)

GA(2, 1) Obstructed (Non-real probabilities) (22)

GA(1, 2) Obstructed (Non-real probabilities) (23)

GA(0, 3) Obstructed (Non-real probabilities) (24)

GA(4, 0) Obstructed (Non-real probabilities) (25)

GA(3, 1) Gravity + Yang-Mills (26)

GA(2, 2) Obstructed (Negative probabilities) (27)

GA(1, 3) Obstructed (Non-real probabilities) (28)

GA(0, 4) Obstructed (Non-real probabilities) (29)

GA(5, 0) Obstructed (Non-real probabilities) (30)

...
...

GA(6, 0) Suspected Obstructed (No observables) (31)

...
...

(32)

where GA(p, q) means the geometric algebra of p + q dimensions, where p is the number of
positive signature dimensions and q of negative signature dimensions. QM shows up twice
because both GA(0, 1) and the even-subalgebra of GA(2, 0) are isomorphic to C.
We will first investigate the unobstructed cases in Section 2.1, 2.2 and 2.3 and then demonstrate
the obstructions in Section 2.4. These obstructions are desirable because they automatically limit
the theory to 3+1D, thus providing a built-in mechanism for the observed dimensionality of our
universe.

2. Results
2.1. u(1)-Constraint: Quantum Mechanics

In SM, the central observation is that energy measurements of a thermally equilibrated system
tend to cluster around a fixed average value (Equation 1). In contrast, QM is characterized by the
presence of interference effects in measurement outcomes. To capture these features, we introduce the
following special case of Axiom 1:

Definition 2 (u(1) constraint). We reduce the generality of Axiom 1 to the generator of the U(1) group.
Specifically, we replace

M = ∑
i

ρiMi with Mi =

[
0 −Ei

Ei 0

]
(33)
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where Ei are scalar values (e.g., energy levels), ρi are the probabilities of outcomes, and the matrices Mi generate
the U(1) group.

The general solution of the optimization problem (Theorem 1) reduces as follows

ρi =
1

∑i pi det exp

(
−τ

[
0 −Ei

Ei 0

]) det exp

(
−τ

[
0 −Ei

Ei 0

])
pi (34)

Though initially unfamiliar, this form effectively establishes a comprehensive formulation of QM,
as we will demonstrate.

To align our results with conventional QM notation, we translate the matrices to complex numbers.
Specifically, we consider that: [

a −b
b a

]
↔ a + ib. (35)

Then, we note the following equivalence with the complex norm:

det exp
[

a −b
b a

]
= r2 det

[
cos(b) − sin(b)
sin(b) cos(b)

]
, where r = exp a (36)

= r2(cos2(b) + sin2(b)) (37)

= ∥r(cos(b) + i sin(b))∥ (38)

= ∥r exp(ib)∥ (39)

Finally, substituting τ = t/h̄ analogously to β = 1/(kBT), and applying the complex-norm
representation to both the numerator and to the denominator, consolidates the Born rule, normalization,
and initial prepration into :

ρi =
1

∑i pi∥exp(−itEi/h̄)∥︸ ︷︷ ︸
Unitarily Invariant Ensemble

∥exp(−itEi/h̄)∥︸ ︷︷ ︸
Born Rule

pi︸︷︷︸
Initial Preparation

(40)

This equation describes what occurs at the instant of measurement. Essentially, its states that
unitary dynamics are erased under measurement, yielding a classical probability measure.

Since the equation still contains the terms that are being erased by the measurement (i.e. the
unitary dynamics), we can recover the definition of the wavefunction merely by inspection. Specifically,
we decompose the complex norm into a complex number and its conjugate. The erased structure is
then identified as a vector within a complex n-dimensional Hilbert space. The partition function acts
as the inner product. This relationship is articulated as follows:

∑
i

pi∥exp(−itEi/h̄)∥ = Z = ⟨ψ|ψ⟩ (41)

where 
ψ1(t)

...
ψn(t)

 =


exp(−itE1/h̄)

. . .
exp(−itEn/h̄)




ψ1(0)
...

ψn(0)

 (42)
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We clarify that pi represents the probability associated with the initial preparation of the wave-
function, where pi = ⟨ψi(0)|ψi(0)⟩.

We also note that Z is invariant under unitary transformations.
Let us now investigate how the axioms of QM are recovered from this result:

• The entropy maximization procedure inherently normalizes the vectors |ψ⟩ with 1/Z =

1/
√
⟨ψ|ψ⟩. This normalization links |ψ⟩ to a unit vector in Hilbert space. Furthermore, as

physical states associate to the probability measure, and the probability is defined up to a phase,
we conclude that physical states map to Rays within Hilbert space. This demonstrates QM Axiom
1 of 5.

• In Z, an observable must satisfy:

O = ∑
i

piOi∥exp(−itEi/h̄)∥ (43)

Since Z = ⟨ψ|ψ⟩, then any self-adjoint operator satisfying the condition ⟨Oψ|ϕ⟩ = ⟨ψ|Oϕ⟩ will
equate the above equation, simply because ⟨O⟩ = ⟨ψ|O|ψ⟩. This demonstrates QM Axiom 2 of 5.

• Upon transforming Equation 42 out of its eigenbasis through unitary operations, we find that the
energy, Ei, typically transforms in the manner of a Hamiltonian operator:

|ψ(t)⟩ = exp(−itH/h̄)|ψ(0)⟩ (44)

The system’s dynamics emerge from differentiating the solution with respect to the Lagrange
multiplier. This is manifested as:

∂

∂t
|ψ(t)⟩ = ∂

∂t
(exp(−itH/h̄)|ψ(0)⟩) (45)

= −iH/h̄ exp(−itH/h̄)|ψ(0)⟩ (46)

= −iH/h̄|ψ(t)⟩ (47)

=⇒ H|ψ(t)⟩ = ih̄
∂

∂t
|ψ(t)⟩ (48)

which is the Schrödinger equation. This demonstrates QM Axiom 3 of 5.
• From Equation 42 it follows that the possible microstates Ei of the system correspond to specific

eigenvalues of H. An observation can thus be conceptualized as sampling from ρ, with the
measured state being the occupied microstate i. Consequently, when a measurement occurs, the
system invariably emerges in one of these microstates, which directly corresponds to an eigenstate
of H. Measured in the eigenbasis, the probability measure is:

ρi(t) =
1

⟨ψ|ψ⟩ (ψi(t))†ψi(t). (49)

In scenarios where the probability measure ρi(τ) is expressed in a basis other than its eigenbasis,
the probability P(λi) of obtaining the eigenvalue λi is given as a projection on a eigenstate:

P(λi) = |⟨λi|ψ⟩|2 (50)

Here, |⟨λi|ψ⟩|2 signifies the squared magnitude of the amplitude of the state |ψ⟩ when projected
onto the eigenstate |λi⟩. As this argument hold for any observable, this demonstrates QM Axiom
4 of 5.

• Finally, since the probability measure (Equation 40) replicates the Born rule, QM Axiom 5 of 5 is
also demonstrated.
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Revisiting QM with this perspective offers a coherent and unified narrative. Specifically, the U(1)
generating constraint is sufficient to entail the foundations of QM through the principle of entropy
maximization—in this formulation, QM Axioms 1, 2, 3, 4, and 5 are not fundamental, but the solution
to an optimization problem.

2.2. R⊕ spin(2)-Constraint: Euclidean QM in 2D

In this section, we investigate a model, isomorphic to QM, that lives in 2D—it provides a valuable
starting point before addressing the more complex 3+1D case. Before we solve the optimization
problem, we will introduce tools to express a bilinear form over M using the multivectors of GA(2, 0)
in the following section.

2.2.1. Bilinear Form

In general a multivector u = a + x + b of GA(2, 0), where a is a scalar, x is a vector and b a
pseudo-scalar, is represented as follows:[

a + x y − b
y + b a − x

]
∼= a + xσx + yσy + bσx ∧ σy (51)

The basis elements are defined as:

σx =

[
1 0
0 −1

]
, σy =

[
0 1
1 0

]
, σx ∧ σy =

[
0 −1
1 0

]
(52)

We now introduce the multivector conjugate, also known as the Clifford conjugate, which gener-
alizes the concept of complex conjugation to multivectors.

Definition 3 (Multivector Conjugate). Let u = a + x + b be a multi-vector of the geometric algebra over the
reals in two dimensions GA(2, 0). The multivector conjugate is defined as:

u‡ = a − x − b (53)

The determinant of the matrix representation of a multivector can be expressed as a multivector
self-product:

Theorem 2 (Multivector Determinant in 2D).

u‡u = det M (54)

Proof. Let u = a + xσx + yσy + bσx ∧ σy, and let M be its matrix representation
[ a+x y−b

y+b a−x

]
. Then:

1 : u‡u (55)

= (a + xσx + yσy + bσx ∧ σy)
‡(a + xσx + yσy + bσx ∧ σy) (56)

= (a − xσx − yσy − bσx ∧ σy)(a + xσx + yσy + bσx ∧ σy) (57)

= a2 − x2 − y2 + b2 (58)

2 : det M (59)

= det
[ a+x y−b

y+b a−x

]
(60)

= (a + x)(a − x)− (y − b)(y + b) (61)

= a2 − x2 − y2 + b2 (62)
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Building upon the concept of the multivector conjugate, we introduce the multivector conjugate
transpose, which serves as an extension of the Hermitian conjugate to the domain of multivectors.

Definition 4 (Multivector Conjugate Transpose). Let |V⟩⟩ ∈ (GA(2, 0))n:

|V⟩⟩ =


a1 + x1 + b1

...
an + xn + bn

 (63)

The multivector conjugate transpose of |V⟩⟩ is defined as first taking the transpose and then the element-wise
multivector conjugate:

⟨⟨V| =
[

a1 − x1 − b1 . . . an − xn − bn

]
(64)

Definition 5 (Bilinear Form). Let |V⟩⟩ and |W⟩⟩ be two vectors valued in GA(2, 0):

|V⟩⟩ =


a1 + x1 + b1

...
an + xn + bn

 |W⟩⟩ =


a′1 + x′1 + b′

1
...

a′n + x′n + b′
n

 (65)

We introduce the following bilinear form:

⟨⟨V|W⟩⟩ = (a1 − x1 − b1)(a′1 + x′1 + b′
1) + . . . (an − xn − bn)(a′n + x′n + b′

n) (66)

Theorem 3 (Inner Product). Restricted to the even sub-algebra of GA(2, 0), the bilinear form is an inner
product.

Proof.

⟨⟨V|W⟩⟩x→0 = (a1 − b1)(a1 + b1) + . . . (an − bn)(an + bn) (67)

This is isomorphic to the inner product of a complex Hilbert space, with the identification i ∼= σx ∧ σy—
we note that (σx ∧ σy)2 = −1.

2.2.2. 1+1D Obstruction

The reader may wonder why we are using 2D instead of the more physically relevant 1+1D for the
lower dimensional example. As stated in the introduction the 1+1D is obstructed. Specifically, the 1+1D
theory results in a split-complex quantum theory due to the bilinear form (a − be0 ∧ e1)(a + be0 ∧ e1),
which yields negative probabilities: a2 − b2 ∈ R for certain wavefunction states, in contrast to the
non-negative probabilities a2 + b2 ∈ R≥0 obtained in the Euclidean 2D case. As such, neither 1+1D
nor any of its sub-algebras satisfy all axioms of probability theory, hence it is obstructed.
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2.2.3. spin(2)-Constraint: ∼= Quantum Mechanics

Let us first investigate the spin(2)-constraint, then we will investigate the more general R⊕ spin(2)-
constraint. This constraint is recovered by posing a → 0 and x → 0 then M reduces as follows:

u = a + x + b|a→0,x→0 = b =⇒ M =

[
0 −b
b 0

]
(68)

The fundamental Lagrange Multiplier Equation:

L = −∑
i

ρi ln
ρi
pi

+ λ

(
1 − ∑

i
ρi

)
+

1
2

θtr

(
M − ∑

i
ρiMi

)
(69)

where

1. λ and θ are the Lagrange multipliers
2. Mi is the 2× 2 matrix representation of the multivectors of GA(2, 0), reduced by a → 0 and x → 0
3. the factor (1/2) is there to regularize the adjoint action on a vector e−(1/2)bi ve(1/2)bi = v′

It yields the following solution:

ρi =
1

∑i pi det exp
(
− 1

2 θ
[

0 −bi
bi 0

])
︸ ︷︷ ︸

Spin(2) Invariant Ensemble

det exp
(
−1

2
θ
[

0 −bi
bi 0

])
︸ ︷︷ ︸

Spin(2) Born Rule

pi︸︷︷︸
Initial Preparation

(70)

As with the u(1)-constraint case, this equation describes what the Born rule erases from the
solution space at the instant of measurement, to yield a classical probability measure. By inspection, we
find that the Spin(2) dynamics operating on a Spin(2)-valued wavefunction are the erased structures:

Definition 6 (Spin(2)-valued Wavefunction).


ψ1(θ)

...
ψn(θ)

 =


exp

(
1
2 θb1

)
. . .

exp
(

1
2 θbn

)



ψ1(0)
...

ψn(0)

 (71)

The dynamics are described by a variant of the Schrödinger equation, which is derived by taking
the derivative of the wavefunction with respect to the Lagrange multiplier, θ:

Definition 7 (Spin(2)-valued Schrödinger Equation).

d
dθ


ψ1(θ)

...
ψn(θ)

 =
1
2


b1

. . .
bn




ψ1(θ)
...

ψn(θ)

 (72)

where

1. θ represents a global one-parameter evolution parameter akin to time
2. bi is the generator of Spin(2) transformations.

Since Spin(2) ∼= U(1), then it should come to no surprise that the theory resulting from the
spin(2)-constraint is of the same mathematical form as QM, obtained from the u(1)-constraint.
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2.2.4. R⊕ spin(2)-Constraint: Euclidean QM in 2D

Now, we solve the optimization problem for the curvilinear case where 1
2 (eµeν + eνeµ) = gµν.

We will also move to the continuum ∑ →
∫

. The optimization problem is described as follows:

L = −
∫

L
ρ(θ, r) ln ρ(θ, r)

√
hθdr + λ

(
1 −

∫
L

ρ(θ, r)
√

hθdr
)
+

1
2

θ

(
M −

∫
L

ρ(θ, r)M(r)
√

hθdr
)

(73)

where

1. λ and θ are the Lagrange multipliers
2. where

√
hθ describes the metric of the 2D space foliated in slices of constant θ. This foliation

results in radial lines from the origin to infinity with angle θ. A less sophisticated way of saying
this is that we use polar coordinates in curved space (specifically, for flat space

√
hθ = r).

3. where L is the integration length for the slices.

Probability, normalized for a given initial slice, will be conserved as the system evolves along θ.
In GA(2, 0), the algebra R⊕ spin(2) corresponds to its even sub-algebra:

M ∼= a + be1e2 = a + bI = a + b (74)

In this representation, a generates dilation (corresponding to translations on the θ-foliated slices)
and b generates rotations (corresponding to circular motion on the θ-foliated slices). However, this
expression is only valid in flat spacetime. In curved spacetime, the action of this algebra generalizes to
the covariant derivative:

M ∼= σ1eµ

(
∂µ +

1
2

ω12
µ e1e2

)
= σ1eµDµ (75)

which includes ∂µ, the partial derivative, and 1
2 ω12

µ e1e2, the Spin(2) connection—acting on the wave-
function to transform its components in curved spacetime. The term eµ is required to contract the
indices of ∂µ and ωµ, producing an odd multivector—and the term σ1 converts it back to an even
multivector. The term σ1 also selects a preferred frame—the laboratory frame. Its role is similar to γ0

in the Dirac Lagrangian.
Solving the optimization problem for this value of M, yields:

ρ(θ, r) =
1∫

L p(r)det exp
(
− 1

2 θσ1eµDµ

)√
hθdr

det exp
(
−1

2
θσ1eµDµ

)
p(r) (76)

Again as before, this probability identifies the structure from the solution space that measurements
must erase to yield a classical probability measure. This structure is the wavefunction, given as follows:

ψ(θ, r) = exp
(

1
2

θσ1eµDµ

)
ψ(0, r) (77)

Then, taking the derivative with respect to θ yields the Schrödinger equation:

∂

∂θ
ψ(θ, r) =

1
2

σ1eµDµψ(θ, r) (78)

Revealing that the Hamiltonian, curiously expressed as multivector–not a scalar (more on that in
Theorem 4), is H = 1

2 σ1eµDµ.

Definition 8 (David Hestenes’ Formulation). In 3+1D, the David Hestenes’ formulation [5] of the wave-
function is ψ =

√
ρReib/2, where R = ef/2 is a Lorentz boost or rotation and where eib/2 is a phase. In 2D, as
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the algebra only admits a bivector, his formulation would reduce to ψ =
√

ρR, where ρ is a probability density
and R is a rotor—this is the form we have recovered.

The definition of the Dirac current applicable to our wavefunction follows the formulation of
David Hestenes:

Definition 9 (Dirac Current). The Dirac current for the 2D theory is defined as:

J ≡ ψ‡eµψ = ρ R‡eµR︸ ︷︷ ︸
SO(2)

= ρe′µ (79)

where e′µ is a SO(2)-rotated basis vector.

We recall that in QM, the Hamiltonian relate to the Lagrangian as follows:

L = tr
(

ψ‡Hψ

ψ‡ψ

)
(80)

With that, we can prove the following:

Theorem 4 (Dirac equation). The equation of motion of the Schrödinger equation (Equation 78), is the Dirac
equation.

Proof. Since H = 1
2 σ1eµDµ (Equation 78), we write:

δ

δψ‡

∫
M

tr

(
ψ‡σ1eµDµψ

2ψ‡ψ

)
dθdr = 0 (81)

We can already recognize the numerator term ψ‡σ1eµDµψ as the Dirac Lagrangian (in 2D). Nonetheless,
let us show explicitly:

=⇒ δ

δψ‡ tr

(
ψ‡σ1eµDµψ

2ψ‡ψ

)
= 0 (82)

=⇒
σ1eµDµψ2ψ‡ψ

2ψ‡ψ
δψ‡ +

ψ‡σ1eµDµψ2ψ

2ψ‡ψ
δψ‡ = 0 (83)

=⇒ σ1eµDµψδψ‡ + σ1eµDµψδψ‡ = 0 (84)

=⇒ eµDµψ = 0 (85)

which is the Dirac equation in 2D.

Concluding Remarks: One might be tempted to simply extend eµDµψ = 0 to 3+1D by adding
the basis vectors e0 and e3, and call it a day. This approach would produce the conventional Dirac
equation of quantum field theory in spacetime. However, when we solve the optimization problem
directly in 3+1D, we discover that the Dirac equation represents only a subsolution of a more compre-
hensive probabilistic structure. This complete structure naturally incorporates both gravity (acting
on spacetime) and Yang-Mills (acting on internal spaces). These results, presented in the following
section, indicate that the conventional Dirac equation in 3+1D, in a sense, represents an extension of 2D
quantum theory that captures only part of the full probabilistic structure available in 3+1D spacetime.
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2.3. R⊕ spinc(3, 1)-Constraint: Gravity + Yang-Mills

Extending the framework to relativistic quantum mechanics begins by considering a measurement
constraint having theR+×Spinc(3, 1) symmetry. This allows for transformations that include dilations,
boosts/rotations, and re-orientations (David Hestene describes "re-orientation" as representing the
changing orientation of the spin plane due to Zitterbewegung).

Another necessary change regards the interpretation of ψ from a probability amplitude, to that of
a field amplitude ϕ. As such, and consistently with usual quantum field theory (QFT) interpretation,
the notion of charge conservation will replace that of probability conservation. The notation will be
changed as follows:

ψ → ϕ (86)
√

ρRe−ib/2 → √
χRe−ib/2 (87)

M will represent the algebra of R⊕ spinc(3, 1):

M =


a + f02 b − f13 − f01 + f12 f03 + f23

−b + f13 a + f02 f03 + f23 f01 − f12

− f01 − f12 f03 − f23 a − f02 −b − f13

f03 − f23 f01 + f12 b + f13 a − f02

 (88)

Using GA(3, 1) notation, M can be equivalently represented as:

M ∼= a + f + b (89)

where a is a scalar, f is a bivector and b is a pseudo-scalar.
As we did for the R⊕ spin(2)-constraint, we will develop the framework for the continuum case

∑ →
∫

which can be obtained by solving the following Lagrange multiplier equation:

L = −
∫

V
χ(x, ζ) ln

χ(x, ζ)

p(x)

√
hζd3x +

1
2

ζtr
(

M −
∫

V
χ(x, ζ)M(x)

√
hζd3x

)
(90)

where

1. ζ is the twisted-rapidity acting on R⊕ spinc(3, 1) to form a one-parameter group via the expo-
nential map.

2. hζ is the determinant of the induced spatial metric on the hypersurface of constant twisted-
rapidity ζ. Is is a general curvature version of Rindler’s coordinates.

3. V represents the causally accessible region
4. the normalization constraint λ(1 −

∫
V χ(x, ζ)

√
hζd3x) has been dropped, consistently with a

conserved charge interpretation (which will come from the Lagrangian) replacing probability
conservation (which comes from a constraint in the optimization problem).

The integration is performed over a foliation of spacetime by surfaces of constant ζ, where twisted-
rapidity is measured relative to a specified reference frame. This ensures the solution exists only over
events that are causally accessible to observers characterized by a specific rapidity, respecting both
quantum principles and relativistic causal structure.

Using the same technique as Theorem 1, solving the optimization problem here yields:

χ(x, ζ) = det exp
(
−1

2
ζM(x)

)
︸ ︷︷ ︸

Spinc(3,1) Born rule

p(x)︸︷︷︸
Initial preparation

(91)

The partition function is absent because we dropped the normalization constraint.
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As before this equation describes the structure that must erased from the solution space at the
instant of measurement to yield a classical probability measure. In what follows, we will describe
this structure. But first, in the following section, we will express the determinant of M using the
multivectors of GA(3, 1).

2.3.1. The Multivector Determinant

As we did in the beginning of the 2D case, our goal here will be to express det M as a self-product
of elements of the vector space. To achieve that, we begin by defining a general multivector in the
geometric algebra GA(3, 1).

Definition 10 (Multivector). Let u be a multivector of GA(3, 1). Its general form is:

u = a (92)

+ tγ0 + xγ1 + yγ2 + zγ3 (93)

+ f01γ0γ1 + f02γ0γ2 + f03γ0γ3 + f12γ1γ2 + f13γ1γ3 + f23γ2γ3 (94)

+ pγ1γ2γ3 + qγ0γ2γ3 + vγ0γ1γ3 + wγ0γ1γ2 (95)

+ bγ0γ1γ2γ3 (96)

where γ0, γ1, γ2, γ3 are the basis vectors in the real Majorana representation.
A more compact notation for u is

u = a + x + f + v + b (97)

where a is a scalar, x a vector, f a bivector, v is pseudo-vector and b a pseudo-scalar.

A general multivector of GA(3, 1) can be represented by a 4 × 4 real matrix (and vice-versa) using
the real Majorana representation:

Definition 11 (Matrix Representation of u).

M =


a + f02 − q − z b − f13 + w − x − f01 + f12 − p + v f03 + f23 + t + y

−b + f13 + w − x a + f02 + q + z f03 + f23 − t − y f01 − f12 − p + v
− f01 − f12 + p + v f03 − f23 + t − y a − f02 + q − z −b − f13 − w − x

f03 − f23 − t + y f01 + f12 + p + v b + f13 − w − x a − f02 − q + z

 (98)

To manipulate and analyze multivectors in GA(3, 1), we introduce several important operations,
such as the multivector conjugate, the pseudo-blade conjugate, and the multivector determinant.

Definition 12 (Multivector Conjugate (in 4D)).

u‡ = a − x − f + v + b (99)

Definition 13 (Pseudo-Blade Conjugate (in 4D)). The pseudo-blade conjugate of u is

u† = a + x + f − v − b (100)

Lundholm[6] proposes a number the multivector norms, and shows that they are the unique
forms which carries the properties of the determinants such as N(uv) = N(u)N(v) to the domain of
multivectors:
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Definition 14. The self-products associated with low-dimensional geometric algebras are:

GA(0, 1) : φ∗φ (101)

GA(2, 0) : φ‡ φ (102)

GA(3, 0) : (φ‡ φ)∗φ‡ φ (103)

GA(3, 1) : (φ‡ φ)† φ‡ φ (104)

GA(4, 1) : ((φ‡ φ)† φ‡ φ)∗((φ‡ φ)† φ‡ φ) (105)

where φ∗ is a conjugate that reverses the sign of pseudo-scalar blade (i.e. the highest degree blade of the algebra).

We can now express the determinant of the matrix representation of a multivector via a self-
product. This choice is unique:

Theorem 5 (The Multivector Determinant).

(u‡u)†u‡u = det M (106)

Proof. Please find a computer assisted proof of this equality in Annex B.

As can be seen from this theorem, the relationship between determinants and multivector products
becomes more sophisticated in 3+1D. Unlike the 2D case where the determinant could be expressed
using a product of two terms, in GA(3, 1) the determinant requires two products involving four copies
of the multivector. This is reflected in the structure (u‡u)†u‡u, which cannot be reduced to a simpler
self-product of two terms.

Theorem 6 (Positive-Definiteness over R+ × Spinc(3, 1)). Let u = exp( 1
2 (a + f + b)) be a general

invertible element of the even-subalgebra of GA(3, 1). As such, u is in R+ × Spinc(3, 1). Then the multivector
determinant (u‡u)†u‡u is positive-definite.

Proof. Since scalars, bivectors and pseudoscalars commute, we have:

exp(
1
2
(a + f + b)) = ea/2ef/2eb/2 (107)

Using this convenient form, the proof is as follows:

(u‡u)†u‡u (108)

= ea/2e−f/2e−b/2ea/2ef/2e−b/2ea/2e−f/2eb/2ea/2ef/2eb/2 (109)

= e2a (110)

which is positive-definite—the exponential of a real number a is in R+.

2.3.2. The R+ × Spinc(3, 1)-Valued Field

By inspection, the solution to the optimisation problem for the R⊕ spinc(3, 1)-constraint, identifies
the following field:

Definition 15 (R+ × Spinc(3, 1)-valued Field).

ϕ(ζ) = exp
(

1
2

ζ(a + f + b)
)

ϕ(0) (111)
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Theorem 7 (David Hestenes’ Wavefunction). The R+ × Spinc(3, 1)-valued field is formulated using the
same geometric structure as David Hestenes’[5] formulation of the wavefunction within GA(3,1). Specifically,
David Hestenes’ wavefunction is a special case of our result, where the field magnitude sums to 1.

Proof.

e
1
2 (a(x)+f(x)+b(x))︸ ︷︷ ︸

ours

∝
√

ρ(x)R(x)e−ib(x)/2︸ ︷︷ ︸
Hestenes’

(112)

where e
1
2 a(x) ∝

√
ρ(x), e

1
2 f(x) = R(x) and e

1
2 b(x) = e−ib(x)/2. Here, ρ(x) is a probability density (versus

a field magnitude), R(x) is a rotor and e−ib(x)/2 describes the four-volume orientation. Adding the
normalisation constraint to the optimisation problem forces the field magnitude to sum to 1, which
recovers David Hestenes’ wavefunction as a special case.

This field leads to a variant of the Schrödinger equation obtained by taking its derivative with
respect to the Lagrange multiplier ζ:

Definition 16 (R+ × Spinc(3, 1)-valued Schrödinger equation).

d
dζ

ϕ(ζ) =
1
2
(a + f + b)ϕ(ζ) (113)

This Schrödinger equation is able to act on the wavefunction to dilate its probability measure, rotate or boost its
rotor and to jiggle its orientation in flat spacetime. In curved spacetime, it generalizes to:

d
dζ

ϕ(ζ, x) =
1
2

γ0eµ(∂µ +
1
2

ωab
µ γab + IVµ)ϕ(ζ, x) (114)

=
1
2

γ0eµDµϕ(ζ, x) (115)

which includes ∂µ, the partial derivative, 1
2 ωab

µ γab the Spinc(3, 1) connection and IVµ a U(1) connection acting
on the four-volume orientation—acting on the wavefunction to transform its components in curved spacetime.
Likewise to the 2D case, eµ is used to contract with Dµ, leaving no free indices. But since it produces an
odd-multivector in the process, the term γ0 is added converting the result back into an even-multivector. It also
picks a preferred frame—the laboratory frame. Its effect is similar to the presence of γ0 in the Dirac Lagrangian.

2.3.3. Geometry

Definition 17 (Dirac Current). Using a single-copy of the multivector determinant, the definition of the Dirac
current is the same as Hestenes’:

J ≡

one copy︷ ︸︸ ︷
ϕ‡e0ϕ (116)

= ρR‡e−ib/2e0e−ib/2R (117)

= ρR‡e0eib/2e−ib/2R (118)

= ρR‡e0R (119)

= ρe′0 (120)

where e′0 is a SO(3,1) rotated basis vector.
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Theorem 8 (Metric Tensor). Taking advantage of the multivector determinant formulation, we utilize both
copies to obtain the metric tensor as basis vector measurement:

gµν = tr

(
(

copy 1︷ ︸︸ ︷
ϕ‡eµϕ)†

copy 2︷ ︸︸ ︷
ϕ‡eνϕ

(ϕ‡ϕ)†ϕ‡ϕ︸ ︷︷ ︸
χ2

)
(121)

Proof.

tr

(
(ϕ‡eµϕ)†ϕ‡eνϕ

(ϕ‡ϕ)†ϕ‡ϕ

)
= tr

(
R‡e−ib/2eµe−ib/2RR‡e−ib/2eνe−ib/2R

)
(122)

= tr
(

R‡eµeib/2e−ib/2RR‡eνeib/2e−ib/2R
)

(123)

= tr
(

R‡eµRR‡eνR
)

(124)

= tr
(

e′µe′ν
)

(125)

= tr
(

e′µ · e′ν + e′ν ∧ e′µ
)

(126)

= tr
(

gµν + e′ν ∧ e′µ
)

(127)

= gµν (128)

2.3.4. Dynamics

In the R⊕ spin(2)-constraint section we utilized the correspondance between the Hamiltonian of
the Schrodinger equation and the Lagrangian (Equation 80):

L = tr
(

ψ‡Hψ

ψ‡ψ

)
(129)

This definition generalizes to the multivector determinant in 3+1D as follows:

L = tr
(
(ϕ‡ Hϕ)†ϕ‡Hϕ

(ϕ‡ϕ)†ϕ‡ϕ

)
(130)

which contains two copies.

Definition 18 (Kinetic Energy). Applying the Hamiltonian H = 1
2 γ0eµDµ to each bilinear copy, yields:

T = tr

(
(

copy 1︷ ︸︸ ︷
ϕ‡γ0eµDµϕ)†

copy 2︷ ︸︸ ︷
ϕ‡γ0eνDνϕ

4 (ϕ‡ϕ)†ϕ‡ϕ︸ ︷︷ ︸
χ2

)
(131)

Theorem 9 (Dirac Equation). Varying the action yields the Dirac equation as a sufficient (but not necessary)
equation of motion:

δ
∫
M

tr

(
(ϕ‡γ0eµDµϕ)†ϕ‡γ0eνDνϕ

4(ϕ‡ϕ)†ϕ‡ϕ

)√
−|g|d4x = 0 =⇒ eµDµϕ = 0︸ ︷︷ ︸

Dirac Equation

(132)
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Proof.

δ

δϕ‡† tr

(
(ϕ‡γ0eµDµϕ)†ϕ‡γ0eνDνϕ

4(ϕ‡ϕ)†ϕ‡ϕ

)
= 0 (133)

=⇒ tr
δ

δϕ‡†

(
(ϕ‡γ0eµDµϕ)†ϕ‡γ0eνDνϕ

4(ϕ‡ϕ)†ϕ‡ϕ

)
= 0 (134)

=⇒ tr

(
(γ0eµDµϕ)†ϕ‡γ0eνDνϕ(ϕ‡ϕ)†ϕ‡ϕ

((ϕ‡ϕ)†ϕ‡ϕ)2 δϕ‡† +
(ϕ‡γ0eµDµϕ)†ϕ‡γ0eνDνϕϕ†ϕ‡ϕ

((ϕ‡ϕ)†ϕ‡ϕ)2 δϕ‡†

)
= 0 (135)

=⇒ tr

(
(γ0eµDµϕ)†ϕ‡γ0eνDνϕ

(ϕ‡ϕ)†ϕ‡ϕ
δϕ‡† +

(γ0eµDµϕ)†ϕ‡γ0eνDνϕ

(ϕ‡ϕ)†ϕ‡ϕ
δϕ‡†

)
= 0 (136)

=⇒ (γ0eµDµϕ)†ϕ‡γ0eνDνϕ = 0 (137)

For the condition to be satisfied, it is sufficient but not necessary that eµDµϕ = 0, which is the
Dirac equation. A second condition ϕ‡γ0eνDνϕ = 0 also reduces to the Dirac equation because ϕ‡ is
invertible by definition.

The multivector determinant formulation thus contains the solutions that satisfy the Dirac equa-
tion. However, broader solutions where the trace condition tr

(
(ϕ‡γ0eµDµϕ)†ϕ‡γ0eνDνϕ

)
= 0 holds

without eµDµϕ = 0, also exist. We will now investigate these broader solutions.

2.3.5. Gravity

Theorem 10 (Quantum Action). Let us investigate a subspace of the field where R = 1 and e−ib/2 = 1, such
that ϕ =

√
χ. Due to its non-linearity, the kinetic energy produces a quantum potential in addition to the usual

kinetic energy term:

tr

((√
χeµDµχ

)†eνDν
√

χ

χ2

)
=

1
2χ2 (∂χ)2︸ ︷︷ ︸

Quantum Kinetics

−
( 1

4χ2 (∂χ)2 − ∂2χ

2χ︸ ︷︷ ︸
Quantum Potential

)
(138)

The quantum potential herein described is the relativistic version of the quantum potential found in the Bohm-
Broglie reformulation of QM, whereas the quantum kinetics can be understood as a scalar field kinetic term.
When integrated, they define a quantity that we refer to as the quantum action:

S =
∫ ( 1

4χ2 (∂χ)2 +
∂2χ

2χ

)√
−|g|d4x︸ ︷︷ ︸

Quantum Action

(139)
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Proof.

tr
((

χ−2√χeµDµχ
)†

eνDν
√

χ

)
(140)

= −tr
(

χ−2√χ(eµ∂µχ)eν∂ν
√

χ + χ−2√χχeµ∂µeν∂ν
√

χ
)

(141)

= −tr
(

χ−22−1(eµ∂µχ)(eν∂νχ)
)
+ tr

(
χ−1√χ4−1χ−3/2eµ∂µeν∂νχ

)
− tr

(
χ−1√χ2−1χ−1/2eµ∂µeν∂νχ

)
(142)

= −tr
(
(eµ∂µχ)(eν∂νχ)

2χ2 −
(eµ∂µχ)(eν∂νχ)

4χ2 +
eµ∂µeν∂νχ

2χ

)
(143)

=
1

2χ2 (∂χ)2 − 1
4χ2 (∂χ)2 +

∂2χ

2χ
(144)

=
1

4χ2 (∂χ)2 +
∂2χ

2χ
(145)

Theorem 11 (Equation of Motion). Varying the quantum action:

S =
∫ ( 1

4χ2 (∂χ)2 +
∂2χ

2χ

)√
−|g|d4x (146)

produces:

∂2χ = χ□χ (147)

as the equation of motion.

Proof.

δ

(
1

4χ2 (∂χ)2 +
∂2χ

2χ

)
= 0 (148)

=⇒ − (∂χ)2

2χ3 δχ − ∂µ

(
∂µχ

2χ2

)
δχ +

∂2(δχ)

2χ
− ∂2χ

2χ2 δχ = 0 (149)

=⇒ − (∂χ)2

2χ3 δχ +
(∂χ)2

χ3 δχ − ∂2χ

2χ2 δχ +
∂2(δχ)

2χ
− ∂2χ

2χ2 δχ = 0 (150)

=⇒ (∂χ)2

2χ3 δχ − ∂2χ

χ2 δχ +
∂2(δχ)

2χ
= 0 (151)

To proceed further, we are required to do integration by part for the last term:

∫
∂2(δχ)

2χ
d4x = −

∫
(∂χ)∂(δχ)

2χ2 d4x (152)

Then, a second integration by part, yields:

−
∫

(∂χ)∂(δχ)

2χ2 d4x = −
∫

δχ

(
∂2χ

2χ2 − (∂χ)2

χ3

)
d4x (153)
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=⇒ (∂χ)2

2χ3 δχ − ∂2χ

χ2 δχ − ∂2χ

2χ2 δχ +
(∂χ)2

χ3 δχ = 0 (154)

=⇒ 3(∂χ)2

2χ3 δχ − 3∂2χ

2χ2 δχ = 0 (155)

=⇒ ∂2χ =
(∂χ)2

χ
(156)

=⇒ χ□χ = (∂χ)2 (157)

To interpret this action and resulting equation of motion, let us now introduce the surprisal field
and associated definitions.

Definition 19 (Surprisal Field). We define a change of variable:

φ := − ln χ (158)

We call φ the surprisal field.

Definition 20 (Surprisal Equation of Motion). We note that the change of variable φ := − ln χ, changes the
equation of motion as follows:

χ□χ = (∂χ)2 →︸︷︷︸
φ:=− ln χ

□φ = 0 (159)

which is the Klein-Gordon equation in curved spacetime, applied to the surprisal field.

Definition 21 (Surprisal Conservation). The following current:

∇µ(∂
µ φ) = 0 (160)

identifies the surprisal as the conserved charge of this action.

Definition 22 (Surprisal Expectation Value). The surprisal expectation value is merely the entropy H of a
region V of the manifold:

⟨ln χ⟩︸ ︷︷ ︸
expectation value

= −
∫

V
χ(x) ln χ(x)︸ ︷︷ ︸

observable

√
hζd3x

︸ ︷︷ ︸
Definition of Entropy

(161)

Interpretation:
In information theory, the surprisal of an event with probability density ρ(x) is defined as

− ln ρ(x), and the entropy H = −
∫

ρ ln ρ d4x represents its expectation value. In our framework,
however, the field χ replaces ρ but differs critically:

• χ is not a probability density—it lacks a conserved current (∇µ(χuµ) ̸= 0) and is not normalized—
but it is positive-definite.

• Instead, χ is interpreted as an information density, encoding spacetime’s local information
content.
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The surprisal is defined as φ = − ln χ, which in this theory satisfies the Klein-Gordon equation
□φ = 0. This ensures:

1. Conservation: The current jµ = ∂µ φ is conserved (∇µ jµ = 0), making Q =
∫

V jµ
√

hζ d3x a
conserved charge.

2. Causal Propagation: Surprisal propagates at light speed, enforcing that the quantity φ of infor-
mation χ cannot spread superluminally—a core tenet of relativity.

Before we continue the interpretation of this theory, let us introduce a few more theorems.

Theorem 12 (Ricci Scalar). Let us investigate another subspace of the field where
√

χ = 1 and e−ib/2 = 1,
such that ϕ = R. Then the kinetic energy T reduces to the Ricci scalar R.

tr
(
(R̃eµDµR)†R̃eνDνR

)
= R (162)

Proof.

tr
(
(R̃eµDµR)†R̃eνDνR

)
(163)

= −tr(R̃eµDµeνDνR) via R̃R = 1 (164)

= −tr(R̃D2R) (165)

= −tr(RR̃D2) (166)

= tr(D2) (167)

= R via Lichnerowicz-Weitzenböck identity (168)

which is the Ricci scalar.

Definition 23 (Gravity). Let us now consider the full space of the wavefunction ψ =
√

ρRe−ib/2. We are
automatically lead into a theory of gravity:

S =
∫
M

tr

(
(ϕ‡eµDµϕ)†ϕ‡eνDνϕ

(ϕ‡ϕ)†ϕ‡ϕ‡

)√
−|g|d4x (169)

which expands, via Theorem 10 and 12, as follows:

S =
∫
M

(
R+ cross-terms +

1
4χ2 (∂χ)2 +

∂2χ

2χ

)√
−|g|d4x (170)

We note the following equations of motion which must be simultaneously satisfied:

1. Varying with respect to gµν yields the EFE with the Einstein tensor from R, and is sourced by the quantum
action variation yielding the stress-energy tensor.

2. Varying with respect to χ gives equations of motion that define the flow of χ in spacetime.

Interpretation (cont’d):
Thus, while quantum mechanics relies on probabilistic amplitudes ψ, our formulation recasts

general relativity as a deterministic theory of information dynamics, where spacetime geometry
and surprisal flux are dual aspects of R and χ. The distribution of surprisal in spacetime dictates its
geometric structure, which in turns dictates how it propagates. General relativity is to information,
what quantum mechanics is to probability.

Revisiting General Relativity with this perspective shows that the natural constraint is sufficient
to entail the theory through the principle of entropy maximization—in this formulation, the speed
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of light as a limit on the propagation of the quantity of information (via the surprisal obeying the
Klein-Gordon equation), and even the Einstein field equations are not fundamental, but the solution to
an optimization problem on entropy.

2.3.6. Yang-Mills

In QFT, the standard method to identify a local gauge symmetry is to start with a global symmetry
of the action or probability measure and then localize it by introducing gauge fields. For example, the
U(1) gauge symmetry arises naturally in electromagnetism as the group preserving the probability
density (Born rule) under local phase transformations. However, the non-Abelian SU(2) and SU(3)
gauge symmetries of the Standard Model are not derived from first principles in this way; their
inclusion is empirically motivated by particle physics experiments.

Improvement via Multivector Determinant Formulation:
Our framework demonstrates that Yang-Mills theories emerge naturally from constraints on the

wavefunction’s probability measure and Dirac current. Specifically:

1. Probability Measure: The quadratic form (ϕ‡ϕ)†ϕ‡ϕ = χ2 enforces rotor invariance ϕ → Rϕ,
restricting transformations to those satisfying R‡R = 1, for some rotor R of a geometric algebra
of n dimensions:

(ϕ‡R‡Rϕ)†ϕ‡R‡Rϕ = (ϕ‡ϕ)†ϕ‡ψ =⇒ R‡R = 1. (171)

Solutions to R‡R = 1 are rotor transformations generated by bivectors in the Clifford algebra.
For a 2n-dimensional algebra, these generate Spin(2n), whose subgroups include SU(n).

2. Dirac Current: The spacetime current ϕ‡e0ϕ = e0 requires gauge generators to commute with e0,
confining them to an internal space. This implies:

ϕ‡e−θi fi e0eθi fi ϕ = ϕ‡e0ϕ =⇒ [ fi, e0] = 0, (172)

where fi are bivector generators. Thus, fi act only on internal degrees of freedom, orthogonal to
spacetime.

3. Spacetime: The origin of the multivector determinant from STA, defines the resulting internal
space againts spacetime.

These constraints limit the allowable symmetry to groups generated by bivector exponentials
(which are compact Lie groups), and acting on the internal spaces of spacetime. Since SU(n) ⊂
Spin(2n), this framework inherently includes the Standard Model within its landscape but also
generalizes to larger symmetries such as those found in condensed matter systems with emergent
SU(n) symmetries.

Wavefunction and Symmetry Structure:
The total wavefunction is a tensor product of spacetime (STA) and internal space components:

1. For SU(n) Yang-Mills:

ϕSTA ⊗ ϕCn . (173)

2. For the Standard Model SU(3)× SU(2)× U(1):

ϕSTA ⊗ ϕC ⊗ ϕC2 ⊗ ϕC3 . (174)

Covariant Derivative and Action (Ex. Standard Model):
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The covariant derivative incorporates spacetime curvature (gravity) and gauge fields:

Dµ =

∂µ +
ωab

µ

2 γab + ig′YBµ + ig σa

2 Wa
µ + igs

λa

2 Ga
µ Φ

Φ† ∂µ +
ωab

µ

2 γab + ig′YBµ + igs
λa

2 Ga
µ

, (175)

where:

1. γab: Generators of Spin(3, 1) (gravitational spin connection).
2. Bµ, Wa

µ, Ga
µ: U(1), SU(2), and SU(3) gauge fields.

3. Φ: Higgs field (SU(2) doublet).

It acts on the left/right split of the field.
Our previous gravitational action is reconstructed with a spectral function f :

S =
∫
M

tr

(
f

(
1

Λ2
(ϕ‡eµDµϕ)†ϕ‡eµDµϕ

(ϕ‡ϕ)†ϕ‡ϕ

))√
−|g|d4x. (176)

Expanding f yield the field strength term tr( f (D2/Λ2)) which via the Heat kernel further yields the
Standard Model + gravity (see A. H. Chamseddine and Alain Connes [7] for method):

1. Leading Terms:

(a) Cosmological constant: ∝ Λ4
∫ √

−|g|d4x.
(b) Einstein-Hilbert term: ∝ Λ2

∫
R
√
−|g|d4x.

2. Yang-Mills and Higgs:

(a) Gauge kinetic terms: ∝
∫ 1

4 Fa
µνFµνa

√
−|g|d4x.

(b) Higgs kinetic and potential terms:

∝
∫ (

|DµΦ|2 + Λ2|Φ|2 + 1
Λ2 |Φ|4

)√
−|g|d4x. (177)

3. Yukawa Couplings (from matter fields):

∝
∫

yijϕiΦϕj

√
−|g|d4x. (178)

Key Notes:

1. Higher-Order Terms: Higher order field strength terms appear but are suppressed by Λ−2,
making them negligible at low energies.

2. Uniqueness: The Standard Model is not uniquely selected but resides within the landscape of
allowed Yang-Mills theories.

3. Experimental Consistency: The framework ressembles Connes’ spectral action (see A. H.
Chamseddine and Alain Connes [7]), recovering the Standard Model and general relativity
while allowing for testable extensions (e.g., higher-curvature gravity).

This formulation unifies gauge symmetries and gravity within the double-product structure.

2.3.7. Yang-Mills Axioms as Theorems

In Section 2.1, we demonstrated that all 5 axioms of quantum mechanics are derivable from the
solution to the optimization problem in GA(0, 1). Here, our aim is to do the same but for the axioms of
Yang-Mills theory which occur in GA(3, 1). First, let us list the axioms:

1. Compact Gauge Group: The symmetry group is a compact Lie group G.
2. Local Gauge Invariance: Fields transform under spacetime-dependent (local) group elements

T(x) ∈ G.
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3. Gauge Connections: Gauge fields Aµ are introduced as connections in the covariant derivative
Dµ = ∂µ + Aµ.

4. Field Strength: The curvature Fµν = [Dµ, Dν] defines the dynamics.
5. Yang-Mills Action: The action depends on Fµν, e.g.,

∫
tr(FµνFµν).

Now for the theorems.

Theorem 13 (Compact Gauge Group). The allowed symmetries form a compact Lie group G ⊂ Spin(2n).

Proof. :

1. Constraint: (ϕ‡ϕ)†ϕ‡ϕ = χ2 implies invariance of arbitrary n-dimentional rotors: R‡R = 1.
2. Structure of Solutions: Rotor transformations in finite-dimensional Clifford algebras are gener-

ated by bivectors. These generate Spin(2n) and its subgroups, which are compact Lie groups.

Thus, the gauge group G is inherently compact and derived from the algebra structure.

Theorem 14 (Local Gauge Invariance). The theory is invariant under spacetime-dependent T(x) ∈ G.

Proof. :

1. Wavefunction Transformation: ϕ → R(x)ϕ, where R(x) = eθi(x) fi (exponentials of spacetime-
dependent bivectors).

2. Probability Measure: (ϕ‡ϕ)†ϕ‡ϕ → (ϕ‡R‡Rϕ)†ϕ‡R‡Rϕ = χ2.
3. Dirac Current: ϕ‡e0ϕ → ϕ‡R‡e0Rϕ = ϕ‡e0ϕ, since [ fi, e0] = 0.

Theorem 15 (Gauge Connections). The covariant derivative Dµ = ∂µ + Aµ emerges to maintain invariance
under local R(x).

Proof. :

1. Minimal Coupling: To preserve Dµϕ → R(x)Dµϕ, the derivative must transform as ∂µ →
∂µ + Aµ, where Aµ = fi Ai

µ(x).
2. Gauge Field Definition: Let ∂µR(x) = AµR(x), then: Dµϕ = ∂µϕ + Aµϕ =⇒ Dµ(Rϕ) = RDµϕ.
3. Clifford Algebra Embedding: The Aµ are bivector fields in Cℓ(2n), ensuring Aµ ∈ g (the Lie

algebra of G)).

Theorem 16 (Field Strength). The commutator Fµν = [Dµ, Dν] defines the field strength.

Proof. :

1. Kinetic Energy: The kinetic energy expands to include the field strength tensor:

(ϕ‡γ0eµDµϕ)†ϕ‡γ0eµDµϕ

(ϕ‡ϕ)†ϕ‡ϕ
= kinetic terms + Fµν (179)

where Fµν is the field strength (Shown in Definition 23).

Theorem 17 (Yang-Mills Action). The spectral action over the kinetic energy includes the kinetic term∫
tr(FµνFµν).

Proof. :
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1. Heat Kernel Expansion: As shown in Equation 176 (see A. H. Chamseddine and Alain Connes
[7] for method), the field strength term of the spectral action S = tr

(
f (D2/Λ2)

)
expands as:

S ∼
∫ (

· · ·+ Fa
µνFaµν + · · ·

)√
−|g|d4x.

Revisiting Yang-Mills with this perspective shows that the natural constraint is sufficient to entail
the theory through the principle of entropy maximization—in this formulation, Yang-Mills axioms 1, 2,
3, 4, and 5 are not fundamental, but the solution to an optimization problem.

2.4. Dimensional Obstructions

In this section, we explore the dimensional obstructions that arise when attempting to resolve
the entropy maximization problem for other dimensional configurations. We found that all geometric
configurations except the previously explored cases are obstructed. By obstructed, we mean that the
solution to the entropy maximization problem, ρ, does not satisfy all axioms of probability theory.

Dimensions Optimal Predictive Theory of Nature

GA(0) Statistical Mechanics (180)

GA(0, 1) Quantum Mechanics (181)

GA(1, 0) Obstructed (Negative probabilities) (182)

GA(2, 0) Quantum Mechanics (183)

GA(1, 1) Obstructed (Negative probabilities) (184)

GA(0, 2) Obstructed (Non-real probabilities) (185)

GA(3, 0) Obstructed (Non-real probabilities) (186)

GA(2, 1) Obstructed (Non-real probabilities) (187)

GA(1, 2) Obstructed (Non-real probabilities) (188)

GA(0, 3) Obstructed (Non-real probabilities) (189)

GA(4, 0) Obstructed (Non-real probabilities) (190)

GA(3, 1) Gravity + Yang-Mills (191)

GA(2, 2) Obstructed (Negative probabilities) (192)

GA(1, 3) Obstructed (Non-real probabilities) (193)

GA(0, 4) Obstructed (Non-real probabilities) (194)

GA(5, 0) Obstructed (Non-real probabilities) (195)

...
...

GA(6, 0) Suspected Obstructed (No observables) (196)

...
...

Let us now demonstrate the obstructions mentioned above.

Theorem 18 (Non-real probabilities). The determinant of the matrix representation of the geometric algebras
in this category is either complex-valued or quaternion-valued, making them unsuitable as a probability.
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Proof. These geometric algebras are classified as follows:

GA(0, 2) ∼= H (197)

GA(3, 0) ∼= M2(C) (198)

GA(2, 1) ∼= M2
2(R) (199)

GA(1, 2) ∼= M2(C) (200)

GA(0, 3) ∼= H2 (201)

GA(4, 0) ∼= M2(H) (202)

GA(1, 3) ∼= M2(H) (203)

GA(0, 4) ∼= M2(H) (204)

GA(5, 0) ∼= M2
2(H) (205)

The determinant of these objects is valued in C or in H, where C are the complex numbers, and where
H are the quaternions.

Theorem 19 (Negative probabilities). The even sub-algebra of these dimensional configurations allows for
negative probabilities, making them unsuitable.

Proof. This category contains three dimensional configurations:

GA(1, 0): Let ψ = a + be1, then:

(a + be1)
‡(a + be1) = (a − be1)(a + be1) = a2 − b2e1e1 = a2 − b2 (206)

which is valued in R.
GA(1, 1): Let ψ = a + be0e1, then:

(a + be0e1)
‡(a + be0e1) = (a − be0e1)(a + be0e1) = a2 − b2e0e1e0e1 = a2 − b2 (207)

which is valued in R.
GA(2, 2): Let ψ = a + be0e∅e1e2, where e2

0 = −1, e2
∅ = −1, e2

1 = 1, e2
2 = 1, then:

((a + b)‡(a + b))†(a + b)‡(a + b) (208)

= (a2 + 2ab + b2)†(a2 + 2ab + b2) (209)

We note that b2 = b2e0e∅e1e2e0e∅e1e2 = b2, therefore:

= (a2 + b2 − 2ab)(a2 + b2 + 2ab) (210)

= (a2 + b2)2 − 4a2b2 (211)

= (a2 + b2)2 − 4a2b2 (212)

which is valued in R.

In all of these cases the probability can be negative.

Conjecture 1 (No observables (6D)). The multivector representation of the norm in 6D cannot satisfy any
observables.

Argument. In six dimensions and above, the self-product patterns found in Definition 14 collapse.
The research by Acus et al.[8] in 6D geometric algebra concludes that the determinant, so far defined
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through a self-products of the multivector, fails to extend into 6D. The crux of the difficulty is evident
in the reduced case of a 6D multivector containing only scalar and grade-4 elements:

s(B) = b1B f5( f4(B) f3( f2(B) f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (213)

This equation is not a multivector self-product but a linear sum of two multivector self-products[8].
The full expression is given in the form of a system of 4 equations, which is too long to list in its

entirety. A small characteristic part is shown:

a4
0 − 2a2

0a2
47 + b2a2

0a2
47 p412 p422 + ⟨72 monomials⟩ = 0 (214)

b1a3
0a52 + 2b2a0a2

47a52 p412 p422 p432 p442 p452 + ⟨72 monomials⟩ = 0 (215)

⟨74 monomials⟩ = 0 (216)

⟨74 monomials⟩ = 0 (217)

From Equation 213, it is possible to see that no observable O can satisfy this equation because the
linear combination does not allow one to factor it out of the equation.

b1OB f5( f4(B) f3( f2(B) f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) = b1B f5( f4(B) f3( f2(B) f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (218)

Any equality of the above type between b1O and b2O is frustrated by the factors b1 and b2, forcing
O = 1 as the only satisfying observable. Since the obstruction occurs within grade-4, which is part
of the even sub-algebra it is questionable that a satisfactory theory (with non-trivial observables) be
constructible in 6D, using our method.

This conjecture proposes that the multivector representation of the determinant in 6D does not
allow for the construction of non-trivial observables, which is a crucial requirement for a relevant
quantum formalism. The linear combination of multivector self-products in the 6D expression prevents
the factorization of observables, limiting their role to the identity operator.

Conjecture 2 (No observables (above 6D)). The norms beyond 6D are progressively more complex than the
6D case, which is already obstructed.

These theorems and conjectures provide additional insights into the unique role of the unob-
structed 3+1D signature in our proposal.

It is also interesting that our proposal is able to rule out GA(1, 3) even if in relativity, the signature
of the metric (+,−,−,−) versus (−,−,−,+) does not influence the physics. However, in geometric
algebra, GA(1, 3) represents 1 space dimension and 3 time dimensions. Therefore, it is not the signature
itself that is ruled out but rather the specific arrangement of 3 time and 1 space dimensions, as this
configuration yields quaternion-valued "probabilities" (i.e. GA(1, 3) ∼= M2(H) and detM2(H) ∈ H).

3. Discussion
When asked to define what a physical theory is, an informal answer may be that it is a predictive

framework of measurements that applies to all possible experiments realizable within a domain, with
nature as a whole being the most general domain. While physicists have expressed these theories
through sets of axioms, we propose a more direct approach—mathematically realizing this fundamental
definition itself. This definition is realized as an optimization problem (Definition 1) that can be solved
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directly. The solution to this optimization problem yields precisely those structures that realize the
physical theory over said domain. Succinctly, physics is the solution to:

L︸︷︷︸
an

optimization
problem

= −∑
i

ρi ln
ρi
pi︸ ︷︷ ︸

on the entropy
of a measurement

relative to its preparation
over all

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
predictive theories

+ τ tr

(
M − ∑

i
ρiMi

)
︸ ︷︷ ︸

of nature

(219)

The relative Shannon entropy represents the basic structure of any experiment, quantifying the
informational difference between its initial preparation and its final measurement.

The natural constraint is chosen to be the most general structure that admits a solution to this
optimization problem. This generality follows from key mathematical requirements. The constraint
must involve quantities that form an algebra, as the solution requires taking exponentials:

exp X = 1 + X +
1
2

X2 + . . . (220)

which involves addition, powers, and scalar multiplication of X. The use of the trace operation further
necessitates that X must be represented by square n × n matrices. Thus Axiom 1 involves n × n
matrices:

M = ∑
i

ρiMi (221)

The trace operation is utilized because the constraint must be converted back to a scalar for use in
the Lagrange multiplier equation; while any function that maps an algebra to a scalar would achieve
that, picking the trace recovers quantum mechanics in the GA(0, 1) case.

These mathematical requirements demonstrate that the natural constraint, as it admits the min-
imal mathematical structure required to solve an arbitrary entropy maximization problem, can be
understood as the most general extension of the statistical mechanics average energy constraint which
contains QM (as induced by the trace) as a specific solution.

Thus, having established both the mathematical structure and its generality, we can understand
how this minimal ontology operates. Since our formulation keeps the structure of experiments
completely general, our optimization considers all possible predictive theories for that structure, and
the constraint is the most general constraint possible for that structure, the resulting optimal physical
theory applies, by construction, to all realizable experiments within its domain.

This ontology is both operational, being grounded in the basic structure of experiments rather
than abstract entities, and constructive, showing how physical laws emerge from optimization over
all possible predictive theories subject to the natural constraint. Physics is encapsulated not as a pre-
defined collection of fundamental axioms but as the optimal solution to a well-defined optimization
problem over all experiments realizable within the domain. This represents a significant philosophical
shift from traditional physical ontologies where laws are typically taken as primitive.

The next step in our derivation is to represent the determinant of the n × n matrices through a self-
product of multivectors involving various conjugate structures. By examining the various dimensional
configurations of geometric algebras, we find that GA(3,1), representing 4 × 4 real matrices, admits a
sub-algebra whose determinant is positive-definite for its invertible members. All other dimensional
configurations fail to admit such a positive-definite structure, with two exceptions: statistical mechanics
(found in GA(0)) and quantum mechanics (found in GA(0,1) and in a sub-algebra of GA(2,0)).

The solution reveals that the 3+1D case harbours a new type of field amplitude structure analogous
to complex amplitudes, one that exhibits the characteristic elements of a quantum mechanical theory.
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Instead of complex-valued amplitudes, we have amplitudes valued in the invertible subset of the even
sub-algebra of GA(3,1). When normalized, this amplitude is identical to David Hestenes’ wavefunction,
but comes with an extended Born rule represented by the determinant, and rather than a complex
Hilbert space, it lives in a "double-product structure". This double-product structure automatically
incorporates gravity via the Spin(3,1) connection and local gauge theories as Yang-Mills theories. The
square of the Dirac operator, automatically generated by the Lagrangian, then generates the invariants
of gravity and of the Yang-Mills theory via a heat kernel expansion, along with the matter fields
quantifying the system’s information via surprisal and limiting its propagation speed.

Interpretation: This framework establishes quantum mechanics as the emergent solution to
entropy optimization constrained by measurement outcomes, rather than a set of axiomatic entities. The
wavefunction arises as a non-fundamental calculational tool, akin to statistical mechanics’ probability
distributions. Since all spacetime and quantum structures (i.e. the five axioms of QM, gravity, the Yang-
Mills axioms, 3+1D for spacetime, etc.) are in the wavefunction, they are thus revealed as epistemic
necessities for describing experiments within the constraint of nature, and are void of ontological
commitments.

Measurements: In our interpretation, initial preparations and final measurements constitute
the irreducible physical boundaries of an experiment. These empirical endpoints define reality,
with the quantum formalism emerging as the least-biased bridge between them through relative
entropy maximization under the natural constraint. Traditional interpretations problematically treat
measurement as a physical process transforming wavefunctions, necessitating the ad hoc "collapse"
postulate. We invert this ontology: the Schrödinger equation and Born rule describe not physical
evolution but an inferential relationship connecting preparation to measurement outcomes. The
wavefunction exists solely as an epistemic construct encoding this relationship. This eliminates the
measurement problem by excising its root cause: the reification of intermediate states (i.e. states
between initial preparation and final measurement) as ontological entities.

4. Conclusion
This work suggests that the formal essence of fundamental physics—statistical mechanics, quan-

tum mechanics, general relativity, Yang-Mills and the dimensionality of spacetime—emerges not from
axiomatic constructs but as necessity. By reframing physics as the solution to a single optimization
problem on relative entropy, constrained only by what measurements nature permits, we derive these
structures from first principles. This reformulation dissolves the artificial divide between quantum
and classical frameworks: statistical mechanics, quantum theory, gravity and gauge theory all become
special cases of information optimization under progressively richer constraints.

The conceptual pivot is ontological inversion. Traditional approaches postulate physical entities
(wavefunction, fields) and retroactively justify them through measurement. Our framework begins
and ends with measurement outcomes, with the natural constraint acting as the keystone. Applied to all
possible experiments, this constraint uniquely compels the emergence of Yang-Mills, spacetime, and
gravity. These structures dominate not by nature’s preference but by mathematical inevitability—they
comprise the only solution satisfying the natural constraint for all realizable experiments.

This work suggests a radical re-envisioning of physical law. Concepts we reify as fundamen-
tal—Hilbert spaces, gravitational curvature—are revealed as epistemic artifacts: the observer’s efficient
calculus for experimental prediction under the constraint of nature. Just as entropy maximization can
derive thermodynamics from atomic motions, entropy maximization can derive quantum mechanics
from the difference between initial preparations and final measurements. The set of all realizable
experiments replaces atoms as the fundamental building block of physics. Future work must test this
paradigm’s predictive limits, but its mere viability invites reconsideration of long-held ontological
assumptions about what physics ultimately describes.
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A SM
Here, we solve the Lagrange multiplier equation of SM.

L = −kB ∑
i

ρi ln ρi︸ ︷︷ ︸
Boltzmann En-
tropy

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
Normalization
Constraint

+ β

(
E − ∑

i
ρiEi

)
︸ ︷︷ ︸

Average Energy Constraint

(222)

We solve the maximization problem as follows:

0 =
∂L(ρi, . . . , ρn)

∂ρi
(223)

= − ln ρi − 1 − λ − βEi (224)

= ln ρi + 1 + λ + βEi (225)

=⇒ ln ρi = −1 − λ − βEi (226)

=⇒ ρi = exp(−1 − λ) exp(−βEi) (227)

=
1

Z(τ)
exp(−βEi) (228)

The partition function, is obtained as follows:

1 = ∑
i

exp(−1 − λ) exp(−βEi) (229)

=⇒ (exp(−1 − λ))−1 = ∑
i

exp(−βEi) (230)

Z(τ) := ∑
i

exp(−βEi) (231)

Finally, the probability measure is:

ρi =
1

∑i exp(−βEi)
exp(−βEi) (232)

B SageMath Program Showing ⌊u‡u⌋3,4u‡u = det Mu

from sage . a lgebras . c l i f f o r d _ a l g e b r a import Cl i f fordAlgebra
from sage . quadrat ic_forms . quadratic_form import QuadraticForm
from sage . symbolic . r ing import SR
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from sage . matrix . c o n s t r u c t o r import Matrix

# Define the quadrat ic form f o r GA( 3 , 1 ) over the Symbolic Ring
Q = QuadraticForm ( SR , 4 , [ −1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] )

# I n i t i a l i z e the GA( 3 , 1 ) a lgebra over the Symbolic Ring
algebra = Cl i f fordAlgebra (Q)

# Define the b a s i s v e c t o r s
e0 , e1 , e2 , e3 = algebra . gens ( )

# Define the s c a l a r v a r i a b l e s f o r each b a s i s element
a = var ( ’ a ’ )
t , x , y , z = var ( ’ t x y z ’ )
f01 , f02 , f03 , f12 , f23 , f13 = var ( ’ f01 f02 f03 f12 f23 f13 ’ )
v , w, q , p = var ( ’ v w q p ’ )
b = var ( ’ b ’ )

# Create a general mul t ivec tor
udegree0=a
udegree1= t * e0+x * e1+y * e2+z * e3
udegree2=f01 * e0 * e1+f02 * e0 * e2+f03 * e0 * e3+f12 * e1 * e2+f13 * e1 * e3+f23 * e2 * e3
udegree3=v* e0 * e1 * e2+w* e0 * e1 * e3+q * e0 * e2 * e3+p* e1 * e2 * e3
udegree4=b * e0 * e1 * e2 * e3
u=udegree0+udegree1+udegree2+udegree3+udegree4

u2 = u . c l i f f o r d _ c o n j u g a t e ( ) * u

u2degree0 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 0)
u2degree1 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 1)
u2degree2 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 2)
u2degree3 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 3)
u2degree4 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 4)
u2conj34 = u2degree0+u2degree1+u2degree2 −u2degree3 −u2degree4

I = Matrix ( SR , [ [ 1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

#MAJORANA MATRICES
y0 = Matrix ( SR , [ [ 0 , 0 , 0 , 1 ] ,

[ 0 , 0 , −1 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ −1 , 0 , 0 , 0 ] ] )

y1 = Matrix ( SR , [ [ 0 , −1 , 0 , 0 ] ,
[ −1 , 0 , 0 , 0 ] ,
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[ 0 , 0 , 0 , −1] ,
[ 0 , 0 , −1 , 0 ] ] )

y2 = Matrix ( SR , [ [ 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , −1 , 0 ] ,
[ 0 , −1 , 0 , 0 ] ,
[ 1 , 0 , 0 , 0 ] ] )

y3 = Matrix ( SR , [ [ −1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , −1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

mdegree0 = a
mdegree1 = t * y0+x * y1+y * y2+z * y3
mdegree2 = f01 * y0 * y1+f02 * y0 * y2+f03 * y0 * y3+f12 * y1 * y2+f13 * y1 * y3+f23 * y2 * y3
mdegree3 = v* y0 * y1 * y2+w* y0 * y1 * y3+q * y0 * y2 * y3+p* y1 * y2 * y3
mdegree4 = b * y0 * y1 * y2 * y3
m=mdegree0+mdegree1+mdegree2+mdegree3+mdegree4

p r i n t ( u2conj34 * u2 == m. det ( ) )

The program outputs

True

showing, by computer assisted symbolic manipulations, that the determinant of the real Majorana
representation of a multivector u is equal to the double-product: det Mu = ⌊u‡u⌋3,4u‡u.

References
1. Jaynes, E.T. Information theory and statistical mechanics. Physical review 1957, 106, 620.
2. Jaynes, E.T. Information theory and statistical mechanics. II. Physical review 1957, 108, 171.
3. Dirac, P.A.M. The principles of quantum mechanics; Number 27, Oxford university press, 1981.
4. Von Neumann, J. Mathematical foundations of quantum mechanics: New edition; Vol. 53, Princeton university

press, 2018.
5. Hestenes, D. Spacetime physics with geometric algebra (Page 6). American Journal of Physics 2003, 71, 691–714.
6. Lundholm, D. Geometric (Clifford) algebra and its applications. arXiv preprint math/0605280 2006.
7. Chamseddine, A.H.; Connes, A. The spectral action principle. Communications in Mathematical Physics 1997,

186, 731–750.
8. Acus, A.; Dargys, A. Inverse of multivector: Beyond p+ q= 5 threshold. arXiv preprint arXiv:1712.05204 2017.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 25 March 2025 doi:10.20944/preprints202404.1009.v15

https://doi.org/10.20944/preprints202404.1009.v15

	Introduction
	Results
	u(1)-Constraint: Quantum Mechanics
	 Rspin(2)-Constraint: Euclidean QM in 2D 
	Bilinear Form
	1+1D Obstruction
	spin(2)-Constraint: .5-.5.5-.5.5-.5.5-.5 Quantum Mechanics
	R spin(2)-Constraint: Euclidean QM in 2D

	Rspinc(3,1)-Constraint: Gravity + Yang-Mills
	The Multivector Determinant
	The R+Spinc(3,1)-Valued Field
	Geometry
	Dynamics
	Gravity
	Yang-Mills
	Yang-Mills Axioms as Theorems

	Dimensional Obstructions

	Discussion
	Conclusion
	References

