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Abstract: Uterine pathologies pose a challenge to women’s health on a global scale. Despite extensive research, 
the causes and origin of some of these common disorders are not well defined yet. This study presents a 
comprehensive analysis of transcriptome data from diverse datasets encompassing relevant uterine 
pathologies such as endometriosis, endometrial cancer and uterine leiomyomas. Leveraging the Comparative 
Analysis of Shapley values (CASh) technique, we demonstrate its efficacy in improving the outcomes of 
classical differential expression analysis on transcriptomic data derived from microarray experiments. CASh 
integrates the Microarray game algorithm with Bootstrap resampling, offering a robust statistical framework 
to mitigate the impact of potential outliers in the expression data. Our findings unveil novel insights into the 
molecular signatures underlying these gynecological disorders, highlighting CASh as a valuable tool for 
enhancing the precision of transcriptomics analyses in complex biological contexts. This research contributes 
to a deeper understanding of gene expression patterns and potential biomarkers associated with these 
pathologies, offering implications for future diagnostic and therapeutic strategies. 

Keywords: endometrial cancer; endometriosis; microarrays; systems biology; transcriptomics; 
uterine leiomyomas 

 

1. Introduction 

Disorders affecting the uterus represent significant burdens on women’s health worldwide. 
These conditions, characterized by aberrant cellular proliferation and tissue growth within the 
uterine environment, manifest with diverse clinical presentations and pose substantial challenges in 
diagnosis and management [1]. Endometriosis is defined as a debilitating gynecological disorder 
characterized by the presence of endometrial-like tissue outside the uterine cavity. This chronic 
widespread condition affecting up to 10% of women of reproductive age commonly causes pelvic 
pain, infertility and menstrual irregularities, among other symptoms [2]. Uterine leiomyomas, often 
known as fibroids, are benign smooth muscle tumors that arise within the uterine wall and are 
prevalent in up to 70% of women by the age of 50, often causing symptoms such as abnormal uterine 
bleeding, pelvic pressure, and reproductive dysfunction [3]. Endometrial cancer, originating from the 
malignant transformation of the endometrial lining, ranks as the most common gynecologic 
malignancy in developed countries, with an increasing incidence observed globally [4]. Despite the 
high prevalence of these common gynecological conditions and the ongoing debate about the 
existence of a genetic overlap and comorbidity among them, the molecular basis of these pathologies 
has yet to be determined [1,5]. Thus, understanding the molecular mechanisms underlying uterine 
pathologies is crucial for the development of targeted therapeutic interventions and improved patient 
outcomes [6].  
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Advances in omics technologies, particularly in microarray analyses, have paved the way to the 
comprehensive exploration of gene expression patterns associated with uterine conditions [7–13]. 
Microarray technologies provide the measurement of the expression levels for thousands of genes at 
a glance, which allows to obtain a deeper insight into the dysregulated molecular pathways 
implicated in the pathogenesis of several diseases [14–18]. The identification of differentially 
expressed genes (DEGs) represents a keystone in microarray data analysis. Classical approaches for 
microarray data analyses usually apply Welch’s t-test as a statistical method for the identification of 
DEGs by comparing expression levels between two experimental groups or conditions [19,20]. 
However, traditional methods may overlook significant changes at gene expression level, especially 
in complex diseases such as those affecting the uterus, which possess heterogeneous molecular 
profiles [21,22]. To overcome this limitation, alternative methods can be applied to help untangle the 
complexity underlying transcriptomics datasets [23–25]. 

In the present study, we aim to investigate the gene expression profiles associated with three of 
the most common uterine pathologies through the application of two different methods for 
microarray data analysis: i) a conventional method using Welch’s t-test and ii) a complementary 
analysis based on the Comparative Analysis of Shapley value (CASh) method derived from Game 
Theory, a method we have previously demonstrated that significantly increases the power to identify 
DEGs [25]. 

2. Materials and Methods 

2.1. Microarray Expression Data Acquisition and Processing 

Microarray data were obtained from Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo/). For the selection of datasets of interest, raw data from 
Affymetrix commercial microarrays Affymetrix Human Genome U133A Array (HG-U133A), 
Affymetrix Human Genome U133A 2.0 Array (HG-U133A_2), Affymetrix Human Genome U133 Plus 
2.0 Array (HG-U133_Plus_2), and Affymetrix Human Gene 1.0 ST Array [transcript (gene) version] 
(HuGene-1_0-st), were accessed preferentially, when possible.  

CEL files from two datasets of endometriosis (GSE7846, GSE17504), two datasets of uterine 
leiomyomas (GSE12814, GSE23112), and two datasets of endometrial cancer (GSE36389, GSE63678) 
were retrieved from GEO repository. Raw data were downloaded for each dataset and preprocessing, 
quality control and normalization based on relative log expression (RLE), normalized unscaled 
standard error (NUSE), and Robust Multi-Array Average expression measure (RMA) methods were 
computed using ‘affy’ and ‘affyPLM’ packages in RStudio (version 2021.09.0) [26–28]. Finally, 
expression matrices were generated and samples were classified into experimental and control 
groups for further analyses (Supplementary Table S1).  

Each dataset was processed independently in order to identify DEGs. To conduct differential 
expression analyses between patients and controls, two approaches were performed: i) a 
conventional approach based on the utilization of Welch’s t-test, and ii) an alternative method rooted 
on CASh technique.  

2.1.1. Classical Approach 

Conventional analyses for the detection of DEGs were performed using the Welch’s t-test 
implemented in the ‘multtest’ package in RStudio (version 2021.09.0) [29].  

The significant DEGs were detected after multiple testing correction using the Benjamini & 
Hochberg method to control for False Discovery Rates (FDR) [30]. A significance threshold of an 
adjusted p-value (FDR) < 0.05 was applied. 

2.1.2. Alternative Approach 

We applied the Comparative Analysis of Shapley value (CASh) method to identify DEGs based 
on their cooperative contribution to overall gene expression changes [31]. The Shapley value, a 
concept derived from Game Theory, quantifies the marginal contribution of each gene to the 
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collective expression change observed in the dataset [32]. CASh is a statistical technique that 
combines the Microarray Game algorithm (applied to transcriptomic values obtained from 
microarray experiments) with the Bootstrap technique, that applies random resampling of certain 
values, aiming to compensate for potential outliers in the data matrix [31,33–35]. Therefore, CASh 
considers gene expression as a cooperative game, where each gene contributes to the observed 
expression changes in a collaborative manner.  

In our study, CASh method was applied to the detection of DEGs using two levels of restriction 
by stablishing 0.01 (more restrictive) and 0.05 (less restrictive) as cutoff p-values. Bootstrap 
resampling with 1000 iterations was computed in each analysis. In addition, Fold Changes (FC) were 
evaluated. Genes with p-values below 0.01 and 0.05 and |FC|>1.5 were considered as statistically 
significant.  

2.1.3. Gene Set Enrichment Analysis and Functional Annotation 

g:Profiler functional profiling tool g:GOSt (https://biit.cs.ut.ee/gprofiler/gost) was used to 
determine the enriched biological processes and pathways modulated by the DEGs based on Gene 
Ontology (GO) terms [36,37]. 

When needed, transcripts IDs were annotated and converted into official gene symbols using 
g:Convert tool (https://biit.cs.ut.ee/gprofiler/convert) from g:Profiler webserver [36,37]. For 
ambiguous transcripts names, IDs with the most GO annotations were utilized.  

Three main GO categories were evaluated: biological processes (BP), cellular components (CC), 
and molecular functions (MF). GO terms with a Benjamini-Hochberg FDR <0.05 were considered to 
be significantly enriched. Top-ten significantly enriched GO terms in each category were plotted for 
CASh 0.05 comparisons using ‘ggplot2’ RStudio package [38].  

3. Results 

3.1. Datasets and Samples Analyzed 

Gene expression data from six datasets covering a total of 68 samples was accessed. Table 1 
describes the main characteristics of the datasets included in our study. 

Table 1. Summary of Gene Expression Omnibus (GEO) datasets analyzed in our study. For each 
study, number and description of samples are shown. 

Phenotype Group Dataset ID No. of samples Description of Samples 

Endometrial cancer 
GSE36389 16 Endometrial cancer (n=10) vs. controls (n=6) 
GSE63678 11 Endometrial carcinoma (n=6) vs. controls (n=5) 

Endometriosis 
GSE7846 9 Endometriosis (n=4) vs. controls (n=5) 

GSE17504 11 Endometriosis (n=5) vs. controls (n=6) 

Uterine leiomyomas 
GSE12814 14 Uterine leiomyoma (n=5) vs. controls (n=9) 
GSE23112 7 Uterine leiomyoma (n=3) vs. controls (n=4) 

Datasets were analyzed for the detection of DEGs using two different strategies. First, the use of 
conventional methods based on Welch’s t-test was applied. Then, an alternative analysis based on 
CASh method was performed. The use of Welch’s t-test did not allow us to identify any DEGs, while 
several transcripts were revealed when using CASh method with both 0.01 and 0.05 cutoff p-values 
(Table 2). Total lists of DEGs for each dataset detected after each comparison are shown in 
Supplementary Table 2. Our analyses revealed that the application of CASh method allows a better 
detection of differentially expressed genes in the six datasets analyzed.  
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Table 2. Number of differentially expressed genes (DEGs) detected after the analysis using 
conventional techniques based on Welch's t-test and alternative approaches rooted on Comparative 
Analysis of Shapley value (CASh) method with cutoff p-values of 0.01 and 0.05, respectively. 

Dataset ID Welch’s t-Test CASh 0.01 CASh 0.05 
GSE36389 
GSE63678 

0 38 (21 ↑, 17 ↓) 125 (70 ↑, 55 ↓) 
0 496 (213 ↑, 283 ↓) 934 (454 ↑, 480 ↓) 

GSE7846 
GSE17504 

0 74 (39 ↑, 35 ↓) 1069 (674 ↑, 395 ↓) 
0 17 (9 ↑, 8 ↓) 84 (51 ↑, 33 ↓) 

GSE12814 0 21 (13 ↑, 8 ↓) 84 (39 ↑, 45 ↓) 
GSE23112 0 7 (6 ↑, 1 ↓) 38 (31 ↑, 7 ↓) 

* ↑ and ↓ symbols indicate up- (FC >1.5) and down-regulated (FC <-1.5) genes, respectively. 

3.2. Functional Enrichment Analysis of the Differentially Expressed Genes 

Given the restrictive criteria applied when running CASh 0.01 method, the number of DEGs 
detected did not allow to obtain a number of significantly enriched pathways associated to some 
genesets (data not shown). However, functional enrichment analysis of the differentially expressed 
genes obtained after the application of CASh 0.05 method revealed relevant significantly enriched 
processes in the analyzed datasets. In endometrial cancer datasets (GSE36389 and GSE63678), DEGs 
were mainly related to biological processes (BP) such as development and morphogenesis, whereas 
cellular components (CC) and molecular functions (MF) were mainly associated with extracellular 
locations and binding, respectively (Figure 1).  

(a) 
 

 

(b) 

 
Figure 1. Gene Set Enrichment Analysis results showing the significantly enriched Gene Ontology 
(GO) terms of the differentially expressed genes in endometrial cancer datasets: (a) GSE36389 dataset; 
(b) GSE63678 dataset. For each dataset, significantly enriched molecular functions (GO:MF), 
biological processes (GO:BP) and cellular components (GO:CC) are shown. 

Regarding datasets of endometriosis (GSE7846 and GSE17504), the top significantly enriched BP 
were related to development, regulation of several cellular processes and morphogenesis. CC results 
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revealed extracellular regions, cell surface and vesicles to be significantly relevant, and MF analysis 
detected functions mainly associated to protein activity (Figure 2). 

(a) 

 

(b) 

 

Figure 2. Gene Set Enrichment Analysis results showing the significantly enriched Gene Ontology 
(GO) terms of the differentially expressed genes in endometriosis datasets: (a) GSE7846 dataset; (b) 
GSE17504 dataset. For each dataset, significantly enriched molecular functions (GO:MF), biological 
processes (GO:BP) and cellular components (GO:CC) are shown. 

Gene set enrichment analysis of the differentially expressed genes obtained after the application 
of CASh 0.05 method in uterine leiomyomas datasets (GSE12814 and GSE23112) revealed the 
regulation of several biological processes as significantly enriched BP, while membrane and binding 
processes were detected as significantly enriched CC and MF, respectively (Figure 3). 

(a) 
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(b) 

 

Figure 3. Gene Set Enrichment Analysis results showing the significantly enriched Gene Ontology 
(GO) terms of the differentially expressed genes in uterine leiomyoma datasets: (a) GSE12814 dataset; 
(b) GSE23112 dataset. For each dataset, significantly enriched molecular functions (GO:MF), 
biological processes (GO:BP) and cellular components (GO:CC) are shown. 

4. Discussion 

Uterine pathologies impact women’s health and quality of life considerably. In recent years, the 
advent of omics technologies has facilitated a comprehensive exploration of molecular patterns 
associated with some of the most common gynecological conditions [39–42]. Microarray technology 
emerged about three decades ago with the aim of studying whole gene expression profiles, and the 
analysis of the amount of data derived from the application of this powerful tool has provided 
unprecedented insights into the discovery of dysregulated molecular pathways implicated in disease 
pathogenesis [43,44]. In the present study, we analyzed data from six datasets generated from the 
application of Affymetrix microarray devices: two datasets from endometrial cancer, two datasets 
from endometriosis and two datasets from uterine leiomyomas.  

Raw data were downloaded from GEO public repository, and gene expression files were pre-
processed, quality controlled and normalized. For the detection of DEGs, two strategies were 
adopted: i) a traditional approach based on the use of classical statistical t-tests and ii) an alternative 
approach using CASh method [31]. We were not able to detect any DEGs using traditional 
approaches, while the use of CASh method revealed a number of statistically significant genes in the 
six datasets analyzed. The t-test selects genes according to their differential expression between the 
two study conditions at an individual level. Thus, genes are considered significant when its p-value 
is below a stablished threshold (0.05 adj. p-value in our study). On the other hand, CASh method 
considers not only the expression of each gene under two conditions but the contribution of those 
genes that consistently interact with other genes, using the Shapley value to measure this 
contribution. Therefore, CASh highlights the most relevant genes as those that not only explain the 
differences between two conditions, but also play an important role over all possible permutations 
of genes [31,33–35]. In brief, CASh offers a more nuanced understanding of gene interactions and 
their collective impact on disease pathophysiology.  

Interestingly, functional enrichment analysis of the DEGs detected using CASh method 
confirmed previous findings on the molecular bases of the uterine pathologies analyzed in our study. 
Some processes related to cell cycle and proliferation events have been shown to be significantly 
dysregulated in our sets of DEGs. Given the nature of endometrial cancer and endometriosis, it is 
plausible to believe that alterations at gene expression levels in some genes involved in these 
proliferative pathways may contribute to the phenotype of these diseases, as it has been previously 
proposed [45,46]. Further, a possible role of the degradation and remodeling of the extracellular 
matrix in endometriosis datasets has been revealed in our study. Endometriotic tissues have been 
shown to be significantly associated to extracellular matrix reorganization in some studies, which 
may explain some of the molecular mechanisms underlying the progression of the disease [47–50]. 
Regarding uterine leiomyomas, we were able to detect some significantly enriched biological 
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processes that have been previously reported in association with the disease such as hormone 
secretion and cell signaling [51]. 

Our preliminary results underscore the potential of CASh as a valuable tool for analyzing 
microarray data. Further extensive research, including validation studies on larger cohorts and 
functional assays, is warranted to confirm the robustness and clinical relevance of the identified 
molecular signatures.  

5. Conclusions 

The Comparative Analysis of Shapley value seems to improve the detection of differentially 
expressed genes from microarray datasets compared to classical statistical techniques based on the 
use of t-tests in the context of complex diseases such as those affecting the uterus. By identifying key 
DEGs and elucidating their functional roles and interactions, we seek to advance our understanding 
of the underlying mechanisms driving disease origin and progression, thus paving the way for the 
development of targeted therapeutic strategies tailored to the management of women with uterine 
pathologies. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 
paper posted on Preprints.org, Table S1: Technical description of the datasets analyzed in the present study; 
Table S2: Differentially expressed genes obtained from each dataset after statistical analyses. 

Author Contributions: Conceptualization, F.J.E. and J.A.C.-M.; methodology, F.J.E., E.V. and J.A.C.-M.; 
software, F.J.E. and J.A.C.-M.; validation, L.D.-B. and F.J.E.; formal analysis, J.A.C.-M.; investigation, J.A.C.-M., 
E.V., L.D.-B. and F.J.E.; resources, F.J.E.; data curation, E.V., L.D.-B. and F.J.E.; writing—original draft 
preparation, J.A.C.-M. and E.V.; writing—review and editing, J.A.C.-M., E.V., L.D.-B. and F.J.E.; visualization, 
J.A.C.-M.; supervision, E.V., L.D.-B. and F.J.E.; project administration, F.J.E.; funding acquisition, F.J.E. All 
authors have read and agreed to the published version of the manuscript. 

Funding: The research group receives funding for research from the University of Jaén (PAIUJA-
EI_CTS02_2023) and from the Junta de Andalucía (BIO-302). F.J.E. is partially financed by the Ministry of Science 
and Innovation, the State Research Agency (AEI), and the European Regional Development Fund (ERDF - Ref: 
PID2021-122991NB-C21). 

Data Availability Statement: Microarray data were obtained from Gene Expression Omnibus (GEO) database 
(https://www.ncbi.nlm.nih.gov/geo) as stated above. The custom scripts used for data analysis can be shared 
with anyone who requests them from the corresponding author. 

Conflicts of Interest: The authors declare no conflicts of interest. 

References 

1. Devesa-Peiro, A.; Sebastian-Leon, P.; Garcia-Garcia, F.; Arnau, V.; Aleman, A.; Pellicer, A.; Diaz-Gimeno, 
P. Uterine disorders affecting female fertility: what are the molecular functions altered in endometrium? 
Fertil. Steril. 2020, 113, 1261-1274. https://doi.org/10.1016/j.fertnstert.2020.01.025 

2. Giudice, L.C.; Horne, A.W.; Missmer, S.A. Time for global health policy and research leaders to prioritize 
endometriosis. Nat. Commun. 2023, 14, 8028. https://doi.org/10.1038/s41467-023-43913-9 

3. Giuliani, E.; As-Sanie, S.; Marsh, E.E. Epidemiology and management of uterine fibroids. Int. J. Gynaecol. 
Obstet. 2020, 149, 3-9. https://doi.org/10.1002/ijgo.13102 

4. Crosbie, E.J.; Kitson, S.J.; McAlpine, J.N.; Mukhopadhyay, A.; Powell, M.E.; Singh, N. Endometrial cancer. 
Lancet 2022, 399, 1412-1428. https://doi.org/10.1016/S0140-6736(22)00323-3 

5. Geng, R.; Huang, X.; Li, L.; Guo, X.; Wang, Q.; Zheng, Y.; Guo, X. Gene expression analysis in 
endometriosis: Immunopathology insights, transcription factors and therapeutic targets. Front. Immunol. 
2022, 13, 1037504. https://doi.org/10.3389/fimmu.2022.1037504 

6. Giudice, L.C.; Oskotsky, T.T.; Falako, S.; Opoku-Anane, J.; Sirota, M. Endometriosis in the era of precision 
medicine and impact on sexual and reproductive health across the lifespan and in diverse populations. 
FASEB J. 2023, 37, e23130. https://doi.org/10.1096/fj.202300907 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0931.v1

https://doi.org/10.20944/preprints202404.0931.v1


 8 

 

7. Buyukcelebi, K.; Duval, A.J.; Abdula, F.; Elkafas, H.; Seker-Polat, F.; Adli, M. Integrating leiomyoma 
genetics, epigenomics, and single-cell transcriptomics reveals causal genetic variants, genes, and cell types. 
Nat. Commun. 2024, 15, 1169. https://doi.org/10.1038/s41467-024-45382-0 

8. Hever, A.; Roth, R.B.; Hevezi, P.A.; Lee, J.; Willhite, D.; White, E.C.; Marin, E.M.; Herrera, R.; Acosta, H.M.; 
Acosta, A.J.; Zlotnik, A. Molecular characterization of human adenomyosis. Mol. Hum. Reprod. 2006, 12, 
737-748. https://doi.org/10.1093/molehr/gal076 

9. Maxwell, G.L.; Chandramouli, G.V.; Dainty, L.; Litzi, T.J.; Berchuck, A.; Barrett, J.C.; Risinger, J.I. 
Microarray analysis of endometrial carcinomas and mixed mullerian tumors reveals distinct gene 
expression profiles associated with different histologic types of uterine cancer. Clin. Cancer Res. 2005, 11, 
4056-4066. https://doi.org/10.1158/1078-0432.CCR-04-2001 

10. Risinger, J.I.; Maxwell, G.L.; Chandramouli, G.V.; Jazaeri, A.; Aprelikova, O.; Patterson, T.; Berchuck, A.; 
Barrett, J.C. Microarray analysis reveals distinct gene expression profiles among different histologic types 
of endometrial cancer. Cancer Res. 2003, 63, 6-11. 

11. Wang, H.; Mahadevappa, M.; Yamamoto, K.; Wen, Y.; Chen, B.; Warrington, J.A.; Polan, M.L. Distinctive 
proliferative phase differences in gene expression in human myometrium and leiomyomata. Fertil. Steril. 
2003, 80, 266-276. https://doi.org/10.1016/s0015-0282(03)00730-1 

12. Wang, Y.; Chen, Y.; Xiao, Y.; Ruan, J.; Tian, Q.; Cheng, Q.; Chang, K.; Yi, X. Distinct subtypes of 
endometriosis identified based on stromal-immune microenvironment and gene expression: implications 
for hormone therapy. Front. Immunol. 2023, 14, 1133672. https://doi.org/10.3389/fimmu.2023.1133672 

13. Zhao, H.; Wang, Q.; Bai, C.; He, K.; Pan, Y. A cross-study gene set enrichment analysis identifies critical 
pathways in endometriosis. Reprod. Biol. Endocrinol. 2009, 7, 94. https://doi.org/10.1186/1477-7827-7-94 

14. Bryant, P.A.; Venter, D.; Robins-Browne, R.; Curtis, N. Chips with everything: DNA microarrays in 
infectious diseases. Lancet Infect. Dis. 2004, 4, 100-111. https://doi.org/10.1016/S1473-3099(04)00930-2 

15. Copland, J.A.; Davies, P.J.; Shipley, G.L.; Wood, C.G.; Luxon, B.A.; Urban, R.J. The use of DNA microarrays 
to assess clinical samples: the transition from bedside to bench to bedside. Recent Prog. Horm. Res. 2003, 58, 
25-53. https://doi.org/10.1210/rp.58.1.25 

16. Krokidis, M.G.; Vlamos, P. Transcriptomics in amyotrophic lateral sclerosis. Front. Biosci. (Elite Ed.) 2018, 
10, 103-121. https://doi.org/10.2741/e811 

17. Rai, G.; Rai, R.; Saeidian, A.H.; Rai, M. Microarray to deep sequencing: transcriptome and miRNA profiling 
to elucidate molecular pathways in systemic lupus erythematosus. Immunol. Res. 2016, 64, 14-24. 
https://doi.org/10.1007/s12026-015-8672-y 

18. Ward, K. Microarray technology in obstetrics and gynecology: a guide for clinicians. Am. J. Obstet. Gynecol. 
2006, 195, 364-372. https://doi.org/10.1016/j.ajog.2005.12.014 

19. Jeffery, I.B.; Higgins, D.G.; Culhane, A.C. Comparison and evaluation of methods for generating 
differentially expressed gene lists from microarray data. BMC Bioinformatics 2006, 7, 359. 
https://doi.org/10.1186/1471-2105-7-359 

20. Selvaraj, S.; Natarajan, J. Microarray data analysis and mining tools. Bioinformation 2011, 6, 95-99. 
https://doi.org/10.6026/97320630006095 

21. Suhorutshenko, M.; Kukushkina, V.; Velthut-Meikas, A.; Altmäe, S.; Peters, M.; Mägi, R.; Krjutškov, K.; 
Koel, M.; Codoñer, F.M.; Martinez-Blanch, J.F.; Vilella, F.; Simón, C.; Salumets, A.; Laisk, T. Endometrial 
receptivity revisited: endometrial transcriptome adjusted for tissue cellular heterogeneity. Hum. Reprod. 
2018, 33, 2074-2086. https://doi.org/10.1093/humrep/dey301 

22. Wang, W.; Vilella, F.; Alama, P.; Moreno, I.; Mignardi, M.; Isakova, A.; Pan, W.; Simon, C.; Quake, S.R. 
Single-cell transcriptomic atlas of the human endometrium during the menstrual cycle. Nat. Med. 2020, 26, 
1644-1653. https://doi.org/10.1038/s41591-020-1040-z 

23. Breitling, R.; Herzyk, P. Rank-based methods as a non-parametric alternative of the T-statistic for the 
analysis of biological microarray data. J. Bioinform. Comput. Biol. 2005, 3, 1171-1189. 
https://doi.org/10.1142/s0219720005001442 

24. Cordero, F.; Botta, M.; Calogero, R.A. Microarray data analysis and mining approaches. Brief. Funct. 
Genomics 2007, 6, 265–281. https://doi.org/10.1093/bfgp/elm034 

25. Esteban, F.J.; Wall, D.P. Using game theory to detect genes involved in Autism Spectrum Disorder. TOP 
2011, 19, 121–129. https://doi.org/10.1007/s11750-009-0111-6 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0931.v1

https://doi.org/10.20944/preprints202404.0931.v1


 9 

 

26. Bolstad, B.M.; Irizarry, R. A.; Astrand, M.; Speed, T.P. A Comparison of Normalization Methods for High 
Density Oligonucleotide Array Data Based on Bias and Variance. Bioinformatics 2003, 19, 185-193. 
https://doi.org/10.1093/bioinformatics/19.2.185 

27. Bolstad, B.M.; Collin, F.; Brettschneider, J.; Simpson, K.; Cope, L.; Irizarry, R.A.; Speed, T.P. Quality 
Assessment of Affymetrix GeneChip Data. In Bioinformatics and Computational Biology Solutions using R and 
Bioconductor, Gentleman, R., Carey, V., Huber, W., Irizarry, R., Dudoit, S., Eds.; Springer: New York, 2005; 
pp., 33–47. 

28. Irizarry, R.A.; Bolstad, B.M.; Collin, F.; Cope, L.M.; Hobbs, B.; Speed, T.P. Summaries of Affymetrix 
GeneChip probe level data. Nucleic Acids Res. 2003, 31, e15. https://doi.org/10.1093/nar/gng015 

29. Pollard, K.S.; Dudoit, S.; van der Laan, M.J. Multiple Testing Procedures: R multtest Package and 
Applications to Genomics. In Bioinformatics and Computational Biology Solutions Using R and Bioconductor. 
Gentleman, R., Carey, V.J., Huber, W., Irizarry, R.A., Dudoit, S., Eds.; Springer: New York, 2005; pp. 249-
271. doi.org/10.1007/0-387-29362-0_15 

30. Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: a practical and powerful approach to 
multiple testing. J. R. Statist. Soc. B. 1995, 57, 289-300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x 

31. Moretti, S.; van Leeuwen, D.; Gmuender, H.; Bonassi, S.; van Delft, J.; Kleinjans, J.; Patrone, F.; Merlo, D.F. 
Combining Shapley value and statistics to the analysis of gene expression data in children exposed to air 
pollution. BMC Bioinformatics 2008, 9, 361. https://doi.org/10.1186/1471-2105-9-361 

32. Moretti, S. Statistical analysis of the Shapley value for microarray games. Comput. Oper. Res. 2010, 37, 1413-
1418. 

33. Cesari, G.; Algaba, E.; Moretti, S.; Nepomuceno, J.A. An application of the Shapley value to the analysis of 
co-expression networks. Appl. Netw. Sci. 2018, 3, 35. https://doi.org/10.1007/s41109-018-0095-y 

34. Moretti, S.; Fragnelli, V.; Patrone, F.; Bonassi, S. Using coalitional games on biological networks to measure 
centrality and power of genes. Bioinformatics 2010, 26, 2721-2730. 
https://doi.org/10.1093/bioinformatics/btq508 

35. Sun, M.W.; Moretti, S.; Paskov, K.M.; Stockham, N.T.; Varma, M.; Chrisman, B.S.; Washington, P.Y.; Jung, 
J.Y.; Wall, D.P. Game theoretic centrality: a novel approach to prioritize disease candidate genes by 
combining biological networks with the Shapley value. BMC Bioinformatics 2020, 21, 356. 
https://doi.org/10.1186/s12859-020-03693-1 

36. Kolberg, L.; Raudvere, U.; Kuzmin, I.; Adler, P.; Vilo, J.; Peterson, H. g:Profiler—interoperable web service 
for functional enrichment analysis and gene identifier mapping (2023 update). Nucleic Acids Res. 2023, 51, 
W207-W212. https://doi.org/10.1093/nar/gkad347 

37. Raudvere, U.; Kolberg, L.; Kuzmin, I.; Arak, T.; Adler, P.; Peterson, H.; Vilo, J. g:Profiler: a web server for 
functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res. 2019, 47, 
W191-W198. https://doi.org/10.1093/nar/gkz369 

38. Wickham, H. ggplot2: Elegant Graphics for Data Analysis. Springer: Verlag New York, 2016. 
39. Babu, A.; Ramanathan, G. Multi-omics insights and therapeutic implications in polycystic ovary syndrome: 

a review. Funct. Integr. Genomics 2023, 23, 130. https://doi.org/10.1007/s10142-023-01053-9 
40. Bonetti, G.; Madeo, G.; Michelini, S.; Ricci, M.; Cestari, M.; Michelini, S.; Gadler, M.; Benedetti, S.; Guerri, 

G.; Cristofoli, F.; Generali, D.; Donofrio, C.A.; Cominetti, M.; Fioravanti, A.; Riccio, L.; Bernini, A.; Fulcheri, 
E.; Stuppia, L.; Gatta, V.; Cecchin, S.; Marceddu, G.; Bertelli, M. Omics sciences and precision medicine in 
breast and ovarian cancer. Clin. Ter. 2023, 174, 104-118. https://doi.org/10.7417/CT.2023.2477 

41. Boroń, D.; Zmarzły, N.; Wierzbik-Strońska, M.; Rosińczuk, J.; Mieszczański, P.; Grabarek, B.O. Recent 
Multiomics Approaches in Endometrial Cancer. Int. J. Mol. Sci. 2022, 23, 1237. 
https://doi.org/10.3390/ijms23031237 

42. Goulielmos, G.N.; Matalliotakis, M.; Matalliotaki, C.; Eliopoulos, E.; Matalliotakis, I.; Zervou, M.I. 
Endometriosis research in the -omics era. Gene 2020, 741, 144545. https://doi.org/10.1016/j.gene.2020.144545 

43. Matsuzaki, S. DNA microarray analysis in endometriosis for development of more effective targeted 
therapies. Front. Biosci. (Elite Ed.) 2011, 3, 1139-1153. https://doi.org/10.2741/e317 

44. Shai, R.M. Microarray tools for deciphering complex diseases. Front. Biosci. 2006, 11, 1414-1424. 
https://doi.org/10.2741/1892 

45. Zhao, H.; Jiang, A.; Yu, M.; Bao, H. Identification of biomarkers correlated with diagnosis and prognosis of 
endometrial cancer using bioinformatics analysis. J. Cell Biochem. 2020, 121, 4908-4921. 
https://doi.org/10.1002/jcb.29819 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0931.v1

https://doi.org/10.20944/preprints202404.0931.v1


 10 

 

46. Ajabnoor, G.; Alsubhi, F.; Shinawi, T.; Habhab, W.; Albaqami, W.F.; Alqahtani, H.S.; Nasief, H.; Bondagji, 
N.; Elango, R.; Shaik, N.A.; Banaganapalli, B. Computational approaches for discovering significant 
microRNAs, microRNA-mRNA regulatory pathways, and therapeutic protein targets in endometrial 
cancer. Front. Genet. 2023, 13: 1105173. https://doi.org/10.3389/fgene.2022.1105173 

47. Bae, S.J.; Jo, Y.; Cho, M.K., Jin, J.S.; Kim, J.Y., Shim, J.; Kim, Y.H.; Park, J.K.; Ryu, D.; Lee, H.J., Joo, J.; Ha, 
K.T. Identification and analysis of novel endometriosis biomarkers via integrative bioinformatics. Front. 
Endocrinol. (Laussane) 2022, 13, 942368. https://doi.org/10.3389/fendo.2022.942368 

48. Iwasaki, S.; Kaneda, K. Genes relating to biological process of endometriosis: expression changes common 
to a mouse model and patients. Drug. Res. (Stuttg.) 2022, 72, 523-533. https://doi.org/10.1055/a-1894-6817 

49. Yu, L.; Shen, H.; Ren, X.; Wang, A.; Zhu, S.; Cheng, Y.; Wang, X. Multi-omics analysis reveals the interaction 
between the complement system and the coagulation cascade in the development of endometriosis. Sci. 
Rep. 2021, 11, 11926. https://doi.org/10.1038/s41598-021-90112-x 

50. Wang, T.; Jiang, R.; Yao, Y.; Qian, L.; Zhao, Y.; Huang, X. Identification of endometriosis-associated genes 
and pathways based on bioinformatics analysis. Medicine (Baltimore) 2021, 100, e26530. 
https://doi.org/10.1097/MD.0000000000026530 

51. Zhang, X.; Wu, L.; Xu, R.; Zhu, C.; Ma, G.; Zhang, C.; Liu, X.; Zhao, H.; Miao, Q. Identification of the 
molecular relationship between intravenous leiomyomatosis and uterine myoma using RNA sequencing. 
Sci. Rep. 2019, 9, 1442. https://doi.org/10.1038/s41598-018-37452-3 

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those 
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) 
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or 
products referred to in the content. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0931.v1

https://doi.org/10.20944/preprints202404.0931.v1

	1. Introduction
	2. Materials and Methods
	2.1. Microarray Expression Data Acquisition and Processing
	2.1.1. Classical Approach
	2.1.2. Alternative Approach
	2.1.3. Gene Set Enrichment Analysis and Functional Annotation


	3. Results
	3.1. Datasets and Samples Analyzed
	3.2. Functional Enrichment Analysis of the Differentially Expressed Genes

	4. Discussion
	5. Conclusions
	References

