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Article

Constructing Physics From Measurements

Alexandre Harvey-Tremblay

Independent Scientist; aht@protonmail.ch

Abstract: We present a reformulation of fundamental physics - from a collection of independent axioms to the

solution of a single optimization problem. Any experiment begins with an initial state preparation, involves some

physical operation, and ends with a final measurement. Working from this structure, we maximize the entropy of

final measurements relative to their preparations subject to an appropriate physical constraint. This optimization

problem considers all possible predictive theories over all possible experiments, whilst being constrained by all

possible measurements, and then automatically selects the exact physics we observe as the optimal solution. As

a consequence of this formulation, rather than as separate postulates, we obtain quantum mechanics, general

relativity, and the Standard Model gauge symmetries within a unified theory. Mathematical consistency further

restricts valid solutions to 3+1 dimensions, suggesting why our universe exhibits this specific dimensionality. This

reformulation reveals that the apparent complexity of modern physics, with its various forces, symmetries, and

dimensional constraints, emerges naturally when optimizing over all possible ways of predicting measurements

from preparations.

Keywords: foundations of quantum physics

1. Introduction

Statistical mechanics (SM), in the formulation developed by E.T. Jaynes [1,2], is founded on an
entropy optimization principle. Specifically, the Boltzmann entropy is maximized under the constraint
of a fixed average energy E:

E = ∑
i

ρiEi (1)

The Lagrange multiplier equation defining the optimization problem is:

L = −kB ∑
i

ρi ln ρi + λ

(
1 − ∑

i
ρi

)
+ β

(
E − ∑

i
ρiEi

)
, (2)

where λ and β are Lagrange multipliers enforcing the normalization and average energy constraints.
Solving this optimization problem yields the Gibbs measure:

ρi =
1
Z

exp(−βEi), (3)

where Z = ∑i exp(−βEi) is the partition function.
For comparison, quantum mechanics (QM) is not formulated as the solution to an optimization

problem, but rather consists of a collection of axioms[3,4]:

QM Axiom 1 of 5 State Space: Every physical system is associated with a complex Hilbert space, and its state is
represented by a ray (an equivalence class of vectors differing by a non-zero scalar multiple) in
this space.

QM Axiom 2 of 5 Observables: Physical observables correspond to Hermitian (self-adjoint) operators acting on
the Hilbert space.

QM Axiom 3 of 5 Dynamics: The time evolution of a quantum system is governed by the Schrödinger equation,
where the Hamiltonian operator represents the system’s total energy.
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QM Axiom 4 of 5 Measurement: Measuring an observable projects the system into an eigenstate of the correspond-
ing operator, yielding one of its eigenvalues as the measurement result.

QM Axiom 5 of 5 Probability Interpretation: The probability of obtaining a specific measurement outcome is
given by the squared magnitude of the projection of the state vector onto the relevant eigenstate
(Born rule).

This comparison reveals a fundamental distinction in how physical theories are constructed. In
statistical mechanics, observable quantities like energy constrain and determine the mathematical
structure. In quantum mechanics, this relationship is reversed — the mathematical structure is
postulated first, and this structure then determines what can be observed.

This contrast suggests an opportunity. While the current axioms of fundamental physics have been
remarkably successful, could we reformulate them following statistical mechanics’ more economical
approach — deriving the mathematical structure from measurement constraints through optimization
over all possible predictive theories?

To make this reformulation possible, we introduce the following constraint:

Definition 1 (The Universal Physical Constraint).

M = ∑
i

ρiMi, (4)

where Mi are n × n matrices, and M is their average. This constraint extends E.T Jaynes’ optimiza-
tion method to encompass non-commutative observables and symmetry group generators required
for fundamental physics.

We then construct an optimization problem that considers all possible predictive theories of nature
by maximizing the relative Shannon entropy between initial preparations and final measurements:

Axiom 1 (The Fundamental Optimization Problem of Physics). Physics is the solution to:

L︸︷︷︸
an

optimization
problem

= −∑
i

ρi ln
ρi
pi︸ ︷︷ ︸

on the entropy
of a measurement

relative to its preparation
over all

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
predictive theories

+ τ tr

(
M − ∑

i
ρiMi

)
︸ ︷︷ ︸

of nature

(5)

where λ and τ are Lagrange multipliers enforcing the normalization and universal measurement
constraints, respectively.

This single axiom constitutes our complete reformulation of fundamental physics. The use of
relative entropy is deeply rooted in experimental reality: every physical experiment follows the same
basic structure - we begin with an initial state preparation pi, apply some evolution operation, and
conclude with a measurement ρi. Our optimization problem considers all possible theories that
could predict such measurements from preparations, constrained only by what nature allows us to
measure. As we will demonstrate, the solution to this optimization problem appears sufficient to
unify fundamental physics. Specifically, we intent to show that solving this optimization problem
yields Statistical Mechanics (SM), the five axioms of Quantum Mechanics (QM), the two axioms
of Special Relativity (SR), the Einstein Field Equations (EFE), the gauge symmetry of the Standard
Model (SU(3)×SU(2)×U(1)), the 3+1 dimensionality of spacetime as the unique allowed dimensional
configuration, and the foundational elements of a quantum theory of gravity. These structures emerge
directly as characteristics of the optimal predictive theory, without additional assumptions and without
generating unobserved features like extra dimensions or additional gauge symmetries.
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Theorem 1. The general solution to the entropy maximization problem is:

ρi =
pi det exp(−τMi)

∑j pj det exp
(
−τMj

) . (6)

Proof. We solve the maximization problem by setting the derivative of the Lagrangian with respect to
ρi to zero:

∂L
∂ρi

= − ln
ρi
pi

− 1 − λ − τ tr Mi = 0. (7)

=⇒ ln
ρi
pi

= −1 − λ − τ tr Mi. (8)

=⇒ ρi = pi exp(−1 − λ) exp(−τ tr Mi). (9)

Normalizing the probabilities using ∑i ρi = 1, we find:

1 = ∑
i

ρi = exp(−1 − λ)∑
i

pi exp(−τ tr Mi), (10)

=⇒ exp(1 + λ) = ∑
j

pj exp
(
−τ tr Mj

)
. (11)

Substituting back, we obtain:

ρi =
pi exp(−τ tr Mi)

∑j pj exp
(
−τ tr Mj

) . (12)

Finally, using the identity det exp(M) = exp tr M for square matrices M, we get:

ρi =
1
Z

pi det exp(−τMi). (13)

where Z = ∑j pj det exp
(
−τMj

)
.

This solution encapsulates fundamental physics as follows:

1. Statistical Mechanics:

To recover statistical mechanics from Equation 13, we consider the case where the matrices Mi
are 1 × 1, i.e., scalars. Specifically, we set:

M = ∑
i

ρiMi, with Mi =
[

Ei

]
, (14)

and take pi → 1. Then, Equation 13 reduces to the Gibbs distribution:

ρi =
1
Z

exp(−τEi), (15)

where τ corresponds to β in traditional statistical mechanics. This demonstrates that our solution
generalizes SM when Mi are scalars.

2. Quantum Mechanics:
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By choosing Mi to generate the U(1) group, we derive the axioms of quantum mechanics from
entropy maximization. Specifically, we set:

M = ∑
i

ρiMi, with Mi =

[
0 −Ei
Ei 0

]
, (16)

where Ei are energy levels. In the results section, we will detail how this choice leads to a
probability measure that includes a unitarily invariant ensemble and the Born rule, satisfying all
five axioms of QM.

3. Fundamental Physics:

Extending our approach, we choose Mi to be 4 × 4 matrices representing the generators of
the Spinc(3,1) group. Specifically, we consider multivectors of the form u = f + b, where
f is a bivector and b is a pseudoscalar of the 3+1D geometric algebra GA(3, 1). The matrix
representation of Mi is:

Mi =


f02 b − f13 − f01 + f12 f03 + f23

−b + f13 f02 f03 + f23 f01 − f12

− f01 − f12 f03 − f23 − f02 −b − f13

f03 − f23 f01 + f12 b + f13 − f02

, (17)

where f01, f02, f03, f12, f13, f23, and b correspond to the generators of the Spinc(3,1) group, which
includes both Lorentz transformations and U(1) phase rotations. This choice leads to a relativistic
quantum probability measure:

ρi =
pi det exp(−τMi)

∑j pj det exp
(
−τMj

) , (18)

where τ emerges as a parameter generating boosts, rotations, and phase transformations.

In the results section, we show that the associated Dirac current is automatically invariant under
the gauge symmetries of the Standard Model, specifically SU(3) × SU(2) × U(1). Furthermore, we
show that the metric tensor of general relativity emerges via a double-copy mechanism applied
to the Dirac current, describing a quantum theory of gravity.

4. Dimensional Obstructions:

Axiom 1 yields valid probability measures only in specific cases. Beyond the instances of
statistical mechanics and quantum mechanics, Axiom 1 yields a consistent solution only in 3+1
dimensions. In other configurations, various obstructions arise—such as the absence of a real
matrix algebra isomorphism or the emergence of negative probabilities—thereby violating the
axioms of probability theory. The following table summarizes the cases and their obstructions:

Dimensions Obstruction

0/scalar Statistical Mechanics (unobstructed) (19)

0+1 Quantum Mechanics (unobstructed) (20)

1+0 Negative probabilities (21)

2+0 Quantum Mechanics (unobstructed) (22)

1+1 Negative probabilities (23)

0+2 Not isomorphic to a real matrix algebra (24)

3+0 Not isomorphic to a real matrix algebra (25)

2+1 Not isomorphic to a real matrix algebra (26)
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1+2 Not isomorphic to a real matrix algebra (27)

0+3 Not isomorphic to a real matrix algebra (28)

4+0 Not isomorphic to a real matrix algebra (29)

3+1/spacetime Quantum Gravity/Standard Model (unobstructed) (30)

2+2 Negative probabilities (31)

1+3 Not isomorphic to a real matrix algebra (32)

0+4 Not isomorphic to a real matrix algebra (33)

5+0 Not isomorphic to a real matrix algebra (34)
...

...

6+0 No probability measure as a self-product (35)
...

...

∞ (36)

We will first investigate the unobstructed cases in Section 2.1, 2.2 and 2.3 and then demonstrate
the obstructions in Section 2.4. These obstructions are desirable because they automatically limit
the theory to 3+1D, thus providing a built-in mechanism for the observed dimensionality of our
universe.

2. Results

2.1. Quantum Mechanics

In statistical mechanics (SM), the central observation is that energy measurements of a thermally
equilibrated system tend to cluster around a fixed average value (Equation 1). In contrast, quantum
mechanics (QM) is characterized by the presence of interference effects in measurement outcomes. To
capture these features within an entropy maximization framework, we introduce the following special
case of the universal physical constraint:

Definition 2 (U(1) Generating Constraint). We reduce the universal physical constraint to the generator of
the U(1) group. Specifically, we replace

M = ∑
i

ρiMi with Mi =

[
0 −Ei
Ei 0

]
(37)

Here, Ei are scalar values (e.g., energy levels), ρi are the probabilities of outcomes, and the matrices Mi generate
the U(1) group.

The general solution of the maximization problem reduces as follows

ρi =
1

∑i pi det exp

(
−τ

[
0 −Ei
Ei 0

]) det exp

(
−τ

[
0 −Ei
Ei 0

])
pi (38)

Though initially unfamiliar, this form effectively establishes a comprehensive formulation of
quantum mechanics, as we will demonstrate.
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To align our results with conventional quantum mechanical notation, we translate the matrices to
complex numbers. Specifically, we consider that:[

a −b
b a

]
↔ a + ib. (39)

Then, we note the following equivalence with the complex norm:

det exp
[

a −b
b a

]
= r2 det

[
cos(b) − sin(b)
sin(b) cos(b)

]
, where r = exp a (40)

= r2(cos2(b) + sin2(b)) (41)

= ∥r(cos(b) + i sin(b))∥ (42)

= ∥r exp(ib)∥ (43)

Finally, substituting τ = t/h̄ analogously to β = 1/(kBT), and applying the complex-norm
representation to both the numerator and to the denominator, consolidates the Born rule, normalization,
and initial prepration into :

ρi =
1

∑i pi∥exp(−itEi/h̄)∥︸ ︷︷ ︸
Unitarily Invariant Partition Function

∥exp(−itEi/h̄)∥︸ ︷︷ ︸
Born Rule

pi︸︷︷︸
Initial Preparation

(44)

The wavefunction emerges by decomposing the complex norm into a complex number and its
conjugate. It is then visualized as a vector within a complex n-dimensional Hilbert space. The partition
function acts as the inner product. This relationship is articulated as follows:

∑
i

pi∥exp(−itEi/h̄)∥ = Z = ⟨ψ|ψ⟩ (45)

where ψ1(t)
...

ψn(t)

 =

exp(−itE1/h̄)
. . .

exp(−itEn/h̄)


ψ1(0)

...
ψn(0)

 (46)

We clarify that pi represents the probability associated with the initial preparation of the wave-
function, where pi = ⟨ψi(0)|ψi(0)⟩.

We also note that Z is invariant under unitary transformations.
Let us now investigate how the axioms of quantum mechanics are recovered from this result:

• The entropy maximization procedure inherently normalizes the vectors |ψ⟩ with 1/Z = 1/
√
⟨ψ|ψ⟩.

This normalization links |ψ⟩ to a unit vector in Hilbert space. Furthermore, as physical states
associate to the probability measure, and the probability is defined up to a phase, we conclude
that physical states map to Rays within Hilbert space. This demonstrates QM Axiom 1 of 5.

• In Z, an observable must satisfy:

O = ∑
i

piOi∥exp(−itEi/h̄)∥ (47)

Since Z = ⟨ψ|ψ⟩, then any self-adjoint operator satisfying the condition ⟨Oψ|ϕ⟩ = ⟨ψ|Oϕ⟩ will
equate the above equation, simply because ⟨O⟩ = ⟨ψ|O|ψ⟩. This demonstrates QM Axiom 2 of 5.
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• Upon transforming Equation 46 out of its eigenbasis through unitary operations, we find that the
energy, Ei, typically transforms in the manner of a Hamiltonian operator:

|ψ(t)⟩ = exp(−itH/h̄)|ψ(0)⟩ (48)

The system’s dynamics emerge from differentiating the solution with respect to the Lagrange
multiplier. This is manifested as:

∂

∂t
|ψ(t)⟩ = ∂

∂t
(exp(−itH/h̄)|ψ(0)⟩) (49)

= −iH/h̄ exp(−itH/h̄)|ψ(0)⟩ (50)

= −iH/h̄|ψ(t)⟩ (51)

=⇒ H|ψ(t)⟩ = ih̄
∂

∂t
|ψ(t)⟩ (52)

which is the Schrödinger equation. This demonstrates QM Axiom 3 of 5.
• From Equation 46 it follows that the possible microstates Ei of the system correspond to specific

eigenvalues of H. An observation can thus be conceptualized as sampling from ρ, with the
measured state being the occupied microstate i. Consequently, when a measurement occurs,
the system invariably emerges in one of these microstates, which directly corresponds to an
eigenstate of H. Measured in the eigenbasis, the probability measure is:

ρi(t) =
1

⟨ψ|ψ⟩ (ψi(t))†ψi(t). (53)

In scenarios where the probability measure ρi(τ) is expressed in a basis other than its eigenbasis,
the probability P(λi) of obtaining the eigenvalue λi is given as a projection on a eigenstate:

P(λi) = |⟨λi|ψ⟩|2 (54)

Here, |⟨λi|ψ⟩|2 signifies the squared magnitude of the amplitude of the state |ψ⟩ when projected
onto the eigenstate |λi⟩. As this argument hold for any observables, this demonstrates QM
Axiom 4 of 5.

• Finally, since the probability measure (Equation 44) replicates the Born rule, QM Axiom 5 of 5 is
also demonstrated.

Revisiting quantum mechanics with this perspective offers a coherent and unified narrative.
Specifically, the U(1) generating constraint is sufficient to entail the foundations of quantum mechanics
(Axiom 1, 2, 3, 4 and 5) through the principle of entropy maximization. The following Lagrange
multiplier equation

L = −∑
i

ρi ln
ρi
pi

+ λ

(
1 − ∑

i
ρi

)
+ τtr

([
0 E
E 0

]
− ∑

i
ρi

[
0 −Ei
Ei 0

])
(55)

becomes the formulation’s new singular foundation, and QM Axioms 1, 2, 3, 4, and 5 are now promoted
to theorems.
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2.2. RQM in 2D

In this section, we investigate a model, isomorphic to quantum mechanics, that lives in 2D which
provides a valuable starting point before addressing the more complex 3+1D case. In RQM 2D, the
fundamental Lagrange Multiplier Equation is:

L = −∑
i

ρi ln
ρi
pi

+ λ

(
1 − ∑

i
ρi

)
+

1
2

θtr

(
M − ∑

i
ρiMi

)
(56)

where λ and θ are the Lagrange multipliers, and where Mi is the 2 × 2 matrix representation of the
multivectors of GA(2).

In general a multivector u = a + x + b of GA(2), where a is a scalar, x is a vector and b a
pseudo-scalar, is represented as follows:[

a + x y − b
y + b a − x

]
∼= a + xσx + yσy + bσx ∧ σy (57)

This holds for any 2 × 2 matrix and any multivectors of GA(2).
The basis elements are defined as:

σx =

[
1 0
0 −1

]
, σy =

[
0 1
1 0

]
, σx ∧ σy =

[
0 −1
1 0

]
(58)

To investigate this case in more detail, we introduce the multivector conjugate, also known as the
Clifford conjugate, which generalizes the concept of complex conjugation to multivectors.

Definition 3 (Multivector conjugate). Let u = a + x + b be a multi-vector of the geometric algebra over the
reals in two dimensions GA(2). The multivector conjugate is defined as:

u‡ = a − x − b (59)

The determinant of the matrix representation of a multivector can be expressed as a self-product:

Theorem 2 (Determinant as a Multivector Self-Product).

u‡u = det M (60)

Proof. Let u = a + xσx + yσy + bσx ∧ σy, and let M be its matrix representation
[ a+x y−b

y+b a−x

]
. Then:

1 : u‡u (61)

= (a + xσx + yσy + bσx ∧ σy)
‡(a + xσx + yσy + bσx ∧ σy) (62)

= (a − xσx − yσy − bσx ∧ σy)(a + xσx + yσy + bσx ∧ σy) (63)

= a2 − x2 − y2 + b2 (64)

2 : det M (65)

= det
[ a+x y−b

y+b a−x

]
(66)

= (a + x)(a − x)− (y − b)(y + b) (67)

= a2 − x2 − y2 + b2 (68)
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Building upon the concept of the multivector conjugate, we introduce the multivector conjugate
transpose, which serves as an extension of the Hermitian conjugate to the domain of multivectors.

Definition 4 (Multivector Conjugate Transpose). Let |V⟩⟩ ∈ (GA(2))n:

|V⟩⟩ =

a1 + x1 + b1
...

an + xn + bn

 (69)

The multivector conjugate transpose of |V⟩⟩ is defined as first taking the transpose and then the element-wise
multivector conjugate:

⟨⟨V| =
[

a1 − x1 − b1 . . . an − xn − bn

]
(70)

Definition 5 (Bilinear Form). Let |V⟩⟩ and |W⟩⟩ be two vectors valued in GA(2). We introduce the following
bilinear form:

⟨⟨V|W⟩⟩ = (a1 − x1 − b1)(a1 + x1 + b1) + . . . (an − xn − bn)(an + xn + bn) (71)

Theorem 3 (Inner Product). Restricted to the even sub-algebra of GA(2), the bilinear form is an inner product.

Proof.

⟨⟨V|W⟩⟩x→0 = (a1 − b1)(a1 + b1) + . . . (an − bn)(an + bn) (72)

This is isomorphic to the inner product of a complex Hilbert space, with the identification i ∼=
σx ∧ σy.

Let us now solve the optimization problem for the even multivectors of GA(2, 0), whose inner
product is positive-definite.

We take a → 0, x → 0 then M reduces as follows:

u = a + x + b|a→0,x→0 = b =⇒ M =

[
0 −b
b 0

]
(73)

The Lagrange multiplier equation can be solved as follows:

0 =
∂L[ρ1, . . . , ρn]

∂ρi
(74)

= − ln
ρi
pi

− pi − λ − θ tr
1
2

[
0 −bi
bi 0

]
(75)

= ln
ρi
pi

+ pi + λ + θ tr
1
2

[
0 −bi
bi 0

]
(76)

=⇒ ln
ρi
pi

= −pi − λ − θ tr
1
2

[
0 −bi
bi 0

]
(77)

=⇒ ρi = pi exp(−pi − λ) exp
(
−θ tr

1
2

[
0 −bi
bi 0

])
(78)

=
1

Z(θ)
pi exp

(
−θ tr

1
2

[
0 −bi
bi 0

])
(79)
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The partition function Z(θ), serving as a normalization constant, is determined as follows:

1 = ∑
i

pi exp(−pi − λ) exp
(
−θ tr

1
2

[
0 −bi
bi 0

])
(80)

=⇒ (exp(−pi − λ))−1 = ∑
i

pi exp
(
−θ tr

1
2

[
0 −bi
bi 0

])
(81)

Z(θ) := ∑
i

pi exp
(
−θ tr

1
2

[
0 −bi
bi 0

])
(82)

Consequently, the least biased probability measure that connects an initial preparation pi to a
final measurement ρi, under the 2D universal measurement constraint, is:

ρi =
1

∑i pi det exp
(
− 1

2 θ
[

0 −bi
bi 0

])
︸ ︷︷ ︸

Spin(2) Invariant Ensemble

det exp
(
−1

2
θ
[

0 −bi
bi 0

])
︸ ︷︷ ︸

Spin(2) Born Rule

pi︸︷︷︸
Initial Preparation

(83)

Definition 6 (Spin(2)-valued Wavefunction).

|ψ⟩⟩ =


e

1
2 (a1+b1)

...
e

1
2 (an+bn)

 =


√

ρ1R1
...

√
ρ2R2

 (84)

where
√

ρi = e
1
2 ai representing the square root of the probability and Ri = e

1
2 bi representing a rotor in 2D (or

boost in 1+1D).

The partition function of the probability measure can be expressed using the bilinear form applied
to the Spin(2)-valued Wavefunction:

Theorem 4 (Partition Function). Z = ⟨⟨ψ|ψ⟩⟩

Proof.

⟨⟨ψ|ψ⟩⟩ = ∑
i

ψ
‡
i ψi = ∑

i
ρiR

‡
i Ri = ∑

i
ρi = Z (85)

Definition 7 (Spin(2)-valued Evolution Operator).

T =


e−

1
2 θb1

. . .

e−
1
2 θbn

 (86)

Theorem 5. The partition function is invariant with respect to the Spin(2)-valued evolution operator.

Proof. We note that:

⟨⟨Tv|Tv⟩⟩ = ⟨⟨v|v⟩⟩ = v‡T‡Tv =⇒ T‡T = I (87)
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then, since

[
e

1
2 θb1

. . .
e

1
2 θbn

][
e−

1
2 θb1

. . .
e−

1
2 θbn

]
= I, the relation T‡T = I is satisfied.

We note that the even sub-algebra of GA(2), being closed under addition and multiplication and
constituting an inner product through its bilinear form, allows for the construction of a Hilbert space.
In this context, the Hilbert space is Spin(2)-valued. The primary distinction between a wavefunction
in a complex Hilbert space and one in a Spin(2)-valued Hilbert space lies in the subject matter of the
theory. Specifically, in the latter, the construction governs the change in orientation experienced by an
observer (versus change in time), which in turn dictates the measurement basis used in the experiment,
consistently with the rotational symmetry and freedom of the system.

The dynamics of observer orientation transformations are described by a variant of the Schrödinger
equation, which is derived by taking the derivative of the wavefunction with respect to the Lagrange
multiplier, θ:

Definition 8 (Spin(2)-valued Schrödinger Equation).

d
dθ

ψ1(θ)
...

ψn(θ)

 =

−
1
2 b1

. . .
− 1

2 bn


ψ1(θ)

...
ψn(θ)

 (88)

Here, θ represents a global one-parameter evolution parameter akin to time, which is able to
transform the wavefunction under the Spin(2), locally across the states of the Hilbert space. This is an
extremely general equation that captures all transformations that can be done consistently with the
symmetries of the wavefunction for the Spin(2) group.

Definition 9 (David Hestenes’ Formulation). In 3+1D, the David Hestenes’ formulation [5] of the wavefunc-
tion is ψ =

√
ρReib/2, where R = ef/2 is a Lorentz boost or rotation and where eib/2 is a phase. In 2D, as the

algebra only admits a bivector, his formulation would reduce to ψ =
√

ρR, which is the form we have recovered.

The definition of the Dirac current applicable to our wavefunction follows the formulation of
David Hestenes:

Definition 10 (Dirac Current). Given the basis σx and σy, the Dirac current for the 2D theory is defined as:

Jx ≡ ψ‡σxψ = ρ R‡σxR︸ ︷︷ ︸
SO(2)

= ρσ̃x (89)

Jy ≡ ψ‡σyψ = ρ R‡σyR︸ ︷︷ ︸
SO(2)

= ρσ̃y (90)

where σ̃x and σ̃y are a SO(2) rotated basis vectors.

2.2.1. 1+1D Obstruction

As stated in the introduction, of the dimensional cases, only 2D and 3+1D are free of obstructions.
For instance, the 1+1D theory results in a split-complex quantum theory due to the bilinear form
(a − be0 ∧ e1)(a + be0 ∧ e1), which yields negative probabilities: a2 − b2 ∈ R for certain wavefunction
states, in contrast to the non-negative probabilities a2 + b2 ∈ R≥0 obtained in the Euclidean 2D case.
This is why we had to use 2D instead of 1+1D in this two-dimensional introduction. In the following
section, we will investigate the 3+1D case, then we will show why all other dimensional cases are
obstructed.
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2.3. RQM in 3+1D

In this section, we extend the concepts and techniques developed for multivector amplitudes in
2D to the more physically relevant case of 3+1D dimensions. The Lagrange multiplier equation is as
follows:

L = −∑
i

ρi ln
ρi
pi

+ λ

(
1 − ∑

i
ρi

)
+

1
2

ζtr

(
M − ∑

i
ρiMi

)
(91)

where

Mi =


f02 b − f13 − f01 + f12 f03 + f23

−b + f13 f02 f03 + f23 f01 − f12

− f01 − f12 f03 − f23 − f02 −b − f13

f03 − f23 f01 + f12 b + f13 − f02

, (92)

Here, f01, f02, f03, f12, f13, f23, and b correspond to the generators of the Spinc(3,1) group, which includes
both Lorentz transformations and U(1) phase rotations.

The solution (proof in Annex B) is obtained using the same step-by-step process as the 2D case,
and yields:

ρi =
1

∑i pi det exp(− 1
2 ζMi)︸ ︷︷ ︸

Spinc(3,1) Invariant Ensemble

det exp(−1
2

ζMi)︸ ︷︷ ︸
Spinc(3,1) Born Rule

pi︸︷︷︸
Initial Preparation

(93)

where ζ is a "twisted-phase" rapidity. (If the invariance group was Spin(3,1) instead of Spinc(3,1),
obtainable by posing b → 0, then it would simply be the rapidity). As we will show in Section 2.4,
due to obstructions, this probability measure is the most sophisticated solution to the optimization
problem that satisfy the axioms of probability theory.

2.3.1. Preliminaries

As we did in the 2D case, our initial goal here also will be to express the partition function as a
self-product of elements of the vector space. As such, we begin by defining a general multivector in
the geometric algebra GA(3, 1).

Definition 11 (Multivector). Let u be a multivector of GA(3, 1). Its general form is:

u = a (94)

+ tγ0 + xγ1 + yγ2 + zγ3 (95)

+ f01γ0 ∧ γ1 + f02γ0 ∧ γ2 + f03γ0 ∧ γ3 + f12γ1 ∧ γ2 + f13γ1 ∧ γ3 + f23γ2 ∧ γ3 (96)

+ pγ1 ∧ γ2 ∧ γ3 + qγ0 ∧ γ2 ∧ γ3 + vγ0 ∧ γ1 ∧ γ3 + wγ0 ∧ γ1 ∧ γ2 (97)

+ bγ0 ∧ γ1 ∧ γ2 ∧ γ3 (98)

where γ0, γ1, γ2, γ3 are the basis vectors in the real Majorana representation.
A more compact notation for u is

u = a + x + f + v + b (99)

where a is a scalar, x a vector, f a bivector, v is pseudo-vector and b a pseudo-scalar.

This general multivector can be represented by a 4 × 4 real matrix using the real Majorana
representation:
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Definition 12 (Matrix Representation of u).

M =


a + f02 − q − z b − f13 + w − x − f01 + f12 − p + v f03 + f23 + t + y

−b + f13 + w − x a + f02 + q + z f03 + f23 − t − y f01 − f12 − p + v
− f01 − f12 + p + v f03 − f23 + t − y a − f02 + q − z −b − f13 − w − x

f03 − f23 − t + y f01 + f12 + p + v b + f13 − w − x a − f02 − q + z

 (100)

To manipulate and analyze multivectors in GA(3, 1), we introduce several important operations,
such as the multivector conjugate, the 3,4 blade conjugate, and the multivector self-product.

Definition 13 (Multivector Conjugate (in 4D)).

u‡ = a − x − f + v + b (101)

Definition 14 (3,4 Blade Conjugate). The 3,4 blade conjugate of u is

⌊u⌋3,4 = a + x + f − v − b (102)

Lundholm[6] proposes a number the multivector norms, and shows that they are the unique
forms which carries the properties of the determinants such as N(uv) = N(u)N(v) to the domain of
multivectors:

Definition 15. The self-products associated with low-dimensional geometric algebras are:

GA(0, 1) : φ† φ (103)

GA(2, 0) : φ‡ φ (104)

GA(3, 0) : ⌊φ‡ φ⌋3 φ‡ φ (105)

GA(3, 1) : ⌊φ‡ φ⌋3,4 φ‡ φ (106)

GA(4, 1) : (⌊φ‡ φ⌋3,4 φ‡ φ)†(⌊φ‡ φ⌋3,4 φ‡ φ) (107)

We can now express the determinant of the matrix representation of a multivector via the self-
product ⌊φ‡ φ⌋3,4 φ‡ φ. Again, this choice is not arbitrary, but the unique choice with allows us to
represent the determinant of the matrix representation of a multivector within GA(3, 1):

Theorem 6 (Determinant as a Multivector Self-Product).

⌊u‡u⌋3,4u‡u = det M (108)

Proof. Please find a computer assisted proof of this equality in Annex C.

Definition 16 (GA(3, 1)-valued Vector).

|V⟩⟩ =

u1
...

un

 =

 a1 + x1 + f1 + v1 + b1
...

an + xn + fn + vn + bn

 (109)

These constructions allow us to express the partition function in terms of the multivector self-
product:
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Definition 17 (Double-Copy Product). Instead of an inner product, we obtain what we call a double-copy
product:

⟨⟨V|V|V|V⟩⟩ = ∑
i
⌊ψ

‡
i ψi︸︷︷︸

copy 1

⌋3,4 ψ
‡
i ψi︸︷︷︸

copy 2

(110)

= ⌊
[
u‡

1 . . . un

]u1 . . . 0
...

. . .
...

0 . . . un


︸ ︷︷ ︸

copy 1

⌋3,4


u‡

1 . . . 0
...

. . .
...

0 . . . u‡
n


u1

...
un


︸ ︷︷ ︸

copy 2

(111)

Theorem 7 (Partition Function). Z = ⟨⟨V|V|V|V⟩⟩

Proof.

⟨⟨V|V|V|V⟩⟩ (112)

= ⌊
[
u‡

1 . . . un

]u1 . . . 0
...

. . .
...

0 . . . un

⌋3,4


u‡

1 . . . 0
...

. . .
...

0 . . . u‡
n


u1

...
un

 (113)

= ⌊
[
u‡

1u1 . . . unun

]
⌋3,4


u‡

1u1
...

u‡
nun

 (114)

= ⌊u‡
1u1⌋3,4u‡

1u1 + · · ·+ ⌊u‡
nun⌋3,4u‡

nun (115)

=
n

∑
i=1

det Mui (116)

= Z (117)

Desirable properties for the double-copy product are introduced by addressing the issue of
non-positivity. First, we establish non-negativity:

Theorem 8 (Non-negativity). The double-copy product, applied to the even subalgebra of GA(3, 1), is always
non-negative.

Proof. Let |V⟩⟩ =

a1 + f1 + b1
...

an + fn + bn

. Then,
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⟨⟨V|V|V|V⟩⟩ (118)

= ⌊
[
(a1 + f1 + b1)

‡(a1 + f1 + b1) . . .
]
⌋3,4

[
(a1 + f1 + b1)

‡(a1 + f1 + b1)
...

]
(119)

= ⌊
[
(a1 − f1 + b1)(a1 + f1 + b1) . . .

]
⌋3,4

[
(a1 − f1 + b1)(a1 + f1 + b1)

...

]
(120)

= ⌊
[

a2
1 + a1f1 + a1b1 − f1a1 − f2

1 − f1b1 + b1a1 + b1f1 + b2
1 . . .

]
⌋3,4 . . . (121)

= ⌊
[

a2
1 − f2

1 + b2
1 . . .

]
⌋3,4 . . . (122)

We note 1) b2 = (bI)2 = −b2 and 2) f2 = −E2
1 − E2

2 − E2
3 + B2

1 + B2
2 + B2

3 + 4e0e1e2e3(E1B1 + E2B2 +

E3B3)

= ⌊
[

a2
1 − b2

1 + E2
1 + E2

2 + E2
3 − B2

1 − B2
2 − B2

3 − 4e0e1e2e3(E1B1 + E2B2 + E3B3) . . .
]
⌋3,4 . . . (123)

We note that the terms are now complex numbers, which we rewrite as ℜ(z) = a2
1 − b2

1 + E2
1 + E2

2 +

E2
3 − B2

1 − B2
2 − B2

3 and ℑ(z) = −4(E1B1 + E2B2 + E3B3)

= ⌊
[
z1 . . . z2

]
⌋3,4

zn
...

zn

 (124)

=
[
z†

1 . . . z†
2

]zn
...

zn

 (125)

= z‡
1z1 + · · ·+ z‡

nzn (126)

which is always non-negative.

Finally, positive-definiteness is automatically achieved because solving the optimization problem
exponentiates the multivector, yielding a wavefunction:

Definition 18 (Spinc(3, 1)-Valued Wavefunction).

|ψ⟩⟩ =


e

1
2 (a1+f1+b1)

...
e

1
2 (an+fn+bn)

 =


√

ρ1 R1 B1
...

√
ρn Rn Bn

,

where:

•
√

ρi = e
1
2 ai ≥ 0 is a positive scalar factor ensuring non-negativity.

• Ri = e
1
2 fi is a rotor representing Lorentz transformations (rotations and boosts in spacetime).

• Bi = e
1
2 bi is a complex phase factor, as bi = bi I and e

1
2 bi = e

1
2 bi I = cosh

(
bi
2

)
+ I sinh

(
bi
2

)
.

In this representation:

• The exponential map e
1
2 (ai+fi+bi) maps elements of the algebra to the connected component of

the identity in the spin group Spinc(3, 1), except at the zero vector, where the map is not injective.
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• The wavefunction |ψ⟩⟩ captures both the amplitude (through
√

ρi) and the phase (through Ri and
Bi) of the quantum state.

Thus, the double-copy product ⟨⟨ψ|ψ|ψ|ψ⟩⟩ over wavefunction ψ is positive-definite.
Now, let us turn our attention to the evolution operator, which leaves the partition function

invariant:

Definition 19 (Spinc(3, 1) Evolution Operator).

T =


e−

1
2 ζ(f1+b1)

. . .

e−
1
2 ζ(fn+bn)

 (127)

In turn, this leads to a variant of the Schrödinger equation obtained by taking the derivative of
the wavefunction with respect to the Lagrange multiplier ζ:

Definition 20 (Spinc(3, 1)-valued Schrödinger equation).

d
dζ

ψ1(ζ)
...

ψn(ζ)

 =

−
1
2 (f1 + b1)

. . .
− 1

2 (fn + bn)


ψ1(ζ)

...
ψn(ζ)

 (128)

In this case ζ represents a one-parameter evolution parameter akin to time, which is able to
transform the measurement basis under action of the Spinc(3, 1) group. This is an extremely general
equation that captures all transformations that can be done consistently with the symmetries of the
wavefunction.

Theorem 9 (Spinc(3,1) invariance). Let e
1
2 fe

1
2 b be a general element of Spinc(3,1). Then, the equality:

⌊ψ‡ψ⌋3,4ψ‡ψ = ⌊(e
1
2 fe

1
2 bψ)‡e

1
2 fe

1
2 bψ⌋3,4(e

1
2 fe

1
2 bψ)‡e

1
2 fe

1
2 bψ (129)

is always satisfied.

Proof.

⌊(e
1
2 fe

1
2 bψ)‡e

1
2 fe

1
2 bψ⌋3,4(e

1
2 fe

1
2 bψ)‡e

1
2 fe

1
2 bψ (130)

= ⌊ψ‡e−
1
2 fe

1
2 be

1
2 fe

1
2 bψ⌋3,4ψ‡e−

1
2 fe

1
2 be

1
2 fe

1
2 bψ (131)

= ⌊ψ‡ebψ⌋3,4ψ‡ebψ (132)

= ⌊ψ‡ψ⌋3,4e−bebψ‡ψ (133)

= ⌊ψ‡ψ⌋3,4ψ‡ψ (134)

2.3.2. RQM

Definition 21 (David Hestenes’ Wavefunction). The Spinc(3, 1)-valued wavefunction we have recovered is
formulated identically to David Hestenes’[5] formulation of the wavefunction within GA(3,1).

ψ = e
1
2 (a+f+b)︸ ︷︷ ︸

ours

=
√

ρRe−ib/2︸ ︷︷ ︸
Hestenes’

(135)
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where e
1
2 a =

√
ρ, e

1
2 f = R and e

1
2 b = e−ib/2.

Before we continue the RQM investigation, let us note that the double-copy product contains two
copies of a bilinear form ψ‡ψ:

⌊ ψ‡ψ︸︷︷︸
copy 1

⌋3,4 ψ‡ψ︸︷︷︸
copy 2

(136)

In the present and upcoming section, we will investigate the properties of each copy individually,
leaving the properties specific to the double-copy for the section on quantum gravity.

Taking a single copy, the Dirac current is obtained directly from the gamma matrices, as follows:

Definition 22 (Dirac Current). The definition of the Dirac current is the same as Hestenes’:

J ≡ ψ‡γµψ = ρR‡B‡γµBR = ρR‡γµB−1BR = ρ R‡γµR︸ ︷︷ ︸
SO(3,1)

= ργ̃µ (137)

where γ̃µ is a SO(3,1) rotated basis vector.

2.3.3. Standard Model Gauge Symmetries

We will now demonstrate that the double-copy product is automatically invariant under transfor-
mations corresponding to the U(1), SU(2), and SU(3) symmetries, as well as under unitary transfor-
mations satisfying U†U = I, all of which play fundamental roles in the Standard Model of particle
physics. These symmetries constitute the set of transformations that leave the Dirac current invariant,
i.e., (Tψ)‡γ0Tψ = ψ‡γ0ψ with T valued in GA(3, 1).

Theorem 10 (U(1) Invariance). Let e
1
2 b be a general element of U(1). Then, the equality

⌊ψ‡γ0ψ⌋3,4ψ‡γ0ψ = ⌊(e
1
2 bψ)‡γ0e

1
2 bψ︸ ︷︷ ︸

copy 1

⌋3,4 (e
1
2 bψ)‡γ0e

1
2 bψ︸ ︷︷ ︸

copy 2

(138)

is satisfied, yielding a U(1) symmetry for each copied bilinear form.

Proof. Equation 138 is invariant if this expression is satisfied:

e
1
2 bγ0e

1
2 b = γ0 (139)

This is always satisfied simply because e
1
2 bγ0e

1
2 b = γ0e−

1
2 be

1
2 b = γ0

Theorem 11 (SU(2) Invariance). Let e
1
2 f be a general element of Spin(3,1). Then, the equality:

⌊ψ‡γ0ψ⌋3,4ψ‡γ0ψ = ⌊(e
1
2 fψ)‡γ0e

1
2 fψ︸ ︷︷ ︸

copy 1

⌋3,4 (e
1
2 fψ)‡γ0e

1
2 fψ︸ ︷︷ ︸

copy 2

(140)

is satisfied for if f = θ1γ2γ3 + θ2γ1γ3 + θ3γ1γ2 (which generates SU(2)), yielding a SU(2) symmetry for each
copied bilinear form.

Proof. Equation 140 is invariant if this expression is satisfied[7]:

e−
1
2 fγ0e

1
2 f = γ0 (141)
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We now note that moving the left-most term to the right of the gamma matrix yields:

e−E1γ0γ1−E2γ0γ2−E3γ0γ3−θ1γ2γ3−θ2γ1γ3−θ3γ1γ2 γ0e
1
2 f (142)

= γ0eE1γ0γ1+E2γ0γ2+E3γ0γ3−θ1γ2γ3−θ2γ1γ3−θ3γ1γ2 e
1
2 f (143)

Therefore, the product e−
1
2 fγ0e

1
2 f reduces to γ0 if and only if E1 = E2 = E3 = 0, leaving f =

θ1γ2γ3 + θ2γ1γ3 + θ3γ1γ2:
Finally, we note that eθ1γ2γ3+θ2γ1γ3+θ3γ1γ2 generates SU(2).

Theorem 12 (SU(3)). The generators of SU(3) in GA(3,1) are given by Anthony Lesenby in [8] and are as
follows:

Êij = êi êj − f̂i f̂ j where i < j (144)

F̂ij = êi f̂ j + êj f̂i where i < j (145)

Ĵ = êi f̂i where i = 1, 2, 3 (146)

where

êi = multiplication on the left by σi, so that êi(F) = σiF (147)

f̂i = multiplication on the right by Iσi, so that f̂i(F) = IσiF (148)

This defines the 9 generators of U(3).
With the additional restriction on Ĵ

α1 Ĵ1 + α2 Ĵ2 + α3 Ĵ3, with α1 + α2 + α3 = 0 (149)

the number generators is reduced to 8, consistently with SU(3).
We now must show that the following equation is satisfied for all 8 generators:

⌊ψ‡γ0ψ⌋3,4ψ‡γ0ψ = ⌊(eθiλi ψ)‡γ0eθiλi ψ︸ ︷︷ ︸
copy 1

⌋3,4 (eθiλi ψ)‡γ0eθiλi ψ︸ ︷︷ ︸
copy 2

(150)

Proof. First, we note the following action:

−fγ0f = γ0 (151)

which we can rewrite as follows:

−(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 + B1γ2γ3 + B2γ1γ3 + B3γ1γ2)γ0f (152)

The first three terms anticommute with γ0, while the last three commute with γ0:

= γ0(E1γ0γ1 + E2γ0γ2 + E3γ0γ3 − B1γ2γ3 − B2(q)γ1γ3 − B3(q)γ1γ2)f(q) (153)

This can be written as:

γ0(E − B)(E + B) (154)

= γ0(E2 + EB − BE − B2) (155)

where E = E1γ0γ1 + E2γ0γ2 + E3γ0γ3 and B = B1γ2γ3 + B2γ1γ3 + B3γ1γ2.
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Thus, for −fγ0f = γ0, we require: 1) E2 − B2 = 1 and 2) EB = BE. The first requirement expands
as follows:

E2 − B2 = (E2
1 + B2

1) + (E2
2 + B2

2) + (E2
3 + B2

3) = 1 (156)

which is the defining conditions for the SU(3) symmetry group.
Finally, as the SU(3) norm is a consequence of preserving the Dirac current, it follows that the

SU(3) generators provided by Lasenby, acting on f, cannot change the SU(3) norm, hence must also
preserve the Dirac current.

Theorem 13 (Unitary invariance). Let U be n × n unitary matrices. Then unitary invariance:

⟨
〈
ψ
∣∣γµψ

∣∣ψ∣∣γνψ
〉
⟩ = ⟨

〈
Uψ
∣∣γµUψ

∣∣Uψ
∣∣γνUψ

〉
⟩ =⇒ U†U = I (157)

is individually satisfied for each copied bilinear form.

Proof. Equation 157 is satisfied if U‡γµU = γµ. Since U is valued in complex numbers, then U‡ = UT ,
and since γµγ0γ1γ2γ3 = −γ0γ1γ2γ3γµ, it follows that:

γµU†U = γµ (158)

which is satisfied when U†U = I.

The invariances SU(3), SU(2) and U(1) discussed above can be promoted to local symmetries
using standard gauge theory construction techniques.

In conventional QM, the Born rule naturally leads to a U(1)-valued gauge theory due to the
following symmetry:

(e−iθ(x)ψ(x))†e−iθ(x)ψ(x) = ψ(x)†ψ(x) (159)

However, the SU(3) and SU(2) symmetries do not emerge from the probability measure in
the same straightforward manner and are typically introduced by hand, justified by experimental
observations. This raises the question: why these specific symmetries and not others? In contrast,
within our framework, all three symmetry groups—U(1), SU(2), and SU(3)—as well as the Spin(3, 1)
and unitary symmetries, follow naturally from the invariance of the probability measure, in the same
way that the U(1) symmetry follows from the Born rule. This suggests a deeper underlying principle
governing the symmetries in fundamental physics.

2.3.4. A Starting Point for a Theory of Quantum Gravity

In the previous section, we developed a quantum theory valued in Spinc(3,1), which served as the
arena for RQM. We then demonstrated how a single copy of this theory leads to the gauge symmetries
of the standard model, the Dirac current and other features of RQM. The goal of this section is to
extend this methodology to basis vectors, in which the metric tensor emerges as an observable. To
achieve this, we will utilize both copies of the double-copy product.

We recall the definition of the metric tensor in terms of basis vectors of geometric algebra, as
follows:

gµν =
1
2
(eµeν + eνeµ) (160)
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Then, we note that the double-copy product acts on a pair of basis element eµ and eν, as follows:

1
2

(
⌊ψ‡eµψ︸ ︷︷ ︸

copy 1

⌋3,4 ψ‡eνψ︸ ︷︷ ︸
copy 2

+⌊ψ‡eν φ︸ ︷︷ ︸
copy 2

⌋3,4 ψ‡eµψ︸ ︷︷ ︸
copy 1

)
(161)

=
1
2

(
R̃ ρeib/2e−ib/2︸ ︷︷ ︸

Born rule copy 1

eµRR̃ ρe−ib/2eib/2︸ ︷︷ ︸
Born rule copy 2

eνR + R̃ ρeib/2e−ib/2︸ ︷︷ ︸
Born rule copy 2

eνRR̃ ρe−ib/2eib/2︸ ︷︷ ︸
Born rule copy 1

eµR
)

(162)

=
1
2

ρ2(R̃eµRR̃eνR + R̃eνRR̃eνR
)

(163)

= ρ2︸︷︷︸
probability

1
2
(ẽµẽν + ẽνẽµ)︸ ︷︷ ︸

metric tensor

(164)

where ẽµ and ẽν are SO(3,1) rotated basis vectors, and where ρ2 is a probability measure.
As one can swap eµ and eν and obtain the same metric tensor, the double-copy product guarantees

that gµν is symmetric.
Furthermore, since e‡

µ = −eµ, we get:

⌊(eµψ)‡ψ⌋3,4(eνψ)‡ψ (165)

= ⌊ψ‡(−1)e‡
µψ⌋3,4ψ‡(−1)e‡

νψ (166)

= ⌊ψ‡eµψ⌋3,4ψ‡eνψ (167)

which allows us to conclude that eµ and eν are self-adjoint within the double-copy product, entailing
the interpretation of gµν as an observable.

In the double-copy product, the metric tensor emerges as a double copy of Dirac currents. This
formulation suggests that the metric tensor encodes the probabilistic structure of a quantum theory
of gravity in the form of a symmetric rank-2 tensor, analogous to how the Dirac current encodes the
probabilistic structure of a special relativistic quantum theory in the form of a 4-vector.

Let us now investigate the dynamics. We recall that the evolution operator (Definition 19) is:

T =


e−

1
2 ζ(f1+b1)

. . .

e−
1
2 ζ(fn+bn)

 (168)

Acting on the wavefunction, the effect of this operator cascades down to the basis vectors via the
double-copy product:

⌊ψ‡T‡eµTψ︸ ︷︷ ︸
copy 1

⌋3,4 ψ‡T‡eνTψ︸ ︷︷ ︸
copy 2

+⌊ψ‡T‡eνTψ︸ ︷︷ ︸
copy 2

⌋3,4 ψ‡T‡eµTψ︸ ︷︷ ︸
copy 1

(169)

which realizes an SO(3, 1) transformation of the metric tensor via action of the exponential of a bivector,
and a double-copy unitary invariant transformation via action of the exponential of a pseudo-scalar:

⌊ψ‡ e
1
2 ζfeµe−

1
2 ζf︸ ︷︷ ︸

SO(3,1) evolution

e
1
2 ζbe−

1
2 ζb︸ ︷︷ ︸

unitary evolution

ψ

︸ ︷︷ ︸
copy 1

⌋3,4 ψ‡ e
1
2 ζfeµe−

1
2 ζf︸ ︷︷ ︸

SO(3,1) evolution

e
1
2 ζbe−

1
2 ζb︸ ︷︷ ︸

unitary evolution

ψ

︸ ︷︷ ︸
copy 2

+ · · · (170)

In summary, this initial investigation has identified a scenario in which the metric tensor is mea-
sured using basis vectors. The evolution operator, governed by the Schrödinger equation, dynamically
realizes SO(3,1) transformations on the metric tensor. Furthermore, the amplitudes associated with
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possible metric tensors are derived from a double-copy of unitary quantum theories acting on the basis
vectors. This formulation simultaneously preserves the SO(3,1) symmetry, essential for describing
spacetime structure, and the unitary symmetry, fundamental to quantum mechanics. It describes all
changes of basis transformations that an observer in 3+1D spacetime can perform prior to measuring
(in the quantum sense) a basis system in spacetime, and attributes a probability to the outcome (the
outcome being the metric tensor).

2.3.5. The Einstein Field Equation

In the previous section, we established that the metric tensor gµν emerges as an observable
through the double-copy mechanism acting on basis vectors. We also determined that this probability
measure transforms covariantly under SO(3,1) Lorentz transformations.

To derive the dynamical equations governing this metric tensor, we seek the simplest possible
Lagrangian whose equations of motion are a function of gµν and that respects this SO(3,1) covariance.
The Einstein-Hilbert action naturally emerges as this simplest choice:

SEH =
1

2κ

∫ √
−g R d4x, (171)

where κ = 8πG with G being Newton’s gravitational constant, g is the determinant of the metric
tensor, and R is the Ricci scalar. Varying this simplest possible covariant action yields the Einstein
field equations Gµν = 0, where Gµν is the Einstein tensor, which automatically satisfies the Bianchi
identities ensuring conservation of energy-momentum.

2.4. Dimensional Obstructions

In this section, we explore the dimensional obstructions that arise when attempting to resolve
the entropy maximization problem for other dimensional configurations. We found that all geometric
configurations except those we have explored here (e.g. GA(0) ∼= R, GA(0, 1) ∼= C, GA(2, 0) and
GA(3, 1)) are obstructed. By obstructed, we mean that the solution to the entropy maximization
problem, ρ, does not satisfy all axioms of probability theory.
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Dimensions Obstruction

GA(0) Unobstructed =⇒ statistical mechanics (172)

GA(0, 1) Unobstructed =⇒ quantum mechanics (173)

GA(1, 0) Negative probabilities in the RQM (174)

GA(2, 0) Unobstructed =⇒ spin(2) quantum mechanics (175)

GA(1, 1) Negative probabilities in the RQM (176)

GA(0, 2) Not isomorphic to a real matrix algebra (177)

GA(3, 0) Not isomorphic to a real matrix algebra (178)

GA(2, 1) Not isomorphic to a real matrix algebra (179)

GA(1, 2) Not isomorphic to a real matrix algebra (180)

GA(0, 3) Not isomorphic to a real matrix algebra (181)

GA(4, 0) Not isomorphic to a real matrix algebra (182)

GA(3, 1) Unobstructed =⇒ quantum gravity ∧ SU(3)× SU(2)× U(1) (183)

GA(2, 2) Negative probabilities in the RQM (184)

GA(1, 3) Not isomorphic to a real matrix algebra (185)

GA(0, 4) Not isomorphic to a real matrix algebra (186)

GA(5, 0) Not isomorphic to a real matrix algebra (187)
...

...

GA(6, 0) No probability measure as a self-product (188)
...

...

∞ (189)

Let us now demonstrate the obstructions mentioned above.

Theorem 14 (Not isomorphic to a real matrix algebra). The determinant of the matrix representation of the
geometric algebras in this category is either complex-valued or quaternion-valued, making them unsuitable as a
probability.

Proof. These geometric algebras are classified as follows:

GA(0, 2) ∼= H (190)

GA(3, 0) ∼= M2(C) (191)

GA(2, 1) ∼= M2
2(R) (192)

GA(1, 2) ∼= M2(C) (193)

GA(0, 3) ∼= H2 (194)

GA(4, 0) ∼= M2(H) (195)

GA(1, 3) ∼= M2(H) (196)

GA(0, 4) ∼= M2(H) (197)

GA(5, 0) ∼= M2
2(H) (198)

The determinant of these objects is valued in C or in H, where C are the complex numbers, and where
H are the quaternions.
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Theorem 15 (Negative Probabilities in the RQM). The even sub-algebra, which associates to the RQM part
of the theory, of these dimensional configurations allows for negative probabilities, making them unsuitable as a
RQM.

Proof. This category contains three dimensional configurations:

GA(1, 0): Let ψ = a + be1, then:

(a + be1)
‡(a + be1) = (a − be1)(a + be1) = a2 − b2e1e1 = a2 − b2 (199)

which is valued in R.
GA(1, 1): Let ψ = a + be0e1, then:

(a + be0e1)
‡(a + be0e1) = (a − be0e1)(a + be0e1) = a2 − b2e0e1e0e1 = a2 − b2 (200)

which is valued in R.
GA(2, 2): Let ψ = a + be0e∅e1e2, where e2

0 = −1, e2
∅ = −1, e2

1 = 1, e2
2 = 1, then:

⌊(a + b)‡(a + b)⌋3,4(a + b)‡(a + b) (201)

= ⌊a2 + 2ab + b2⌋3,4(a2 + 2ab + b2) (202)

We note that b2 = b2e0e∅e1e2e0e∅e1e2 = b2, therefore:

= (a2 + b2 − 2ab)(a2 + b2 + 2ab) (203)

= (a2 + b2)2 − 4a2b2 (204)

= (a2 + b2)2 − 4a2b2 (205)

which is valued in R.

In all of these cases the RQM probability can be negative.

Conjecture 1 (No probability measures as a self-product (in 6D)). The multivector representation of the
norm in 6D cannot satisfy any observables.

Argument. In six dimensions and above, the self-product patterns found in Definition 15 collapse. The
research by Acus et al.[9] in 6D geometric algebra demonstrates that the determinant, so far defined
through a self-products of the multivector, fails to extend into 6D. The crux of the difficulty is evident
in the reduced case of a 6D multivector containing only scalar and grade-4 elements:

s(B) = b1B f5( f4(B) f3( f2(B) f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) (206)

This equation is not a multivector self-product but a linear sum of two multivector self-products[9].
The full expression is given in the form of a system of 4 equations, which is too long to list in its

entirety. A small characteristic part is shown:

a4
0 − 2a2

0a2
47 + b2a2

0a2
47 p412 p422 + ⟨72 monomials⟩ = 0 (207)

b1a3
0a52 + 2b2a0a2

47a52 p412 p422 p432 p442 p452 + ⟨72 monomials⟩ = 0 (208)

⟨74 monomials⟩ = 0 (209)

⟨74 monomials⟩ = 0 (210)

From Equation 206, it is possible to see that no observable O can satisfy this equation because the
linear combination does not allow one to factor it out of the equation.
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b1OB f5( f4(B) f3( f2(B) f1(B))) + b2Bg5(g4(B)g3(g2(B)g1(B))) = b1B f5( f4(B) f3( f2(B) f1(B))) + b2OBg5(g4(B)g3(g2(B)g1(B))) (211)

Any equality of the above type between b1O and b2O is frustrated by the factors b1 and b2, forcing
O = 1 as the only satisfying observable. Since the obstruction occurs within grade-4, which is part
of the even sub-algebra it is questionable that a satisfactory theory (with non-trivial observables) be
constructible in 6D, using our method.

This conjecture proposes that the multivector representation of the determinant in 6D does not
allow for the construction of non-trivial observables, which is a crucial requirement for a relevant
quantum formalism. The linear combination of multivector self-products in the 6D expression prevents
the factorization of observables, limiting their role to the identity operator.

Conjecture 2 (No probability measures as a self-product (above 6D)). The norms beyond 6D are progres-
sively more complex than the 6D case, which is already obstructed.

These theorems and conjectures provide additional insights into the unique role of the unob-
structed 3+1D signature in our proposal.

It is also interesting that our proposal is able to rule out GA(1, 3) even if in relativity, the signature
of the metric (+,−,−,−) versus (−,−,−,+) does not influence the physics. However, in geometric
algebra, GA(1, 3) represents 1 space dimension and 3 time dimensions. Therefore, it is not the signature
itself that is ruled out but rather the specific arrangement of 3 time and 1 space dimensions, as this
configuration yields quaternion-valued "probabilities" (i.e. GA(1, 3) ∼= M2(H) and detM2(H) ∈ H).

Consequently, the most sophisticated dimensional configuration in which a least biased solution
to the problem of maximizing the Shannon entropy of universal measurements relative to an initial
preparation exists is 3+1D.

3. Discussion

Our theory proposes a minimal ontology based on two fundamental concepts and their relation-
ship: Nature and Physics. Nature is defined as the universal physical constraint (Definition 1) - it
determines the structure of all possible measurements. This definition aligns with the philosophical
view of nature as that which exists independently of our theories about it, the unchanging backdrop
against which all experiments are performed. Physics emerges as the least biased probability measure
that maximizes the relative entropy between preparation and measurement states, subject to nature’s
constraint.

This formulation mirrors the structure of experimental physics itself. Every experiment begins
with a known initial state preparation, evolves this state through some operation, and concludes with
a measurement. The relative entropy between preparation and measurement states thus captures
the basic structure of all possible experiments. By maximizing this entropy subject only to nature’s
constraints, we obtain the least biased theory consistent with what can be measured.

This ontology is both operational, being grounded in measurements rather than abstract entities,
and constructive, showing how physical laws emerge from the interplay between nature’s constraints
and entropy maximization. Physics emerges not as a collection of fundamental axioms but as the most
unbiased description compatible with nature’s constraints. This represents a significant philosophical
shift from traditional physical ontologies where laws are typically taken as primitive.
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In summary, and tying the words to the math, physics is the solution to:

L︸︷︷︸
an

optimization
problem

= −∑
i

ρi ln
ρi
pi︸ ︷︷ ︸

on the entropy
of a measurement

relative to its preparation
over all

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
predictive theories

+ τ tr

(
M − ∑

i
ρiMi

)
︸ ︷︷ ︸

of nature

(212)

4. Conclusion

This work presents a radical reformulation of fundamental physics. What currently requires
numerous independent axioms - quantum mechanics, general relativity, and the Standard Model
gauge symmetries - emerges automatically as the optimal solution to a single optimization problem.
The power of this reformulation lies in its explanatory reach: it reveals why these particular theories
describe our universe and why spacetime is 3+1 dimensional. These features are not postulated but
emerge as necessary characteristics of the optimal predictive theory in the space of all possible ways to
predict measurements from preparations.
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Appendix A. SM

Here, we solve the Lagrange multiplier equation of SM.

L = −kB ∑
i

ρi ln ρi︸ ︷︷ ︸
Boltzmann En-
tropy

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
Normalization
Constraint

+ β

(
E − ∑

i
ρiEi

)
︸ ︷︷ ︸

Average Energy Constraint

(A1)

We solve the maximization problem as follows:

0 =
∂L(ρi, . . . , ρn)

∂ρi
(A2)

= − ln ρi − 1 − λ − βEi (A3)

= ln ρi + 1 + λ + βEi (A4)

=⇒ ln ρi = −1 − λ − βEi (A5)

=⇒ ρi = exp(−1 − λ) exp(−βEi) (A6)

=
1

Z(τ)
exp(−βEi) (A7)
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The partition function, is obtained as follows:

1 = ∑
i

exp(−1 − λ) exp(−βEi) (A8)

=⇒ (exp(−1 − λ))−1 = ∑
i

exp(−βEi) (A9)

Z(τ) := ∑
i

exp(−βEi) (A10)

Finally, the probability measure is:

ρi =
1

∑i exp(−βEi)
exp(−βEi) (A11)

Appendix B. RQM in 3+1D

L = −∑
i

ρi ln
ρi
pi︸ ︷︷ ︸

Relative Shannon
Entropy

+ λ

(
1 − ∑

i
ρi

)
︸ ︷︷ ︸
Normalization Con-
straint

+
1
2

ζtr

(
M − ∑

i
ρiMi

)
︸ ︷︷ ︸

Universal Measurement Con-
straint

(A12)

The solution is obtained using the same step-by-step process as the 2D case, and yields:

ρi =
1

∑i pi det exp(− 1
2 ζMi)︸ ︷︷ ︸

Spinc(3,1) Invariant Ensemble

det exp(−1
2

ζMi)︸ ︷︷ ︸
Spinc(3,1) Born Rule

pi︸︷︷︸
Initial Preparation

(A13)

Proof. The Lagrange multiplier equation can be solved as follows:

0 =
∂L(ρ1, . . . , ρn)

∂ρi
(A14)

= − ln
ρi
pi

− pi − λ − 1
2

ζ tr Mi (A15)

= ln
ρi
pi

+ pi + λ +
1
2

ζ tr Mi (A16)

=⇒ ln
ρi
pi

= −pi − λ − 1
2

ζ tr Mi (A17)

=⇒ ρi = pi exp(−pi − λ) exp
(
−1

2
ζ tr Mi

)
(A18)

=
1

Z(ζ)
pi exp

(
−1

2
ζ tr Mi

)
(A19)

The partition function Z(ζ), serving as a normalization constant, is determined as follows:

1 = ∑
i

pi exp(−pi − λ) exp
(
−1

2
ζ tr Mi

)
(A20)

=⇒ (exp(−pi − λ))−1 = ∑
i

pi exp
(
−1

2
ζ tr Mi

)
(A21)

Z(ζ) := ∑
i

pi exp
(
−1

2
ζ tr Mi

)
(A22)
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Appendix C. SageMath Program Showing ⌊u‡u⌋3,4u‡u = det Mu

from sage . a lgebras . c l i f f o r d _ a l g e b r a import Cl i f fordAlgebra
from sage . quadrat ic_forms . quadratic_form import QuadraticForm
from sage . symbolic . r ing import SR
from sage . matrix . c o n s t r u c t o r import Matrix

# Define the quadrat ic form f o r GA( 3 , 1 ) over the Symbolic Ring
Q = QuadraticForm ( SR , 4 , [ −1 , 0 , 0 , 0 , 1 , 0 , 0 , 1 , 0 , 1 ] )

# I n i t i a l i z e the GA( 3 , 1 ) a lgebra over the Symbolic Ring
algebra = Cl i f fordAlgebra (Q)

# Define the b a s i s v e c t o r s
e0 , e1 , e2 , e3 = algebra . gens ( )

# Define the s c a l a r v a r i a b l e s f o r each b a s i s element
a = var ( ’ a ’ )
t , x , y , z = var ( ’ t x y z ’ )
f01 , f02 , f03 , f12 , f23 , f13 = var ( ’ f01 f02 f03 f12 f23 f13 ’ )
v , w, q , p = var ( ’ v w q p ’ )
b = var ( ’ b ’ )

# Create a general mul t ivec tor
udegree0=a
udegree1= t * e0+x * e1+y * e2+z * e3
udegree2=f01 * e0 * e1+f02 * e0 * e2+f03 * e0 * e3+f12 * e1 * e2+f13 * e1 * e3+f23 * e2 * e3
udegree3=v* e0 * e1 * e2+w* e0 * e1 * e3+q * e0 * e2 * e3+p* e1 * e2 * e3
udegree4=b * e0 * e1 * e2 * e3
u=udegree0+udegree1+udegree2+udegree3+udegree4

u2 = u . c l i f f o r d _ c o n j u g a t e ( ) * u

u2degree0 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 0)
u2degree1 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 1)
u2degree2 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 2)
u2degree3 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 3)
u2degree4 = sum( x f o r x in u2 . terms ( ) i f x . degree ( ) == 4)
u2conj34 = u2degree0+u2degree1+u2degree2 −u2degree3 −u2degree4

I = Matrix ( SR , [ [ 1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , 1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

#MAJORANA MATRICES
y0 = Matrix ( SR , [ [ 0 , 0 , 0 , 1 ] ,

[ 0 , 0 , −1 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
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[ −1 , 0 , 0 , 0 ] ] )

y1 = Matrix ( SR , [ [ 0 , −1 , 0 , 0 ] ,
[ −1 , 0 , 0 , 0 ] ,
[ 0 , 0 , 0 , −1] ,
[ 0 , 0 , −1 , 0 ] ] )

y2 = Matrix ( SR , [ [ 0 , 0 , 0 , 1 ] ,
[ 0 , 0 , −1 , 0 ] ,
[ 0 , −1 , 0 , 0 ] ,
[ 1 , 0 , 0 , 0 ] ] )

y3 = Matrix ( SR , [ [ −1 , 0 , 0 , 0 ] ,
[ 0 , 1 , 0 , 0 ] ,
[ 0 , 0 , −1 , 0 ] ,
[ 0 , 0 , 0 , 1 ] ] )

mdegree0 = a
mdegree1 = t * y0+x * y1+y * y2+z * y3
mdegree2 = f01 * y0 * y1+f02 * y0 * y2+f03 * y0 * y3+f12 * y1 * y2+f13 * y1 * y3+f23 * y2 * y3
mdegree3 = v* y0 * y1 * y2+w* y0 * y1 * y3+q * y0 * y2 * y3+p* y1 * y2 * y3
mdegree4 = b * y0 * y1 * y2 * y3
m=mdegree0+mdegree1+mdegree2+mdegree3+mdegree4

p r i n t ( u2conj34 * u2 == m. det ( ) )

The program outputs

True

showing, by computer assisted symbolic manipulations, that the determinant of the real Majorana
representation of a multivector u is equal to the double-copy form: det Mu = ⌊u‡u⌋3,4u‡u.
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