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Abstract: Searching over a sorted list is a classical problem in computer science. Binary Search takes at most 

⌊log� �⌋ + 1  tries to find an item in a sorted list of size n. Interpolation Search achieves an average time 

complexity of Ο(log log �) for uniformly distributed data. Hybrids of Binary Search and Interpolation Search 

are also available to handle data with unknown distributions. This paper analyzes the computation cost of 

these methods and shows that interpolation can significantly affect their performance — accordingly, a new 

method, Interpolation Once Binary Search (IOBS), is proposed. The experimental results show that IOBS 

outperforms the hybrids of Binary Search and Interpolation Search for nonuniformly distributed data. 
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1. Introduction 

Searching over a sorted list is a fundamental yet crucial operation in computer science, serving 

as the backbone for many applications. Several algorithms have been proposed for this operation in 

the literature [1]. Most of these algorithms share a similar structure: select a pivot element �� from 

the sorted list �����, ������, … , ��, … �������, ������, and if �� does not match the searching item x, 

repeat the same process on either �����, ������, … , ����� or �����, … �������, ������, depending on the 

ordering between �� and x.  

Various algorithms apply different strategies to select the pivot element. Some algorithms 

determine the pivot element’s index without using x or any element in the sorted list [1]. For example, 

Binary Search chooses the middle element (i.e., � = ⌊(��� + ℎ��ℎ)/2⌋) as the pivot element and 

reduces the search range by half after each unsuccessful try. On the other hand, Exponential Search 

starts with a small index for the pivot element, keeps doubling the index until � <  ��, and finally 

applies Binary Search on ���

�
��

, … , �����. Fibonacci Search uses Fibonacci numbers to divide and 

reduce the search range. All three algorithms mentioned above have a time complexity of Ο(log �), 

where � is the number of elements in the sorted list.  

In contrast, Interpolation Search needs to access the data elements in the sorted list to determine 

the index of the pivot element. Specifically, it uses linear interpolation to derive the pivot element’s 

index [2]. This algorithm has an average time complexity of Ο(log log �) for uniformly distributed 

data [3–5]. However, in the worst-case scenario, its time complexity is Ο(�)  for nonuniformly 

distributed data.  

Variants of Interpolation Search have been proposed to alleviate the impact of nonuniformly 

distributed data [6–11]. For example, Interpolation-Sequential Search uses interpolation to determine 

the first pivot element and then applies Sequential Search the find the exact location of the search key 

[6]. Adaptive Search [9] and Interpolated Binary Search [10] are hybrids of Interpolation Search and 

Binary Search. For ease of exposition, denote the middle element in the sorted list as ����  (used in 

Binary Search), and the element calculated through interpolation as ������  (used in Interpolation 

Search). Interpolated Binary Search alternately uses ������  and ����  as the pivot elements. Adaptive 

Search uses ������  as the pivot element, except when the current ������  is not as effective as the 

current ����  in reducing the searching range, then the new ����  is used as the next pivot element. 

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and 
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting 
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0896.v1

©  2024 by the author(s). Distributed under a Creative Commons CC BY license.

https://doi.org/10.20944/preprints202404.0896.v1
http://creativecommons.org/licenses/by/4.0/


 2 

 

Although Adaptive Search seems more sophisticated than Interpolated Binary Search, Interpolated 

Binary Search outperforms Adaptive Search [10].  

This study is motivated by two questions. First, why does Interpolation Search perform poorly 

over nonuniformly distributed data? Second, why does the seemly more thoughtful strategy for 

selecting pivot elements in Adaptive Search yield worse performance than the simple turn-taking 

strategy in Interpolated Binary Search? Answers to these questions lead to a new algorithm that 

outperforms both Adaptive Search and Interpolated Binary Search. 

The rest of this paper is organized as follows. Section 2 reviews Interpolation Search and 

discusses its performance bottleneck. Section 3 compares Interpolated Binary Search and Adaptive 

Search, and explains why the former outperforms the latter. Based on the findings from Sections 2 

and 3, Section 4 proposes a new algorithm called Interpolation Once Binary Search. Section 5 

compares the experimental results of these algorithms, and Section 6 concludes this paper. 

2. Comparison of Binary Search and Interpolation Search 

The algorithms for Binary Search and Interpolation Search are shown in Figure 1. To search for 

x from a sorted list �����, ������, … , �������, ������, Binary Search and Interpolation Search differ only 

in how the pivot elements are determined. Binary Search uses the middle element as the pivot 

element ��, i.e., 

� = �
(��������) 

�
�. (1)

Interpolation Search determines the pivot element’s index p by assuming that point (�, �) is on 

the straight line with the endpoints (���, ����) and (ℎ��ℎ, �����). Then, � can be derived as follows: 

� = �
(��������) (������) 

����������
� + ���. (2)

 

Input: a sorted list [��, ��, … , ��] and the searching item x 

Output: the index of x in [��, ��, … , ��], or -1 if not found. 

1. low = 1 and high = n; 

2. While (low ≤ high) do 

3.    Calculate p using Eq. (1) for Binary Search or Eq. (2) for Interpolation Search; 

4.    If (� = ��), return p; 

5.    Else if (� > ��), low = p+1; 

6.    Else high = p-1; 

7. Return -1; 

Figure 1. The algorithms for Binary Search and Interpolation Search. 

The time complexities of both algorithms have been extensively studied in the literature. As 

described in Section 1, Binary Search has a time complexity of Ο(log �); Interpolation Search has an 

average-case time complexity of Ο(log log �)  if data elements are uniformly distributed [3,4]. 

However, the time complexity of Interpolation Search can degrade to Ο(�) if the data distribution is 

highly uneven. Notably, the time complexity analysis focuses on the number of iterations within the 

while-loop (lines 2-6 in Figure 1).  

One iteration in the while-loop of Interpolation Search is much slower than that of Binary Search 

in terms of computation cost and data access cost. First, Eq. (1) involves only operations on integers, 
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and a bit-right-shift operation can accomplish the division-by-two operation. In contrast, Eq. (2) 

requires multiplication and division operations on floating-point values, making it much more 

computation costly than Eq. (1). Second, Eq. (1) does not need to access any data element in the sorted 

list, but Eq. (2) needs two data elements (i.e., ����� and ����). That is, one iteration in the while-loop 

of Binary Search accesses only one data element �� , but Interpolation Search requires three data 

elements (i.e., ��, ����� and ����). Notably, with Binary Search, the search range can be reduced by 

7/8 with three accesses of data elements. Thus, interpolation should be avoided for performance 

reasons unless it’s highly effective at reducing iterations. In Section 4, this observation is applied to 

design the proposed algorithm that minimizes interpolation. 

3. Comparison of Interpolated Binary Search and Adaptive Search 

In practice, the distribution of data elements in the sorted list is often unknown or does not 

follow a specific pattern. This uncertainty makes it difficult to determine whether Binary Search or 

Interpolation Search is the most suitable for a given problem. To address this, hybrid algorithms that 

combine aspects of both Binary Search and Interpolation Search have been proposed. In this section, 

we describe and compare two such algorithms, Interpolated Binary Search (IBS) and Adaptive Search 

(AS). Additionally, we derive critical insights for designing a more effective algorithm. 

IBS employs Eq. (1) and Eq. (2) alternately to decide the pivot elements. A concise version of the 

original algorithm [10] is depicted in Figure 2.  

Input: a sorted list [��, ��, … , ��] and the searching item x 

Output: the index of x in [��, ��, … , ��], or -1 if not found. 

1. low = 1, high = n, and binaryTurn=False; 

2. While (low ≤ high) do 

3.    If (binaryTurn), calculate p using Eq. (1);  // Binary Search style 

4.    Else calculate p using Eq. (2);   // Interpolation Search style 

5.    If (� = ��), return p; 

6.    Else if (� > ��), low = p+1; 

7.    Else high = p-1; 

8.    binaryTurn = not (binaryTurn);  // change turn 

9. Return -1; 

Figure 2. The algorithm for Interpolated Binary Search. Notably, the algorithm described above 

refines the original algorithm from Reference [10] for conciseness. 

Adaptive Search (AS) employs a more sophisticated strategy than IBS does to switch between 

Binary Search style (i.e., Eq.(1)) and Interpolation Search style (i.e., Eq.(2)). Each iteration within the 

while-loop of Figure 3 involves one or two probes for the pivot elements. The first probe follows 

Interpolation Search style (line 3) and the second probe (lines 4-9) follows Binary Search style. The 

second probe is added only when the first probe is ineffective in reducing the search range by more 

than half. 

Input: a sorted list [��, ��, … , ��] and the searching item x 
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Output: the index of x in [��, ��, … , ��], or -1 if not found. 

1. low = 1, high = n; 

2. While (low < high) do 

3.    Calculate p using Eq. (2);  // Interpolation Search style 

4.    If �� > � and (� − ���) > �
��������

�
�, 

5.       ℎ��ℎ =  � − 1; 

6.       Calculate p using Eq. (1);  // insert one iteration of binary search 

7.    Else If �� < � and (ℎ��ℎ −  �) > �
��������

�
�, then 

8.       ��� =  � + 1; 

9.       Calculate p using Eq. (1);  // insert one iteration of binary search 

10.    If �� > �, 

11.       ℎ��ℎ =  � − 1; 

12.    Else If �� < � 

13.       ��� =  � + 1; 

14.    Else 

15.       Return �; 

16. Return -1; 

Figure 3. The algorithm for Adaptive Search. 

Both IBS and AS have the same time complexity. If the data elements in the sorted list are 

distributed uniformly, both algorithms will have an average time complexity ofΟ(log log �), which is 

the same as Interpolation Search. Even if the data elements are not uniformly distributed, the worst 

time complexity of both algorithms will still be Ο(log �), which is the same as Binary Search.  

However, AS is more sophisticated than IBS, and a detailed comparison between IBS and AS 

from the computation cost perspective can be found in Section 5 of Reference [10]. The key here is 

whether the added sophistication can help reduce the number of iterations of the while-loop in AS. 

Unfortunately, there is no evidence to support the two heuristics of AS: (1) an ineffective Interpolation 

Search probe should follow by a Binary Search probe, and (2) an effective Interpolation Search probe 

should follow by another Interpolation Search probe. Experimental results from Reference [10] and 

Section 5 also show that the simple IBS outperforms the sophisticated AS. Therefore, unless the added 

sophistication to a search method effectively reduces the number of iterations, it might drag down 

the performance. 

4. Interpolation Once Binary Search—The Proposed Method 

This section proposes a hybrid of Interpolation Search and Binary Search, namely Interpolation 

Once Binary Search (IOBS). First, IOBS avoids any logic in switching between Interpolation Search 

and Binary Search since there is no clear evidence supporting that such an arrangement benefits 

performance, as discussed in Section 4. Second, IOBS reduces the number of interpolations to the 

extreme to mitigate the computation cost, as discussed in Section 3.  
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The algorithm for IOBS is shown in Figure 4. It uses Interpolation Search to determine the first 

pivot element (line 2). Then, subsequent probes follow Binary Search (line 7). The time complexity of 

IOBS is Ο(log �), the same as Binary Search. 

Input: a sorted list [��, ��, … , ��] and the searching item x 

Output: the index of x in [��, ��, … , ��], or -1 if not found. 

1. low = 1, high = n; 

2. Calculate p using Eq. (2);   // Interpolation Search style 

3.    Do 

4. If (� = ��), return p; 

5.    Else if (� > ��), low = p+1; 

6.    Else high = p-1; 

7.    Calculate p using Eq. (1);  // Binary Search style 

8. While (low ≤ high); 

9. Return -1; 

Figure 4. The algorithm for Interpolation Once Binary Search. 

5. Performance Study 

For performance comparison, we adopted the source code for AS, Interpolation Search, and 

Binary Search from [12] and implemented IBS and IOBS from scratch. We also adopted test dataset 

generation in the original code. All experiments were conducted on a PC with JRE1.8, 64-bit Windows 

10 OS, Intel® CoreTM i7-7700 processor, and 8GBs of RAM. 

The test datasets consist of ordered instances of Java double-precision floating-point values that 

are randomly generated. These values are distributed uniformly, normally or exponentially. The size 

of the test datasets is measured by the number of instances present, which ranges from 5 ∗ 10� to 

5 ∗ 10� for small datasets and from 10� to 10� for large datasets.  

Thirty test datasets were generated for each dataset size and data distribution. We utilized all 

instances in each dataset as search keys and calculated the average running time per instance. The 

process was repeated across the 30 test sets with the same size and data distribution, and the average 

running time was reported. The above experiment closely resembles the one described in [10], with 

two key differences. First, they randomly selected 1000 instances as the search keys, irrespective of 

the dataset’s size, and repeated this process 1000 times to mitigate sampling bias. In contrast, we used 

all instances as the search keys to avoid sampling bias. Second, they used only one dataset for each 

dataset size and data distribution, but we used 30 datasets to minimize dataset bias. 

5.1. Test Results over Uniformly Distributed Datasets 

Figures 5 and 6 show the test results for small and large datasets with uniform distribution. As 

expected, Binary Search and Interpolation Search yield the worst and the best performance, 

respectively, and IBS outperforms AS.  

IOBS achieves the second-best result over small datasets. However, it yields the second-worst 

result over large datasets, as the benefit of interpolation strengthens in Interpolation Search, AS, and 

IBS for large datasets with uniform distribution. 
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Figure 5. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS 

over small datasets with uniform distribution. 

 

Figure 6. Average running time per search of Binary Search, Interpolation Search, AS, IBS and IOBS 

over large datasets with uniform distribution. 

30

32

34

36

38

40

42

44

46

48

0 10 20 30 40 50

Ti
m

e 
(n

s)

Number of instances in the dataset / 103

Binary

Interpolation

AS

IBS

IOBS

35

40

45

50

55

60

0 1 2 3 4 5 6 7 8 9 10

Ti
m

e 
(n

s)

Number of instances in the dataset / 107

Binary

Interpolation

AS

IBS

IOBS

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0896.v1

https://doi.org/10.20944/preprints202404.0896.v1


 7 

 

5.2. Test Results over Normally Distributed Datasets 

Figures 7 and 8 show the test results for small and large datasets with normal distribution, where 

the result of Interpolation Search is excluded for its poor performance and clear demonstration of 

other methods’ results. IOBS consistently outperforms IBS and AS and achieves performance only 

next to Binary Search. 

 

Figure 7. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets 

with normal distribution. 

 

Figure 8. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with normal distribution. 

35

40

45

50

55

60

65

70

75

80

85

0 10 20 30 40 50

Ti
m

e 
(n

s)

Number of instances in the dataset / 103

Binary

AS

IBS

IOBS

45

55

65

75

85

95

105

0 2 4 6 8 10

Ti
m

e 
(n

s)

Number of instances in the dataset / 107

Binary

AS

IBS

IOBS

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 April 2024                   doi:10.20944/preprints202404.0896.v1

https://doi.org/10.20944/preprints202404.0896.v1


 8 

 

5.3. Test Results over Exponentially Distributed Datasets 

Figures 9 and 10 show the test results for small and large datasets with exponential distribution, 

where the result of Interpolation Search is excluded because of its poor performance and clear 

demonstration of other methods’ results. Similar to the results for datasets with normal distribution, 

IOBS consistently outperforms IBS and AS, and achieves performance only next to Binary Search. 

 

Figure 9. Average running time per search of Binary Search, AS, IBS and IOBS over small datasets 

with exponential distribution. 

 

Figure 10. Average running time per search of Binary Search, AS, IBS and IOBS over large datasets 

with exponential distribution. 
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6. Conclusions 

Performance study shows that Interpolation Search yields the worst results for datasets with 

normal or exponential distributions. AS and IBS improve Interpolation Search by integrating Binary 

Search and Interpolation Search to mitigate the interpolation cost. Furthermore, IBS outperforms AS 

due to its simplicity. These results suggest that hybrids of Binary Search and Interpolation Search 

benefit from reducing the interpolation cost and avoiding complex rules for switching between 

Binary Search and Interpolation Search. Accordingly, this study proposes IOBS, which incurs less 

interpolation cost and is more straightforward than AS and IBS. Performance results show that IOBS 

outperforms AS and IBS over datasets with normal or exponential distribution and that IOBS 

outperforms Binary Search for uniformly distributed datasets. Thus, IOBS is a better alternative to 

other hybrids of Binary Search and Interpolation Search, such as AS and IBS, unless the data 

distribution is known to be uniform. 

Performance study also shows that Interpolation Search performs best for datasets with uniform 

distribution. Repeatedly using interpolation to determine the pivot elements for uniformly 

distributed datasets improves performance. However, it is known that the best-case time complexity 

of Interpolation Search is O(1) when the first pivot element derived from interpolation is the search 

key. For uniformly distributed datasets, the first pivot element by Interpolation Search is near the 

search key, and thus the importance of determining the subsequent pivot elements by interpolation 

is reduced. How to balance between repeated interpolation and reducing interpolation cost deserves 

further investigation.  
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