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Abstract: While numerous studies have explored the correlation between the built environment and ride-hailing
demand, few have assessed their nonlinear interplay. Utilizing ride-hailing order data and multi-source built
environment data from Nanjing, China, this paper uses the machine learning method, eXtreme Gradient
Boosting (XGBoost), combined with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDP)
to investigate the impact of built environment factors on ride-hailing travel demand, including their non-linear
and threshold effects. The findings reveal that dining facilities have the most significant impact, with a
contribution rate of 30.75%, on predicting ride-hailing travel demand. Additionally, financial, corporate, and
medical facilities also exert considerable influence. The built environment factors need to reach a certain
threshold or within a certain range to maximize the impact of ride-hailing travel demand. population density,
land use mix and distance to the subway station collectively influence ride-hailing demand. The results are
helpful for TNCs to allocate network ride-hailing resources reasonably and effectively.

Keywords: ride-hailing; built environment; XGBoost; SHAP; nonlinearity

1. Introduction

Transportation Network Companies (TNCs) such as Uber, Lyft and DiDi build service platforms
based on Internet technology to match vehicles online and provide travel services for travelers in real-
time, also known as ride-hailing services. Amid the swift progress of information technology and the
popularity of smartphones, ride-hailing as a shared travel mode has reduced passenger waiting time
and improved travel efficiency, and is gradually becoming one significant mode of daily urban
transportation [1]. The scale of ride-hailing users in China continues to expand, the ride-hailing user
base has surged to 453 million at the end of 2021. Although ride-hailing provides passengers with
high accessibility services, researches have shown that there is an alternative or complementary
relationship between ride-hailing and transit [2,3]. Some researchers have found that ride-hailing has
replaced traditional modes of transportation, leading to various issues including traffic congestion,
increased energy consumption, and higher vehicle mileage, which in turn contribute to additional
traffic pressure [4].

As a microscopic manifestation of urban spatial form, the built environment significantly
influences travel patterns [5-7]. A multitude of scholars have scrutinized the nexus between the built
environment and traffic travel, and studied different models, including metro [8,9], taxi [10-12] and
dockless bike-sharing [13,14]. As a rising mode of travel, ride-hailing is gradually affecting the change
in residents' travel demand. The built environment factors also wield a significant influence in this
phenomenon. In the pursuit of promoting green, low-carbon, and sustainable urban development,
delving into the impact mechanism between the built environment and ride-hailing becomes
imperative.

Researchers have discussed the relationship between the built environment and the demand for
ride-hailing travel. Most of them start from the characteristics of spatial attributes, including spatial
autocorrelation and spatial heterogeneity. Spatial autocorrelation effects are usually explained by
spatial econometric models [15]. Geographically Weighted Regression (GWR) enhances regression
accuracy by creating a local spatial weight matrix to estimate spatial variations [16]. The GWR and
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its variations are frequently utilized to investigate the spatial diversity in how the built environment
influences ride-hailing travel demand [17-19]. On the one hand, these models assume that there is a
linear or generalized linear relationship between the two, and the conclusions may have some
deviations. On the other hand, the machine learning method possesses the advantage of not adhering
to the assumption of linear relationships between variables in multivariate fitting, allowing for more
flexible modeling of complex relationships, which helps find complex nonlinear relationships[20].
Based on this, contemporary research has started to explore the nonlinear impact of the built
environment on travel behavior and the threshold effect of the built environment can also be observed
[9,21,22]. However, there are few studies on the non-linear correlation and threshold effect amid the
built environment and ride-hailing travel demand.

To address this gap, the study utilizes weekday ride-hailing travel data from Nanjing, China,
and applies machine learning methods, XGBoost, to explore the complex relationship between the
built environment and the ride-hailing travel demand. Using the XGBoost model to identify the
important built environment characteristics influencing ride-hailing travel demand. The SHAP
summary plot and the traditional PDP are used to explain the threshold effect between the built
environment and the ride-hailing service. It furnishes a foundation for TNCs to enhance their current
ride-hailing service, and has policy implications for how future urban land use and transportation
strategies can effectively affect the ride-hailing service.

The remainder of this paper is structured as follows. Section 2 provides a review of research
concerning the built environment's influence on ride-hailing, with a particular focus on exploring the
nonlinear relationship between influencing factors and travel behavior. Section 3 delineates the study
area and outlines the pertinent variables involved. Section 4 introduces the modeling approach
adopted in this study. Section 5 introduces the model estimation findings and analyzes them. Section
6 provides an overview of the primary research outcomes and suggests future avenues for
investigation.

2. Literature Review

2.1. Literature Review

In recent years, ride-hailing services are becoming increasingly pivotal in the overall
transportation system. Research on the key factors influencing ride-hailing trips has received
widespread attention, including social demographics [23,24], user attitudes and preferences [25,26],
built environment characteristics [17-19], and other factors such as weather conditions [23]. Among
these, the urban built environment, as a crucial factor affecting residents' travel behavior, is closely
associated with ride-hailing trips. Built environment characteristics are commonly described using
the "5Ds": density, diversity, design, destination accessibility, and distance to transit [5,6]. This
framework has now been expanded to "7Ds," encompassing demand management and demographic
factors.

Various aspects of the built environment, such as population density, land use patterns, and
transportation infrastructure, are frequently studied to assess their correlation with ride-hailing trips.
For instance, in exploring the linear relationship between the built environment and ride-hailing
travel demand, Alemi et al [27] utilized binary logit models to explore the joint and separate impacts
of multiple factors on Uber/Lyft usage in California. The findings suggest that a diverse mix of land
use and improved regional auto accessibility positively influence the utilization of ride-hailing
services. Similarly, Zhang et al. [3] investigated the correlation between the intensity of ride-hailing
trips and the density of Points of Interest (POI) using ride-hailing data from Chengdu, China, using
ordered logistic regression models. They found that different types of POIs had varying ramifications
for ride-hailing trip intensity, with transportation facility density having the greatest impact,
followed by scenic spot density, while company density had no significant influence.

To examine the spatial correlation between the built environment and ride-hailing travel
demand, Sabouri et al [28] explored the impact of the built environment on ride-hailing travel
demand through multilevel modeling, utilizing Uber travel data from 24 distinct regions across the
United States. The results indicated a positive correlation between Uber demand and land use mix
and bus station density, suggesting that ride-hailing services complement the first/last-mile
connectivity of public transit, a conclusion also reached by Ghaffar et al [23]. Dean and Kockelman
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[15] utilized Spatial Autoregressive (SAR) models and Structural Equation Models (SEM) to reflect
spatial autocorrelation effects in census tracts. They compared the results with Ordinary Least
Squares (OLS) models to explore how population and land use variables affect ride-hailing travel
demand. The findings showed that an increase in job opportunities in retail and entertainment sectors
promotes ride-hailing travel demand, while areas with pedestrian infrastructure and greater distance
from public transit stations reduce ride-hailing travel demand.

To capture the spatial heterogeneity of the built environment's influence on ride-hailing trips,
Wang and Noland [18] utilized DiDi travel data from Chengdu, China, estimating both global models
and Geographically Weighted Regression (GWR) models. They examined the spatial variation of
factors influencing ride-hailing trips during morning peak, evening peak, and late-night periods. The
results indicated that high land use mix can create environments conducive to walking and encourage
non-motorized travel [5], which differs from the conclusions of Sabouri et al [28] and Ghaffar et al
[23]. Liu et al [17] utilized ride-hailing order data from Shenzhen, China, to develop a Geographically
Weighted Quantile Regression (GWQR) model, exploring the temporal, spatial, and trip count
variations of built environment factors. They discovered that ride-hailing services diminish the
appeal of buses, subways, bicycles, and taxis, a trend particularly noticeable during weekdays. High
land use mix and dense commercial areas attract ride-hailing trips, although the correlation between
land use mix and ride-hailing trip counts exhibited no consistent pattern of growth. Yu and Peng [19]
utilized ride-hailing trip data from Texas and applied the Geographically Weighted Panel Regression
(GWPR) model to examine the spatial relationship between the built environment and ride-hailing
travel demand. They discovered substantial geographical variations in the influence of built
environment factors, which were comprehensive in nature. Land use mix positively impacted ride-
hailing travel demand throughout the study area.

Previous research has employed diverse models to investigate the interplay between the built
environment and ride-hailing travel demand, encompassing linear relationships and spatial effects.
However, they have neglected the non-linear and threshold effects between these factors.

2.2. Nonlinear Effects between Traffic Travel and Influencing Factors

Analyzing the connection between influencing factors and travel behavior can be approached
using various methods. In recent years, machine learning-based techniques such as Random Forests,
Gradient Boosting Decision Trees (GBDT), and XGBoost have been extensively utilized to investigate
such matters. For example, in investigating key factors influencing mode choice, Ding et al [29]
utilized a gradient-boosting logistic regression model to incorporate built environment factors at both
residential and workplace locations. They investigated the impact of the built environment and
commuting patterns on commuting mode selection, unveiling that built environment variables at the
workplace hold more significance than those at the residence. Moreover, most built environment
variables display non-linear relationships with the choice of commuting mode. He et al [30] through
a survey of car users, defined 4km as the threshold for short-distance travel and employed Random
Forests to examine the essential factors influencing transportation mode selection for short-distance
travelers. They analyzed the complex relationships and found significant threshold effects for key
influencing factors on mode choice. Specifically, they pinpointed 1.2 kilometers as the tipping point
for car and active mode selection, with a notable surge in the likelihood of car usage beyond this
threshold.

Regarding the study of the nonlinear relationship between travel distance and influencing
factors, Ji et al [20] utilized bicycle travel survey data from Xi'an, China, utilizing the XGBoost model
to investigate the nonlinear and interplay effects between the built environment and cycling distance.
They utilized SHAP for interpretation. The results indicated that the road network structure pattern
contributed the most, and bicycle lane infrastructure also played an important role. They also
analyzed the interaction effects of key variables in the road network structure, such as average
geodesic distance, and other variables on cycling distance. Tao and Cao [21] constructed their analysis
using regional travel data from the Twin Cities, US, and utilized GBDT to examine the non-linear
correlation between the built environment and travel distance across driving, public transit, and
active modes. The results revealed nonlinear and threshold effects between the built environment
and travel distance, with different transportation modes exhibiting different impact effects.

Numerous scholars have also focused on the nonlinear impacts of influencing factors on travel
demand. For instance, Tu et al [22] segmented the ride-hailing trip data into single/shared trips based
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on a carpooling identification algorithm, and utilized the GBDT model to investigate the relationship
between the built environment and carpooling origin-destination points. The findings revealed that
proximity to the city center, land use diversity, and road density are pivotal factors influencing travel
behavior, and threshold effects were analyzed using partial dependence plots. Du et al [8] aimed at
identifying determinants of subway ridership, applied the GBRT model to explore the nonlinear
impact that accessibility has on subway ridership from a spatiotemporal perspective. They found that
accessibility indicators collectively contributed over 60% to predicting subway ridership at different
times. Peng et al [9] utilized LightGBM to study the nonlinear, threshold, and synergistic effects of
last-mile facilities on subway ridership. The results showed that last-mile facilities made the largest
contribution to predicting subway ridership and needed to reach a attain threshold to maximize
subway ridership. Through 2D-PDP analysis of their synergistic effects, they found that the influence
of last-mile facilities on subway ridership may vary depending on the provision of public transit and
built environment factors.

Furthermore, scholars have delved into the intricate interplay between ride-hailing and
alternative transportation modes. For instance, Jin et al [31] employed the GBDT model to distinguish
between weekdays and weekends, studying the nonlinear correlation between the built environment
and the integrated utilization of subway and ride-hailing services. They found different patterns of
built environment influence between subway-originated and subway-destinated trips. Zhang et al [3]
based on the National Household Travel Survey data from San Diego, utilized the Hierarchical
Negative Binomial Generalized Additive Model (HNBGAM) to explore the nonlinear association
between ride-hailing trips and public transit utilization. They discovered that the frequency of ride-
hailing trips plays a complementary and substitutive role in public transit use. Ride-hailing has
gradually become an integral part of urban transportation. Unraveling the intricate dynamics
between the built environment and ride-hailing travel demand can enable Transportation Network
Companies (TNCs) to strategically allocate ride-hailing resources, enhance service levels, and
mitigate overutilization of ride-hailing services. However, the current body of research on the
nonlinear relationship between travel behavior and influencing factors has scarcely delved into its
implications for ride-hailing travel demand.

3. Data
3.1. Study Area

Nanjing, serving as the capital of Jiangsu Province, holds significant importance as a central city
in eastern China. The permanent population of Nanjing is 9.49 million. By the end of 2022, Nanjing's
urban population has reached 8.26 million, with an urbanization rate of 87.01% [32]. Nanjing
provided online ride-hailing services as early as 2013 [31]. At present, about 13,000 ride-hailing
vehicles are legally operated in Nanjing. This paper focuses on the main urban area of Nanjing,
including Qinhuai District, Xuanwu District, Jianye District, Gulou District, Yuhuatai District, and
Qixia District, with a total area of 787.45 km?.

Many researches have refined the analysis of data distribution and the influence of the built
environment on travel behavior by dividing rectangular grids. Therefore, the study area is divided
into 500m*500m rectangular grids. It is generally believed that the grid with a travel demand of 0 or
less does not have strong urban functions [33]. Therefore, the grid with several ride-hailing points
greater than or equal to 10 is retained. After screening, a total of 1555 grids are obtained as research
units, as shown in Figure 1.
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Figure 1. Study area.

3.2. Variables

The study utilized ride-hailing order data from Nanjing City for five working days, from April 11th
to April 15th, 2022 (Monday to Friday). The dataset includes essential fields as shown in Table 1,
comprising order ID, vehicle ID, pick-up/drop-off time, and vehicle pick-up/drop-off latitude and
longitude information. The data underwent screening and cleaning procedures, such as removing
irrelevant fields, excluding orders with missing pick-up/drop-off latitude and longitude or time
information, and eliminating orders with trip durations less than 2 minutes or exceeding 2 hours.
After these processes, a total of 835,370 valid records were obtained. The dependent variable is the
count of ride-hailing pick-up points within each grid.

Table 1. Examples of the ride-hailing orders in the dataset.

. . . ) Pick-off
Order ID Vehicle ID Pl;i:up Ptlicnli-Off Pl‘('-llfglll\’l lzf:;l)on Location
€ € ’ (LON, LAT)
T512022041101260 SADXXXSY 2022/4/11 2022/4/11 (118.746650, (118.787378
0XXX 01:33:59 01:50:56 32.021847) 32.048361)
15fb8al0ead422477f SATXXXY 2022/4/12 2022/4/12 (118.823082, (118.637144,
XXX 09:59:20 10:21:39 31.964883) 31.930987)
T512022041315500 SADXXX19 2022/4/13 2022/4/13 (118.787103, (118.734399,
0XXX 15:54:21 16:20:28 32.069792) 32.127606)
T512022041415100 SADXXX53 2022/4/14 2022/4/14 (118.816308, (118.763203,
3XXX 15:14:28 15:33:21 32.066452) 32.009617)
2022/4/15 2022/4/15 (118.779821, (118.787625,
17753565138XXX SABXXXC 12:34:17 12:44:36 32.029380) 32.043140)

The explanatory variables use “5Ds” to describe the built environment, “density” includes
population density and POI density. Using the population grid data of WorldPop 100m accuracy
(https://www.worldpop.org/), the Population density is calculated by dividing the total population
in the grid by the grid area. POl is a kind of point data in an electronic map, including name, address,
coordinate and category. It provides important data support in the research of urban built
environment [20]. We selected 10 types of POI facilities for the study, the density value is obtained
by dividing the number of each type of POI facility point by the grid area. The “design” adopts the
description of urban road length, slow road length and intersection, and extracts the road network
data of Nanjing based on OpenStreetMap (https://www. openstreetmap.org/). The length of the
urban road is obtained by calculating the sum of the length of the urban expressway, main road,
secondary road, and branch road. The length of a slow road is obtained by calculating the sum of the
length of the sidewalk and bicycle lane. The data of road intersections are extracted and the number
of road intersections in each grid is calculated. The "diversity" of land use mixing degree expression
was gauged by computing the entropy index of 10 types of POL
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Where 4 denotes the share of land utilization category S withingrid i , while S represents

the count of distinct land types integrated within grid i. Bus and subway are important components
of urban public transportation. The euclidean distance measured from the centroid point to the
closest bus or subway station in each grid represents the “distance to transit”. “Destination
accessibility” is articulated through the euclidean distance from a given location to the CBD. The
descriptive explanation of variables is shown in Table 2.

Table 2. Descriptive statistics of variables.

Variable Description Mean S.D.
Dependent variables
ride-hailing travel Number of ride-hailing trips
demand divided by the grid area 536.22 712.48
(count/km?)
Independent variables
Density
Population density Population size divided by the grid 12641.95 19460.06
area (person/km?)
Dining facility Number of d'1n1ng facilities divided 69.09 130.90
by the grid area (count/km?)
Company Number o‘f companies divided by 3779 67.99
the grid area (count/km?)
Shopping facility Number of shopping facilities
divided by the grid area 99.77 228.37
(count/km?)
Financial facility Number of financial facilities
divided by the grid area 6.41 16.57
(count/km?)
Accommodation service Number of accommodation
services divided by the grid area 11.26 32.99
(count/km?)
Science & Education & = Number of Science & Education &
Culture Culture facilities divided by the 22.99 44.82
grid area (count/km?)
Scenic spot Number of' scenic spots divided by 523 18.76
the grid area (count/km?)
Commercial residence Number of commercial residences
divided by the grid area 17.79 24.02
(count/km?)
Leisure service Number of lt?lsure services divided 530 12,40
by the grid area (count/km?)
Medical facility Number of medical facilities
divided by the grid area 12.87 23.21
(count/km?)
Design
Road length The length of roads divided by the
. 1.97 1.15
grid area (km /km?)
Non-motorized road The length of non-motorized roads 021 0.51

length

divided by the grid area (km /km?)
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Number of Road nodes =~ Number of road nodes divided by

7.07 9.31
the grid area (count/km?)
Diversity
Land use mix The entropy x_zalue of thirteen 071 0.28
categories of POIs

Destination

accessibility
Distance to CBD Distance from the grid centroid to 10.16 573

CBD (km)
Distance to transit

Distance to bus stop Distance from the grid centroid to 031 021

the nearest bus stop (km)

4. Methodology
4.1. XGBoost

XGBoost proposed by Chen and Guestrin [34] based on GBDT shows good advantages in
prediction performance and prevention of overfitting. Therefore, this study uses XGBoost to
investigate the nonlinear relationship between built environment variables and ride-hailing travel
demand.

This method belongs to a forward iterative model. The iterative process will train multiple trees.
Finally, the aggregated prediction from each tree within the sample serves as the predicted value for
the entire sample in the model:

t
PO = kz—lfk (x,) Q)
Where is the predicted value of ride-hailing travel demand in the grid I after the iteration?, I (x,)

is the predicted value of the tree k , and X; is the built environment in the grid i .

Overfitting is one of the defects that hinder the accuracy and performance of the model in
machine learning [20], XGBoost prevents model overfitting by adding regularization terms:

L(9)=£1(5,.5)+ £Q(1,) 3)
Q(f,)=1T, +5 25w (4)

Where 7 represents the total number of grids within the study area, / ( Vo )A/,) represents the loss

function calculated between the predicted value and the true value, (f,) is the regularization term,

T, is the number of leaf nodes of the tree % , wfis the weight assigned to the tree node, y and A

are penalty factors respectively.

We employ 5-fold cross-validation to determine the optimal parameter configureurations, when
XGBoost has the best fitting effect, the hyperparameters are set as follows: “n_estimults:100,
gamma=0.01, learning_rate:0.05, alpha=1, max_depth:5".

4.2. Model explanation

SHAP is a method for interpreting machine learning models, originally extended from the

Shapley value concept in game theory [35]. Lundberg and Lee [36] proposed a unified predictive

interpretation framework, which enables the quantification of each feature's contribution within the

model and utilizes the Shapley value to illustrate the influence distribution of each feature on the
model output [9,37]:

lz|/(P-|z]-1)!

9=z, P!

(£(z)-£.(271)) (5)

where (bj denotes the contribution of feature ; , P is the number of features, |Z '| represents the

number of non-zero entriesin z',and z'c x' representsall z' vectors where the non-zero entries
form a subset of thosein x'.
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Partial dependence plots (PDP) can effectively reveal the nonlinear relationship between input
features and the target variable, enabling a deeper understanding of how the model utilizes these
features to make decisions, defined as:

F (%) =E [F(x,x)] (6)
Fifx)=2£F(x.x) (7)

Where X, is the built environment variable to be analyzed, x is the other built environment
variable except x, F(x ) represents the forecasted value of the ride-hailing travel demand when
taking the mean value and taking different values. The partial dependence function defined in
equations (6) and (7) is derived from the average level of other built environment variables X, to

analyze the influence of the built environment variable X, on the ride-hailing travel demand.

5. Results and Discussion
5.1. Relative Importance Analysis

Table 3 illustrates the relative significance of built environment variables in influencing ride-
hailing travel demand. A higher importance value indicates a greater impact of the built environment
variable on ride-hailing travel demand. The sum of importance values for all variables totals 100%.
Due to significant differences in the quantity of built environment features across different
dimensions, average relative importance is employed to assess the significance of the five dimensions
of the built environment. Among these dimensions, density has the highest average relative
importance (7.89%), with destination accessibility (3.05%) following closely behind. Meanwhile, the
average relative importance of design, diversity, and distance to transit are 1.86%, 1.48%, and 1.53%,
respectively. In the ranking of built environment variables, the top five in relative importance are all
PO facilities, namely dining facilities, financial facilities, medical facilities, companies, and shopping
facilities. This indicates that POI facilities significantly impact ride-hailing travel demand, consistent
with previous research [3], where restaurants contribute the most to ride-hailing travel demand at
30.75%.

Table 3. The relative importance of independent variables.

Variables Relative importance  Ranking

Density (Average of relative importance: 7.89%)
Population density 1.36% 15
Dining facility 30.75% 1
Company 5.94% 4
Shopping facility 4.86% 5
Financial facility 26.42% 2
Accommodation service 3.19% 7
Science & Education & Culture 1.34% 16
Scenic spot 0.59% 18
Commercial residence 3.56% 6
Leisure service 2.55% 9
Medical facility 6.28% 3

Design (Average of relative importance: 1.86%)
Road length 2.07% 10
Non-motorized road length 1.88% 11
Number of Road nodes 1.63% 13

Diversity (Average of relative importance:
1.48%)

Land use mix 1.48% 14
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Destination accessibility (Sum of relative
importance: 3.05%)
Distance to CBD 3.05% 8
Distance to transit (Average of relative
importance: 1.53%)
Distance to bus stop 1.23% 17
Distance to subway station 1.82% 12

5.2. SHAP Summary Plot of Independent Variables

The SHAP summary plot reveals the order of various built environment features and how they
positively or negatively influence the target variable. In the plot, each colored point corresponds to a
sample, with the color indicating the magnitude of the built environment feature values. Higher
feature values are depicted in red, while lower feature values are depicted in blue. The x-axis
illustrates the SHAP values corresponding to each built environment feature.

As shown in Figure 2, based on the SHAP feature ranking, it is found that the top 4 ranked built
environment features are similar to the relative importance ranking, all of which are points of POI
facilities, namely dining facilities, financial facilities, companies, and medical facilities. Among them,
dining facilities are considered the most important, with the highest contribution to relative
importance ranking as well. However, the road length is ranked 5th in the SHAP feature ranking,
which differs from the relative importance ranking.

Samples with fewer dining facilities tend to have negative SHAP values, while samples with
larger dining facilities tend to have positive values, indicating a positive correlation between dining
facilities and SHAP values. This is because areas with higher-density dining facilities often coincide
with shopping malls or densely populated areas, resulting in higher travel demand. Similarly, POI
facilities such as finance, company, medical, shopping, accommodation, and leisure also exhibit
similar feature effects, while tourist attraction POI show negative effects. The distance to CBD and
subway accessibility are negatively correlated with SHAP values, indicating that closer proximity to
the CBD results in higher travel demand. Similarly, other built environment variables that exhibit
significant negative correlations with SHAP values include the distance to subway station. Road
length and the number of road nodes show positive correlations with SHAP values. Conversely, the
non-motorized road length shows a negative correlation. This is because road nodes enhance the
connectivity of urban roads, and a more complete and smooth road network structure attracts more
ride-hailing travel demand [19]. Conversely, a focus on non-motorized transportation development
will reduce motorized travel and suppress the demand for ride-hailing travel demand.
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Figure 2. SHAP summary plot of independent variables.

5.3. Marginal Effects Analysis

The above results help determine the importance and positive/negative feedback of each built
environment variable in influencing ride-hailing travel demand. To further clarify the nonlinear
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relationship between individual built environment variables and the demand for ride-hailing travel,
partial dependence plots can be utilized to visualize the marginal impacts of built environment
features on model predictions [38]. This allows capturing the effective scope of influence and
threshold impacts on ride-hailing travel demand.

Figure 3 illustrates the non-linear relationship between density variables and ride-hailing travel
demand. Dining, finance, company, medical, shopping, accommodation, and leisure POI facilities
positively influence ride-hailing travel demand. As the density of POI facilities rises, so does the
demand for ride-hailing. However, the range of influence and thresholds vary among different types
of POI facilities. For example, the influence of dining facility density on ride-hailing travel demand
gradually increases between 0 and 700, and stabilizes after exceeding 700. Similarly, for financial
facilities, the impact stabilizes after surpassing 100.

Scenic spots have a negative impact on ride-hailing travel demand, as illustrated in Figure 3(i).
A noticeable decrease in demand occurs within the range of 0 to 20. This could be attributed to the
fact that scenic spots are typically located near public transportation hubs, making it convenient for
tourists to travel without relying on ride-hailing services. Additionally, these scenic spots may often
be situated in suburban areas, where the cost of utilizing ride-hailing services is relatively higher. The
influence of commercial residence areas and Science & Education & Culture areas on ride-hailing
travel demand exhibits a trend of rising and then declining, as shown in Figure 3(f) and 3(h). This
indicates that there are certain advantageous intervals for influencing ride-hailing travel demand.
Commercial residence areas are most attractive to ride-hailing travel demand within the range of 20
to 90, while Science & Education & Culture areas exhibit peak influence between 50 and 150.

As shown in Figure 3 (k), population density generally impacts ride-hailing travel demand
positively. Within the range of 0 to 20,000 person/km?, there is significant fluctuation in ride-hailing
travel demand. The lowest demand for ride-hailing occurs when the population density is 5000
person/km?. This suggests that areas with either sparse or excessively dense populations exhibit
higher ride-hailing travel demand. This could be attributed to several factors: in regions with low
population density, public transportation accessibility may be poor while road connectivity is high,
making ride-hailing a preferred mode of transportation due to the lack of viable alternatives.
Additionally, in densely populated areas, where the separation between residential and commercial
areas is pronounced, ride-hailing becomes more favorable.
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Figure 3. Nonlinear effect of density variables on ride-hailing travel demand.

Figure 4(a) illustrates a noticeable positive impact of road length on ride-hailing travel demand
within the grid, particularly within the range of 0 to 4. As road length increases, there is a clear rise
in ride-hailing travel demand, which stabilizes once the road length surpasses this range. In Figure
4(b), when the length of slow roads within the grid reaches 1 km, there is a sharp decrease of
approximately 500 ride-hailing travel trips. Figure 4(c) illustrates that the influence of the number of
road nodes on ride-hailing travel demand is most significant within the range of 0 to 3. As the number
of road nodes increases from 3 to around 40, there is a gradual increase in demand. However, this
impact stabilizes once the number of road nodes exceeds approximately 40 per grid.
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Figure 4. Nonlinear effect of design variables on ride-hailing travel demand.

As illustrated in Figure 5, the demand for ride-hailing remains constant when the land use mix
is between 0 and 0.4. However, the demand for ride-hailing reaches its peak when the land use mix
approaches around 0.6. This finding aligns with previous research [23,27,28], which suggests that
higher land use mix attracts ride-hailing services to provide transportation options. Conversely,
between 0.6 and 0.8 in the land use mix, there is a notable decrease in demand for ride-hailing. This
indicates that when the land use mix attains a particular level of completeness in terms of POI
facilities within the regional grid, it is more conducive to walking trips [5,18].
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Figure 5. Nonlinear effect of diversity variables on ride-hailing travel demand.
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As shown in Figure 6, the demand for ride-hailing increases as the distance to the CBD decreases,
which corresponds with the pattern of higher demand closer to the CBD. Ride-hailing drivers often
prefer to operate in the city center to meet the higher demand. When the distance from CBD is
between 0 and 20 km, there is a noticeable decrease in ride-hailing travel demand, particularly within
the range of 0 to 1 km, where the negative impact on ride-hailing travel demand is most significant.
Ride-hailing travel demand sharply decreases from nearly 900 to 600. Beyond a distance of 20 km
from CBD, the impact tends to stabilize.
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Figure 6. Nonlinear effect of destination accessibility on ride-hailing travel demand.

As shown in Figure 7(a), When the distance to the bus station falls within the range of
approximately 0 to 0.5 km, there is a significant decline in ride-hailing travel demand. Beyond a
distance of 3 km, the impact of ride-hailing tends to stabilize. Similarly, as illustrated in Figure 7(b),
the distance to the metro station shows a continuous reduction in ride-hailing travel demand within
the range of 0 to 0.35 km, reaching its lowest point at 0.35 km. This phenomenon may be attributed
to the integration of ride-hailing with public transportation, aiming to address the "last-mile" problem
of commuting [27,28]. We also observed that bus stations have a larger radius of influence. Conversely,
the ride-hailing travel demand increases slightly after reaching a distance of 0.4 km from metro
stations, and then stabilizes. This may be because ride-hailing services complement the "first-mile"
commute to connect with metro stations, contributing to this phenomenon.
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Figure 7. Nonlinear effect of distance to transit on ride-hailing travel demand.

6. Conclusions

This study utilizes ride-hailing data from Nanjing and integrates multi-source data including
population, urban road network, POI and public transportation stations to characterize built
environment indicators from the perspective of the "5Ds.". By applying the XGBoost model, the study
explores the impact of built environment factors on ride-hailing travel demand. Through the
combined analysis of SHAP and PDP, the study elucidates the contribution, nonlinearity, and
threshold impacts of built environment features on predicting ride-hailing travel demand. The
research findings provide valuable insights for urban development, transportation planning, and
ride-hailing resource allocation.

Firstly, the article estimated the average relative importance of the "5Ds" and assessed the
relative importance and ranking of various built environment features on ride-hailing travel demand.
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The results indicate that the density dimension has the highest average relative importance at 7.89%,
and the contribution rate of dining facilities to predicting ride-hailing travel demand is highest at
30.75%. Secondly, through the SHAP summary plot analysis, the article examined how built
environment features positively or negatively affect the target variable. Based on the SHAP feature
ranking, it was found that the top 4 built environment features are dining, finance, company, and
medical facilities, all of which are POI facilities. TNCs should prioritize the supply and allocation of
ride-hailing vehicles around these built environment features. Finally, through the PDP plot
visualization, the article illustrated the nonlinearity and threshold effects between built environment
features and ride-hailing travel demand. The results indicate that built environment features need to
reach a certain threshold or be within a certain range to exert the maximum impact on ride-hailing
travel demand., with different thresholds and ranges for different built environment features.
Analyzing the marginal impacts of population density, land use mix, and distance to subway stations
revealed their comprehensive impact on ride-hailing travel demand. Understanding the nonlinearity
and threshold effects between built environment variables and ride-hailing travel demand can help
TNCs allocate ride-hailing resources reasonably and prevent overuse.

The article has certain limitations, and future research could explore these aspects:(1) The study
focused on ride-hailing travel demand over a typical workweek without analyzing specific periods.
However, ride-hailing travel demand typically exhibits peak and off-peak periods during the day,
and demand characteristics may vary from weekdays to weekends [33]. Clarifying the nonlinear
impacts of factors influencing ride-hailing travel demand during different periods is important.
Future research could investigate how factors such as built environment features influence ride-
hailing travel demand during peak and off-peak hours, both on weekdays and weekends. (2) Both
built environment features and ride-hailing travel demand possess spatial attributes. Future research
could analyze spatial effects in machine learning models. It could investigate whether interpretable
machine learning models incorporating spatial effects outperform traditional geographically
weighted models or exhibit similar or improved performance. This comparative examination would
shed light on the effectiveness of different modeling approaches in capturing the spatial dynamics of
ride-hailing travel demand affected by built environment features.
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