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Jiexiang Yin, Feiyan Zhao *, Wenyun Tang and Jianxiao Ma * 
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yinjiexiang@126.com (J.Y.); tangwy@njfu.edu.cn (W.T.) 
* Correspondence: zfy@njfu.edu.cn (F.Z.); majx@njfu.edu.cn (J.M.) 

Abstract: While numerous studies have explored the correlation between the built environment and ride-hailing 
demand, few have assessed their nonlinear interplay. Utilizing ride-hailing order data and multi-source built 
environment data from Nanjing, China, this paper uses the machine learning method, eXtreme Gradient 
Boosting (XGBoost), combined with SHapley Additive exPlanations (SHAP) and Partial Dependence Plots (PDP) 
to investigate the impact of built environment factors on ride-hailing travel demand, including their non-linear 
and threshold effects. The findings reveal that dining facilities have the most significant impact, with a 
contribution rate of 30.75%, on predicting ride-hailing travel demand. Additionally, financial, corporate, and 
medical facilities also exert considerable influence. The built environment factors need to reach a certain 
threshold or within a certain range to maximize the impact of ride-hailing travel demand. population density, 
land use mix and distance to the subway station collectively influence ride-hailing demand. The results are 
helpful for TNCs to allocate network ride-hailing resources reasonably and effectively. 

Keywords: ride-hailing; built environment; XGBoost; SHAP; nonlinearity 
 

1. Introduction 
Transportation Network Companies (TNCs) such as Uber, Lyft and DiDi build service platforms 

based on Internet technology to match vehicles online and provide travel services for travelers in real-
time, also known as ride-hailing services. Amid the swift progress of information technology and the 
popularity of smartphones, ride-hailing as a shared travel mode has reduced passenger waiting time 
and improved travel efficiency, and is gradually becoming one significant mode of daily urban 
transportation [1]. The scale of ride-hailing users in China continues to expand, the ride-hailing user 
base has surged to 453 million at the end of 2021. Although ride-hailing provides passengers with 
high accessibility services, researches have shown that there is an alternative or complementary 
relationship between ride-hailing and transit [2,3]. Some researchers have found that ride-hailing has 
replaced traditional modes of transportation, leading to various issues including traffic congestion, 
increased energy consumption, and higher vehicle mileage, which in turn contribute to additional 
traffic pressure [4]. 

As a microscopic manifestation of urban spatial form, the built environment significantly 
influences travel paĴerns [5–7]. A multitude of scholars have scrutinized the nexus between the built 
environment and traffic travel, and studied different models, including metro [8,9], taxi [10–12] and 
dockless bike-sharing [13,14]. As a rising mode of travel, ride-hailing is gradually affecting the change 
in residents' travel demand. The built environment factors also wield a significant influence in this 
phenomenon. In the pursuit of promoting green, low-carbon, and sustainable urban development, 
delving into the impact mechanism between the built environment and ride-hailing becomes 
imperative. 

Researchers have discussed the relationship between the built environment and the demand for 
ride-hailing travel. Most of them start from the characteristics of spatial aĴributes, including spatial 
autocorrelation and spatial heterogeneity. Spatial autocorrelation effects are usually explained by 
spatial econometric models [15]. Geographically Weighted Regression (GWR) enhances regression 
accuracy by creating a local spatial weight matrix to estimate spatial variations [16]. The GWR and 
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its variations are frequently utilized to investigate the spatial diversity in how the built environment 
influences ride-hailing travel demand [17–19]. On the one hand, these models assume that there is a 
linear or generalized linear relationship between the two, and the conclusions may have some 
deviations. On the other hand, the machine learning method possesses the advantage of not adhering 
to the assumption of linear relationships between variables in multivariate fiĴing, allowing for more 
flexible modeling of complex relationships, which helps find complex nonlinear relationships[20]. 
Based on this, contemporary research has started to explore the nonlinear impact of the built 
environment on travel behavior and the threshold effect of the built environment can also be observed 
[9,21,22]. However, there are few studies on the non-linear correlation and threshold effect amid the 
built environment and ride-hailing travel demand. 

To address this gap, the study utilizes weekday ride-hailing travel data from Nanjing, China, 
and applies machine learning methods, XGBoost, to explore the complex relationship between the 
built environment and the ride-hailing travel demand. Using the XGBoost model to identify the 
important built environment characteristics influencing ride-hailing travel demand. The SHAP 
summary plot and the traditional PDP are used to explain the threshold effect between the built 
environment and the ride-hailing service. It furnishes a foundation for TNCs to enhance their current 
ride-hailing service, and has policy implications for how future urban land use and transportation 
strategies can effectively affect the ride-hailing service. 

The remainder of this paper is structured as follows. Section 2 provides a review of research 
concerning the built environment's influence on ride-hailing, with a particular focus on exploring the 
nonlinear relationship between influencing factors and travel behavior. Section 3 delineates the study 
area and outlines the pertinent variables involved. Section 4 introduces the modeling approach 
adopted in this study. Section 5 introduces the model estimation findings and analyzes them. Section 
6 provides an overview of the primary research outcomes and suggests future avenues for 
investigation. 

2. Literature Review 

2.1. Literature Review 
In recent years, ride-hailing services are becoming increasingly pivotal in the overall 

transportation system. Research on the key factors influencing ride-hailing trips has received 
widespread aĴention, including social demographics [23,24], user aĴitudes and preferences [25,26] , 
built environment characteristics [17–19], and other factors such as weather conditions [23]. Among 
these, the urban built environment, as a crucial factor affecting residents' travel behavior, is closely 
associated with ride-hailing trips. Built environment characteristics are commonly described using 
the "5Ds": density, diversity, design, destination accessibility, and distance to transit [5,6]. This 
framework has now been expanded to "7Ds," encompassing demand management and demographic 
factors. 

Various aspects of the built environment, such as population density, land use paĴerns, and 
transportation infrastructure, are frequently studied to assess their correlation with ride-hailing trips. 
For instance, in exploring the linear relationship between the built environment and ride-hailing 
travel demand, Alemi et al [27] utilized binary logit models to explore the joint and separate impacts 
of multiple factors on Uber/Lyft usage in California. The findings suggest that a diverse mix of land 
use and improved regional auto accessibility positively influence the utilization of ride-hailing 
services. Similarly, Zhang et al. [3] investigated the correlation between the intensity of ride-hailing 
trips and the density of Points of Interest (POI) using ride-hailing data from Chengdu, China, using 
ordered logistic regression models. They found that different types of POIs had varying ramifications 
for ride-hailing trip intensity, with transportation facility density having the greatest impact, 
followed by scenic spot density, while company density had no significant influence. 

To examine the spatial correlation between the built environment and ride-hailing travel 
demand, Sabouri et al [28] explored the impact of the built environment on ride-hailing travel 
demand through multilevel modeling, utilizing Uber travel data from 24 distinct regions across the 
United States. The results indicated a positive correlation between Uber demand and land use mix 
and bus station density, suggesting that ride-hailing services complement the first/last-mile 
connectivity of public transit, a conclusion also reached by Ghaffar et al [23]. Dean and Kockelman 
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[15] utilized Spatial Autoregressive (SAR) models and Structural Equation Models (SEM) to reflect 
spatial autocorrelation effects in census tracts. They compared the results with Ordinary Least 
Squares (OLS) models to explore how population and land use variables affect ride-hailing travel 
demand. The findings showed that an increase in job opportunities in retail and entertainment sectors 
promotes ride-hailing travel demand, while areas with pedestrian infrastructure and greater distance 
from public transit stations reduce ride-hailing travel demand. 

To capture the spatial heterogeneity of the built environment's influence on ride-hailing trips, 
Wang and Noland [18] utilized DiDi travel data from Chengdu, China, estimating both global models 
and Geographically Weighted Regression (GWR) models. They examined the spatial variation of 
factors influencing ride-hailing trips during morning peak, evening peak, and late-night periods. The 
results indicated that high land use mix can create environments conducive to walking and encourage 
non-motorized travel [5], which differs from the conclusions of Sabouri et al [28] and Ghaffar et al 
[23]. Liu et al [17] utilized ride-hailing order data from Shenzhen, China, to develop a Geographically 
Weighted Quantile Regression (GWQR) model, exploring the temporal, spatial, and trip count 
variations of built environment factors. They discovered that ride-hailing services diminish the 
appeal of buses, subways, bicycles, and taxis, a trend particularly noticeable during weekdays. High 
land use mix and dense commercial areas aĴract ride-hailing trips, although the correlation between 
land use mix and ride-hailing trip counts exhibited no consistent paĴern of growth. Yu and Peng [19] 
utilized ride-hailing trip data from Texas and applied the Geographically Weighted Panel Regression 
(GWPR) model to examine the spatial relationship between the built environment and ride-hailing 
travel demand. They discovered substantial geographical variations in the influence of built 
environment factors, which were comprehensive in nature. Land use mix positively impacted ride-
hailing travel demand throughout the study area. 

Previous research has employed diverse models to investigate the interplay between the built 
environment and ride-hailing travel demand, encompassing linear relationships and spatial effects. 
However, they have neglected the non-linear and threshold effects between these factors. 
2.2. Nonlinear Effects between Traffic Travel and Influencing Factors 

Analyzing the connection between influencing factors and travel behavior can be approached 
using various methods. In recent years, machine learning-based techniques such as Random Forests, 
Gradient Boosting Decision Trees (GBDT), and XGBoost have been extensively utilized to investigate 
such maĴers. For example, in investigating key factors influencing mode choice, Ding et al [29] 
utilized a gradient-boosting logistic regression model to incorporate built environment factors at both 
residential and workplace locations. They investigated the impact of the built environment and 
commuting paĴerns on commuting mode selection, unveiling that built environment variables at the 
workplace hold more significance than those at the residence. Moreover, most built environment 
variables display non-linear relationships with the choice of commuting mode. He et al [30] through 
a survey of car users, defined 4km as the threshold for short-distance travel and employed Random 
Forests to examine the essential factors influencing transportation mode selection for short-distance 
travelers. They analyzed the complex relationships and found significant threshold effects for key 
influencing factors on mode choice. Specifically, they pinpointed 1.2 kilometers as the tipping point 
for car and active mode selection, with a notable surge in the likelihood of car usage beyond this 
threshold. 

Regarding the study of the nonlinear relationship between travel distance and influencing 
factors, Ji et al [20] utilized bicycle travel survey data from Xi'an, China, utilizing the XGBoost model 
to investigate the nonlinear and interplay effects between the built environment and cycling distance. 
They utilized SHAP for interpretation. The results indicated that the road network structure paĴern 
contributed the most, and bicycle lane infrastructure also played an important role. They also 
analyzed the interaction effects of key variables in the road network structure, such as average 
geodesic distance, and other variables on cycling distance. Tao and Cao [21] constructed their analysis 
using regional travel data from the Twin Cities, US, and utilized GBDT to examine the non-linear 
correlation between the built environment and travel distance across driving, public transit, and 
active modes. The results revealed nonlinear and threshold effects between the built environment 
and travel distance, with different transportation modes exhibiting different impact effects. 

Numerous scholars have also focused on the nonlinear impacts of influencing factors on travel 
demand. For instance, Tu et al [22] segmented the ride-hailing trip data into single/shared trips based 
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on a carpooling identification algorithm, and utilized the GBDT model to investigate the relationship 
between the built environment and carpooling origin-destination points. The findings revealed that 
proximity to the city center, land use diversity, and road density are pivotal factors influencing travel 
behavior, and threshold effects were analyzed using partial dependence plots. Du et al [8] aimed at 
identifying determinants of subway ridership, applied the GBRT model to explore the nonlinear 
impact that accessibility has on subway ridership from a spatiotemporal perspective. They found that 
accessibility indicators collectively contributed over 60% to predicting subway ridership at different 
times. Peng et al [9] utilized LightGBM to study the nonlinear, threshold, and synergistic effects of 
last-mile facilities on subway ridership. The results showed that last-mile facilities made the largest 
contribution to predicting subway ridership and needed to reach a aĴain threshold to maximize 
subway ridership. Through 2D-PDP analysis of their synergistic effects, they found that the influence 
of last-mile facilities on subway ridership may vary depending on the provision of public transit and 
built environment factors. 

Furthermore, scholars have delved into the intricate interplay between ride-hailing and 
alternative transportation modes. For instance, Jin et al [31] employed the GBDT model to distinguish 
between weekdays and weekends, studying the nonlinear correlation between the built environment 
and the integrated utilization of subway and ride-hailing services. They found different paĴerns of 
built environment influence between subway-originated and subway-destinated trips. Zhang et al [3] 
based on the National Household Travel Survey data from San Diego, utilized the Hierarchical 
Negative Binomial Generalized Additive Model (HNBGAM) to explore the nonlinear association 
between ride-hailing trips and public transit utilization. They discovered that the frequency of ride-
hailing trips plays a complementary and substitutive role in public transit use. Ride-hailing has 
gradually become an integral part of urban transportation. Unraveling the intricate dynamics 
between the built environment and ride-hailing travel demand can enable Transportation Network 
Companies (TNCs) to strategically allocate ride-hailing resources, enhance service levels, and 
mitigate overutilization of ride-hailing services. However, the current body of research on the 
nonlinear relationship between travel behavior and influencing factors has scarcely delved into its 
implications for ride-hailing travel demand. 

3. Data 
3.1. Study Area 

Nanjing, serving as the capital of Jiangsu Province, holds significant importance as a central city 
in eastern China. The permanent population of Nanjing is 9.49 million. By the end of 2022, Nanjing's 
urban population has reached 8.26 million, with an urbanization rate of 87.01% [32]. Nanjing 
provided online ride-hailing services as early as 2013 [31]. At present, about 13,000 ride-hailing 
vehicles are legally operated in Nanjing. This paper focuses on the main urban area of Nanjing, 
including Qinhuai District, Xuanwu District, Jianye District, Gulou District, Yuhuatai District, and 
Qixia District, with a total area of 787.45 km2. 

Many researches have refined the analysis of data distribution and the influence of the built 
environment on travel behavior by dividing rectangular grids. Therefore, the study area is divided 
into 500m*500m rectangular grids. It is generally believed that the grid with a travel demand of 0 or 
less does not have strong urban functions [33]. Therefore, the grid with several ride-hailing points 
greater than or equal to 10 is retained. After screening, a total of 1555 grids are obtained as research 
units, as shown in Figure 1. 
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Figure 1. Study area. 

3.2. Variables  
The study utilized ride-hailing order data from Nanjing City for five working days, from April 11th 
to April 15th, 2022 (Monday to Friday). The dataset includes essential fields as shown in Table 1, 
comprising order ID, vehicle ID, pick-up/drop-off time, and vehicle pick-up/drop-off latitude and 
longitude information. The data underwent screening and cleaning procedures, such as removing 
irrelevant fields, excluding orders with missing pick-up/drop-off latitude and longitude or time 
information, and eliminating orders with trip durations less than 2 minutes or exceeding 2 hours. 
After these processes, a total of 835,370 valid records were obtained. The dependent variable is the 
count of ride-hailing pick-up points within each grid. 

Table 1. Examples of the ride-hailing orders in the dataset. 

Order ID Vehicle ID 
Pick-up 

time 
 Pick-off 

time 
Pick-up location 

(LON, LAT) 

Pick-off 
Location 

(LON, LAT) 

TS12022041101260
0XXX 

SADXXX87 
2022/4/11 
01:33:59 

2022/4/11 
01:50:56 

(118.746650, 
32.021847) 

(118.787378
， 

32.048361) 
15Ġ8a0ea4422477f

XXX 
SA1XXXY 

2022/4/12 
09:59:20 

2022/4/12 
10:21:39 

(118.823082, 
31.964883) 

(118.637144, 
31.930987) 

TS12022041315500
0XXX 

SADXXX19 
2022/4/13 
15:54:21 

2022/4/13 
16:20:28 

(118.787103, 
32.069792) 

(118.734399, 
32.127606) 

TS12022041415100
3XXX 

SADXXX53 
2022/4/14 
15:14:28 

2022/4/14 
15:33:21 

(118.816308, 
32.066452) 

(118.763203, 
32.009617) 

17753565138XXX SA8XXXC 
2022/4/15 
12:34:17 

2022/4/15 
12:44:36 

(118.779821, 
32.029380) 

(118.787625, 
32.043140) 

The explanatory variables use “5Ds” to describe the built environment, “density” includes 
population density and POI density. Using the population grid data of WorldPop 100m accuracy 
(hĴps://www.worldpop.org/), the Population density is calculated by dividing the total population 
in the grid by the grid area. POI is a kind of point data in an electronic map, including name, address, 
coordinate and category. It provides important data support in the research of urban built 
environment [20]. We selected 10 types of POI facilities for the study, the density value is obtained 
by dividing the number of each type of POI facility point by the grid area. The “design” adopts the 
description of urban road length, slow road length and intersection, and extracts the road network 
data of Nanjing based on OpenStreetMap (hĴps://www. openstreetmap.org/). The length of the 
urban road is obtained by calculating the sum of the length of the urban expressway, main road, 
secondary road, and branch road. The length of a slow road is obtained by calculating the sum of the 
length of the sidewalk and bicycle lane. The data of road intersections are extracted and the number 
of road intersections in each grid is calculated. The "diversity" of land use mixing degree expression 
was gauged by computing the entropy index of 10 types of POI. 
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ln
ln
is is

i

A AEI
S

                                (1) 

Where isA  denotes the share of land utilization category s within grid i  , while iS  represents 
the count of distinct land types integrated within grid i . Bus and subway are important components 
of urban public transportation. The euclidean distance measured from the centroid point to the 
closest bus or subway station in each grid represents the “distance to transit”. “Destination 
accessibility” is articulated through the euclidean distance from a given location to the CBD. The 
descriptive explanation of variables is shown in Table 2. 

Table 2. Descriptive statistics of variables. 

Variable Description Mean S.D. 
Dependent variables    

ride-hailing travel 
demand 

Number of ride-hailing trips 
divided by the grid area 

(count/km2) 
536.22 712.48 

Independent variables    
Density    

Population density Population size divided by the grid 
area (person/km2) 

12641.95 19460.06 

Dining facility Number of dining facilities divided 
by the grid area (count/km2) 

69.09 130.90 

Company Number of companies divided by 
the grid area (count/km2) 

37.79 67.99 

Shopping facility Number of shopping facilities 
divided by the grid area 

(count/km2) 
99.77 228.37 

Financial facility Number of financial facilities 
divided by the grid area 

(count/km2) 
6.41 16.57 

Accommodation service Number of accommodation 
services divided by the grid area 

(count/km2) 
11.26 32.99 

Science & Education & 
Culture 

Number of Science & Education & 
Culture facilities divided by the 

grid area (count/km2) 
22.99 44.82 

Scenic spot Number of scenic spots divided by 
the grid area (count/km2) 

5.23 18.76 

Commercial residence Number of commercial residences 
divided by the grid area 

(count/km2) 
17.79 24.02 

Leisure service Number of leisure services divided 
by the grid area (count/km2) 

5.32 12.40 

Medical facility Number of medical facilities 
divided by the grid area 

(count/km2) 
12.87 23.21 

Design    
Road length The length of roads divided by the 

grid area (km /km2) 
1.97 1.15 

Non-motorized road 
length 

The length of non-motorized roads 
divided by the grid area (km /km2) 

0.21 0.51 
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Number of Road nodes Number of road nodes divided by 
the grid area (count/km2) 

7.07 9.31 

Diversity    
Land use mix The entropy value of thirteen 

categories of POIs 
0.71 0.28 

Destination 
accessibility 

   

Distance to CBD Distance from the grid centroid to 
CBD (km) 

10.16 5.73 

Distance to transit    
Distance to bus stop Distance from the grid centroid to 

the nearest bus stop (km) 
0.31 0.21 

4. Methodology 
4.1. XGBoost 

XGBoost proposed by Chen and Guestrin [34] based on GBDT shows good advantages in 
prediction performance and prevention of overfiĴing. Therefore, this study uses XGBoost to 
investigate the nonlinear relationship between built environment variables and ride-hailing travel 
demand. 

This method belongs to a forward iterative model. The iterative process will train multiple trees. 
Finally, the aggregated prediction from each tree within the sample serves as the predicted value for 
the entire sample in the model: 

 ( )

1
ˆ

tt
i k i

k
y f x


                                   (2) 

Where is the predicted value of ride-hailing travel demand in the grid i after the iteration t ,  k if x

is the predicted value of the tree k , and ix is the built environment in the grid i . 
OverfiĴing is one of the defects that hinder the accuracy and performance of the model in 

machine learning [20], XGBoost prevents model overfiĴing by adding regularization terms: 

     
1 1

ˆ,
n t

i i k
i k

L l y y f
 

                                (3) 

  2

1

1
2

T

k k j
j

f T w 


                                   (4) 

Where n  represents the total number of grids within the study area,  ˆ,i il y y  represents the loss 
function calculated between the predicted value and the true value,  kf  is the regularization term, 

kT  is the number of leaf nodes of the tree k , 2
jw is the weight assigned to the tree node,  and 

are penalty factors respectively. 
We employ 5-fold cross-validation to determine the optimal parameter configureurations, when 

XGBoost has the best fiĴing effect, the hyperparameters are set as follows: “n_estimults:100, 
gamma=0.01, learning_rate:0.05, alpha=1, max_depth:5”. 
4.2. Model explanation 

SHAP is a method for interpreting machine learning models, originally extended from the 
Shapley value concept in game theory [35]. Lundberg and Lee [36] proposed a unified predictive 
interpretation framework, which enables the quantification of each feature's contribution within the 
model and utilizes the Shapley value to illustrate the influence distribution of each feature on the 
model output [9,37]: 

      
' '

' ! ' 1 !
' '/

!j x x
z x

z P z
f z f z j

P




 
                   (5) 

where j  denotes the contribution of feature j , P is the number of features, 'z  represents the 
number of non-zero entries in 'z , and ' 'z x  represents all 'z  vectors where the non-zero entries 
form a subset of those in 'x . 
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Partial dependence plots (PDP) can effectively reveal the nonlinear relationship between input 
features and the target variable, enabling a deeper understanding of how the model utilizes these 
features to make decisions, defined as: 

   [ , ]
cs s x s cF x E F x x                             (6) 

   
1

1 ,
n

s s s c
i

F x F x x
n 

                              (7) 

Where sx   is the built environment variable to be analyzed, cx   is the other built environment 
variable except sx ,  s sF x  represents the forecasted value of the ride-hailing travel demand when 
taking the mean value and taking different values. The partial dependence function defined in 
equations (6) and (7) is derived from the average level of other built environment variables cx  to 
analyze the influence of the built environment variable sx  on the ride-hailing travel demand. 

5. Results and Discussion 
5.1. Relative Importance Analysis 

Table 3 illustrates the relative significance of built environment variables in influencing ride-
hailing travel demand. A higher importance value indicates a greater impact of the built environment 
variable on ride-hailing travel demand. The sum of importance values for all variables totals 100%. 
Due to significant differences in the quantity of built environment features across different 
dimensions, average relative importance is employed to assess the significance of the five dimensions 
of the built environment. Among these dimensions, density has the highest average relative 
importance (7.89%), with destination accessibility (3.05%) following closely behind. Meanwhile, the 
average relative importance of design, diversity, and distance to transit are 1.86%, 1.48%, and 1.53%, 
respectively. In the ranking of built environment variables, the top five in relative importance are all 
POI facilities, namely dining facilities, financial facilities, medical facilities, companies, and shopping 
facilities. This indicates that POI facilities significantly impact ride-hailing travel demand, consistent 
with previous research [3], where restaurants contribute the most to ride-hailing travel demand at 
30.75%. 

Table 3. The relative importance of independent variables. 

Variables Relative importance Ranking 
Density (Average of relative importance: 7.89%)   

Population density 1.36% 15 
Dining facility 30.75% 1 

Company 5.94% 4 
Shopping facility 4.86% 5 
Financial facility 26.42% 2 

Accommodation service 3.19% 7 
Science & Education & Culture 1.34% 16 

Scenic spot 0.59% 18 
Commercial residence 3.56% 6 

Leisure service 2.55% 9 
Medical facility 6.28% 3 

Design (Average of relative importance: 1.86%)   
Road length 2.07% 10 

Non-motorized road length 1.88% 11 
Number of Road nodes 1.63% 13 

Diversity (Average of relative importance: 
1.48%) 

  

Land use mix 1.48% 14 
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Destination accessibility (Sum of relative 
importance: 3.05%) 

  

Distance to CBD 3.05% 8 
Distance to transit (Average of relative 

importance: 1.53%) 
  

Distance to bus stop 1.23% 17 
Distance to subway station 1.82% 12 

5.2. SHAP Summary Plot of Independent Variables 
The SHAP summary plot reveals the order of various built environment features and how they 

positively or negatively influence the target variable. In the plot, each colored point corresponds to a 
sample, with the color indicating the magnitude of the built environment feature values. Higher 
feature values are depicted in red, while lower feature values are depicted in blue. The x-axis 
illustrates the SHAP values corresponding to each built environment feature. 

As shown in Figure 2, based on the SHAP feature ranking, it is found that the top 4 ranked built 
environment features are similar to the relative importance ranking, all of which are points of POI 
facilities, namely dining facilities, financial facilities, companies, and medical facilities. Among them, 
dining facilities are considered the most important, with the highest contribution to relative 
importance ranking as well. However, the road length is ranked 5th in the SHAP feature ranking, 
which differs from the relative importance ranking. 

Samples with fewer dining facilities tend to have negative SHAP values, while samples with 
larger dining facilities tend to have positive values, indicating a positive correlation between dining 
facilities and SHAP values. This is because areas with higher-density dining facilities often coincide 
with shopping malls or densely populated areas, resulting in higher travel demand. Similarly, POI 
facilities such as finance, company, medical, shopping, accommodation, and leisure also exhibit 
similar feature effects, while tourist aĴraction POI show negative effects. The distance to CBD and 
subway accessibility are negatively correlated with SHAP values, indicating that closer proximity to 
the CBD results in higher travel demand. Similarly, other built environment variables that exhibit 
significant negative correlations with SHAP values include the distance to subway station. Road 
length and the number of road nodes show positive correlations with SHAP values. Conversely, the 
non-motorized road length shows a negative correlation. This is because road nodes enhance the 
connectivity of urban roads, and a more complete and smooth road network structure aĴracts more 
ride-hailing travel demand [19]. Conversely, a focus on non-motorized transportation development 
will reduce motorized travel and suppress the demand for ride-hailing travel demand. 

 
Figure 2. SHAP summary plot of independent variables. 

5.3. Marginal Effects Analysis 
The above results help determine the importance and positive/negative feedback of each built 

environment variable in influencing ride-hailing travel demand. To further clarify the nonlinear 
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relationship between individual built environment variables and the demand for ride-hailing travel, 
partial dependence plots can be utilized to visualize the marginal impacts of built environment 
features on model predictions [38]. This allows capturing the effective scope of influence and 
threshold impacts on ride-hailing travel demand. 

Figure 3 illustrates the non-linear relationship between density variables and ride-hailing travel 
demand. Dining, finance, company, medical, shopping, accommodation, and leisure POI facilities 
positively influence ride-hailing travel demand. As the density of POI facilities rises, so does the 
demand for ride-hailing. However, the range of influence and thresholds vary among different types 
of POI facilities. For example, the influence of dining facility density on ride-hailing travel demand 
gradually increases between 0 and 700, and stabilizes after exceeding 700. Similarly, for financial 
facilities, the impact stabilizes after surpassing 100.  

Scenic spots have a negative impact on ride-hailing travel demand, as illustrated in Figure 3(i). 
A noticeable decrease in demand occurs within the range of 0 to 20. This could be aĴributed to the 
fact that scenic spots are typically located near public transportation hubs, making it convenient for 
tourists to travel without relying on ride-hailing services. Additionally, these scenic spots may often 
be situated in suburban areas, where the cost of utilizing ride-hailing services is relatively higher. The 
influence of commercial residence areas and Science & Education & Culture areas on ride-hailing 
travel demand exhibits a trend of rising and then declining, as shown in Figure 3(f) and 3(h). This 
indicates that there are certain advantageous intervals for influencing ride-hailing travel demand. 
Commercial residence areas are most aĴractive to ride-hailing travel demand within the range of 20 
to 90, while Science & Education & Culture areas exhibit peak influence between 50 and 150. 

As shown in Figure 3 (k), population density generally impacts ride-hailing travel demand 
positively. Within the range of 0 to 20,000 person/km2, there is significant fluctuation in ride-hailing 
travel demand. The lowest demand for ride-hailing occurs when the population density is 5000 
person/km2. This suggests that areas with either sparse or excessively dense populations exhibit 
higher ride-hailing travel demand. This could be aĴributed to several factors: in regions with low 
population density, public transportation accessibility may be poor while road connectivity is high, 
making ride-hailing a preferred mode of transportation due to the lack of viable alternatives. 
Additionally, in densely populated areas, where the separation between residential and commercial 
areas is pronounced, ride-hailing becomes more favorable. 

 

   
(a) Dining facility (number / 

km2) 
(b) Financial facility 
(number / km2) 

(c) Company (number / 
km2) 

   
(d) Medical facility (number 

/ km2) 
(e) Shopping facility 
(number / km2) 

(f) Commercial residence 
(number / km2) 

   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 11 April 2024                   doi:10.20944/preprints202404.0763.v1

https://doi.org/10.20944/preprints202404.0763.v1


 11 

 

(j) Accommodation service 
(number / km2) 

(h) Science & Education & 
Culture (number / km2) 

(i) Scenic spot (number / 
km2) 

  

 

(j) Leisure service (number / 
km2) 

(k) Population density 
(person / km2) 

 

Figure 3. Nonlinear effect of density variables on ride-hailing travel demand. 

Figure 4(a) illustrates a noticeable positive impact of road length on ride-hailing travel demand 
within the grid, particularly within the range of 0 to 4. As road length increases, there is a clear rise 
in ride-hailing travel demand, which stabilizes once the road length surpasses this range. In Figure 
4(b), when the length of slow roads within the grid reaches 1 km, there is a sharp decrease of 
approximately 500 ride-hailing travel trips. Figure 4(c) illustrates that the influence of the number of 
road nodes on ride-hailing travel demand is most significant within the range of 0 to 3. As the number 
of road nodes increases from 3 to around 40, there is a gradual increase in demand. However, this 
impact stabilizes once the number of road nodes exceeds approximately 40 per grid. 

   

(a) Road length (km) 
(b) Non-motorized road 

length (km) 
(c) Number of road 
nodes (count) 

Figure 4. Nonlinear effect of design variables on ride-hailing travel demand. 

As illustrated in Figure 5, the demand for ride-hailing remains constant when the land use mix 
is between 0 and 0.4. However, the demand for ride-hailing reaches its peak when the land use mix 
approaches around 0.6. This finding aligns with previous research [23,27,28], which suggests that 
higher land use mix aĴracts ride-hailing services to provide transportation options. Conversely, 
between 0.6 and 0.8 in the land use mix, there is a notable decrease in demand for ride-hailing. This 
indicates that when the land use mix aĴains a particular level of completeness in terms of POI 
facilities within the regional grid, it is more conducive to walking trips [5,18]. 

 
Figure 5. Nonlinear effect of diversity variables on ride-hailing travel demand. 
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As shown in Figure 6, the demand for ride-hailing increases as the distance to the CBD decreases, 
which corresponds with the paĴern of higher demand closer to the CBD. Ride-hailing drivers often 
prefer to operate in the city center to meet the higher demand. When the distance from CBD is 
between 0 and 20 km, there is a noticeable decrease in ride-hailing travel demand, particularly within 
the range of 0 to 1 km, where the negative impact on ride-hailing travel demand is most significant. 
Ride-hailing travel demand sharply decreases from nearly 900 to 600. Beyond a distance of 20 km 
from CBD, the impact tends to stabilize. 

 
Figure 6. Nonlinear effect of destination accessibility on ride-hailing travel demand. 

As shown in Figure 7(a), When the distance to the bus station falls within the range of 
approximately 0 to 0.5 km, there is a significant decline in ride-hailing travel demand. Beyond a 
distance of 3 km, the impact of ride-hailing tends to stabilize. Similarly, as illustrated in Figure 7(b), 
the distance to the metro station shows a continuous reduction in ride-hailing travel demand within 
the range of 0 to 0.35 km, reaching its lowest point at 0.35 km. This phenomenon may be aĴributed 
to the integration of ride-hailing with public transportation, aiming to address the "last-mile" problem 
of commuting [27,28]. We also observed that bus stations have a larger radius of influence. Conversely, 
the ride-hailing travel demand increases slightly after reaching a distance of 0.4 km from metro 
stations, and then stabilizes. This may be because ride-hailing services complement the "first-mile" 
commute to connect with metro stations, contributing to this phenomenon. 

  

(a) Distance to bus station (km) (b) Distance to subway station (km) 
Figure 7. Nonlinear effect of distance to transit on ride-hailing travel demand. 

6. Conclusions 
This study utilizes ride-hailing data from Nanjing and integrates multi-source data including 

population, urban road network, POI and public transportation stations to characterize built 
environment indicators from the perspective of the "5Ds.". By applying the XGBoost model, the study 
explores the impact of built environment factors on ride-hailing travel demand. Through the 
combined analysis of SHAP and PDP, the study elucidates the contribution, nonlinearity, and 
threshold impacts of built environment features on predicting ride-hailing travel demand. The 
research findings provide valuable insights for urban development, transportation planning, and 
ride-hailing resource allocation. 

Firstly, the article estimated the average relative importance of the "5Ds" and assessed the 
relative importance and ranking of various built environment features on ride-hailing travel demand. 
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The results indicate that the density dimension has the highest average relative importance at 7.89%, 
and the contribution rate of dining facilities to predicting ride-hailing travel demand is highest at 
30.75%. Secondly, through the SHAP summary plot analysis, the article examined how built 
environment features positively or negatively affect the target variable. Based on the SHAP feature 
ranking, it was found that the top 4 built environment features are dining, finance, company, and 
medical facilities, all of which are POI facilities. TNCs should prioritize the supply and allocation of 
ride-hailing vehicles around these built environment features. Finally, through the PDP plot 
visualization, the article illustrated the nonlinearity and threshold effects between built environment 
features and ride-hailing travel demand. The results indicate that built environment features need to 
reach a certain threshold or be within a certain range to exert the maximum impact on ride-hailing 
travel demand., with different thresholds and ranges for different built environment features. 
Analyzing the marginal impacts of population density, land use mix, and distance to subway stations 
revealed their comprehensive impact on ride-hailing travel demand. Understanding the nonlinearity 
and threshold effects between built environment variables and ride-hailing travel demand can help 
TNCs allocate ride-hailing resources reasonably and prevent overuse. 

The article has certain limitations, and future research could explore these aspects:(1) The study 
focused on ride-hailing travel demand over a typical workweek without analyzing specific periods. 
However, ride-hailing travel demand typically exhibits peak and off-peak periods during the day, 
and demand characteristics may vary from weekdays to weekends [33]. Clarifying the nonlinear 
impacts of factors influencing ride-hailing travel demand during different periods is important. 
Future research could investigate how factors such as built environment features influence ride-
hailing travel demand during peak and off-peak hours, both on weekdays and weekends. (2) Both 
built environment features and ride-hailing travel demand possess spatial aĴributes. Future research 
could analyze spatial effects in machine learning models. It could investigate whether interpretable 
machine learning models incorporating spatial effects outperform traditional geographically 
weighted models or exhibit similar or improved performance. This comparative examination would 
shed light on the effectiveness of different modeling approaches in capturing the spatial dynamics of 
ride-hailing travel demand affected by built environment features. 
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