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Abstract: Mannosylerythritol lipids (MELs), one of the most promising biosurfactants (BS), are glycolipids
produced by yeasts or fungi, with great environmental performance and a high compatibility with the human
body. MELs besides working as typical surfactants, can form diverse structures when in or above the critical
aggregation concentration (CAC), reducing the surface tension of water and other solutions, and being stable
over a wide range of conditions. Among others, MELs present antimicrobial, antitumor, antioxidant and anti-
inflammatory activity, skin and hair repair capacity, which opens possibilities for their use in applications from
cosmetics and pharmaceutics to bioremediation and agriculture. However, their market share is still low when
compared to other glycolipids, due to their less developed production process and higher production cost. This
review gathers information on the potential applications of MELs mentioned in the literature since 1993.
Furthermore, it is also explored the current strategies being developed to enhance the market presence of MELs,
in parallel with the ones developed for rhamnolipids and sophorolipids.

Keywords: mannosylerythritol lipids; glycolipids; biosurfactants; cosmetics; biomedical; food;
bioremediation

1. Introduction

Surface active agents, also known as surfactants, are amphiphilic molecules possessing both a
hydrophilic head and a hydrophobic tail. Depending on the charge of the hydrophilic domain,
surfactants can be categorized as anionic, cationic, amphoteric, or non-ionic [1-3]. Surfactants tend to
accumulate at the interface between polar and nonpolar solutions, decreasing repulsive molecular
forces and, as a result, decreasing the surface/interface tension, allowing solutions to mix in each
other [1,3]. Moreover, the accumulation of surfactants can lead to their aggregation in different
structures, such as spherical micelles with hydrophilic groups facing an aqueous media, and apolar
groups facing a sequestered hydrophobic solution. Surfactants with one polar head group and two
hydrophobic tails often are also able to form molecular membrane bilayers, with heads facing the
membrane surfaces and tails interacting at its interior. Cylindrical and spherical bilayers can be
formed by uni- or multilamellar structures; helical ribbons and tubules are commonly formed by
chiral surfactants; and bicelles or disk aggregates can be made mixing different surfactants in the
same solution [1]. Such structures are formed when the surfactant concentration is above the Critical
Aggregation Concentration (CAC).

Surfactants can function as wetting, foaming, or coating agents, dispersants, emulsifiers, or de-
emulsifiers, and therefore, they are part and crucial for the efficiency of a wide range of products,
such as cleaning products, personal care and cosmetic products, healthcare products, food and
beverages, paints and coatings [2,3]. In 2023, the surfactants market value was estimated to reach US$
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45.72 billion, and it is expected to increase, at a compound annual growth rate (CAGR) of 4.7%, to a
value of US$ 69.13 billion in 2032 [4].

While extremely useful, 60% (w/w) of the total surfactant produced are estimated to ends up in
the aquatic environment [5], due to direct product discharge or leakage, and inefficient removal from
water in wastewater treatment stations. When in the environment, synthetic surfactants persist and
accumulate due to their slow biodegradability, and are toxic to microorganisms, aquatic flora and
aquatic fauna. In some cases, the degradation products resulting from the biodegradation of
surfactants are even more toxic than the parental molecules [2]. Regarding surfactants’ safety for
human use, several surfactants are classified as irritants as, above certain concentrations, they are
irritant for skin and eyes, some are classified as dangerous by the European Council, since exposure
can cause skin burns and severe damage to the eyes; and some are extremely toxic to aquatic life [6].

Today, consumer awareness of the effects of chemicals on the environment and on human health
is increasing, and countries' governments are defining goals and creating new laws to avoid further
contamination of the environment and to protect people’s health. In 2015, the United Nations
developed the Sustainable Development Goals (SDGs) [7], among several objectives, the SDGs
propose the reduction of air, water and soil pollution by hazardous chemicals (SDG 3 and 6), through
a better management of the chemicals and wastes during their life cycles and by strengthening the
scientific and technological capacity of countries in order to make a transition to more sustainable
practices (SDG 12). As a consequence, the SDG 3 proposes a substantial reduction of number of deaths
and illnesses from hazardous chemicals pollution by 2030. The European Union went further and
created the Green Deal, which aims to reach zero pollution and a toxic-free environment by 2050. As
part of that deal the Regulation on the registration, evaluation, authorization, and restriction of
chemicals (REACH) was created [8]. This certification limits or bans the manufacturing,
commercialization and use of chemicals that pose unacceptable risks for human and environmental
health, and at the same time, this regulation stimulates innovation both for the development of
alternative substances and the development of alternative methods for chemical testing that do not
involve animals.

Surfactants are no exception, and more sustainable alternatives are already being developed.
Biosurfactants (BS), defined as surfactants produced either by bacteria, yeast, fungi, or archaea [9],
have low toxicity and a high biodegradability. Their hydrophilic moiety is usually made of amino
acids, anionic or cationic peptides, or carbohydrates, whereas the hydrophobic moiety is composed
by peptides, proteins, unsaturated or saturated fatty acids. Depending on their structure, BS are
divided into different classes: glycolipids, lipopeptides, fatty acids, polymeric and particulate BS
[2,3].

Among BS, the glycolipids class the one more mature in terms of their industrial application,
particularly sophorolipids (SLs) and rhamnolipids (RLs). In fact, multinational companies are
increasingly investing in their research and scaled-up production of BS. Evonik and Unilever
announced a partnership in 2022 for the construction of a rhamnolipid-producing facility in Slovakia
with a three-digit million-euro investment [10]. BASF and Holiferm also announced a partnership for
SL production and secured a 21.4 M€ investment [11], while in 2020 Stepan Company acquired
Natsurfact [12], a rhamnolipid-producing company. Besides those, there are more companies
producing RLs and SLs on a large scale like Jeneil Biotechnology and Amphistar.

Mannosylerythritol lipids (MELSs) is a third emerging glycolipid, with a technology readiness
level (4) lower than SLs/RLs (8/9), but with huge potential as it will be reviewed. This paper highlights
MELs’ properties and applications that are already described in the literature, assesses the
advantages of MELs compared to other surfactants and BSs, as well as the steps MELs must take to
thrive in the market.

2. Materials and Methods

The Google Scholar and Google Patents platforms were used for articles and patents research.
The words “Mannosylerythritol lipids” were defined as mandatory, as for the words “cosmetics”,

s

“agriculture”, “pharmaceutical”, “medical”, “food”, “feed”, “remediation”, “detergent”, “oil”, “fuel”
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were defined as optional, and papers for “review” were excluded. The search was done for the years
between 1990 and 2024.

3. Mannosylerythritol Lipids Structure, Properties, and Production

MELs are produced by species of the yeast genera Moesziomyces (formerly known as
Pseudozymas), Kurtzmanomyces and by the fungi genera Schizonella and Ustillago [13]. Although their
function is still not clear, it is believed that MELs, as the triacylglycerols, act as energy storage material
in the cell [13,14] and that their secretion helps in the emulsification of carbon sources, such as oils,
facilitating the transport through the microorganisms’ cell wall [1].

MELSs, belonging to the non-ionic BS category, are constituted by a 4-O-f3-D-mannopyranosyl-
D-erythritol hydrophilic moiety, and two fatty acid hydrophobic chains with variable sizes linked to
the mannose. There are different MELs congeners according to number of carbons on the fatty acid
chains and the acetylation of mannose’s hydroxyl groups, classified as: MEL-A (acetylation at C4 and
C6); MEL-B (acetylation at C4); MEL-C (acetylation at C6) and MEL-D (no acetylations). [13]

In this regard, depending on the type and the final concentration, MELs can self-assemble in
diverse structures. In 2009, Imura et al. [15] studied this phenomenon, quantifying critical aggregation
concentrations (CACs) for MELs and elucidating the type of the structures formed. The authors have
concluded that MEL-A and MEL-B, aggregate in large unilamellar vesicles, at CACs of 4 uM and 4.5
uM, respectively. However, when MEL-A concentration increases to above 20 uM, they form sponge
structures (L3 phase) composed of a randomly connected three-dimensional network of bilayers.
MEL-B forms typical multilamellar vesicles above the CAC. Importantly, above their CAC
concentrations, MEL-A and MEL-B reduce the surface tension of water from 72 mN.m to 28.4 and
28.2 mN.m", respectively. Regarding MEL-C and MEL-D, both form lamellar phases, with CACs of
4 uM and 12 uM, reducing the surface tension of water to 24.4 mN.m and 24.6 mN.m"!, respectively
[16,17]. These studies demonstrate the variety of structures that MELs can form, opening new
possibilities for MELs in different industrial applications, as explained in the next section. Moreover,
MELs activity have been reported to be stable in extreme temperatures and pHs, which can be an
advantage when applying MELs according with the envisaged applications, still it is sensitive to salt
concentrations above 100 mM [14].

Cell biocompatibility tests using different cell lines, such as human melanocytes, human and
mouse fibroblasts and human keratinocytes, and in 3D human skin models, show that MELs do not
exhibit cytotoxic activity below certain concentrations. A study, performed by Kim et al. (2002) [14],
show that the reduction on mouse fibroblasts viability to 50% after 48h, requires the presence of 5 g/L
of MELs, while the same decrease in cell viability is attained with only 0.05 and 0.01 g/L of SDS or
LAS, respectively. For given MEL congeners and cell lines used, MELs show can even increase cell
viability when below the inhibitory concentrations [14,18-23]. These studies indicate MELs safety to
be used, under given thresholds, in cosmetics and personal care applications. Consider that, after
their use, a large percentage of surfactants end up on aquatic bodies, it is crucial to assess their impact
on the environment. A fast biodegradation rate of MELs was demonstrated in a study by Kim et al.
(2002) [14], with these molecules being fully degraded by microorganisms in activated sludge in 4
days. Moreover, MELs presented low ecotoxicity to aquatic organisms, as quantified Kekovi¢ ef al.
(2002) [24], using the model marine organism Artemia franciscana at value of L50 of about 1 g/L, up
performing Rhamnolipids and Sophorolipids, with L50 reported in such study at about 0.5 g/L and
0.7 g/L, respectively.

Regarding MELs production, two different approaches have commonly reported:

1) Using only hydrophobic carbon sources (such as soybean and rapeseed oil), leading to high
titres of MELs (up to 150 g/L), but with low purity (c.a 60%) [25]; or

2) Using only hydrophilic carbon sources (such as glucose), which leads to high purities (~95%),
but with low titres (c.a 6 g/L).

However, a recent study by Faria et al. (2023) [26], have shown an alternative strategy, designed
to reach both relevantly MELs titers and high purities by simultaneously co-feeding to the
microorganisms carbon sources of opposite polarities (glucose and soybean oil). This study shows to
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be possible to reach higher purities using the co-substrates strategy than when using only
hydrophobic carbon sources (94% vs 89%) at similar titres (14 g/L), while titres are limited to 5.1 g/L
in MELs, when only hydrophilic carbon sources are used. fter fermentation, MELs are removed from
the fermentation broth through liquid-liquid extraction mechanisms.

MELs can replace chemical surfactants in many applications, due to their similar performance
in reducing the surface tension. However, considering MELs uncommon properties, such as low
toxicity, biocompatibility, self-assembly, among others, additional possible applications of these
products are envisaged. Over the previous decades, researchers suggested and tested MELs use for
various applications, including applications in fields ranging from medicine and cosmetics to
agriculture and bioremediation, where MELs would be used as both a specialty and a bulk chemicals.
These applications of MELs are resumed in Table 1 and described in the next section.

Table 1. Summary table of MELs potential applications reported in the literature. NA- Not

Available.
Applicati MEL
ppcation Specification Brief Description of the Results ®  References
Area Used
. Botb MELSs were s.t%'ongly act.lve MEL-A
against gram-positive bacteria o
) e g 99%
(Bacillus subtilis, Micrococcus
) and [27]
luteus, Mycobacterium
MEL-B
rhodoochrous, Staphylococcus
99%
aureus).
= MELs had antimicrobial activity
: . g MELs
against S. aureus and biofilm ; [18]
. . . mixture
disruption activity.
. MEL.—A 1nh1b1t'ed the MEL-A
germination of Bacillus cereus o [28]
80%
spores.
. . Anti = MEL-A inhibited planktonic MEL-A
Pﬁ;:ﬂ;i:iﬂis microbial cells and biofilm of S. aureus. 80% [29]
activity * MEL-B inhibited the growth of
bovine mastitis causative S. MEL-B [30]
aureus.
= The combination of MEL-A with
hlgh hydrosta‘tl'c pressure led'to 3 MIEL-A
higher bactericidal effect against 809 [31]
Listeria monocytogenes (than the ’
hydrostatic pressure alone).
* MELs inhibited the growth of E.
coli and P. aeruginosa. The
combination of MELs and NA [32]
antibiotics potentiated antibiotics’
efficiency.
Applicati MEL
pprcation Specification Brief description of the results ®  References
area used
= MELs induced the
differentiation of Human MELS
Biomedical/ Promyelocytic Leukemia cells mixture [33,34]
Pharmaceutics . HL60 and inhibited Protein
. . Antitumor . . .
(continuation) Kinase C activity.
= MELs inhibited Tyrosine Kinase MELs [35]

activity, inhibiting proliferation mixture


https://doi.org/10.20944/preprints202404.0958.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2024 d0i:10.20944/preprints202404.0958.v1

and inducing the differentiation
of Human Myelogenous

Leukemia cells K562.
* MEL-B reduced cell viability and ~ MEL-B
induced death by apoptosis of 95% [36]

B16F10 Mouse Melanoma cells. Toyobo
* MELSs stimulated Tyrosinase
activity and melanin production,
leading to apoptosis and cell-
differentiation of B16 Mouse
Melanoma cells.

NA [37]

* MELs inhibit the secretion of
inflammatory mediators by Rat MEL-A
Basophilic Leukemia RBL-2H3 and [38]
cells (a mast cell line). MEL-B

Anti-
inflammatory

= MELs induce the outgrowth of
neurites from and enhance the

Neural repair activity of acetylcholinesterase in =~ MEL-A [39,40]
PC12 pheochromocytoma cells.

= MEL-A increased the efficiency
of gene transfection by cationic
liposomes with a cholesterol
derivative or DC-Chol.
* MEL-A-containing cationic
liposome was able to deliver MEL-A [44]
siRNA rapidly and directly.
= MELs were used as stabilizing
agents for silver and zinc oxide
nanocomposites, gold
nanoparticles and for silver and
magnetic iron oxide
nanocomposites synthesis, to be
used in human liver cancer cells
inhibition (HepG2).

* Nanoliposomes made of
soybean lecithin and cholesterol,
when incorporated with MEL-B,

have enhanced stability to pH 3-7
and deliver amoxicillin for

Helicobacter pylori infection

treatment in vivo.

MEL-A  [41-43]

Genetic NA [45-47]
material
transfection or

drug-
carrying

MEL-B,

Toyobo 48]

* MEL-B nanomicelles
successfully carried berberine for =~ MEL-B,
H. pylori biofilm disintegration Toyobo
and infection eradication.

[49]

* Preparation of MELs
Drug nanomiceles for drug delivery MELs
Delivery (clarithromyecin). It was shown mixture
that, by varying the pH, it is

[50]
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6
possible to control clarithromycin
delivery (pH 1.2, in 2 h, 37.1% of
drug was delivery, while, at pH
7.4, only 9.7% was released).
Immunoelobulin = MEL-A shows high binding
(O8O affinity towards HIgG, HIgA and ~ MEL-A [51,52]
purification
HIgM.
Applicati EL
pplication Specification Brief description of the results MELs References
area used
* Emulsification of pseudo- Dam
ceramide is stabilized by Chemic};ls [53]
molecular association with MELs.
MELSs stabilize the foaming,
Formulation emuls1f1cat10n, al"ld wetting MELS [54]
e . properties of Sodium Lauryl mixture
stabilization
Sulphate.
= Coating cosmetics (lip primer,
foundation and sunscreen)
pigments with MELs, enhance NA 53]
their skin adhesion.
= MELs inhibit melanogenesis via MELs
suppressing ERK-CREB-MiTF- from
Skin tyrosinase signalling in human
oo DKBIO, [22]
whitening melanocytes and a three-
. . . MEL-B
dimensional human skin
. 85%
equivalent.
* MEL-A produced from soybean
. oil increases cultured Fibroblast
H‘T; Iﬁi‘t’z;h cells and 3D Human Skin model Bgﬁ;/A [56]
Cosmetics and P cells viability and activates e
personal care Human Papilla cells.
= MEL-A and MEL-B shown MEL-A
Damaged hair similar activity as ceramides for 99%
. : : : [57]
repair hair damage repair, and increase MEL-B
of hair flexibility. 90%
* MELs ameliorate UV A-induced
aquaporin-3 downregulation by MELs
suppressing c-Jun N-terminal from [23]
kinase phosphorylation in DKBIO
cultured human keratinocytes.
* MEL-A had a recovery effect on
EL-A
SDS damaged skin cells M [58]
Skin repair and * MEL-A and MEL-B produced
moisturization with olive oil show activities
similar ‘to r}a.tural ceramlfies on MEL-A
the cell viability and SDS-induced
. 100%
damage repair of cultured human [59]
, . MEL-B
skin cells; MEL-B increased the 1009
(o]

water content in the stratum
corneum and reduced water loss
by perspiration.
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= MELs with carbon chains with
10 or more carbons exhibit better
cell damage repair than a natural
C18 ceramide, particularly MEL-
D C10 (MELs purified by
acetylation level and carbon chain
size, see original paper)

* MEL-B protected both HaCaT
and 3D skin cell models from
UVB- and SDS-induced damage
by up-regulating the expression of
the skin barrier damage-
associated key mRNA genes and
proteins LOR, FLG, and TGM1
(MELSs mixture 34.94% MEL-A,
28.46% MEL-B and 11.32% MEL-
Q).

* MEL-B liposomes increase skin
permeability to water-soluble
compounds (calcein) in mice.

d0i:10.20944/preprints202404.0958.v1

MELs
purified

MELs
mixture.

MEL-B,
Toyobo

[60]

(19]

[61]

Antioxidant

* MEL-C has antioxidant activity
through DPPH radical and
superoxide anion scavenging and
protection of cultured human
fibroblast cells against H202-
induced oxidative stress

MEL-C
80.7-
92.5%

[21]

Anti
microbial

* MELs have antimicrobial
activity against Malassezia furfur,
the yeast that causes dandruff. A
shampoo formulated with MELs
and SLS had increased anti-
dandruff activity

NA

[62]

Application

Specification
area

Brief description of the results

MELs
used

References

Bioremediation Oil spills

= MELs increase the

bioavailability and
biodegradation rate of n-alkanes,

diesel, kerosene and crude oil
(MELSs mixture: 68% MEL-A, 28%
MEL-B and -C and 4% MEL-D).

= Patent using MELs as petroleum

demulsifier agents

NA
MELs
mixture

NA

[63,64]

[65]

[66]

Nutrient
carriers

= MELs were used in the
formulation of a stable
anthocyanin nutrient carrier

NA

[67]

Food
Food
preservation

* MEL-A enhances the rheological
properties and water holding
capacity of frozen dough,
minimizing the freezable water
content, while killing B. cereus
cells and spores

MEL-A

[28,68,69]
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* Emulsification of essential oils
with MEL-B (Thymus vulgaris,
Lippia sidoides and Cymbopogon
citratus), leads to an enhance of MEL-B [54]
essential oils” antioxidant activity
and preservation of antimicrobial
activity.

* MEL used as agrochemical
spreader for biopesticides for

Agro-spreader hydrophobic plant surfaces mlzi[(]tilfre [70]
(MELSs mixture: 58% MEL-A, 25%
MEL-B and 10% MEL-D).
= MEL solutions showed good MEL-A,
Wetting agent ~ wetting ability on poorly wettable =~ MEL-B, [70]
Gramineae plant surfaces. MEL-C
* MEL-Ag nanoparticles; activity
. . MELs
against mosquito larvae and . [71]
mixture
pupae
Powdery mildew was suppressed MEL-A [72]

on MEL-treated leaves.
= MELs, combined with other

Biocid
rocde ingredients, are used for NA [73]
nematodes control.
. MEL‘—B, biostimulant and MEL-B
phytotoxic effect on lettuce plant 959 [74]
germination and growth for given ;
. Toyobo
concentrations.
Fu‘el‘s * MEL-A enhances the fluidity of MEL-A [75]
additive fuels at low temperatures.
= MELs are used as precursors for
Others Jet biofuel fuel with lipid chains comprising NA [76]
6 to 14 carbons production.
Enhanced oil = MEL-B ‘can create e.mulsmns MEL-B [77]
recovery with heavy oils.
= MELs had stability over wide
pH and temperature ranges and
Detergent improved detergent efficiency in MELs [78,79]

removing stains from fabricina  mixture
proportion of 1:1 (w detergent/w
MELSs)
Suppression of agglomeration

Ice prevention . .
P and growth of ice particles

MEL-A [80]

4. Mannosylerythritol Applications Described in the Literature

Until 1993, the only function of MELs known was their surface tension-reducing capacity, since
then, new functions such as antimicrobial activity, nanostructure formation capacity and interaction
with certain cell types and molecules, have been discovered and consequently, new applications have
been proposed.
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4.1. Biomedical/Pharmaceutical Industry

In the field of medicine, MELs proposed applications are based on beneficial interactions with
various cell types, antimicrobial properties, as well as their nanostructure formation capabilities (e.g.
liposomes structures to transport more effectively drugs to their site of action).

In this regard, one of the first function to be explored was the antimicrobial activity, where
Kitamoto et al. (1993) [27], tested the activity of MEL-A and MEL-B on gram-positive bacteria (Bacillus
subtilis, Micrococcus luteus, Mycobacterium rhodochrous, Staphylococcus aureus), gram-negative bacteria
(Pseudomonas aeruginosa, Pseudomonas rivoflavina, Escherichia coli), and in fungi (Candida albicans,
Aspergillus niger). The researchers concluded that MELs exhibit a robust inhibitory effect on gram-
positive bacteria, along with some sensitivity from the Pseudomonas strains. The antimicrobial activity
was further studied in the food-borne pathogens S. aureus, Bacillus cereus and Listeria monocytogenes
[28-31,68]. It was observed that MELs antimicrobial effect is linked to its capacity to damage the
integrity of cell membranes. Additionally, it was observed that MELs interfere with the adhesive
capacity of bacteria, inhibiting biofilm formation. Due to these properties, MELs have the potential
to be used by the pharmaceutical or biomedical industry in equipment treatment and medical
implants, and by the food and feed industry as food preservatives and in the treatment of diseases in
farms. Additionally, in a recent conference paper [32] it was pointed out that MELs can potentiate the
activity of antibiotics.

Regarding the field of medicine, different studies have stated the use of MELs for
anticancerogenic applications, based on their ability to damage cancer cells, namely leukemia and
melanoma cells, and cause their differentiation [33-37]. Isoda et al. (1999) [39], reported that MELs
induce neurite outgrowth, opening the possibility of applications for neural damage repair and
Morita et al. (2011) [38] observed MELs’ anti-inflammatory capabilities by inhibiting inflammatory
mediators’ secretion by mast cells. The capacity to form liposomes opens a new range of possibilities
for MELs. Inoh et al. (2001 and 2011) [43,44], Ueno et al. (2007) [42] and Igarashi ef al. (2016) [41],
generated liposomes containing 1,2-Dioleoyl-sn-glycero-3-phosphatidylethanolamine, cholesterol
derivatives and MELs, and studied their effectiveness in gene and siRNA transfection in host cells.
MELs were able to increase the efficiency of liposome-mediated gene transfection, through an
enhancement of the interaction between the liposome and the host cell, and a reduction in the
immune responses and cytotoxicity, having a rapid and direct delivery. Thus, MELs have potential
as effective vectors in gene therapy.

The liposomes were further explored by Wu et al. (2022) [48], who designed a drug delivery
complex liposome for antibiotic delivery, using MEL-B, soybean lecithin (SL) and cholesterol
(LipoSC-MELB). These liposomes loaded with amoxicillin, an antibiotic, were tested against
Helicobacter pylori (responsible for gastritis and peptic ulcer disease in humans). Similarly, Cheng et
al. (2023) [49] loaded MELs nanomicelles with berberin and tested them in vivo. Remarkably, the
authors have shown these liposomes and nanomicelles can be used for treatment of H. pylori infection,
one of the diseases that affect most of world population. Similarly, MELs can be possibly used for
drug delivery, in the form of nanoparticles formed with metals [45-47]. MEL-A was also found to
have a high binding affinity towards immunoglobulins [51,52], opening the possibility for its
application in purification processes.

Overall, due to the complexity and pre-requirements needed for in-vivo tests for medical
applications, only some of the reports have results based on tests performed in realistic conditions,
namely the ones that relate to MELs antimicrobial properties and drug carrying for H. pylori
treatment. Nevertheless, more studies are required (clinical trials) to really enhance the use of MELs
in pharmaceutical applications.

4.2. Personal Care and Cosmetics

Due to MELs biocompatibility and positive interaction with the human body, many cosmetic
applications were proposed. In fact, there are already companies (Kao Corporation, DKBIO, Kanebo
Cosmetics) commercializing cosmetics containing MELs.
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On this field, the use of MELs can be focused on improving formulation bulk properties, where
MELSs can act as emulsifiers, foam stabilizers or enhancers of pigments adhesion to skin, or provide
higher value function, where MELs is used on the formulations as an active compound.

Several studies show that MELs have repairing and moisturizing action on skin comparable with
that of natural ceramides. Ceramides are precursor molecules for sphingolipids formation in cell
membranes and are present in large amounts in the skin stratum corneum, providing the barrier
property of the epidermis and playing a crucial role in the water retention capacity of the skin [81].
Research works, show that ceramides have beneficial effects on skin disorder treatment, and
currently, ceramides are becoming more commonly found in dermatological products.

Yamamoto et al. (2012) [59], Morita et al. (2009) [58] and Kondo et al. (2022) [60], in different
studies, induced cell damage on cultured human skin with the surfactant SDS, and then treated them
with MELs. The cells treated with MELs had high recovery rates, similar with the ceramide-treated
cells and increased the water content of skin and its water-holding capacity. The effect of MELs on
UV-damaged cells is also protective, in fact, Bae et al. (2019) [23] indicates that MELs induce the
activity of an aquaporin, a membrane protein that contributes to the water homeostasis of the
epidermis, increasing therefore, skin moisture.

Two reports from Morita et al (2010) tested MELs interaction with hair and hair-growth cells, the
results show that MELs have a similar reparation effect on hair damage as ceramides, as well as a
stimulation effect on papilla cells, crucial for hair growth [56,57]. In the same research group, the
potential of MELs as antioxidant agents was assessed using fibroblasts in oxidative stress, suggesting
the use of MELSs for anti-aging products. A study by Mawani et al. (2022) [62] showed that, by adding
MELs to anti-dandruff shampoo, the antimicrobial activity against the Malassezia furfur, the
microorganism that causes dandruff, is enhanced.

Bae et al. (2019)[22] observed that MELs inhibit melanogenesis in human melanocytes and a skin-
equivalent, opening the possibility of the development of a skin-whitening product. In fact, there is
a patent filed in 2017 for a skin-whitening composition containing MELs as the whitening agent [82].

4.3. Agriculture

Agricultural applications of MELs are mostly based on its tension-activity and bioactivity.
Fukuoka et al. (2015) [70] tested MELs applicability as an agro-spreading agent, due to its beneficial
interaction with hydrophobic plant surfaces, where MELs had the best performance among several
conventional surfactants in spreading and fixing the biopesticide in plant surfaces. Similarly, MELs
applied on wheat leaf surfaces was shown to prevent conidial germination of the pathogenic fungus
Blumeria graminis [72]. Thus, MELs have potential to be used as wetting, spreading agents and as
pesticides in agriculture.

Moreover, MELs toxicity against mosquito larvae and pupae was tested, a LC50 between 30-60
ug/mL was obtained, depending on the stage of the larvae, which is a moderate toxicity. On the other
hand, MELs-synthesised silver nanoparticles, shown to be highly toxic, with a LC50 of approximately
1 pg/mL. The authors propose that nanoparticles with silver increase the bioactivity of MELs against
mosquito larvae and pupae [71]. Still in the insecticide field, MELs are being applied in compositions
for nematode control [73]. A recent study by Matosinhos et al. (2023) [74], studied the effect of MELs
in lettuce seed germination, plant growth and root development, concluding that MELs can have
both a biostimulant and a phytotoxic effect, depending on their concentration.

4.4. Food and Feed Industry

As referred in section 4.1, the antimicrobial activity of MELs against food-borne pathogens,
opens possibilities for MELs to be applied in food and beverages preservation and in the treatment
of diseases in farms. In fact, regarding the last topic, a patent application claims the use of MELs for
a feed additive to prevent and treat infectious diseases caused by gram-positive bacteria in livestock,
avoiding the use of antibiotics, as well as to reduce the methane emissions associated with digestion
[83].
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Zanotto ef al. (2023) [54], evaluated the effect of MELs in essential oils activity stabilization and
solubilization. Essential oils are natural and effective agents for controlling microorganisms that
cause biodeterioration and disease, therefore they are good alternatives to chemical food
preservatives. However, essential oils are immiscible in water and are highly volatile, so they are
frequently mixed with surfactants for stabilization. MELs were able to create stable oil in water
emulsions, preserving the antimicrobial activity of the essential oils and increasing the antioxidant
activity.

Moreover, in two different studies, Shu ef al. (2019, 2022) [28,68], observed that MEL-A has a
strong antimicrobial activity against Bacillus cereus, killing 99.97% of the vegetative cells and 75.54%
of spores. Besides that, MELs improved the rheological properties of frozen dough by strengthening
the gluten network, enhancing the water-holding capacity of the frozen dough and reducing the free
water content. In the presence of MELs, the dough had a largest volume, a more uniform and porous
crumb structure [69]. These results suggest that MELs could potentially be used on flour products
storage and in baking industry.

The examples of patent application [67] describe the use of MEL:s for the construction of nutrient
carriers, together with lactoglobulins. This carrier has high encapsulation efficiency on anthocyanin,
maintaining its activity.

4.5. Environmental Responses

Applications on the field of bioremediation were proposed based mainly on MELs capacity to
interact with specific pollutant molecules. MELs interact positively with hydrocarbons, creating
emulsions and making them more bioavailable for hydrocarbon-consuming microorganisms to
biodegrade the oils, this effect was observed with n-alkanes, kerosene, diesel, petrol and light crude
oil [24,63,64,84] More recently, a formulation for an oil spill dispersant, comprising MELs, was
developed [65]. This formulation exhibits excellent interfacial properties and dispersibility
effectiveness under different mechanical energy and temperature conditions, comparable to those of
commercial chemical dispersants. On the other hand, a submitted patent claims the use of MELs as
demulsifying agents to separate water and petroleum emulsions, which can also be perceived as
bioremediation method, allowing the recovery of petroleum and treated water in separate streams
[66]. Therefore, MELs could be applied as novel and eco-friendly solutions for bioremediation of
hydrocarbon-contaminated water or soil.

4.6. Others

Although there are only a few reports assessing MELs potential to be used in detergents, this is
one of their potential applications. Like other surfactants, MELs has reducing surface tension
properties and emulsifying activity, therefore, they have detergent activity. Moreover, MELs are
stable at high temperatures and pHs, and, in a 1:1 portion with a commercial detergent, they improve
the efficiency of stain removal [78].

MELSs have possible applications in the petrochemical industry and be a promising agent for
enhanced oil recovery, especially due to maintaining stability and activity under extreme
temperatures, pH and salt concentration values [77,85]. Besides that, MEL-A improves the fluidity of
biodiesel and hydrocarbon fuels at low temperatures, opening the possibility for MELs to be applied
as fuel additives [86]. The uses of MEL:s as precursor for fuel production, through a transesterification
or hydrogenation reactions, and used in air, marine or land transportation has been patented [76].
Moreover, Kitamoto et al. (2001) [80] concluded that MELs prevent ice particle growth, making them
a promising ice agglomeration control agent.

The diversity of applications in which MELs can be used, suggests that there could be additional,
yet undiscovered, potential uses for this BS. The studies here highlight position MELs as
multifunctional molecules with exceptional properties, with the potential provide technical
advantages over chemical agents and other BS, on envisaged applications mentioned above. All these
properties open possibilities for MELs, not only as substitutes for existing compounds, but the
development of novel products where multiple features of this biomolecule can be utilized.
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5. Current and Future Perspectives About MELs in the Market

Undoubtedly, MELs present advantages over other surfactants, from their environmental
performance and biocompatibility with the human body to their effectiveness, conferred by their low
CAC and surface activity stability. Moreover, unlike chemical surfactants, MELs present several
different bioactivities described in the previous chapter, such as antioxidant, antimicrobial, cell
reparation and antitumor activity, widening their potential applications, fitting into areas where
chemical surfactants and even BS do not. Figure 1 summarises the main properties of MELs and their
fields of action. However, MELs still occupy a small share of the BS glycolipids market, with a market
value estimated at 3.3 M USD in 2022 [87] and this may be attributed to several factors.

Functions/Properties Applications
. Personal care and Cosmetics
Surface activity Formula stabilization;
Skin/hair repair;
Self- 34338 Moisturizer.
Antimicrobial 0"§; g C/€° “"IT;"“ Pharmz.iceut
Antitumor;
Antioxida Drug delivery;
Gene
Biocompatib Food and Feed
Preservative;
Biodegradab Nutrient
Bioremediation Oil
Low . .
Agricultu Cleaning products

Compared to other surfactants and BS, MELs are relatively recent molecules, the first studies
with MELs were reported in beginning of the "90s [88], as for RLs and SLs, the first studies are from
1949 [89] and 1961 [90], respectively. The chemical and bio-based chemically synthesized surfactant
production is very well established. Historically, the earliest evidences of soap manufacturing are so
old as 2800 BC (ISSN 0973-1792). Thus, there is less knowledge about MELs, and that is reflected on
the number of MELs-producing companies, which are Toyobo Corporation, Biotopia, Damy
chemicals, and very recently SurfACTinnov. Additionally, to the formulations mentioned in the sub-
section 4.2, Ecover and CJ CheilJedang have also incorporated MELs on their formulations. While, it
is possible that more companies may be using MELs in their formulations, such identification is
challenging due to the lack of public available information and difficulties to identify MELs in the
products ingredients list.

Concerning bioprocess development, which detailed review is out of the scope of this
manuscript, while SLs and RLs reported maximum productivities are 3.7 and 1.54 g/L/h, respectively,
MELSs production productivities are significant lower at values of 0.59 g/L/h [91]. Additional to lower
productivity and consequent needs on CAPEX investment, other important cost-drivers are related
with the use of pure substrates and the downstream process, which represents approximately 60% of
the total production costs [3]. These factors contribute to production cost of MELs that are not low
enough to facilitate their commercialization. An economic analysis on MELs production is not yet
available in the literature. However, considering titres of 100 g/L, SLs and RLs production cost was
estimated to be US$ 2.95/kg [92] and US$ 20-25/kg [93], respectively, thus it is expected that MELs
have an higher production cost than the two glycolipids. Despite the efforts to reduce glycolipids
costs production, costs for BS production are still more expensive than the ones for chemical
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surfactants (US$ 1-3/kg) [93]. In addition, the production scale of MELs has been reported to be
validated only at 1 m3 scale [94], meaning that it is still not possible to produce MELs in industrial
quantities, creating problems of availability and potentially lowering the interest from potential
formulation companies, which can use for SLs or RMs for preparation of their BS based products.

Therefore, lowering manufacturing costs and scaling up the process are necessary strategies to
increase MELs” market share. In this regard, there are already studies aiming to reduce MELs
production costs from the substrate point of view, by replacing the carbon and nitrogen sources with
industrial by-products. Glycerol [95], lignocellulosic materials [96], sweetwater from the fat-splitting
industry [97], cassava wastewater [98] and cheese whey [99] and are some of the substrates that have
been used to replace the hydrophilic carbon source, as for the hydrophobic carbon source, studies
with waste cooking oils have been done [99-101]. Contributing to costs reductions, Nascimento et al.
(2022) [99] successfully replaced the use of yeast extract and mineral supplementation in the
fermentation medium with cheese whey.

To increase productivity is an important strategy to decrease production costs, which relays on
optimization of fermentation conditions, namely quantities and type of nitrogen sources and of
hydrophilic and hydrophobic carbon sources; air supply and agitation; and microorganism strained
used, as different organisms have different productivities [102]. The fermentation modes currently
reported for MELs production are batch, fed-batch and repeated fed-batch fermentations [102].
However, other fermentation modes could be explored, such as solid-state fermentations, which are
being used for SLs production [103]. The choice of the microorganism is relevant not only for
increasing productivity, but also to define MELs congeners mixtures obtained. A review paper by
Saika ef al. (2018) [104] compiles the studies made that have recurred to genetic engineering to modify
MELs producers, with some of the strains described being able of more selective production of
specific MEL congeners and other stains able to produce novel derivatives of MELs. Additional
studies may result on increase

MELSs productivity and to expand MELs' possible industrial applications. Such studies can take
a process approach or focus on genetic modification of MELs producers and creation of recombinant
strains, with hosts other than the original species, as it is being performed for RLs [105]. On the other
hand, fermentation conditions used can also affect the final product purity and downstream process
intensity, namely concerning the steps needed to remove hydrophobic carbon source, when used in
excess. Note that may reports use high concentration of vegetable oils as substrates, which leads to
the accumulation of unconsumed and/or residual lipids, and therefore, decreased MELs purity
[25,26]. For some high-grade applications, like pharmaceuticals, the high downstream costs are
justified, since a highly pure product is required [3,26]. However, for applications of lower grade, like
bioremediation or agriculture, the purity of the product is not so important, and the crucial factor is
to ensure that the product is cost-effective, without compromising the final performance. For
example, is most of cosmetic formulations, lipids are also used, so the impurities present in MEL’s
crude extract, can be a benefit.

A strategy to decrease downstream costs is through solvent recycling. Most of the techniques
described recur to solvents such as ethyl acetate, chloroform, and n-hexane. When some of these
solvents are mixed, they may form azeotropes, and thus making more challenge efficient solvent
recycling by distillation [106]. Careful selection of the solvents used or using a single one solvent,
rather than mixtures, may avoid this problem [107]. In addition, the downstream processes can be
time-consuming, depending on the solvent, liquid-liquid extraction and evaporation are estimated to
take 2h per 100 mL and a silica-gel column chromatography can take from 1 day to 2 weeks [108].
Single solvent liquid-liquid extraction was reported to obtain MELs crudes with 66-75% purity
[26,109], which may be enough for low-grade applications and even for the cleaning and personal
care sectors. However, other downstream processes have been suggested on the basis of heat
differences[109], mesh separations [110] or membrane filtration [26,111], which can provide
alternative routes for cost efficient harvesting and purification of the MELs from the fermentation
broth.


https://doi.org/10.20944/preprints202404.0958.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 April 2024 d0i:10.20944/preprints202404.0958.v1

14

In resume, the reports presented illustrate the potential of MELs in terms of their properties and
applications. Such features may foster MELs possible ability to capture interesting market shares and
create a global traction, in particular using as entry markets niche sectors, willing to pay premium
prices, where there is a particular fit between MELSs properties and activities and envisage product
features, as is the case of cosmetic market. In particular, due to environmental concerns and the rising
awareness of the dangers of hazardous compounds present in cosmetic products, the personal care
market is increasingly searching for biological and organic products with similar performance as
chemical ingredients [112]. Namely, in 2023, the natural beauty products market size was estimated
to be US$ 37.9 billion, and expected to reach US$ 58.8 billion in 2032, growing at a 5.1% CAGR [112].
However, to increase MELs market share, it is important to strength actions towards: 1) scale and
improve productivity, which is essential to lowering production costs, to compete with SLs or RMs;
2) use residual raw materials as substrates, fostering circular economy approaches and optimize
downstream for added value applications, and 3) Validate target application, leveraging on the
specific properties of given mixtures of MELs congeners, thus enabling the creation of demand for
MELs production.
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