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Abstract: The importance of knowing the advance time in drip irrigation lines lies in its precision, as this
influences the proper management of water and nutrients delivery. The mathematical calculation to determine
the advance time is based on the general hydraulic flow equation, which relates the fluid velocity and the cross-
sectional area of the pipe to the volume of water flowing through it. However, in irrigation pipes, where the
flow is a mixture of dripper properties, its pressure, the approach to solving the advance time is different, as it
is the sum of individual advance times for each segment. To address this issue, Python 3.11 was used along
with various libraries such as Pandas, NumPy, Matplotlib, Seaborn, and Scikit-learn to create a modeling
environment and run algorithms that could predict outcomes. A program was developed that calculates the
advance time for each segment of the drip line using partial velocities, and a dataset was generated that was
used to train and test machine learning models. Several machine learning algorithms such as Linear Regression,
Support Vector Machines (SVM), K-Nearest Neighbors (KNN), Decision Trees, and Random Forests were
implemented to predict the advance time. Additionally, SciPy optimize was used to obtain multivariable
equations that describe the advance time in drip irrigation lines. Results showed that the dripper flow has the
greatest influence on the advance time, followed by the diameter and distance. Decision Tree and SVM models
had the best accuracy with scores above 98%. Equations were found to calculate the advance time in the
complete drip line and in 95% of its length, with coefficients of determination close to 99.33%. This study
demonstrated the importance of understanding the relationship between dripper parameters and travel time
in drip irrigation, as well as the utility of machine learning and optimization tools for predicting and modeling
this phenomenon.

Keywords: drip irrigation; machine learning; hydraulic fertigation

1. Introduction

In fertigation, understanding the duration required for water to traverse the irrigation system
before exiting through the dripper and reaching the soil is crucial. This quantification process
typically involves three key steps. The first step involves calculating the travel time in the mainlines,
which are the primary conduits carrying water throughout the system. The second step focuses on
determining the travel time through the manifold, which distributes water to various branches of the
system. Finally, the third step involves assessing the travel time in the dripline, which directly
delivers water to the plants or soil [1, 2].

This research specifically addresses the intricacies of the third step, which is critical for
optimizing fertigation practices. By delving into the dynamics of water flow and distribution at the
dripline level, this study aims to provide insights and recommendations for enhancing the efficiency
and effectiveness of fertigation systems. Through meticulous analysis and experimentation, this
research endeavors to refine our understanding of how water travels through driplines, contributing
to advancements in agricultural irrigation techniques.

Understanding the travel time in drip irrigation lines is crucial during irrigation processes, as it
directly impacts the precision of water and nutrient management. Accurate knowledge of travel time
enables informed decisions, enhancing the accuracy of water and nutrient delivery [3]. The
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calculation of travel time relies on fundamental hydraulic equations, particularly the general flow
Equation. This equation establishes a relationship between fluid velocity, pipe cross-section, and the
volume of water passing through the pipe [4].

velocity = flow - area™ (1)

The travel time can be determined by multiplying the velocity within the pipe by the distance
over which the system flows.
travel,,, = distance - velocity ™! (2)

These equations are straightforward to solve in a non-complex pipe system where the inflow
matches the outflow. However, in irrigation pipes, as illustrated in Figure 1, the flow consists of a
combination of dripper properties, pressure variations, and their quantities. As a result, the total flow
within the pipe experiences a consistent and gradual decrease along the hose's length, leading to a
corresponding decrease in velocity. Consequently, the methodology for calculating travel time must
be adapted, involving the summation of individual travel time for each segment.

Length of dripline (L)

Spacing by dripper (S) Dripper
B —

Diameter (:M/' flow ———» /
T
O
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Figure 1. Diagraph to describe the flow in irrigation driplines.

In situations where multiple drippers are present, as commonly seen in drip lines, determining
the travel time involves first establishing partial velocities (vi) for each distance along the drip line.
Subsequently, using these partial velocities, the partial travel time can be calculated.

Q _ 4qn
Z T g2 (3)

vV =

S
traveliime = ?:1 U_l 4)

It presents a valuable opportunity for obtaining accurate travel time estimations in auto-
compensated drip lines, where there is minimal variance in flow across a range of pressures. In
contrast, when working with non-compensated hoses, the flow rate of the dripper is contingent upon
the pressure within the hose (P), as per the Torricelli Equation [5]:

q=k-P* ®)

In other words, the K in Torricelli formula is a constant as float, and the x exponent are always
a 0 to auto compensated driplines and 0.45 for no auto compensated [6, 7].

The intricate organization of data and calculations required for a single travel time calculation
can be arduous and lacks in-depth analysis. Hence, this paper aims to delve into the interplay among
emitter flow rate, distance, length, and diameter of drip lines concerning lead time calculation.
Additionally, it proposes a streamlined approach utilizing hydraulic simulations via Python and
machine learning algorithms to obtain these insights effortlessly.
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2. Materials and Methods

This project was undertaken using Python 3.11 [8]. With Jupyter notebook [9] was established an
Interactive Development Environment (IDE) for constructing models and executing algorithms for
predictive analysis. The data processing aspect was facilitated by the Pandas [10] and NumPy [11]
libraries, offering robust capabilities for organizing and cleaning data. Graphical representations and
data analyses were facilitated using the Matplotlib [12] and Seaborn [13] libraries, while machine
learning algorithms were executed within the scikit-learn environment [14] and SciPy [15]. Integration
of these tools and processes was seamlessly achieved through with the E-Notebook, on IDE was
performed the process as shown in Figure 2. Python environment
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. Data
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Modelling

* Behaviors Graph

« data set o clean * Variable relatg)n « Modelling
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Figure 2. Python environment and project road map.

The project involved the development of software designed to calculate travel times for each
segment of the drip line using partial velocities derived from Formulas (3)- (4). The program utilized
inputs such as flow rate in liters per hour (I'h-!), distance between drippers (m), hose diameter (mm),
and hose length (m), as detailed in Table 1. These inputs were processed through iterative loops to
calculate travel times for each distance between water outlets.

A significant challenge encountered during the project was the need to program multiple loops
to generate a comprehensive dataset. This dataset needed to cover a wide range of parameters to
ensure accuracy in lead time predictions. Specifically, the dataset included eight flow rate variations
ranging from 0.4 to 3.5 I'h, distances between drippers ranging from 0.2 to 0.9 meters with 0.1m
increments, and hose lengths varying from typical applications form smallholder until large scale
projects (ranging from 20 to 300 m). Additionally, hose diameters of 13 mm, 16 mm, and 20 mm,
which are commonly used in performance settings, were considered. Table 1 provides a detailed
overview of the inputs utilized for the simulation.

Table 1. Inputs for simulation of the advance time, using the parameters of the drip irrigation hose [7].

Dripper Parameter Dripline Parameter
Flow (I'h) Spacing (m) Length (m) Diameter (mm)

0.4 0.2 20

0.6 0.3 40

0.8 0.4 80 13.6 (Heavy Wall Dripline)

1.0 0.5 120 16.2 (Thin & medium wall dripline)
1.6 0.6 160 22.2 (Thin & medium wall dripline)
2.3 0.7 200

3.0 0.8 250

3.5 0.9 300
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The algorithm used to simulate the timing for the multiple inputs was taken from Table 1. The
system names the variables flow, distance, diameter, and length as lists in Python, and the function loops:
for -in [16] was running to cover the while range of variables.

43 e 43 2 e 3 e e 3 3 43 3 4 43 3 4 3 4 e e 4 3 4 3 e e e 3 e A S A A S K

# Variables
diameter=[13.6,16.2,22.2]
spacing=[0.2,0.3,0.4,0.5,0.6,0.7,0.8,0.9]
flows=[0.4,0.6,0.8,1.0,1.6,2.3,3,3.5]
length=[20,40,80,120,160,200,250,300]
# loops for testing the whole variables
for diam in diameter: # testing a range of typical diameter.
dia=diam
Area= 3.141516%(dia/2000)**2
for In in length: #testing a range of lengths.
L=In
for fls in flows: # testing a range of typical dripper flows.
g=fls
for sp in spacing: #testing dripper spacing by 10 cm.
S=sp
outlets=L/S
Q=outlets*q

qq=Q+q

3434 43 3 3 S S o o S e o e e 4 434 3 3 3 3 S S S o S o 34 3 3 N NN

The algorithm generates various alternative solutions for travel time corresponding to each
specific combination of factors. Upon completion of this process, we obtained a total of 1536 solutions
for the same quantity of combinations. Subsequently, this dataset was utilized to test and train a
predictive model capable of making accurate predictions. The outcoming dataset (data frame using
Pandas: df in code) included two types of travel time: one calculated for the entire length of the pipe
and another for 95% of the pipe's length.

343 43 3 3 3 3 3 S S o S o 4 4 4343 4 3 3 S S o S o 34 3 3 KN

# calculation of partial flows, velocities, and travel time

for x in range (1, int(outlets)+1:

qq=qq-q # decrease the flow for each outlet

ss=ss+S #step for outlet index

dfl.at[x,'outlets'|=x # column N outlet "

dfl.at[x,'long_acum']=ss # column accumulate length"

dfl.at[x,'q_tramo']=qq

#calculating velocities

df1["v_tramo"]=df1["q_tramo"]/Area/3600/1000

df1["t_tramo"]=S/df1["v_tramo"]
max_vel=Q/Area/1000/3600

# Travel times
df1["t_tramo_acum"]=df1['t_tramo']l.cumsum()/60
travel_time= round(df1["t_tramo"].sum()/60,2)

travel_time_95=dfl.loc[int(outlets*.95),'t_tramo_acum']
3434 436 3 3 S e 3 o 3 e o A o e 343 3 3 S 3 o S e o 34 43 3 e NN O

The Hazen-Williams equation is a well-established formula in fluid mechanics and hydraulic
engineering utilized for computing the head loss in pipes. Its significance is particularly notable in
the realm of water distribution system design and analysis, including irrigation networks, owing to
its direct influence on flow dynamics as described by Torricelli's Equation (5). Consequently,
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understanding and accurately incorporating head loss calculations are crucial for optimizing system

performance and ensuring efficient fluid transport [5, 6, 17].
43 3 43 2 e 3 e e 3 3 43 3 4 43 3 4 3 4 2 e 4 3 4 3 e e e 3 e A S A A S K

df["headloss"]= 1.131*10**9*(d{["q_tramo"]/1000/140)**1.852*S*dia**-4.872
HF=round(df["headloss"].sum(),2)

43 3 43 2 e 3 e e 3 3 43 3 4 43 3 4 3 4 2 34 3 4 3 4 e e 2 e e S A A S K

With the solutions and machine learning tools, we trained and tested models that could describe
[18] and predict the advance time and searched for an equation that could provide the solution with
a simple calculation. All data was divided into 75% for training data and 25% for testing purposes.
Finally setting the hyperparameter for each method to look for the best results for training and testing
trials.

334 3 3 3 5 3 o 3 3 3 o 3 e 3 40 340 3 0 34 3 e 3 4 3 e 3 e 3 3 3 e 3 3 o 3 e 3 o 3 e 3 e 3 e

def Data_Segregation(features,targets, x=5, verification = False,split=0.75
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(features,targets,

random_state=x, test_size=split)
334 3 3 o 3 5 3 o 3 3 3 o 34 3 40 340 3 e 340 3 e 3 4 3 e 3 e 3 3 3 3 3 o 3 e 3 o 3 e e 3 e

Supervised learning techniques were employed using Scikit-learn library (Table 2). The trial
encompassed the utilization of various hyperparameters specific to each method. For instance, the
Ordinary Least Squares Linear Regression method involved configuring the hyperparameter alpha.
Meanwhile, for Support Vector Machine (SVM), the hyperparameters included C, Kernel function, and
Gamma function activator. Nearest Neighbors Regression (KNN) required adjustments to the number of
neighbors, weights, and the algorithm used. Similarly, in the cases of Random Forest and Decision Tree, the
hyperparameters N_estimators, Criterion, and Max depth were set [14, 19]. It is noteworthy that a subset
of hyperparameters was chosen for each method, emphasizing those deemed most crucial [20].

Hyperparameters are critical variables that govern the learning process and dictate the values of
model parameters acquired by a learning algorithm. The prefix 'hyper_' signifies their top-level
status, denoting their control over the learning procedure and the consequent model parameters [21];
selecting, and configuring hyperparameter values precedes the training phase of the model.
Consequently, hyperparameters are deemed external to the model since their values remain fixed
and unalterable during the learning or training process [22]

Table 2. Machine Learning algorithms used from Scikit-learn [14].

Hyper-

Model Description
parameters setted

Linear Regression fits a linear model with coefficients w =
(w1, ..., wp) to minimize the residual sum of squares between

Li R i Alph
Hnear Begression e observed targets in the dataset, and the targets predicted pha
by the linear approximation.
Support vector the model produced by SuPport Vector Regression depen(.is C
. only on a subset of the training data, because the cost function Kernel
machine (SVM) : e .
ignores samples whose prediction is close to their target Gamma
Nearest Neighbors The bas.ic nearest r.1eighbors’ regres:?ion uses uniform. weights: Neigborns
. that is, each point in the local neighborhood contributes Weights
Regression (KNN) . - . .
uniformly to the classification of a query point. Algorithm

It’s a non-parametric supervised learning method. The goal is
to create a model that predicts the value of a target variable
by learning simple decision rules inferred from the data
features. A tree can be seen as a piecewise constant.

N_stimators
Criterion
Max depth

Decision tree
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The Scikit learn ensemble module includes two averaging
algorithms based on randomized decision trees, the Random
Forest algorithm and the Extra-Trees method. Both

N_stimators
algorithms are perturb-and-combine techniques specifically -

Criterion
Max depth

Random Forest . . . e
designed for trees. This means a diverse set of classifiers is

created by introducing randomness in the classifier
construction. The prediction of the ensemble is given as the
averaged prediction of the individual classifiers.

To enhance the efficiency of our calculation process and derive a more streamlined formula, we
leveraged the capabilities of SciPy optimize [15], a comprehensive toolkit renowned for its robust
optimization functions while adhering to specified constraints. This toolkit encompasses a wide array
of solvers tailored for diverse problem types, including non-linear problems, both local and global
optimization algorithms, linear programming, as well as constrained and unconstrained least
squares, root finding, and curve fitting algorithms. More specifically, we employed the Sequential
Least Squares Programming (SLSQP) method within SciPy optimize to iteratively minimize a scalar
objective function that involves one or more variables. This iterative approach converges towards
optimal solutions by locally approximating the objective function through quadratic models and then
updating the current solution based on the approximated model. This method efficiently handles
both linear and non-linear constraints, making it well-suited for a wide range of optimization
problems encountered in engineering and scientific domains [14, 15].

By employing the SLSQP method in conjunction with SciPy optimize, we were able to iteratively
refine our calculations, ensuring mathematical accuracy and convergence towards optimal solutions
while accounting for specified constraints and considerations inherent in the problem domain [23].

Model Evaluation

The evaluation of results was based on the R-squared value, which served as a metric for
assessing the performance [20, 24].

The coefficient of determination R? is a fundamental metric used to assess the effectiveness of a
statistical model in predicting future outcomes. It quantifies the proportion of the variance in the
dependent variable (often referred to as the target variable) that is explained by the independent
variables (predictors) included in the model. This metric ranges from 0 to 1, with higher values
indicating a better fit of the model to the data. When R? takes a value of 1.0, it signifies a perfect
prediction where the model's predicted values perfectly match the actual observed values of the
target variable. This scenario implies that all the variability in the target variable can be explained by
the predictors included in the model, making it an ideal outcome [19]. Conversely, R? can also take
negative values, which might seem counterintuitive at first glance. This situation arises when the
model's predictions are so poor that they perform worse than a simple horizontal line that represents
the mean of the target variable. In such cases, the model fails to capture any meaningful pattern or
relationship in the data, leading to a negative R? [25]. Mathematically, was calculated as:

Ti—p)?
R2 — i—Pi 6
Ti-yi)? ©®)

where: yi are the values that the target variable takes pi are the prediction values and yi is the average
value of the values taken by the target variable.

3. Results

General behaviors of the travel time

The travel time results between drippers in drip irrigation lines exhibit exponential growth
(Figure 3..a) due to the rapid decrease in velocity, caused by the flow delivered by the dripper along
the pipe. This relationship is inverse, indicating that the travel time is inversely proportional to the
velocity. Itis evident that water takes longer to traverse the pipe as it nears the end. Figure 3..b further
illustrates the relationship with accumulated pressure head loss, showing an inverse correlation as
well. The reduction in velocity results in a decrease in pressure drop between the drippers along the
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pipe, which ultimately contributes to maintaining the flow balance and precision of the irrigation
process. Both graphs demonstrate how the decreasing flow in the driplines affects the travel time of
water and nutrients in driplines

An additional noteworthy observation is depicted in Figure 3..c, which shows the relative travel
time versus the relative length of the dripline. The graph indicates a favorable lead time in a shorter
time span, particularly noticeable towards the left side. Practically, this suggests that if the water
covers 95% of the length, it will have advanced 50% of the total time. This statistic is remarkable: the
furthest 5% of the drip line requires 50% of the remaining lead time. Moving forward, this document
will focus on deriving equations for calculating travel time for both the total length of driplines and
95% of their length.

This observation underscores a rule of thumb: halving the flow rate of the dripper may result in
a doubling of travel time in driplines. This insight is crucial for making informed decisions during
project planning and management.

(a) (b) (c)

_______ 60 === Velocity (m/s) travel time (min) 60 —— % cumulated of Length of dripline 1.0

0.30 === headloss (m)

ated headloss (m)

Cumulated Relative lenght of dripline

0.05

0.00 travel time (min) 0 0.00 ~— Frecuency

0 20 40 60 B0 100 120 140 0 20 40 60 80 100 120 140 0.0 0.2 0.4 0.6 0.8 10
Length of pipe (m) Length of pipe (m) Retative advance time

Figure 3. Hydraulic behavior in dripline. (a) Shows relationship between the accumulated head loss
versus the distance in the irrigation dripline, in (b) shows the decreasing velocity along the pipe. (c)
Shows the relative percent of length of dripline which responds to the relative advance time.

Based on the influence of variables in calculating travel time using the decision tree regression
model, as shown in Figure 4..b, the flow rate emerges as the most influential factor, accounting for
over 56% of the variance in lead time. In comparison, variables such as diameter and distance each
contribute just under 18%. Notably, opting for a lower flow rate leads to an increase in lead time,
highlighting an important consideration for project planning (Figure 4..a).
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Figure 4. Effect of the flow in travel time. (a) It Shows the difference travel times to different flow’s
dripper. (b) It shows the importance of ranking features to predict the travel times in driplines.

Model Predict for travel time.
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In search of relationships as an exploratory analysis, several interpretive plots were made,
starting with a pair plot (Figure 5..a) in which the interaction of the variables flow, distance, length,
and diameter with travel time was established. There is a strong relationship especially with the flow
emitter, where its rate of increase is inversely proportional to the travel time with an R? close to 0.4
(Figure 5. b); the distance and diameter have a proportional relationship with the travel time of water,
its R? was less than the correction of flow but greater than the links of length (Figure 5..c & d), the
worse return of length makes sense because it directly affects the amount eventually dropper and
with the total flow, becoming a recurrent input (Figure 5.e).

Based on the graph, it appears feasible to develop a regression model among the variables,
particularly focusing on the flow rate, diameter, and spacing of the dripper. However, the variable
length does not seem to exhibit a strong correlation with any of the feature regressors.
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Figure 5. Analysis of the variables which influence the advance time in driplines and the specific
impact of these variables. (b) Shows the effect in travel time for specific flows drippers, in (c) shows
the response of the advance time to the spacing of dripper, (c y d) present the relationship between
the length and diameter of driplines in the calculation of the travel time. In all the graphs present the
time advance for 100% of length and 95% of length, and correlation of the dispersed data.

To develop a robust travel time prediction model in driplines, an extensive exploration of
various machine learning algorithms was conducted. The objective was to identify the optimal
combination of hyperparameters that would yield the highest predictive accuracy. This process
involved training multiple models using different hyperparameter configurations.

Figure 6 illustrates a segment of the calibration process, which was crucial for optimizing model
performance. For instance, Figure 6.c showcases the impact of varying the number of k-neighbors in
the k-Nearest Neighbors (KNN) method, revealing an inversely proportional relationship with the
predictive score. This graphical representation not only highlights the importance of hyperparameter
tuning but also emphasizes the need for balanced values to mitigate issues such as underfitting or
overfitting.

Utilizing such visual aids proved instrumental in achieving superior results, as they facilitated
the identification of hyperparameter settings that not only maximized predictive accuracy but also
maintained a suitable balance between model complexity and generalization.
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(A) Lineal regression (B) SVM (C) KNN
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Figure 6. Calibration hyperparameters process, by training and testing scores for the different
machine learning methods.

Table 3 presents a comprehensive overview of the scores achieved by different methods along
with their corresponding optimal hyperparameter settings. Notably, the Decision Tree and Support
Vector Machine (SVM) methods emerged as the top performers, boasting accuracy rates exceeding
98%. Moreover, both methods exhibited remarkably similar scores for both training and testing data,
indicating a high level of predictive capability and generalization.

In contrast, the K Nearest Neighbor (KNN) and Random Forest methods, characterized by their
classification approach, demonstrated a notable discrepancy between their training and testing
scores. While they achieved impressive scores during training, suggesting a good fit to the data, their
testing scores were slightly lower, indicative of potential underfitting issues. This disparity suggests
that these methods may have attempted to group diameter observations too closely, resulting in
reduced performance when applied to unseen data.

Furthermore, the Voting Regressor method, which combines multiple linear regression
techniques such as Ridge Regression, Ordinary Least Squares, and Random Forest, showcased a
robust performance with a commendable score. This sophisticated ensemble approach leverages the
strengths of individual regression methods, resulting in a more reliable prediction model compared
to relying on any single method independently.

Table 3. Results for the machine learning algorithm in the advance time prediction

Training  Testing .
Model Score Score hyperparameters setting
. n_estimators = 10, criterio = squared_error,
Decision Tree Regressor ~ 0.9999 0.9833
max_depth =50
Support Vector Machine 0.9911 0.9801 kernel = rbf, C = 10000 and gamma = auto
(SVM)
n_estimators = 3, criterio = squared_error
Random Forest 0.9847 0.9573
,max_depth =3
Voting Regressor 0.9896 0.9801 n_estimators = 3, criterio = squared_error,
max_depth =3
K Nearest Neighbor 0.9582 0.8280 neighbors = 2, weights = uniform and algorithm
(KNN) = auto
linear regression 0.6161 0.6680 Alpha =0.001
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After exploring machine learning algorithms from the Scikit-learn library, we transitioned to
utilizing the capabilities of the SciPy library to derive a multivariable potential equation. This
approach involved minimizing a function of several variables, aiming to articulate the hydraulic
phenomenon through an equation that could facilitate time advancement calculations within
spreadsheet environments. Our objective was twofold: to develop an equation for estimating travel
time across the entire dripline and another equation specifically tailored for predicting travel time
within the ninety-five percent segment of the drip hose, which approximates half of the total travel
time.

Through rigorous analysis and optimization, we successfully derived two equations with high
accuracy, as evidenced by the coefficient of determination reaching 99.33%. This high coefficient of
determination signifies a robust fit of the equations to the observed data, indicating their efficacy in
accurately predicting travel times. These equations not only provide a mathematical framework for
understanding the hydraulic dynamics but also offer practical utility by enabling straightforward
time advance calculations within spreadsheet environments, enhancing the applicability and
accessibility of our findings:

travel timegripiines
spacing?782% . length®1928 . diameter?

= 0.0912-
ﬂOVVdripper

travel time 95% dripline
spacing®9627 - length®9418 . diameter?

= 0.1087 -
flovvdripper

The properties of the dripline include its length (measured in meters) and diameter (measured
in millimeters), while the spacing between drippers (measured in meters) and the flow rate
(measured in 1'h-') of each dripper are considered dripper-specific properties. By considering these
variables, we were able to derive the travel time equation.

4. Conclusions

This research delved into the intricate dynamics of water flow and distribution in fertigation
systems, particularly focusing on travel time calculations within driplines. Through a meticulous
methodology involving Python simulations, machine learning algorithms, and optimization
techniques, significant insights and advancements were achieved [22].

The study identified the exponential growth of travel time between drippers in drip irrigation
lines, highlighting the inverse relationship between travel time and velocity. This understanding is
crucial for optimizing fertigation practices and enhancing water and nutrient management precision.
Furthermore, the impact of various factors such as flow rate, diameter, and spacing on travel time
was thoroughly analyzed, leading to the development of robust predictive models [19, 26].

Machine learning algorithms, including Decision Tree Regressor and Support Vector Machine
(SVM), demonstrated exceptional accuracy in predicting travel times. The integration of SciPy
optimization further refined these predictions, resulting in high-fidelity equations for estimating
travel times in both the entire dripline and the 95% segment [24].

The derived equations offer practical utility and mathematical precision, empowering
agricultural practitioners to make informed decisions and enhance the efficiency of fertigation
systems. Overall, this research contributes significantly to advancing agricultural irrigation
techniques and optimizing water and nutrient delivery in fertigation processes [27].

Data Availability Statement: The data presented in this study are available on https://github.com/greko-
guevara/travel_time_driplines/blob/main/travel Time.ipynb : .
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