
Technical Note Not peer-reviewed version

The Behavior of the Travel Times in Drip

Irrigation, Using Supervised Machine

Learning and Optimizing Methods by

Python

Gregory Guevara Rodriguez *

Posted Date: 17 April 2024

doi: 10.20944/preprints202404.0955.v1

Keywords: drip irrigation; machine learning; hydraulic; fertigation

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

https://sciprofiles.com/profile/2206188


 

Technical Note 

The Behavior of the Travel Times in Drip Irrigation, 

Using Supervised Machine Learning and Optimizing 

Methods by Python 

Gregory Guevara Rodríguez 

Irrigation & Drainage Professor, EARTH University, Guácimo, Costa Rica; gguevara@earth.ac.cr 

Abstract: The importance of knowing the advance time in drip irrigation lines lies in its precision, as this 

influences the proper management of water and nutrients delivery. The mathematical calculation to determine 

the advance time is based on the general hydraulic flow equation, which relates the fluid velocity and the cross-

sectional area of the pipe to the volume of water flowing through it. However, in irrigation pipes, where the 

flow is a mixture of dripper properties, its pressure, the approach to solving the advance time is different, as it 

is the sum of individual advance times for each segment. To address this issue, Python 3.11 was used along 

with various libraries such as Pandas, NumPy, Matplotlib, Seaborn, and Scikit-learn to create a modeling 

environment and run algorithms that could predict outcomes. A program was developed that calculates the 

advance time for each segment of the drip line using partial velocities, and a dataset was generated that was 

used to train and test machine learning models. Several machine learning algorithms such as Linear Regression, 

Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Decision Trees, and Random Forests were 

implemented to predict the advance time. Additionally, SciPy optimize was used to obtain multivariable 

equations that describe the advance time in drip irrigation lines. Results showed that the dripper flow has the 

greatest influence on the advance time, followed by the diameter and distance. Decision Tree and SVM models 

had the best accuracy with scores above 98%. Equations were found to calculate the advance time in the 

complete drip line and in 95% of its length, with coefficients of determination close to 99.33%. This study 

demonstrated the importance of understanding the relationship between dripper parameters and travel time 

in drip irrigation, as well as the utility of machine learning and optimization tools for predicting and modeling 

this phenomenon. 

Keywords: drip irrigation; machine learning; hydraulic fertigation 

 

1. Introduction 

In fertigation, understanding the duration required for water to traverse the irrigation system 

before exiting through the dripper and reaching the soil is crucial. This quantification process 

typically involves three key steps. The first step involves calculating the travel time in the mainlines, 

which are the primary conduits carrying water throughout the system. The second step focuses on 

determining the travel time through the manifold, which distributes water to various branches of the 

system. Finally, the third step involves assessing the travel time in the dripline, which directly 

delivers water to the plants or soil [1, 2]. 

This research specifically addresses the intricacies of the third step, which is critical for 

optimizing fertigation practices. By delving into the dynamics of water flow and distribution at the 

dripline level, this study aims to provide insights and recommendations for enhancing the efficiency 

and effectiveness of fertigation systems. Through meticulous analysis and experimentation, this 

research endeavors to refine our understanding of how water travels through driplines, contributing 

to advancements in agricultural irrigation techniques. 

Understanding the travel time in drip irrigation lines is crucial during irrigation processes, as it 

directly impacts the precision of water and nutrient management. Accurate knowledge of travel time 

enables informed decisions, enhancing the accuracy of water and nutrient delivery [3]. The 
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calculation of travel time relies on fundamental hydraulic equations, particularly the general flow 

Equation. This equation establishes a relationship between fluid velocity, pipe cross-section, and the 

volume of water passing through the pipe [4]. 

𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦 = 𝑓𝑙𝑜𝑤 ∙ 𝑎𝑟𝑒𝑎−1                                 (1) 

The travel time can be determined by multiplying the velocity within the pipe by the distance 

over which the system flows. 

𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒 = 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∙ 𝑣𝑒𝑙𝑜𝑐𝑖𝑡𝑦−1                        (2) 

These equations are straightforward to solve in a non-complex pipe system where the inflow 

matches the outflow. However, in irrigation pipes, as illustrated in Figure 1 , the flow consists of a 

combination of dripper properties, pressure variations, and their quantities. As a result, the total flow 

within the pipe experiences a consistent and gradual decrease along the hose's length, leading to a 

corresponding decrease in velocity. Consequently, the methodology for calculating travel time must 

be adapted, involving the summation of individual travel time for each segment. 

 

Figure 1. Diagraph to describe the flow in irrigation driplines. 

In situations where multiple drippers are present, as commonly seen in drip lines, determining 

the travel time involves first establishing partial velocities (vi) for each distance along the drip line. 

Subsequently, using these partial velocities, the partial travel time can be calculated. 

𝑣𝑖 =
𝑄

𝐴
=

4∙𝑞∙𝑛

𝜋∙∅2                                               (3) 

𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒 =  ∑
𝑆

𝑣𝑖

𝑛
𝑖=1                                           (4) 

It presents a valuable opportunity for obtaining accurate travel time estimations in auto-

compensated drip lines, where there is minimal variance in flow across a range of pressures. In 

contrast, when working with non-compensated hoses, the flow rate of the dripper is contingent upon 

the pressure within the hose (P), as per the Torricelli Equation [5]: 

𝑞 = 𝑘 ∙ 𝑃𝑥                                       (5) 

In other words, the K in Torricelli formula is a constant as float, and the x exponent are always 

a 0 to auto compensated driplines and 0.45 for no auto compensated [6, 7]. 

The intricate organization of data and calculations required for a single travel time calculation 

can be arduous and lacks in-depth analysis. Hence, this paper aims to delve into the interplay among 

emitter flow rate, distance, length, and diameter of drip lines concerning lead time calculation. 

Additionally, it proposes a streamlined approach utilizing hydraulic simulations via Python and 

machine learning algorithms to obtain these insights effortlessly. 
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2. Materials and Methods 

This project was undertaken using Python 3.11 [8]. With Jupyter notebook [9] was established an 

Interactive Development Environment (IDE) for constructing models and executing algorithms for 

predictive analysis. The data processing aspect was facilitated by the Pandas [10] and NumPy [11] 

libraries, offering robust capabilities for organizing and cleaning data. Graphical representations and 

data analyses were facilitated using the Matplotlib [12] and Seaborn [13] libraries, while machine 

learning algorithms were executed within the scikit-learn environment [14] and SciPy [15]. Integration 

of these tools and processes was seamlessly achieved through with the E-Notebook, on IDE was 

performed the process as shown in Figure 2. Python environment  

 

Figure 2. Python environment and project road map. 

The project involved the development of software designed to calculate travel times for each 

segment of the drip line using partial velocities derived from Formulas (3)– (4). The program utilized 

inputs such as flow rate in liters per hour (l·h-1), distance between drippers (m), hose diameter (mm), 

and hose length (m), as detailed in Table 1. These inputs were processed through iterative loops to 

calculate travel times for each distance between water outlets. 

A significant challenge encountered during the project was the need to program multiple loops 

to generate a comprehensive dataset. This dataset needed to cover a wide range of parameters to 

ensure accuracy in lead time predictions. Specifically, the dataset included eight flow rate variations 

ranging from 0.4 to 3.5 l∙h-1, distances between drippers ranging from 0.2 to 0.9 meters with 0.1m 

increments, and hose lengths varying from typical applications form smallholder until large scale 

projects (ranging from 20 to 300 m). Additionally, hose diameters of 13 mm, 16 mm, and 20 mm, 

which are commonly used in performance settings, were considered. Table 1 provides a detailed 

overview of the inputs utilized for the simulation. 

Table 1. Inputs for simulation of the advance time, using the parameters of the drip irrigation hose [7]. 

Dripper Parameter   Dripline Parameter  

Flow (l·h-1) Spacing (m) Length (m) Diameter (mm) 

0.4 0.2 20  
0.6 0.3 40 

0.8 0.4 80 13.6 (Heavy Wall Dripline) 

1.0 0.5 120 16.2 (Thin & medium wall dripline) 

1.6 0.6 160 22.2 (Thin & medium wall dripline) 

2.3 0.7 200 
 3.0 0.8 250 

3.5 0.9 300 
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The algorithm used to simulate the timing for the multiple inputs was taken from Table 1. The 

system names the variables flow, distance, diameter, and length as lists in Python, and the function loops: 

for -in [16] was running to cover the while range of variables. 

******************************************************** 

# Variables 

diameter=[13.6,16.2,22.2] 

spacing= [0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9] 

flows=[0.4,0.6,0.8,1.0,1.6,2.3,3,3.5] 

length=[20,40,80,120,160,200,250,300] 

# loops for testing the whole variables 

for diam in diameter: # testing a range of typical diameter.  

    dia=diam 

    Area= 3.141516*(dia/2000)**2 

    for ln in length: #testing a range of lengths.  

        L=ln 

        for fls in flows: # testing a range of typical dripper flows.  

            q=fls 

            for sp in spacing: #testing dripper spacing by 10 cm.  

                S=sp 

                outlets=L/S 

                Q=outlets*q 

                qq=Q+q 

  … 

******************************************************** 

The algorithm generates various alternative solutions for travel time corresponding to each 

specific combination of factors. Upon completion of this process, we obtained a total of 1536 solutions 

for the same quantity of combinations. Subsequently, this dataset was utilized to test and train a 

predictive model capable of making accurate predictions. The outcoming dataset (data frame using 

Pandas: df in code) included two types of travel time: one calculated for the entire length of the pipe 

and another for 95% of the pipe's length. 

******************************************************** 

# calculation of partial flows, velocities, and travel time 

for x in range (1, int(outlets)+1:  

qq=qq-q # decrease the flow for each outlet 

ss=ss+S #step for outlet index 

df1.at[x,'outlets']=x # column N outlet " 

df1.at[x,'long_acum']=ss # column accumulate length" 

df1.at[x,'q_tramo']=qq 

#calculating velocities 

       df1["v_tramo"]=df1["q_tramo"]/Area/3600/1000 

   df1["t_tramo"]=S/df1["v_tramo"] 

    max_vel=Q/Area/1000/3600 

# Travel times  

        df1["t_tramo_acum"]=df1['t_tramo'].cumsum()/60 

        travel_time= round(df1["t_tramo"].sum()/60,2) 

        travel_time_95=df1.loc[int(outlets*.95),'t_tramo_acum'] 

******************************************************** 

The Hazen-Williams equation is a well-established formula in fluid mechanics and hydraulic 

engineering utilized for computing the head loss in pipes. Its significance is particularly notable in 

the realm of water distribution system design and analysis, including irrigation networks, owing to 

its direct influence on flow dynamics as described by Torricelli's Equation (5). Consequently, 
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understanding and accurately incorporating head loss calculations are crucial for optimizing system 

performance and ensuring efficient fluid transport [5, 6, 17]. 

******************************************************** 

        df["headloss"]= 1.131*10**9*(df["q_tramo"]/1000/140)**1.852*S*dia**-4.872 

        HF=round(df["headloss"].sum(),2) 

******************************************************** 

With the solutions and machine learning tools, we trained and tested models that could describe 

[18] and predict the advance time and searched for an equation that could provide the solution with 

a simple calculation. All data was divided into 75% for training data and 25% for testing purposes. 

Finally setting the hyperparameter for each method to look for the best results for training and testing 

trials. 

******************************************************** 

def Data_Segregation(features,targets, x=5, verification = False,split=0.75 

  from sklearn.model_selection import train_test_split 

  X_train, X_test, y_train, y_test = train_test_split(features,targets,  

  random_state=x, test_size=split)  

******************************************************** 

Supervised learning techniques were employed using Scikit-learn library (Table 2). The trial 

encompassed the utilization of various hyperparameters specific to each method. For instance, the 

Ordinary Least Squares Linear Regression method involved configuring the hyperparameter alpha. 

Meanwhile, for Support Vector Machine (SVM), the hyperparameters included C, Kernel function, and 

Gamma function activator. Nearest Neighbors Regression (KNN) required adjustments to the number of 

neighbors, weights, and the algorithm used. Similarly, in the cases of Random Forest and Decision Tree, the 

hyperparameters N_estimators, Criterion, and Max depth were set [14, 19]. It is noteworthy that a subset 

of hyperparameters was chosen for each method, emphasizing those deemed most crucial [20]. 

Hyperparameters are critical variables that govern the learning process and dictate the values of 

model parameters acquired by a learning algorithm. The prefix 'hyper_' signifies their top-level 

status, denoting their control over the learning procedure and the consequent model parameters [21]; 

selecting, and configuring hyperparameter values precedes the training phase of the model. 

Consequently, hyperparameters are deemed external to the model since their values remain fixed 

and unalterable during the learning or training process [22]  

Table 2. Machine Learning algorithms used from Scikit-learn [14]. 

Model Description 
Hyper-

parameters setted  

Linear Regression 

Linear Regression fits a linear model with coefficients w = 

(w1, …, wp) to minimize the residual sum of squares between 

the observed targets in the dataset, and the targets predicted 

by the linear approximation. 

Alpha 

Support vector 

machine (SVM) 

the model produced by Support Vector Regression depends 

only on a subset of the training data, because the cost function 

ignores samples whose prediction is close to their target 

C 

Kernel 

Gamma 

Nearest Neighbors 

Regression (KNN) 

The basic nearest neighbors’ regression uses uniform weights: 

that is, each point in the local neighborhood contributes 

uniformly to the classification of a query point. 

Neigborns 

Weights 

Algorithm 

Decision tree 

It’s a non-parametric supervised learning method. The goal is 

to create a model that predicts the value of a target variable 

by learning simple decision rules inferred from the data 

features. A tree can be seen as a piecewise constant. 

N_stimators 

Criterion 

Max depth 
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Random Forest 

The Scikit learn ensemble module includes two averaging 

algorithms based on randomized decision trees, the Random 

Forest algorithm and the Extra-Trees method. Both 

algorithms are perturb-and-combine techniques specifically 

designed for trees. This means a diverse set of classifiers is 

created by introducing randomness in the classifier 

construction. The prediction of the ensemble is given as the 

averaged prediction of the individual classifiers. 

N_stimators 

Criterion 

Max depth 

To enhance the efficiency of our calculation process and derive a more streamlined formula, we 

leveraged the capabilities of SciPy optimize [15], a comprehensive toolkit renowned for its robust 

optimization functions while adhering to specified constraints. This toolkit encompasses a wide array 

of solvers tailored for diverse problem types, including non-linear problems, both local and global 

optimization algorithms, linear programming, as well as constrained and unconstrained least 

squares, root finding, and curve fitting algorithms. More specifically, we employed the Sequential 

Least Squares Programming (SLSQP) method within SciPy optimize to iteratively minimize a scalar 

objective function that involves one or more variables. This iterative approach converges towards 

optimal solutions by locally approximating the objective function through quadratic models and then 

updating the current solution based on the approximated model. This method efficiently handles 

both linear and non-linear constraints, making it well-suited for a wide range of optimization 

problems encountered in engineering and scientific domains [14, 15]. 

By employing the SLSQP method in conjunction with SciPy optimize, we were able to iteratively 

refine our calculations, ensuring mathematical accuracy and convergence towards optimal solutions 

while accounting for specified constraints and considerations inherent in the problem domain [23]. 

Model Evaluation  

The evaluation of results was based on the R-squared value, which served as a metric for 

assessing the performance [20, 24]. 

The coefficient of determination R2 is a fundamental metric used to assess the effectiveness of a 

statistical model in predicting future outcomes. It quantifies the proportion of the variance in the 

dependent variable (often referred to as the target variable) that is explained by the independent 

variables (predictors) included in the model. This metric ranges from 0 to 1, with higher values 

indicating a better fit of the model to the data. When R2 takes a value of 1.0, it signifies a perfect 

prediction where the model's predicted values perfectly match the actual observed values of the 

target variable. This scenario implies that all the variability in the target variable can be explained by 

the predictors included in the model, making it an ideal outcome [19]. Conversely, R2 can also take 

negative values, which might seem counterintuitive at first glance. This situation arises when the 

model's predictions are so poor that they perform worse than a simple horizontal line that represents 

the mean of the target variable. In such cases, the model fails to capture any meaningful pattern or 

relationship in the data, leading to a negative R2 [25]. Mathematically, was calculated as: 

𝑅2 =
∑(𝑦𝑖−𝑝𝑖)2

∑(𝑦𝑖−ȳ𝑖)2                                (6) 

where: yi are the values that the target variable takes pi are the prediction values and ȳi is the average 

value of the values taken by the target variable. 

3. Results 

General behaviors of the travel time  

The travel time results between drippers in drip irrigation lines exhibit exponential growth 

(Figure 3..a) due to the rapid decrease in velocity, caused by the flow delivered by the dripper along 

the pipe. This relationship is inverse, indicating that the travel time is inversely proportional to the 

velocity. It is evident that water takes longer to traverse the pipe as it nears the end. Figure 3..b further 

illustrates the relationship with accumulated pressure head loss, showing an inverse correlation as 

well. The reduction in velocity results in a decrease in pressure drop between the drippers along the 
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pipe, which ultimately contributes to maintaining the flow balance and precision of the irrigation 

process. Both graphs demonstrate how the decreasing flow in the driplines affects the travel time of 

water and nutrients in driplines 

An additional noteworthy observation is depicted in Figure 3..c, which shows the relative travel 

time versus the relative length of the dripline. The graph indicates a favorable lead time in a shorter 

time span, particularly noticeable towards the left side. Practically, this suggests that if the water 

covers 95% of the length, it will have advanced 50% of the total time. This statistic is remarkable: the 

furthest 5% of the drip line requires 50% of the remaining lead time. Moving forward, this document 

will focus on deriving equations for calculating travel time for both the total length of driplines and 

95% of their length. 

This observation underscores a rule of thumb: halving the flow rate of the dripper may result in 

a doubling of travel time in driplines. This insight is crucial for making informed decisions during 

project planning and management. 

 

Figure 3. Hydraulic behavior in dripline. (a) Shows relationship between the accumulated head loss 

versus the distance in the irrigation dripline, in (b) shows the decreasing velocity along the pipe. (c) 

Shows the relative percent of length of dripline which responds to the relative advance time. 

Based on the influence of variables in calculating travel time using the decision tree regression 

model, as shown in Figure 4..b, the flow rate emerges as the most influential factor, accounting for 

over 56% of the variance in lead time. In comparison, variables such as diameter and distance each 

contribute just under 18%. Notably, opting for a lower flow rate leads to an increase in lead time, 

highlighting an important consideration for project planning (Figure 4..a). 

 

Figure 4. Effect of the flow in travel time. (a) It Shows the difference travel times to different flow’s 

dripper. (b) It shows the importance of ranking features to predict the travel times in driplines. 

Model Predict for travel time.  
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In search of relationships as an exploratory analysis, several interpretive plots were made, 

starting with a pair plot (Figure 5..a) in which the interaction of the variables flow, distance, length, 

and diameter with travel time was established. There is a strong relationship especially with the flow 

emitter, where its rate of increase is inversely proportional to the travel time with an R2 close to 0.4 

(Figure 5. b); the distance and diameter have a proportional relationship with the travel time of water, 

its R2 was less than the correction of flow but greater than the links of length (Figure 5..c & d), the 

worse return of length makes sense because it directly affects the amount eventually dropper and 

with the total flow, becoming a recurrent input (Figure 5.e).  

Based on the graph, it appears feasible to develop a regression model among the variables, 

particularly focusing on the flow rate, diameter, and spacing of the dripper. However, the variable 

length does not seem to exhibit a strong correlation with any of the feature regressors.  

 

Figure 5. Analysis of the variables which influence the advance time in driplines and the specific 

impact of these variables. (b) Shows the effect in travel time for specific flows drippers, in (c) shows 

the response of the advance time to the spacing of dripper, (c y d) present the relationship between 

the length and diameter of driplines in the calculation of the travel time. In all the graphs present the 

time advance for 100% of length and 95% of length, and correlation of the dispersed data. 

To develop a robust travel time prediction model in driplines, an extensive exploration of 

various machine learning algorithms was conducted. The objective was to identify the optimal 

combination of hyperparameters that would yield the highest predictive accuracy. This process 

involved training multiple models using different hyperparameter configurations. 

Figure 6 illustrates a segment of the calibration process, which was crucial for optimizing model 

performance. For instance, Figure 6.c showcases the impact of varying the number of k-neighbors in 

the k-Nearest Neighbors (KNN) method, revealing an inversely proportional relationship with the 

predictive score. This graphical representation not only highlights the importance of hyperparameter 

tuning but also emphasizes the need for balanced values to mitigate issues such as underfitting or 

overfitting. 

Utilizing such visual aids proved instrumental in achieving superior results, as they facilitated 

the identification of hyperparameter settings that not only maximized predictive accuracy but also 

maintained a suitable balance between model complexity and generalization. 
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Figure 6. Calibration hyperparameters process, by training and testing scores for the different 

machine learning methods. 

Table 3 presents a comprehensive overview of the scores achieved by different methods along 

with their corresponding optimal hyperparameter settings. Notably, the Decision Tree and Support 

Vector Machine (SVM) methods emerged as the top performers, boasting accuracy rates exceeding 

98%. Moreover, both methods exhibited remarkably similar scores for both training and testing data, 

indicating a high level of predictive capability and generalization. 

In contrast, the K Nearest Neighbor (KNN) and Random Forest methods, characterized by their 

classification approach, demonstrated a notable discrepancy between their training and testing 

scores. While they achieved impressive scores during training, suggesting a good fit to the data, their 

testing scores were slightly lower, indicative of potential underfitting issues. This disparity suggests 

that these methods may have attempted to group diameter observations too closely, resulting in 

reduced performance when applied to unseen data. 

Furthermore, the Voting Regressor method, which combines multiple linear regression 

techniques such as Ridge Regression, Ordinary Least Squares, and Random Forest, showcased a 

robust performance with a commendable score. This sophisticated ensemble approach leverages the 

strengths of individual regression methods, resulting in a more reliable prediction model compared 

to relying on any single method independently. 

Table 3. Results for the machine learning algorithm in the advance time prediction 

Model 
Training 

Score 

Testing 

Score 
hyperparameters setting 

Decision Tree Regressor 0.9999 0.9833 
n_estimators = 10, criterio = squared_error, 

max_depth = 50 

Support Vector Machine 

(SVM) 
0.9911 0.9801 kernel = rbf, C = 10000 and gamma = auto 

Random Forest 0.9847 0.9573 
n_estimators = 3, criterio = squared_error 

,max_depth = 3 

Voting Regressor 0.9896 0.9801 
n_estimators = 3, criterio = squared_error, 

max_depth = 3 

K Nearest Neighbor 

(KNN) 
0.9582 0.8280 

neighbors = 2, weights = uniform and algorithm 

= auto 

linear regression 0.6161 0.6680 Alpha = 0.001 
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After exploring machine learning algorithms from the Scikit-learn library, we transitioned to 

utilizing the capabilities of the SciPy library to derive a multivariable potential equation. This 

approach involved minimizing a function of several variables, aiming to articulate the hydraulic 

phenomenon through an equation that could facilitate time advancement calculations within 

spreadsheet environments. Our objective was twofold: to develop an equation for estimating travel 

time across the entire dripline and another equation specifically tailored for predicting travel time 

within the ninety-five percent segment of the drip hose, which approximates half of the total travel 

time. 

Through rigorous analysis and optimization, we successfully derived two equations with high 

accuracy, as evidenced by the coefficient of determination reaching 99.33%. This high coefficient of 

determination signifies a robust fit of the equations to the observed data, indicating their efficacy in 

accurately predicting travel times. These equations not only provide a mathematical framework for 

understanding the hydraulic dynamics but also offer practical utility by enabling straightforward 

time advance calculations within spreadsheet environments, enhancing the applicability and 

accessibility of our findings: 

travel timedriplines 

= 0.0912 ∙  
spacing0.7824 ∙ length0.1928 ∙ diameter2

flowdripper
 

travel  time 95% dripline 

= 0.1087 ∙  
spacing0.9627 ∙ length0.0418 ∙ diameter2

flowdripper
 

The properties of the dripline include its length (measured in meters) and diameter (measured 

in millimeters), while the spacing between drippers (measured in meters) and the flow rate 

(measured in l·h-1) of each dripper are considered dripper-specific properties. By considering these 

variables, we were able to derive the travel time equation. 

4. Conclusions 

This research delved into the intricate dynamics of water flow and distribution in fertigation 

systems, particularly focusing on travel time calculations within driplines. Through a meticulous 

methodology involving Python simulations, machine learning algorithms, and optimization 

techniques, significant insights and advancements were achieved [22]. 

The study identified the exponential growth of travel time between drippers in drip irrigation 

lines, highlighting the inverse relationship between travel time and velocity. This understanding is 

crucial for optimizing fertigation practices and enhancing water and nutrient management precision. 

Furthermore, the impact of various factors such as flow rate, diameter, and spacing on travel time 

was thoroughly analyzed, leading to the development of robust predictive models [19, 26]. 

Machine learning algorithms, including Decision Tree Regressor and Support Vector Machine 

(SVM), demonstrated exceptional accuracy in predicting travel times. The integration of SciPy 

optimization further refined these predictions, resulting in high-fidelity equations for estimating 

travel times in both the entire dripline and the 95% segment [24]. 

The derived equations offer practical utility and mathematical precision, empowering 

agricultural practitioners to make informed decisions and enhance the efficiency of fertigation 

systems. Overall, this research contributes significantly to advancing agricultural irrigation 

techniques and optimizing water and nutrient delivery in fertigation processes [27]. 

Data Availability Statement: The data presented in this study are available on https://github.com/greko-

guevara/travel_time_driplines/blob/main/travelTime.ipynb : . 
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