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Abstract: Given the landscape of intricate and constantly evolving cyber threats, organizations demand refined
strategies to deploy a Security Information and Event Management to support the management of a Cyber
Security Operations Center. The dynamic nature of cyber threats complicates the efficient allocation of the
location of network intrusion detection sensors, a critical component of a robust cybersecurity framework. Our
research introduces an approach that integrates the precision of biomimetic optimization algorithms with the
adaptability of Deep Q-Learning. By employing different biomimetic algorithms enhanced with deep learning,
we aim to refine the deployment of sensors in network infrastructures, balancing the network security imperative
against deployment costs. The results of computational tests demonstrate that the improved iterations leveraging
Deep Q-Learning have outperformed their native counterparts. These findings underscore the importance of
reinforcement learning, specifically through Deep Q-Learning, as a powerful tool to enhance the effectiveness of

metaheuristics in addressing optimization challenges.

Keywords: biomimetic optimization algorithm; deep g-learning; ciber SOC; security information event management

1. Introduction

In the digital age, the landscape of the contemporary world is increasingly shaped by technological
advancements, where threats in the cyber realm pose significant challenges to enterprises. Recognizing
these threats necessitates a nuanced understanding of cybersecurity culture, the development of robust
cyber—risk management strategies, and the adoption of a proactive, collaborative approach tailored
to each organization’s unique context [1,2]. In response, this paper introduces a novel, adaptable
cybersecurity risk management framework designed to seamlessly integrate with the evolving threat
landscape, leveraging technological progress and aligning with specific organizational needs.

The advancement of optimization techniques, driven by an expansion in scientific knowledge, has
led to notable breakthroughs in various fields, including cybersecurity [3]. Artificial intelligence (AI)
plays a pivotal role in this evolution, especially through the development of bio—inspired optimization
algorithms. These algorithms, inspired by natural processes, have been instrumental in enhancing
cyber risk management strategies by offering innovative solutions and efficiencies [4]. Despite their
effectiveness in solving complex problems, these algorithms can encounter limitations, such as stag-
nation at local optima, which poses a challenge to achieving global optimization [5]. Nevertheless,
this challenge also presents an opportunity for a strategic focus on diversification within the search
domain, facilitating significant improvements in cyber risk management efficacy.

Bio—inspired algorithms often struggle to achieve global optimum due to their inherent design,
which tends to favor convergence towards local optima based on immediate environmental information.
This can lead to premature acceptance of suboptimal solutions [6,7]. Addressing this issue is crucial and
involves promoting a balanced approach to exploration and exploitation, encouraging the exploration
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of previously uncharted territories and the pursuit of untapped opportunities, thereby enhancing the
identification and mitigation of cyber risks [8].

This research proposes a cutting—edge hybrid algorithm that combines metaheuristic algorithms
with reinforcement learning to efficiently search for and identify optimal solutions in global opti-
mization tasks. This approach aims to strike a delicate balance between exploration and exploitation,
gradually offering more advantageous solutions over time, while avoiding the pitfalls of premature
convergence [9]. By leveraging the strengths of bio—inspired algorithms such as Particle Swarm Opti-
mization (PSO), Bat Algorithm (BAT), Gray Wolf Optimizer (GWO), and Orca Predator Algorithm
(OPA) for initial detection, and subsequently optimizing the search process with Deep Q-Learning
(DQL), this study seeks to address and overcome the challenges of exploration—exploitation balance
and computational complexity, especially in high-dimensional search spaces [10,11].

Enhancing the methodology outlined in [12], this paper extends the integration of bio—inspired
algorithms with Deep Q-Learning to optimize the implementation of Cyber Security Operations
Centers (Ciber SOC). It focuses on a comprehensive risk and requirement evaluation, the establishment
of clear objectives, and the creation of a robust technological infrastructure, featuring key tools such
as Security Information and Event Management (SIEM) and Network Intrusion Detection Systems
(NIDS) for effective real-time monitoring and threat mitigation [13,14].

Structured to provide a thorough investigation, this paper is organized as follows: Section 2
offers a detailed review of recent integrations of machine learning with metaheuristics in cybersecurity,
highlighting multi—objective optimization challenges. Section 3 delves into preliminary concepts of
bio-inspired algorithms, emphasizing the principles of PSO, BAT, GWO, and OPA, alongside a formal
introduction to DQL and advancements in Cyber SOC and SIEM technologies. Section 4 outlines the
development of the proposed solution, with Section 5 detailing the experimental design methodology.
Section 6 analyzes the results, discussing the hybridization’s effectiveness in generating efficient
solutions. Finally, Section 7 concludes the study, summarizing key findings and suggesting directions
for future research.

2. Related Work

The rising frequency and severity of cyberattacks underscore the essential role of cybersecurity
in protecting organizational assets. Research such as the study by [15] introduces a groundbreaking
multi-objective optimization approach for cybersecurity countermeasures using Genetic Algorithms.
This methodology aims to fine-tune Artificial Immune System parameters to achieve an ideal balance
between minimizing risk and optimizing execution time. The robustness of this model is demonstrated
through comprehensive testing across a broad spectrum of inputs, showcasing its capacity for a swift
and effective cybersecurity response.

In the realm of machine learning (ML), techniques are being increasingly applied across diverse
domains, including the creation of advanced machine learning models, enhancing physics simulations,
and tackling complex linear programming challenges. The research conducted by [16] delves into
the significant impact of machine learning on the domain knowledge of metaheuristics, leading to
enhanced problem-solving methodologies. Furthermore, the integration of machine learning with
metaheuristics, as explored in studies [17,18], opens up promising avenues for cyber risk management,
showcasing the transformative potential of ML in developing new strategies and enhancing existing
cybersecurity mitigation efforts.

The synergy between advanced machine learning techniques and metaheuristics is pivotal in
crafting solutions that effectively address the sophisticated and ever—evolving landscape of cyber
threats. Notably, research such as [19] emphasizes the utility of integrating Q-Learning with Particle
Swarm Optimization for the resolution of combinatorial problems, marking a significant advancement
over traditional PSO methodologies. This approach not only enhances solution quality but also exem-
plifies the effectiveness of learning-based hybridizations in the broader context of swarm intelligence
algorithms, providing a novel and adaptable methodology for tackling optimization challenges.
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Innovative algorithmic design further underscores the progress in optimization techniques, with
the introduction of the self-adaptive virus optimization algorithm by [20]. This novel algorithm
improves upon the conventional virus optimization algorithm by minimizing the reliance on user—
defined parameters, thus facilitating a broader application across various problem domains. The
dynamic adaptation of its parameters significantly elevates the algorithm’s performance on benchmark
functions, showcasing its superiority, particularly in scenarios where the traditional algorithm exhibited
limitations. This advancement is achieved by streamlining the algorithm, reducing controllable
parameters to a singular one, thereby enhancing its efficiency and versatility for continuous domain
optimization challenges.

The discourse on metaheuristic algorithms for solving complex optimization problems is en-
riched by [21], which addresses the manual design of these algorithms without a cohesive framework.
Proposing a General Search Framework to amalgamate diverse metaheuristic strategies, this method in-
troduces a systematic approach for the selection of algorithmic components, facilitating the automated
design of sophisticated algorithms. This framework enables the development of novel, population—
based algorithms through reinforcement learning, marking a pivotal step towards the automation of
algorithm design supported by effective machine learning techniques.

In the domain of intrusion detection, [22] introduces an innovative technique, metaheuristic with
deep learning enabled intrusion detection system for secured smart environment (MDLIDS-SSE),
which combines metaheuristics with deep learning to secure intelligent environments. Employing
Z-score normalization for data preprocessing via the improved arithmetic optimization algorithm
based feature selection (IAOA-FS), this method achieves high precision in intrusion classification,
surpassing recent methodologies. Experimental validation underscores its potential in safeguarding
smart cities, buildings, and healthcare systems, demonstrating promising results in accuracy, recall,
and detection rates.

Additionally, the Q-Learning Vegetation Evolution algorithm, as presented in [23], exemplifies
the integration of Q-Learning for optimizing coverage in numerical and wireless sensor networks. This
approach, featuring a mix of exploitation and exploration strategies and the use of online Q-Learning
for dynamic adaptation, demonstrates significant improvements over conventional methods through
rigorous testing on CEC2020 benchmark functions and real-world engineering challenges. This
research contributes a sophisticated approach to solving complex optimization problems, highlighting
the efficacy of hybrid strategies in the field.

In the sphere of cyber risk management, particularly from the perspective of the Ciber SOC and
SIEM, research efforts focus on strategic optimization, automated responses, and adaptive methodolo-
gies to navigate the dynamic cyber threat landscape. Works such as [12,24] explore efficient strategies
for designing network topologies and optimizing cybersecurity incident responses within SIEM sys-
tems. These studies leverage multi-objective optimization approaches and advanced machine learning
models, like deep—Q neural networks, to enhance decision-making processes, showcasing significant
advancements in the automation and efficiency of cybersecurity responses.

Emerging strategies in intrusion detection and network security, highlighted by [25,26], emphasize
the integration of reinforcement learning with oversampling and undersampling algorithms, and the
combination of Particle Swarm Optimization—Genetic Algorithm with LSTM-GRU of deep learning
that fused the GRU (gated recurrent unit) and LSTM (long short-term memory). These approaches
demonstrate a significant leap forward in detecting various types of attacks within Internet of Things
(IoT) networks, showcasing the power of combining machine learning and optimization techniques for
IoT security. The model’s accuracy in classifying different attack types, as tested on the CICIDS-2017
dataset, outperforms existing methods and suggests a promising direction for future research in this
domain.

Furthermore, [27] introduces a semi-supervised alert filtering scheme that leverages semi-
supervised learning and clustering techniques to efficiently distinguish between false and true alerts
in network security monitoring. This method’s effectiveness, as evidenced by its superior performance
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over traditional approaches, offers a fresh perspective on alert filtering, significantly contributing to
the improvement of network security management by reducing alert fatigue.

The exploration of machine learning’s effectiveness and cost—efficiency in NIDS for small medium
enterprises (SME) in the UK is presented in [28]. This study assesses various intrusion detection
and prevention devices, focusing on their ability to manage zero—day attacks and related costs. The
research, conducted during the COVID-19 pandemic, investigates both commercial and open—source
NIDS solutions, highlighting the balance between cost, required expertise, and the effectiveness of
machine learning—enhanced NIDS in safeguarding SMEs against cyber threats.

From the perspective of Cyber SOC, [29] addresses the increasing complexity of cyberattacks
and their implications for public sector organizations. This study proposes a "Wide-Scope CyberSOC’
model as a unique outsourced solution to enhance cybersecurity awareness and implementation across
various operational domains, tackling the challenges faced by public institutions in building a skilled
cybersecurity team and managing the blend of internal and external teams amidst the prevailing
outsourcing trend.

Lastly, [30] offers a comprehensive analysis of the Bio-Inspired Internet of Things, underscoring
the synergy between biomimetics and advanced technologies. This research evaluates the current
state of Bio-1oT, focusing on its benefits, challenges, and future potential. The integration of natural
principles with IoT technology promises to create more efficient and adaptable solutions, addressing
key challenges such as data security and privacy, interoperability, scalability, energy management, and
data handling.

3. Preliminaries

In this study, we integrate bio-inspired algorithms with an advanced machine learning technique
to tackle a complex optimization problem. Specifically, we utilize Particle Swarm Optimization, the Bat
Algorithm, the Grey Wolf Optimizer and Orca Predator Algorithm, which are inspired by the intricate
processes and behaviors observed in nature and among various animal species. These algorithms are
improved by incorporating Reinforcement Learning through Deep Q-Learning on the search process
of bio—inspired methods.

3.1. Particle Swarm Optimization

Particle Swarm Optimization is a computational method that simulates the social behavior
observed in nature, such as birds flocking or fish schooling, to solve optimization problems [31]. This
technique is grounded in the concept of collective intelligence, where simple agents interact locally
with one another and with their environment to produce complex global behaviors.

In PSO, a swarm of particles moves through the solution space of an optimization problem, with
each particle representing a potential solution. The movement of these particles is guided by their
own best-known positions in the space as well as the overall best-known positions discovered by any
particle in the swarm. This mechanism encourages both individual exploration of the search space and
social learning from the success of other particles. The position of each particle is updated according to
Equations (1) and (2).

v;(t+1) = wo;(t) + cyrandy (pbest; — x;(t)) 4 corand, (gbest — x;(t)) (1)

xi(t—l-l) :x,»(t)+vi(t—|-1) (2)

where v;(t 4 1) is the velocity of particle i at iteration t + 1. w It is the weight of inertia that helps
balance exploration and exploitation. c¢; and ¢; are coefficients representing self-confidence and social
trust, respectively. rand; and rand; are random numbers between 0 and 1. pbest; is the best known
position for the particle i and gbest is the best position known to the entire population. Finally, x;(t)
and x;(t + 1) represent the current position of the particle i and the next one, respectively.
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The algorithm iterates these updates, allowing particles to explore the solution space, with the
aim of converging towards the global optimum. The parameters w, ¢, and c; play crucial roles in the
behavior of the swarm, affecting the convergence speed and the algorithm’s ability to escape local
optima.

PSO is extensively employed due to its simplicity, efficiency, and versatility, enabling its applica-
tion across a broad spectrum of optimization problems. Its capability to discover solutions without
requiring gradient information renders it especially valuable for problems characterized by complex,
nonlinear, or discontinuous objective functions.

3.2. Bat Algorithm

The Bat Algorithm is an optimization technique inspired by the echolocation behavior of bats.
It simulates the natural echolocation mechanism that bats use for navigation and foraging. This
algorithm captures the essence of bats’ sophisticated biological sonar systems, translating the dynamics
of echolocation and flight into a computational algorithm capable of searching for global optima in
complex optimization problems [6].

In the Bat Algorithm, a population of virtual bats navigates the solution space, where each bat
represents a potential solution. The bats use a combination of echolocation and a random walk to
explore and exploit the solution space effectively. They adjust their echolocation parameters, such as
frequency, pulse rate, and loudness, to locate prey, analogous to finding the optimal solutions in a
given problem space. The algorithm employs the following equations for updating the bats’ positions
and velocities:

fi :fmin+(fmax_fmin),3 (3)
vi(t+1) = vi(t) + (x;(t) — gbest) f; 4)
xi(t—i—l) :xi(t)—i—v,-(t—i—l) (5)

where f; is the frequency of the bat i, ranging from f,;, to fiux with § being a random number between
0 and 1. v;(t + 1) represents the velocity of bat i at iteration t + 1, and gbest signifies the global best
solution found by any bat. x;(t + 1) denotes the position of bat i for the next iteration.

Additionally, to model the bats’ local search and exploitation capability, a random walk is incor-
porated around the best solution found so far. This is achieved by modifying a bat’s position using
the average loudness A of all the bats and the pulse emission rate r, guiding the search towards the
optimum:

Xnew = Xgpest €A (6)

where xpey represents a new solution generated by local search around the global best position xgpest,
and € is a random number drawn from a uniform distribution. The values of A and r decrease and
increase respectively over the course of iterations, fine-tuning the balance between exploration and
exploitation based on the proximity to the prey, i.e., the optimal solution.

The Bat Algorithm’s efficiency stems from its dual approach of global search, facilitated by
echolocation—-inspired movement, and local search, enhanced by the random walk based on pulse rate
and loudness. This combination allows the algorithm to explore vast areas of the search space while
also intensively searching areas near the current best solutions.

3.3. Gray Wolf Optimizer

The Gray Wolf Optimizer is an optimization algorithm inspired by the social hierarchy and
hunting behavior of gray wolves in nature. This algorithm mimics the leadership and team dynamics
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of wolves in packs to identify and converge on optimal solutions in multidimensional search spaces [32].
The core concept behind GWO is the emulation of the way gray wolves organize themselves into
a social hierarchy and collaborate during hunting, applying these behaviors to solve optimization
problems.

In a gray wolf pack, there are four types of wolves: alpha («), beta (8), delta (), and omega (w),
representing the leadership hierarchy. The alpha wolves lead the pack, followed by beta and delta
wolves, with omega wolves being at the bottom of the hierarchy. This social structure is translated into
the algorithm where the best solution is considered the alpha, the second best the beta, and the third
best the delta. The rest of the candidate solutions are considered omega wolves, and they follow the
lead of the alpha, beta, and delta wolves towards the prey (optimal solution).

The positions of the wolves are updated based on the positions of the alpha, beta, and delta
wolves, simulating the hunting strategy and encircling of prey. The mathematical models for updating
the positions of the gray wolves are given by the following equations:

D= |C-Xp(t) — X(1)] (7)

X(t+1)=X,(t)—A-D (8)

where }?p(t) represents the position vector of the prey (or the best solution found so far), X is the
position vector of a wolf, A and C are coefficient vectors, and f indicates the current iteration. The
vectors A and C are calculated as follows:

A=2.4-7,—1d )
C=2-% (10)

where 7 linearly decreases from 2 to 0 over the course of iterations, and 7, 7; are random vectors in
[0,1].

The hunting (optimization) is guided mainly by the alpha, beta, and delta wolves, with omega
wolves following their lead. The algorithm effectively simulates the wolves” approach and encircling
of prey, exploration of the search area, and exploitation of promising solutions.

3.4. Orca Predator Algorithm

The Orca Predator Algorithm draws inspiration from the sophisticated hunting techniques of
orcas, known for their strategic and cooperative behaviors [33]. Orca societies are characterized by
complex structures and collaborative efforts in predation, employing echolocation for navigation and
prey detection in their aquatic environments. OPA models solutions as n—dimensional vectors within a
solution space X = [x1, X, ..., Xy] T mimicking these marine predators” approaches to tracking and
capturing prey.

OPA’s methodology encompasses two main phases reflective of orca predation: the chase, in-
volving herding and encircling tactics, and the attack, focusing on the actual capture of prey. During
the chase phase, the algorithm alternates between herding prey towards the surface and encircling
it to limit escape opportunities, with the decision based on a parameter p and a random number r
within [0, 1]. The attack phase simulates the final assault on the prey, highlighting the importance of
coordination and precision.

Uéhase,l,i =ax (d X xiest —Fx (b x M! +cX xzt)) (11a)

t _ t t
vchuse,Z,i =€ X Xpegr — X (11b)
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N .t
Yi—1X
M= =5 e=1-b (110)
t Nt t
Xnew = {xChﬂSE,l,i =x+ Uthase1,i when q> rand (11d)
t A t
Xchase2,i = i + Uthase,2,i when g < rand

These equations detail the algorithm’s dynamics, modeling velocity and spatial adjustments
reflective of orca hunting behaviors. x! represents the position of the i-th orca at time ¢, with x}
denoting the optimal solution’s position. Parameters a, b, d, and e are random coefficients that
influence the algorithm’s exploration and exploitation mechanisms, with F indicating the attraction
force between agents.

After herding prey to the surface, orcas coordinate to finalize the hunt, using their positions and the
positions of randomly chosen peers to strategize their attack. This collective behavior is encapsulated
in the following equations, illustrating the algorithm’s mimicry of orca hunting techniques.

t ot t t
Xease3,ijk = Xy T U X (X, ) — X, 1) (12a)

MaxIter —t
MaxIter

These formulations demonstrate how orcas adapt their positions based on the dynamics of their
surroundings and the behaviors of their pod members, optimizing their strategies to efficiently capture
prey. Through this algorithm, the intricate and collaborative nature of orca predation is leveraged as a
metaphor for solving complex optimization problems, with a focus on enhancing solution accuracy
and efficiency.

u=2x (rand — 0.5) x (12b)

3.5. Reinforcement Learning

Reinforcement Learning revolves around the concept of agents operating autonomously to
optimize rewards through their decisions, as outlined in comprehensive studies [34]. These agents
navigate their learning journey via a trial and error mechanism, pinpointing behaviors that accrue
maximum rewards, both immediate and in the future, a hallmark trait of reinforcement Learning [35].

During the reinforcement Learning journey, agents are in constant interaction with their sur-
roundings, engaging with essential elements like the policy, value function, and at times, a simulated
representation of the environment [36-39]. The value function assesses the potential success of the ac-
tions taken by the agent within its environment, while adjustments in the agent’s policy are influenced
by the rewards received.

One pivotal reinforcement Learning method, Q-Learning, aims to define a function that evaluates
the potential success of an action 4; in a certain state s; at time ¢ [40,41]. This evaluation function, or Q
function, undergoes updates as per Equation (13):

Q(st,a) < Qs ar) +a |:Tt+] + y max Q(str1,a) — Q(sy, at)} (13)

Here, « symbolizes the learning rate, and 7y represents the discount factor, with r;,; being the
reward after executing action a;.

Deep Reinforcement Learning (DRL) merges deep learning with reinforcement learning, tackling
problems of higher complexity and dimensionality [42]. In DRL, deep neural networks approximate
the value functions or policies. Deep Q-Learning, a subset of DRL, utilizes a neural network to estimate
the Q value function, reflecting the anticipated aggregate reward for a specific state action. This Q
value function evolves through an iterative learning process as the agent engages with the environment
and garners rewards.
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Within Deep Q-Learning, the Q function is articulated as Q(s;, a¢; 6), where s; denotes the present
state, a; the action undertaken by the agent at time ¢, and 6 the network’s weights [43]. The Q function’s
update mechanism is guided by Equation (14):

Q(st,a1;0) < Q(st,a1;0) +a|re1 + 7 max Q(st41,a141,07 ) — Q(st, ar;0) (14)
t+

Here, s¢11 and a;1 indicate the subsequent state and action at time f + 1, respectively. The learning
rate « influences the extent of Q value function updates at each learning step. A higher « facilitates
rapid adjustment to environmental changes, beneficial during the learning phase’s early stages or in
highly variable settings. Conversely, a lower « ensures a more gradual and steady learning curve but
might extend the convergence period. The discount factor -y prioritizes future over immediate rewards,
promoting strategies focused on long—term gain. In contrast, a lower 7 favors immediate rewards,
suitable for less predictable futures or scenarios necessitating quick policy development. The reward
7141 is received post-action a; execution in state s¢, with 8~ denoting the parameters of a secondary
neural network that periodically synchronizes with 6 to enhance training stability.

A hallmark of Deep Q-Learning is the incorporation of Replay Memory, a pivotal compo-
nent of its learning framework [44,45]. Replay Memory archives the agent’s experiences as tuples
(st,a¢, 1441, 51+1), with each tuple capturing a distinct experience involving the current state s;, the
executed action a4;, the obtained reward r; 1, and the ensuing state s;, ;. This methodology of pre-
serving and revisiting past experiences significantly improves the learning efficiency and efficacy,
enabling the agent to draw from a broader spectrum of experiences. It also diminishes the sequential
dependency of learning events, a crucial strategy for mitigating the risk of over—reliance on recent
data and fostering a more expansive learning approach. Furthermore, DQL employs the mini-batch
strategy for extracting experiences from Replay Memory throughout the training phase [46]. Rather
than progressing from individual experiences one by one, the algorithm opts for random selection of
mini-batches of experiences. This technique of batch sampling bolsters learning stability by ensuring
sample independence and optimizes computational resource utilization.

Finally, learning in DQL is governed by a loss function according to Equation (15), which measures
the discrepancy between the estimated Q and target values.

Loss(6;) = E x {(y — Q(st,at;G))z] (15)

where y is the target value, calculated by Equation (16):

Y=re1+ X max Q(sp4+1,a141;,07) (16)
+

Here, ;41 is the reward received after taking action a; in the state s;, and v is the discount
factor, which balances the importance of short-term and long—term rewards. The formulation
max, Q(s¢+1,a:41;07 ) represents the maximum estimated value for the next state sy, according
to the target network with parameters 6. Q(s, a¢;6;) is the Q value estimated by the evaluation
network for the current state s; and action a;, using the current parameters 6;. In each training step in
DQL, the evaluation network receives a loss function backpropagated based on a batch of experiences
randomly selected from the experience replay memory. The evaluation network’s parameter, 6, is then
updated by minimizing the loss function through the Stochastic Gradient Descent (SGD) function.
After several steps, the target network’s parameter, 07, is updated by assigning the latest parameter ¢
to 67. After a period of training, the two neural networks are trained stably.

3.6. Cybersecurity Operations Centers

Recent years have seen many organizations establish Cyber SOCs in response to escalating
security concerns, necessitating substantial investments in technology and complex setup processes
[47]. These centralized hubs enhance incident detection, investigation, and response capabilities by
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analyzing data from various sources, thereby increasing organizational situational awareness and
improving security issue management [48]. The proliferation of the Internet and its integral role
in organizations brings heightened security risks, emphasizing the need for continuous monitoring
and the implementation of optimization methods to tackle challenges like intrusion detection and
prevention effectively [49].

Security Information and Event Management systems have become essential for Cyber SOCs,
playing a critical role in safeguarding the IT infrastructure by enhancing cyber threat detection and
response, thereby improving operational efficiency and mitigating security incident impacts [50].
Efficient allocation of centralized NIDS sensors through an SIEM system is crucial for optimizing
detection coverage and operational efficiency, considering the organization’s specific security needs
[51]. This strategic approach allows for cohesive management and comprehensive security data
analysis, leading to a faster and more effective response to security incidents [52]. SIEM systems,
widely deployed to manage cyber risks, have evolved into comprehensive solutions that offer broad
visibility into high-risk areas, focusing on proactive mitigation strategies to reduce incident response
costs and time [53]. Figure 1 illustrates the functional characteristics of a Cyber SOC.
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Documents, procedures, and - . o
knowledge on cybersecurity Efficiently identifying and
incidents and optimal practices. managing potential security
threats.
'I
©
Aggregation/Correlation
Data collection and analysis SIEM
to detect patterns, Cybersecurity strategy manages
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. To Threat Ingelligence
Reporting o= -
Gathering and analyzing data from
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identifying trends, risk assessments, and threats and vulnerabilities.

compliance reports.

Figure 1. Ciber SOC functional characteristics.

Today’s computer systems are universally vulnerable to cyberattacks, necessitating continuous
and comprehensive security measures to mitigate risks [54]. Modern technology infrastructures
incorporate various security components, including firewalls, intrusion detection and prevention
systems, and security software on devices, to fortify against threats [55]. However, the autonomous
operation of these measures requires the integration and analysis of data from different security
elements for a complete threat overview, highlighting the importance of Security Information and
Event Management systems [56]. As the core of Cyber SOCs, SIEM systems aggregate data from
diverse sources, enabling effective threat management and security reporting [57].

SIEM architectures consist of key components such as source device integration, log collection,
and event monitoring, with a central engine performing log analysis, filtering, and alert generation
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[58,59]. These elements work together to provide real-time insights into network activities, as depicted

in Figure 2.
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Figure 2. SIEM functional characteristics.

NIDS sensors, often based on cost-effective Raspberry Pi units, serve as adaptable and scalable
modules for network security, requiring dual Ethernet ports for effective integration into the SIEM
ecosystem [60]. This study aims to enhance the assignment and management of NIDS sensors within
a centralized network via SIEM, improving the optimization of sensor deployment through the
application of Deep Q-Learning to metaheuristics, advancing upon previous work [12].

In this context, cybersecurity risk management is essential for organizations to navigate the
evolving threat landscape and implement appropriate controls [61]. It aims to balance securing
networks and minimizing losses from vulnerabilities [62], requiring continuous model updates and
strategic deployment of security measures [63]. Cyber risk management strategies, including the
adoption of SIEM systems, are vital for monitoring security events and managing incidents [62].

The optimization problem focuses on deploying NIDS sensors effectively, considering cost,
benefits, and indirect costs of non—installation. This involves equations to minimize sensor costs (18),
maximize benefits (19), and minimize indirect costs (20), with constraints ensuring sufficient sensor
coverage (21) and network reliability (22).

F(x) = (A1(%), f2(X), £3(%)) (17)

f1(X) : ;2161)1(;]; XjiCij (18)
n
f2(%) agiae}%]; xiidij, Vi (19)
n
f3(%) : )g;iel;(Jg(l — Xjj)ijj, Vi (20)
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n
Y xij>1,Vi (21)
j=1
n
Y pi(1 —xij)
j=1 ,
— <= (1-u), Vi (22)
)y P;
j=1

This streamlined approach extends the model to larger networks and emphasizes the importance
of regular updates and expert collaboration to improve cybersecurity outcomes [12,64].

Expanding on research [12] which optimized NIDS sensor allocation in medium-sized networks,
this study extends the approach to larger networks. By analyzing a case study, this research first tackles
instance zero with ten VLANSs, assigning qualitative variables to each based on operational importance
and failure susceptibility for strategic NIDS sensor placement. This formulation leads to an efficient
allocation of NIDS sensors for the foundational instance zero, as depicted in Figure 3. The study scales
up to forty additional instances, providing a robust examination of NIDS sensor deployment strategies
in varied network configurations.
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Figure 3. Network Topology. Instance Zero Solution.

4. Solution Development

This solution advances the integration of bioinspired algorithms—Particle Swarm Optimization,
Bat Algorithm, Grey Wolf Optimizer, and Orca Predator Algorithm —with Deep Q-Learning to dy-
namically fine-tune the parameters of these algorithms. Utilizing the collective and adaptive behaviors
of PSO, BAT, GWO, and OPA alongside the capabilities of DQL to handle extensive state and action
spaces, we enhance the efficiency of feature selection. Inspired by the natural strategies of their respec-
tive biological counterparts and combined with DQL’s proficiency in managing high—-dimensional
challenges [33,65], this approach innovates optimization tactics while effectively addressing complex
combinatorial issues.
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DQL is pivotal for shifting towards exploitation, particularly in later optimization phases. As PSO,
BAT, GWO, and OPA explore the solution space, DQL focuses the exploration on the most promising
regions through an epsilon-greedy policy, optimizing action selection as the algorithm progresses and
learns [66].

Each algorithm functions as a metaheuristic with agents (particles, bats, wolves, agents) repre-
senting search agents within the binary vector solution space.

DQL'’s reinforcement learning strategy fine—tunes the operational parameters of these algorithms,
learning from their performance outcomes to enhance exploration and exploitation balance. Through
replay memory, DQL benefits from historical data, incrementally improving NIDS sensor mapping for
SIEM system.

Figure 4 displays the collaborative workflow between the bioinspired algorithms and DQL, show-
casing an efficient and effective optimization methodology that merges nature—inspired exploration
with DQL’s adaptive learning.

Replay memory ]
] Te

C—
Instances [ E—

L — = Evaluation E
—

Network  * o(s.,,,a.,,:609)
: > (rymaxQ(snn,acnif) - Qonast)

L

Update ©
by stochastic gradient
descent

< Move operator
Optimization
SIEM

(rea)g

|z‘lnstance Parameters

.
e o7
| >
g VN
. H
Selection Update el -|  Mini-Batch

() assssmmsmmmnn .
Fitness evaluation _ (s,a,7,5041) g Target 1

H .

. ) H R
H .

Hp— .

H 74 H

H H

H H

B H

(os)

Metaheuristic
evaluation metrics

Qs ai:6)

o]

. .
DQL Proccess Eaasssgasnnas 2
Current state
Parameter of biomimetic algorithms

argmax@Q (s, a; 8)

Parameter of biomimetic algorithms

Stop
Criterion
met

\"F ’ \"F
Biomimetic algorithm Learning component

Figure 4. Solution developed using four metaheuristics with Deep Q Learning.

The essence of our methodology is captured in the pseudocode of Algorithm 1, beginning with
dataset input and leading to the global best solution identification. This process involves initializing
agents, adjusting their positions and velocities, and employing a training phase to compute fitness,
followed by DQL’s refinement of exploration and exploitation strategies.

The core loop iterates until reaching a specified limit, with each agent’s position and velocity
updated and fitness evaluated for refining the search strategy.

The computational complexity of our enhanced metaheuristic and DQL integration reflects the
algorithm’s depth and breadth in tackling of finding efficient solutions, balancing efficiency with
computational demands. Advances in computing power significantly reduce the impact of this
complexity, supporting the feasibility of this comprehensive optimization approach.
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Algorithm 1: Enhanced bioinspired optimization method.

Input: Dataset characteristics for training.
Input: Parameters of PSO, BAT, GWO, OPA.
Result: The global best solution

1 Initialize a swarm S of agents

2 state <— performance metrics

3 action < initial values for algorithm’s parameters

4 while iferation up to limit do

5 | foreachagenta,(Vi={1,...,5})do

6 Select randomly three agents

7 Update position and velocity of agent

8 Call training phase to agent 0 and compute its fitness via Eq. (23)
9 if agent o is better than global best then

10 Update global best

11 Calculate reward based on performance metrics
12 state, action < DQLProcess (state, action, reward)
13 end
14 end
15 end

16 return Post—process and visualize results
17 Function DQLProcess (state):

18 Initialize Q-estimation neural network

19 Initialize memory buffer for storing experiences
20 | Select action using epsilon-greedy strategy

21 Execute action and observe new state, reward

22 | Store experience in memory buffer
23 if memory buffer is large enough then

2 Extract mini-batch of experiences

25 foreach experience in mini-batch do

26 Calculate target value using Q-Learning

27 Update neural network with state and target value
28 end

29 Update epsilon value

30 end

5. Experimental setup

Forty instances have been proposed for the experimental stage. These instances entail random
operating parameters, which are detailed below for each instance: the number of operational VLANSs,
the types of sensors used, the range of sensor costs, the range of benefits associated with sensor
installation in a particular VLAN, the range of indirect costs incurred when a sensor is not installed in
a given VLAN, and the probability of non-operation for a given VLAN.

Additionally, it’s important to note that, as per the mathematical modeling formulation outlined
earlier, one of its constraints mandates a minimum operational or uptime availability of ninety percent
for the organization’s network. The specific values for each instance are provided in detail in Table 1.

Once the solution vector has been altered, it becomes necessary to implement a binarization step
for the usage of continuous metaheuristics in a binary domain [67]. This involves comparing the
Sigmoid function to a randomly uniform value § that falls within the range of 0 and 1. Subsequently, a

conversion function, for instance, [1/(1 + e )] > ¢, is employed as a method of discretization. In this
scenario, if the statement holds true, then xf < 1. Conversely, if it doesn’t hold true, then xf «~ 0.
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Table 1. Specification of the operational parameters for the forty instances.
Instance Number of  Type of Uptime Range of Qualitative Range of Performance
VLANs sensors direct costs  profit-range indirect costs = OF subnets
1 10 2 90% [100-150] [1-20] [1-7] [0.39-0.80]
2 10 2 90% [100-150] [5-20] [1-7] [0.10-0.80]
3 10 2 90% [100-150] [1-20] [1-7] [0.02-0.80]
4 10 2 90% [100-150] [1-20] [1-5] [0.11-0.80]
5 15 2 90% [100-150] [1-20] [1-7] [0.14-0.85]
6 15 2 90% [100-150] [1-20] [1-7] [0.01-0.94]
7 15 2 90% [100-150] [1-20] [1-7] [0.01-0.94]
8 15 2 90% [100-150] [1-20] [1-7] [0.07-0.96]
9 15 2 90% [100-150] [1-20] [3-7] [0.07-0.96]
10 20 2 90% [100-150] [1-20] [1-7] [0.04-0.61]
11 20 2 90% [100-150] [1-20] [1-7] [0.07-0.56]
12 20 2 90% [100-150] [1-20] [1-7] [0.10-0.91]
13 20 2 90% [100-150] [1-20] [1-7] [0.01-0.99]
14 20 2 90% [100-150] [1-20] [1-7] [0.05-0.88]
15 25 2 90% [100-150] [1-20] [1-7] [0.07-0.96]
16 25 2 90% [100-150] [1-20] [1-7] [0.07-0.96]
17 25 2 90% [100-150] [1-20] [1-7] [0.07-0.89]
18 25 2 90% [100-150] [1-20] [1-5] [0.08-0.97]
19 25 2 90% [100-150] [1-20] [1-7] [0.06-0.99]
20 30 2 90% [100-150] [10-20] [1-7] [0.50-0.89]
21 30 2 90% [100-150] [1-20] [1-7] [0.22-0.89]
22 30 2 90% [100-150] [1-20] [1-7] [0.07-0.96]
23 30 2 90% [100-150] [1-20] [1-7] [0.08-0.97]
24 30 2 90% [100-150] [1-20] [1-7] [0.05-0.98]
25 35 2 90% [100-150] [1-20] [1-7] [0.10-0.96]
26 35 2 90% [100-150] [1-20] [1-7] [0.07-0.94]
27 35 2 90% [100-150] [1-20] [1-7] [0.07-0.94]
28 35 2 90% [100-150] [1-20] [1-7] [0.03-0.98]
29 35 2 90% [100-150] [1-20] [1-7] [0.08-0.98]
30 40 2 90% [100-150] [1-20] [1-7] [0.06-0.98]
31 40 2 90% [100-150] [1-20] [1-7] [0.05-0.98]
32 40 2 90% [100-150] [1-20] [1-7] [0.04-0.97]
33 40 2 90% [100-150] [1-20] [1-7] [0.16-0.93]
34 40 2 90% [100-150] [1-20] [1-7] [0.09-0.95]
35 45 2 90% [100-150] [1-20] [1-7] [0.01-0.95]
36 45 2 90% [100-150] [1-20] [1-7] [0.07-0.97]
37 45 2 90% [100-150] [1-20] [1-7] [0.01-0.95]
38 45 2 90% [100-150] [1-20] [1-7] [0.03-0.97]
39 45 2 90% [100-150] [1-20] [1-7] [0.07-0.96]
40 50 2 90% [100-150] [1-20] [1-7] [0.02-0.84]

Our objective is to devise plans and offer recommendations for the trial phase, thereby demon-
strating that the recommended strategy is a feasible solution for determining the location of the sensor
NIDS. The time taken to solve is calculated to gauge the duration of metaheuristics required to achieve
efficient solutions. We use the highest value as a critical measure to evaluate subsequent outcomes,
which the Equation determines (23).

fr(%) c—fo(¥)

w,;, W >0
ey (Fbest) P T g (Fbest) (p4) (23)

(p/q)p#q ek

max min

where wy, . represents weight of objective functions and }_w(, ;) = 1 must be satisfied. Values of

J—C»best )

) P4
W(y,q) is defined by analogous estimating. f, ,)(¥) is the single-objective function and e(,, ;) (

stores the best value met independently. Finally, ¢'is an upper bound of minimization single—objective
functions.

Following this, we employ ordinal examination to assess the adequacy of the strategy. Subse-
quently, we elaborate on the hardware and software utilized to duplicate computational experiments.
Outcomes will be depicted through tables and graphics.
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We highlight that test scenarios are developed using standard simulated networks designed to
mimic the behavior and characteristics of real networks. These simulations represent the operational
characteristics of networks in organizations of various sizes, from minor to medium and large. De-
pending on its scale and extent, defined by the number of VLANSs, each VLAN consists of multiple
devices, such as computers, switches, and server farms, along with their related connections. The
research evaluates test networks that vary in size, starting from networks with ten VLANs, moving to
networks with twenty—five VLANSs, and extending to more extensive networks with up to fifty VLANS.
The simulation considers limitations such as bandwidth capacity, latency, packet loss, and network
congestion by replicating the test networks and considering their functional and working properties.
These aspects, along with other factors, are critical in defining the uptime of each VLAN. Network
availability is defined as the time or percentage during which the network remains operational and
accessible, without experiencing significant downtime. For this study, it is essential that networks
maintain a minimum availability of 90%, as interruptions and periods of downtime may occur due to
equipment failure, network congestion or connectivity problems. Implementing proactive monitoring
through the SIEM will ensure high availability on the network.

5.1. Infrastructure

Python 3.10 was used to implement the proposal. The computer used to run each test has the
followings attributes: macOS 14.2.1 Darwin Kernel v23 with an Ultra M2 chipe, and 64 GB of RAM.

5.2. Methodology

Given the forty instances representing networks of various sizes and complexities, described in
Table 1, they will be used to evaluate the performance between the native and enhanced metaheuristics
following the principles established in [68]. The methodological proposal consists of an analytical
comparison between the hybridization results, that is, the results obtained from the original form of
the algorithm. Optimization and the results obtained with the application of Deep Q-Learning. To
achieve this, we have implemented the following methodological approach.

® Preparation and planning: In this phase, network instances that emulate real-world cases,
from medium-sized networks to large networks, are generated, randomly covering the various
operational and functional scenarios of modern networks. Subsequently, the objectives to achieve
are defined as having a secure, operational, and highly available network. These are to minimize
the number of NIDS sensors assigned to the network, maximize the installation benefits, and
minimize the indirect costs of non-installation. Experiments are designed to systematically
evaluate hybridization improvements in a controlled manner, ensuring balanced optimization of
the criteria described above.

¢ Execution and assessment: Carry out a comprehensive evaluation of both native and improved
metaheuristics, analyzing the quality of the solutions obtained and the efficiency in terms
of calculation and convergence characteristics. Implement comprehensive tests to perform
performance comparisons with descriptive statistical methods and perform the Mann-Whitney—
Wilcoxon test for comparative analysis. This method involves determining the appropriateness
of each execution for each given instance.

* Analysis and validation: Perform a comprehensive and in—depth analysis to understand the
influence of Deep Q-Learning and the behavior of the PSO, BAT, GWO, and OPA metaheuristics
in generating efficient solutions for the corresponding instances. To do this, comparative tables
and graphs of the solutions generated by the native and improved metaheuristics will be built.

6. Results and Discussion

Tables 2—-6 shows the main findings corresponding to the execution of the native metaheuristics
and the metaheuristics improved with Deep Q-Learning. The tables are structured into forty sections
(one per instance), each consisting of six rows that statistically describe the value of the metric corre-
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sponding to the scalarization of objectives, considering the best value obtained as the minimum value
and the worst value obtained as the maximum value. The median represents the middle value, and
the mean denotes the average of the results, while the standard deviation (STD) and the interquartile
range (IQR) quantify the variability in the findings. Concerning columnar representation, PSO, BAT,
GWO, and OPA detail results for a bio—inspired optimizer lacking a learning component. PSODQL,
BATDQL, GWODQL, and OPADQL represent our enhanced version of biomimetic algorithms.

Table 2. Comparison between improved biomimetics algorithms against their native versions. Instances

from 1 to 8.
Instances  Metrics Native algorithms Improved algorithms
PSO BAT GWO OPA PSODQL BATDQL GWODQL OPADQL

Best 950 950 950 950 950 950 950 950

Worst 950 950 950 950 950 950 950 950

1 Mean 950 950 950 950 950 950 950 950
Std 0 0 0 0 0 0 0 0

Median 950 950 950 950 950 950 950 950
Igr 0 0 0 0 0 0 0 0

Best 773 773 773 773 773 773 773 773

Worst 773 773 773 773 773 773 773 773

2 Mean 773 773 773 773 773 773 773 773
Std 0 0 0 0 0 0 0 0

Median 773 773 773 773 773 773 773 773
Igr 0 0 0 0 0 0 0 0

Best 822 822 822 822 822 822 822 822

Worst 822 822 822 822 822 822 822 822

3 Mean 822 822 822 822 822 822 822 822
Std 0 0 0 0 0 0 0 0

Median 822 822 822 822 822 822 822 822
Igr 0 0 0 0 0 0 0 0

Best 872 872 872 872 872 872 872 872

Worst 872 872 872 872 872 872 872 872

4 Mean 872 872 872 872 872 872 872 872
Std 0 0 0 0 0 0 0 0

Median 872 872 872 872 872 872 872 872
Igr 0 0 0 0 0 0 0 0

Best 1215 1215 1215 1215 1215 1215 1215 1215

Worst 1215 1253 1215 1215 1215 1215 1215 1215

5 Mean 1215 1244.2 1215 1215 1215 1215 1215 1215
Std 0 14.1 0 0 0 0 0 0

Median 1215 0 1215 1215 1215 1215 1215 1215
Igr 0 25 0 0 0 0 0 0

Best 1235 1235 1235 1235 1235 1235 1235 1235

Worst 1318 1397 1235 1235 1235 1318 1235 1235

6 Mean 1238.50  1282.80 1235 1235 1235 1238.87 1235 1235
Std 15.27 63.02 0 0 0 15.32 0 0

Median 1235 1235 1235 1235 1235 1235 1235 1235
Igr 0 93 0 0 0 0 0 0

Best 1287 1287 1287 1287 1287 1287 1287 1287

Worst 1287 1287 1287 1287 1287 1287 1287 1287

” Mean 1287 1287 1287 1287 1287 1287 1287 1287
Std 0 0 0 0 0 0 0 0

Median 1287 1287 1287 1287 1287 1287 1287 1287
Iqr 0 0 0 0 0 0 0 0

Best 1269 1269 1269 1269 1269 1269 1269 1269

Worst 1284 1303 1269 1269 1269 1269 1269 1269

8 Mean 1270.30  1278.33 1269 1269 1269 1269 1269 1269
Std 3.99 14.47 0 0 0 0 0 0

Median 1269 1269 1269 1269 1269 1269 1269 1269

Igr 0 19.75 0 0 0 0 0 0
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Table 3. Comparison between improved biomimetics algorithms against their native versions. Instances

from 9 to 16.
Instances  Metrics Native algorithms Improved algorithms
PSO BAT GWO OPA PSODQL BATDQL GWODQL OPADQL
Best 1303 1303 1303 1303 1303 1303 1303 1303
Worst 1305 1303 1303 1303 1303 1303 1303 1303
9 Mean 1303.07 1303 1303 1303 1303 1303 1303 1303
Std 0.37 0 0 0 0 0 0 0
Median 1303 1303 1303 1303 1303 1303 1303 1303
Igr 0 0 0 0 0 0 0 0
Best 1536 1536 1536 1536 1536 1536 1536 1535
Worst 1636 1737 1592 1596 1547 1679 1596 1547
10 Mean 1560.73  1584.53 1543.07 1551.10 1536.37 1569.57 1548.77 1536.70
Std 27.54 56.93 14.87 21.86 2.01 35.20 19.79 2.81
Median 1547 1547 1536 1536 1536 1564 1541.50 1536
Igr 45 92.75 11 45 0 56 11 0
Best 1593 1593 1593 1593 1593 1593 1593 1593
Worst 1687 1690 1607 1650 1593 1681 1641 1599
1 Mean 1606.17 1607.17 1593.87 1597.20 1593 1600.90 1595.40 1593.20
Std 23.76 30.52 291 13.59 0 19.56 8.86 1.10
Median 1596 1593 1593 1593 1593 1593 1593 1593
Igr 14 6 0 0 0 6 0 0
Best 1608 1608 1608 1608 1608 1608 1608 1608
Worst 1689 1703 1642 1658 1642 1689 1642 1615
12 Mean 1629 1628.87 1611 1616.67 1611.63 1633.03 1611 1608
Std 21.73 26.63 6.64 14.60 10.37 25.23 6.64 1.78
Median 1615 1615 1611 1608 1608 1642 1608 1608
Igr 40 40 7 7 0 42 7 0
Best 1530 1530 1530 1530 1530 1530 1530 1530
Worst 1632 1626 1537 1568 1531 1633 1566 1537
13 Mean 1547.47 1548.70  1530.93 1537.53 1530.03 1545.53 1535.13 1530.37
Std 27.21 28.31 2.15 11.36 0.18 27.36 8.18 1.30
Median 1535 1535 1530 1535 1530 1531 1533 1530
Igr 35.25 36 1.00 7 0 29 7 0
Best 1449 1449 1449 1449 1449 1449 1449 1449
Worst 1588 1609 1507 1549 1497 1559 1540 1508
14 Mean 1498.43  1495.03 146220 1486.43 1452.27 1490.53 1488.57 1452.30
Std 45.64 46.67 21.51 35.07 9.25 39.62 33.31 11.07
Median 1497 1478 1449 1497 1449 1497 1497 1449
Igr 90 82 20 58 0 89 70 0
Best 1910 1920 1910 1920 1910 1910 1910 1910
Worst 2089 2105 2018 2062 2020 2020 2180 2018
15 Mean 199797 1984.87 1972.10 1989.97 1931.27 1980.83 1985.50 1956.30
Std 46.72 56.33 32.60 47.75 34.67 32.78 54.72 32.59
Median 2008 1965 1966 1999 1915 1999 1980 1956
Igr 49.25 97 54.25 73.50 21.50 38 54.75 53.75
Best 1994 1994 1955 1955 1955 1955 1955 1955
Worst 2112 2112 2037 2087 2001 2087 2049 2012
16 Mean 2028.27 202827 2005.23  2009.50 1982.03 2025.30 2006.13 1986.60
Std 37.28 37.28 16.32 25.45 19.50 30.67 18.28 19.73
Median 2005 2005 2001 2005 1994 2012 2001 1996

Igr 56.50 57 12.25 20 41 51 12 42
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Table 4. Comparison between improved biomimetics algorithms against their native versions. Instances

from 17 to 24.
Instances  Metrics Native algorithms Improved algorithms
PSO BAT GWO OPA PSODQL BATDQL GWODQL OPADQL
Best 675 651 683 749 461 698 781 609
Worst 1203 1256 1089 1011 911 1284 1098 878
17 Mean 971.83  1054.53  890.77 893.57 744.37 948.27 950.03 723.30
Std 126.54 144.85 97.83 61.44 100.04 125.35 77.97 60.57
Median 969 107550  897.50 901.50 759 929 958 724
Igr 175.75 150 159.50 74.75 170.50 182.25 139.50 98
Best 1832 1801 1832 1801 1801 1801 1832 1801
Worst 2005 2044 1950 1958 1889 2009 1949 1936
18 Mean 191590 1930.03 1881.80 1909.27 1837.60 1938.90 1897.13 1853.30
Std 47.28 60.53 44.64 42.16 20.79 50.13 38.80 31.52
Median  1918.50 1937 1887 1927 1835 1945 1898.50 1849
Igr 51.50 77.25 86 60.25 8.75 26 86.50 25.25
Best 1935 1930 1930 1930 1905 1930 1930 1930
Worst 2074 2075 2024 2069 1978 2042 2036 2032
19 Mean 1984.13 197943 196227 1976.07 1936.13 1981.30 1960.23 1947.33
Std 38.19 38.90 25.70 31.51 14.55 37.87 26.71 21.64
Median 1981 1978 1962.27  1978.50 1935 1979.50 1947 1942
Igr 80.50 51.50 49 42 12 82 42.75 12
Best 2337 2331 2334 2339 2293 2337 2334 2293
Worst 2470 2507 2450 2459 2426 2532 2437 2428
20 Mean 2413.33  2416.10 2383.20  2408.90 2364.77 2410.20 2390.63 2367.38
Std 33.92 47.48 35.02 30.34 30.60 41.58 27.87 28.53
Median  2419.50 2423 2374 2413.50 2366 2416 2384 2365
Igr 50.50 76.75 68.25 46.25 36.75 55.25 41 38.25
Best 973 978 915 868 702 805 896 745
Worst 1419 1648 1277 1289 980 1455 1321 1196
21 Mean 1161.90 1303.63 1114.03 1070.77 829.53 1119.20 1196.10 1061.37
Std 86.07 173.08 100 103.82 73.28 156.64 91.17 93.70
Median 1161 1291 1108.50  1081.50 829 1102 1207.50 1076
Igr 101 312.75 124 172.25 110 154 105 119
Best 2400 2423 2349 2423 2323 2400 2384 2349
Worst 2596 2557 2520 2538 2473 2524 2529 2467
2 Mean 2484.10 2486.43 2462.13 2478 2372.20 2450.77 2468.93 2427.70
Std 46.43 36.82 34.09 29.08 43.39 33.11 34.70 28.82
Median 2477 2480.50 2456.50 2477 2357.50 2447 2464.50 2431.50
Igr 58 69.75 43.50 41.25 84 55 63.25 24.50
Best 2295 2319 2323 2323 2244 2295 2326 2297
Worst 2478 2489 2430 2469 2390 2474 2436 2399
23 Mean 2390.50 2398.03 2372.03 2393.80 2322 2400.83 2383.50 2349.60
Std 45.84 51.33 36.54 30.29 34.66 42.41 32.66 27.03
Median 2391 2390.50  2373.50 2394 2328 2410.50 2390.50 2338
Igr 78 93.75 70 39 37.75 55.25 57.25 48.25
Best 2232 2279 2228 2248 2193 2275 2238 2238
Worst 2439 2502 2386 2491 2337 2434 2423 2411
2 Mean 2354.50 239140 2317.87 2352.63 2269.77 2363.13 2350 2315.57
Std 52.07 52.94 42 54.69 42.39 51.75 41.08 36.85
Median  2363.50 2397 2327 2342 2279 2368 2342.50 2320

Igr 62.25 99 57.75 52 76 92 50 39.50
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Table 5. Comparison between improved biomimetics algorithms against their native versions. Instances

from 25 to 32.
Instances  Metrics Native algorithms Improved algorithms
PSO BAT GWO OPA PSODQL BATDQL GWODQL OPADQL
Best 2826 2872 2821 2817 2782 2791 2842 2805
Worst 3008 3176 2984 2975 2922 2976 2980 2946
25 Mean 293190 296493 291047 2921.67 2863.03 2872.33 2919.37 2887.87
Std 44.78 55.33 36.04 43.44 35.78 43.97 32.81 34.57
Median  2936.50 2959 2915.50 2931 2870 2874 2924 2887.50
Igr 51.75 57 52.50 64.50 63.25 67 31.75 46.50
Best 3022 3018 3056 3022 2968 3016 3024 3037
Worst 3208 3220 3152 3144 3106 3172 3155 3141
2% Mean 3123.80 313320 3112.17 3101.27 3048.20 3114.20 3081.70 3083.27
Std 44.70 51.76 24.72 33.46 34.13 31.64 32.36 29.32
Median 3121 3140 3112.50 3109 3048.50 3119.50 3083 3081
Igr 72.50 78.75 35 49.75 37.75 36 44 45.50
Best 2724 2721 2716 2775 2711 2714 2714 2717
Worst 2948 3052 2884 2886 2848 2891 2889 2851
27 Mean 284090 2882.73 2803.47 2841.56 2765.87 2827.27 2813.27 2787.63
Std 55.32 81.30 51.33 29.33 41.07 48.77 39.28 32.25
Median 2842 2858.50 2811.50 2851 2767.50 2840.50 2821.50 2794
Igr 64.25 96 75.75 33.25 78.75 64 61.25 32.25
Best 2776 2790 2817 2752 2714 2727 2778 2717
Worst 3024 3037 2960 3005 2915 3045 2963 2911
28 Mean 2911.20 2949.43 289497  2935.37 2825.77 2905.10 2883.17 2827.50
Std 52.22 65.12 42.59 53.77 48 79.31 48.04 50.01
Median  2919.50 2954.50 2903.50 2945.50 2831 2894.50 2895.50 2832
Igr 73.75 90.75 63.75 66.50 67.25 114.50 73.50 59
Best 2850 2870 2859 2859 2770 2859 2820 2813
Worst 3051 3108 3007 3151 2913 3060 3026 2973
29 Mean 2970 2968.83 293523 2984.43 2868.07 2965.23 2947.90 2914.27
Std 47.16 63 46.58 70.05 46.72 51.64 44.59 37.74
Median 2966 2957.50 2953 2971.50 2862 2971.50 2956 2910
Igr 49.75 92.50 65.75 97 53.50 83.50 75.75 43.50
Best 3314 3310 3231 3318 3218 3257 3247 3258
Worst 3487 3579 3457 3503 3367 3471 3470 3409
30 Mean 3403.63 3438.47 3368.17 3417.77 3293.03 3388.17 3380 3344.23
Std 51.38 63.38 50.04 43.61 45.12 52.42 54.39 43.35
Median 3417 3435 3368 3413 3285 34.13 3380 3356.50
Igr 96 105 58.75 58 74.25 81 70.25 62
Best 3179 3224 3109 3274 3044 3119 3133 3116
Worst 3399 3447 3328 3475 3232 3357 3319 3341
31 Mean 3281.73 3325.80 3226.70 3375.37 3160.53 3262.17 3246.50 3258.23
Std 58.10 69.52 60.41 59.75 51.73 68.12 47.39 57.50
Median 3276 3307.50 3230 3380.50 3162 3261 3250.50 3272
Igr 73.50 105 103.50 102 61.50 96.50 71.25 64
Best 3034 3062 2973 3063 2946 3057 3026 2974
Worst 3276 3317 3220 3329 3145 3283 3218 3206
32 Mean 3185.63 3168.50 3138.90  3200.73 3071.10 3177.27 3148.17 3113.77
Std 57.72 62.22 59.77 65.93 53.06 59.78 44.15 61.49
Median  3195.50 3167.50 3152 3200 3074.50 3182.50 3145 3129.50

Igr 88.50 109 82.25 85 65 102 62 71.50
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Table 6. Comparison between improved biomimetics algorithms against their native versions. Instances

from 33 to 40.
Instances  Metrics Native algorithms Improved algorithms
PSO BAT GWO OPA PSODQL BATDQL GWODQL OPADQL
Best 2904 2897 2890 2938 2838 2830 2896 2838
Worst 3119 3188 3076 3105 3017 3167 3112 3017
33 Mean 3019.31  3020.73 2980.83 3034.27 2932.40 2984.07 3014.40 2932.40
Std 58.95 74.00 49.47 47.73 41.58 58.73 57.03 41.58
Median 3023 3008.50 2983.50  3034.50 2944 2985 3016 2944
Igr 91.50 123.25 59 73 56 55 82.75 56
Best 3019 3035 2939 2979 2929 2938 2989 2918
Worst 3183 3357 3125 3370 3102 3203 3157 3108
34 Mean 3091.60 3153.33 3065.60 3107.80 2999.93 3074.67 3076.63 3032
Std 4417 74.89 43.87 74.72 41.22 58.83 4421 50.01
Median 3099 3134 3070.50 3099 3008.50 3067.50 3087 3028.50
Igr 78 144 73.50 56 38.25 67.25 76.50 56.25
Best 3209 3317 3219 3217 3110 3260 3251 3160
Worst 3496 3647 3497 3463 3328 3538 3451 3437
35 Mean 3394.87 3470.57 3343.53  3359.83 3236.83 3386.90 3350.43 3301.43
Std 77.42 91.80 57.90 69.65 60.82 85.71 52.28 67.38
Median 3407 347450 333850 3387.50 3247.50 3376 3354 3309.50
Igr 105.25 159 73.75 119.75 118 160.75 83.75 92.75
Best 3475 3537 3416 3448 3331 3509 3438 3456
Worst 3725 3743 3663 3654 3602 3728 3649 3625
36 Mean 3592 3640.40 3570.20 3564.37 3480.73 3597.03 3567.60 3545.17
Std 68.66 61.44 47.41 49.92 64.01 57.92 49.75 43.33
Median 3583 3643 3572.50  3559.50 3477.50 3586 3573.50 3556.50
Igr 92 85.50 55 73.50 70.50 97.25 72 50.50
Best 3516 3478 3471 3463 3408 3509 3462 3473
Worst 3694 3752 3653 3679 3581 3722 3675 3615
37 Mean 3604.63 362140 3569.67 3600.67 3511.90 3630.13 3595.97 3553.27
Std 48.01 73.97 43.76 53.01 47.45 58.41 47.43 38.00
Median 3605 3624.50  3574.50 3612 3519 3640.50 3601 3566
Igr 82.75 111.50 62.25 63.25 78 98.25 56.25 59.75
Best 3248 3307 3109 3256 3114 3211 3134 3211
Worst 3504 3703 3445 3491 3331 3559 3416 3392
38 Mean 3372.87 344380 3321.23 3371.87 3208.33 3367.83 3334.70 3302.03
Std 65.74 90.01 68.03 68.50 57.96 96.98 71.81 47.40
Median 3370 3429 3331 3355.50 3210 3365 3351.50 3310
Igr 99 96 73 105.50 81.50 146.25 100.25 76
Best 3519 3434 3452 3502 3346 3472 3495 3449
Worst 3738 3811 3680 3690 3590 3751 3669 3635
39 Mean 3613.67 3617.33 3592.20 3617.93 3495.60 3642.90 3579.27 3543.67
Std 63.44 95.11 45.82 54.35 58.84 69.78 47.05 44.80
Median 3609 3623 3598 3634 3512.50 3654.50 3575 3546.50
Igr 93.25 141 46.75 77.50 85.25 98.50 84.25 60
Best 3813 3940 3850 3919 3758 3826 3842 3820
Worst 4171 4203 4094 4225 3999 4047 4106 4065
40 Mean 4025.90  4052.07 3993.17 4031.60 3886.57 3963.47 3982.40 3972.60
Std 74.31 71.92 52.11 62.17 59.72 59.89 61.02 61.75
Median  4025.50 4046 3991 4022 3906 4001.50 3976.50 3982
Igr 123.75 104.75 62.25 82 96 107 78.75 76

When analyzing instances one to nine, it is evident that both the native metaheuristics and the
metaheuristics improved with Deep Q-Learning produce identical solutions and metrics, given the
low complexity of the IT infrastructure of these first instances; however, despite generating exact
values regarding the best scalarization value, instances six, eight, and nine show variations in their
generation, which can be seen in the variation of the standard deviations of PSO, BAT, and BATDQL.

From instances ten to sixteen, there are slight variations in the solutions obtained by each meta-
heuristic, although the value of the best solution remains identical in most instances. As for the worst
value generated, variations begin to develop, causing variations to start in the average, standard devia-
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tion, median, and interquartile range. In metaheuristics improved with Deep Q-Learning, specifically
PSODQL, BATDQL, and OPADQL, it is verified that the standard deviation is lower compared to
their corresponding native metaheuristics. This exciting finding demonstrates that the solution values
are very similar to the average; in other words, there is little variability among the solution results,
suggesting that the results are consistent and stable. Moreover, experiments with Deep Q-Learning
metaheuristics indicate that the experiments are reliable and that random errors have a minimal impact
on the outcomes.

Subsequently, in instance seventeen, a great variety is seen in the solutions generated, with
PSODQL providing the best solution and OPADQL in second place, maintaining the previous finding
with respect to the standard deviation.

For instance, from eighteen to twenty, there is a wide variety of solutions, highlighting PSODQL,
BATDQL, and OPADQL. It is interesting to verify that BAT, GWO, and OPA, both native and improved,
generate the exact value of the best solution. However, the standard deviation in the improved
metaheuristics is lower than that obtained in the native metaheuristics, which reaffirms the consistency
and stability of the results.

From instance twenty—one to instance thirty—two, the PSODQL, BATDQL, and OPADQL meta-
heuristics generate better solution values concerning their corresponding native metaheuristics, and
regarding their corresponding standard deviations, it is lower concerning the native metaheuristics,
standing out PSODQL performance produced the best solution values.

In instances thirty-three and thirty—four, the performance of the metaheuristics PSODQL, BAT-
DQL, and OPADQL is maintained, highlighting the excellent performance of BATDQL in instance
thirty—three and OPADQL in instance thirty—four.

Concluding with instances thirty—five to forty, we can observe that PSODQL, BATDQL, and
OPADQL continue to obtain the best solution values; the standard deviation maintains a small value
compared to their native counterparts. Highlighting PSODQL, which generated the best solution
value.

In the application of metaheuristics with Deep Q-Learning, specifically PSODQL, BATDQL, and
OPADQL, in addition to generating better solution values, observing a low standard deviation is
beneficial as it indicates that the generated solutions are efficiently clustered around optimal values,
thus reflecting the high precision and consistency of the results. This pattern suggests the algorithm’s
notable effectiveness in identifying optimal or near—optimal solutions, with minimal variation across
multiple executions, a crucial aspect for effectively resolving complex problems. Furthermore, a
reduced interquartile range reaffirms the concentration of solutions around the median, decreasing
data dispersion and refining the search towards regions of the solution space with high potential,
which improves precision in reaching efficient solutions.

To present the results graphically, we faced the challenge of analyzing and comparing samples
generated from non—parametric underlying processes, that is, processes whose data do not assume
a normal distribution. Given this, it became essential to use a visualization tool such as the violin
diagram, which adequately handles the non—parametric nature of the data and provides a clear and
detailed view of their corresponding distributions. Visualizing these graphs allows us to consolidate
the previously analyzed results, corresponding to the evaluation metric and, later in this section, the
Wilcoxon-Mann-Whitney test.

Figures 5-8 enrich our comprehension of the effectiveness of biomimetic algorithms (left side)
and their enhanced version (right side). These graphical illustrations reveal the data’s distribution,
highlighting the learning component provides a real improvement for each optimization algorithm.
The violin diagram, is an analytical tool that combines box plots and kernel density diagrams to
compare data distribution between two samples, it was used to visualize the results . It shows
summarized statistics, such as medians and quartiles, and the data density along its range. It helps
identify and analyze significant differences between two samples, offering insights into patterns and
the data structure [69]. This way, we can appreciate that in instances fifteen and sixteen, the standard
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deviation is slight in the metaheuristics with DQL compared to native metaheuristics, especially
PSODQL, BATDQL, and OPADQL. Furthermore, the median in PSODQL in instance fifteen is much
lower than in native PSO. For instance, for instances seventeen to twenty, in addition to noting the
minor standard deviation in the metaheuristics with Q Learning, the medians for PSODQL and
OPADQL are significantly lower than their native counterparts. From twenty to twenty-six, the
previous results for the metaheuristics with DQL are maintained, and the distributions and medians
for PSODQL and OPADQL move to lower values. For instance, in twenty—seven and twenty—eight,
the standard deviation is slight in the metaheuristics with DQL compared to the native metaheuristics.
For instance, we can verify that the distribution and the median in PSODQL reach lower values
in twenty-nine. For instance, in thirty and thirty—one, the distributions and medians in PSODQL,
BATDQL, and OPADQL reach lower values. For instance, at thirty—two, both PSODQL and OPADQL
distributions and medians reach lower values, and from thirty—three to forty, PSODQL, we can verify
that in most cases, PSODQL, BATDQL, and OPA’s medians tend to lower values. From the above, we
can confirm that the visualizations of the solutions for the instances allow us to reaffirm the findings
and results of the substantial improvement of the metaheuristics with DQL compared to the native
metaheuristics, highlighting PSODQL as the one that generates the best solutions throughout the
experimentation phase.

It is worth mentioning that the visualization of the solutions from instances one to fourteen is
impossible to graph since they mainly generate the same statistical values.

In the context of this research, the Wilcoxon-Mann-Whitney test, a non-parametric statistical
test used to compare two independent samples [70]. It was used to determine if there are significant
differences in two groups of samples that may not have the same distribution, which were generated
from native metaheuristics and DQL. The significance level was previously set at p=0.05 to conduct
the test.

The results are detailed in Table 7, describing the following findings. It is verified that from
instances fifteen and sixteen, there are significant differences between the samples generated by
PSODQL and native PSO, concluding that there is an improvement in the results obtained by PSODQL.
For BAT and BATDQL, there are no significant differences between the samples; the same happens
for GWO and GWODQL. However, for OPA and OPADQL, there is a substantial difference between
the samples. However, PSODQL shows a more remarkable improvement as it has a more significant
difference than OPADQL since the obtained p-value is lower, as verified in the table. In instances
seventeen, for the samples generated by PSO, there is a significant difference between the samples,
resulting in a better performance of PSODQL; the same happens with BAT, resulting in a better
BATDQL; for native GWO, it is better than GWODQL, and for the samples generated by OPA, there is
a significant difference, resulting in a better OPADQL. In the eighteenth and nineteenth instances, it is
confirmed that PSODQL is better than PSO. For BAT and BATDQL, there are no significant differences
between the samples, just as for GWO and GWODQL. Moreover, OPADQL is better for OPA, as there
are substantial differences between the samples. In both cases, PSODQL is better since it has the
lowest p value. In instance twenty, PSODQL and OPADQL show significant differences between their
samples; however, OPADQL is better since it has the lowest p value. In instance twenty—one, given the
obtained results, PSODQL is better than native PSO, and the same applies to BAT; for GWO, native
GWO is better, and for OPADQL, there are no significant differences between the samples. For this
instance, PSODQL is better since it has the lowest p value.
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Figure 5. Computational result distributions between improved biomimetics algorithms against theirs
native version. Hardest instances: from 15 to 22.


https://doi.org/10.20944/preprints202404.0832.v1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 12 April 2024 d0i:10.20944/preprints202404.0832.v1

24 of 30

2.6 2.6
[ Native r Native
s M Tmproved - M Improved
0 PSO BAT GWO OPA : PSO BAT GWO OPA
(a) Solutions for the Instance 23 (b) Solutions for the Instance 24
3.1 3.3
Native | [ Native |
o M Improved 29 M Improved
. PSO BAT GWO OPA ) PSO BAT GWO OPA
(c) Solutions for the Instance 25 (d) Solutions for the Instance 26
3.2 3.2
- = 31}
H
| i
E]
el
. 5 291
B S 281
Native Native
96 W Improved 26 W Tmproved
- PSO BAT GWO OPA ° PSO BAT GWO OPA
(e) Solutions for the Instance 27 (f) Solutions for the Instance 28
3.3 3.7
g 32 1 = 36)
=1 2
= 3.1 B = 351
g 3 1 g 4 1
% 291 B ;g 3.3+ B
E
g £
= =
S a2s| 8 S 32f 8
Native Native
. M Tmproved - W Improved
) PSO BAT GWO OPA - PSO BAT GWO OPA
(g) Solutions for the Instance 29 (h) Solutions for the Instance 30

Figure 6. Computational result distributions between improved biomimetics algorithms against theirs
native version. Hardest instances: from 23 to 30.
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Figure 7. Computational result distributions between improved biomimetics algorithms against theirs
native version. Hardest instances: from 31 to 38.
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Figure 8. Computational result distributions between improved biomimetics algorithms against theirs
native version. Hardest instances: from 39 to 40.

For instances from twenty-three to twenty—eight, significant differences are verified between the
samples generated by PSO, BAT, and OPA, the result being that the samples generated by DQL will be
better. For GWO, there are cases of significant differences between their samples. For the twenty-ninth
instance, significant differences exist for the samples generated by PSO and OPA, resulting in better
PSODQL and OPADQL. For instance, thirty to thirty—two, PSODQL, BATDQL, and OPADQL are
better. For the thirty—three instances, PSODQL and OPADQL turned out to be better. For instance,
thirty—four to thirty—six PSODQL, BATDQL, and OPADQL are better. For the thirty—seventh instance,
PSODQL and OPADQL are better. PSODQL, BATDQL, and OPADQL were the best for the thirty—eight
cases. For instance, thirty-nine and forty PSODQL and OPADQL are the best.

The central objective of this study was to evaluate the impact of integrating the Deep Q-Learning
technique into traditional metaheuristics to improve their effectiveness in optimization tasks. The
results demonstrate that the Deep Q-Learning enhanced versions, specifically PSODQL, BATDQL, and
OPADQL, exhibited superior performance compared to their native counterparts. Notably, PSODQL
stood out significantly, outperforming native PSO in one hundred percent of the cases during the
experimental phase. These findings highlight the potential of reinforcement learning, through Deep
Q-Learning, as an effective strategy to enhance the performance of metaheuristics in optimization

problems.
Table 7. p-values obtained from Wilcoxon-Mann-Whitney Test.
PSO PSODQL BAT BATDOL GWO GWODOL OPA OPADOQL
Instances v/s v/s v/s v/s v/s v/s v/s v/s
PSODQL PSO BATDQL BAT GWODQL GWO OPADQL OPA

15 - 14 x 10712 - - - - - 1.5x 1073
16 - 65x 1071 - - - - - 1.5 x 10712
17 - 42 x 1071 - 71x 1074 1.1x1072 - - 24 x1071
18 - 48 x 1071° - - - - - 1.1x1071
19 - 37x107% - - - - - 46x 10712
20 - 1.8x 10713 - - - - - 26x1078
21 - 42x 1071 - 45%x 1073 71 %1074 - - -
22 - 41x 1077 - 35x 1074 - - - 1.8 x 1071
23 - 23x 10714 - - - - - 7.1x 10714
24 - 7.6 x 10715 - 39 x 1072 23 %1073 - - 1.1x 1073
25 - 57 x 1071 - 1.2 x 10715 - - - 5.1 x 1074
26 - 1.9 x 1071 - 3.6 x 1072 - 1.1 x 10712 - 8.6 x 1073
27 - 44x 1078 - 35x1073 - - - 6.7 x 1071
28 - 7.7 x 10715 - 9.1x 1073 - - - 3.1x 1071
29 - 23x 10710 - - - - - 31x10°8
30 - 24 %1071 - 2.7 %1073 - - - 7.6 x 10714
31 - 1.7 x 1071° - 84 x107* - - - 32x 10714
32 - 1.1x1071 - 9.4 x 10712 - - - 4.6 x 10713
33 - 21x 1074 - 31x10712 7.7 x 1073 - - 6.6 x 10712
34 - 1.7 x 1071° - 9.3x 1071 - - - 74 x 1071
35 - 46x 10710 - 8.6 x 1074 - - - 9.1 x 1074
36 - 8.6x 1071 - 51x 1073 - - - -
37 - 9.6x 1071 - - - 1.2 x 1072 - 4.1 x 10712
38 - 1.9 x 107" - 21x1073 - - - 1.6 x 1074
39 - 3.7x 1071 - - - - - 3.7 x 1071

40 - 1.9 x 1071° - 2.1 x 10712 - - - 25x 10710
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7. Conclusions

The presented research tackles the challenge of enhancing the efficiency of Cyber Security Opera-
tions Centers through the integration of biomimetic algorithms and Deep Q-Learning, a reinforcement
learning technique. This approach is proposed to improve the deployment of sensors across network
infrastructures, balancing security imperatives against deployment costs. The research is grounded on
the premise that the dynamic nature of cyber threats necessitates adaptive and efficient solutions for
cybersecurity management.

The study demonstrated that incorporating DQL into biomimetic algorithms significantly im-
proves the effectiveness of these algorithms, enabling optimal resource allocation and efficient intrusion
detection. Experimental results validated the hypothesis that combining biomimetic optimization
techniques with deep reinforcement learning leads to superior solutions compared to conventional
strategies.

A comparative analysis between native biomimetic algorithms and those enhanced with DQL
revealed a notable improvement in the accuracy and consistency of the solutions obtained. This
enhancement is attributed to the ability of DQL to dynamically adapt and fine-tune the algorithms’
parameters, focusing the search towards the most promising regions of the solution space. Moreover,
the implementation of replay memory and the mini-batch strategy in DQL contributed to the learning
efficiency and training stability.

The study underscores the importance of integrating machine learning techniques with opti-
mization algorithms to address complex problems in cybersecurity. The adaptability and improved
performance of biomimetic algorithms enhanced with DQL offer a promising approach to efficient
Cyber SOC management, highlighting the potential of these advanced techniques in the cybersecurity
domain.

Future works could pivot towards creating adaptive defense mechanisms by integrating biomimetic
algorithms with Deep Q-Learning, focusing on real-time threat response and evolutionary security
frameworks. This would entail embedding ethical Al principles to ensure these advanced systems
operate without bias and respect privacy. Additionally, exploring federated learning for collaborative
defense across Cyber SOCs could revolutionize how threat intelligence is shared, fostering a unified
global response to cyber threats without compromising sensitive data. These directions promise to
significantly elevate the cybersecurity landscape, making it more resilient, ethical, and collaborative.
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