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Abstract: Few-shot object detection (FSOD) aims to address the challenge of requiring a substantial 
amount of annotations for training in conventional object detection, which is very labor-intensive. 
However, existing few-shot methods achieve high precision with the sacrifice of time-consuming 
for exhaustive fine-tuning, or take poor performance in novel-class adaptation. We presume the 
major reason is that the valuable correlation feature among different categories is insufficiently 
exploited, hindering the generalization of knowledge from base to novel categories for object 
detection. In this paper, we propose Few-Shot object detection via Correlation-RPN and 
Transformer Encoder-Decoder (CRTED), a novel training network to learn object-relevant features 
of inter-class correlation and intra-class compactness while suppressing object-agnostic features in 
the background with limited annotated samples. And we also introduce a 4-way tuple-contrast 
training strategy to positively activate the training progress of our object detector. Experiments over 
two few-shot benchmarks (Pascal VOC, MS-COCO) demonstrate that, our proposed CRTED 
without further fine-tuning can achieve comparable performance with current state-of-the-art fine-
tuned works. The codes and pre-trained models will be released.  

Keywords: few-shot object detection; region proposal network; transformer encoder-decoder; 
training strategies 

 

1. Introduction 

In recent years, [1–5] has seen remarkable advancements through the application of deep neural 
models and large-scale training. Nevertheless, conventional object detection techniques typically 
depend extensively on vast amounts of quantity and quality annotated data and necessitate extended 
training duration, which has sparked the recent pursuit of few-shot object detection (FSOD). The 
challenge in few-shot learning lies in the significant diversity of real-world objects and despite 
noteworthy advancements, existing methods [6–10] primarily focus on image classification, seldom 
delving into the complexities of few-shot object detection. This might be due to the non-trivial nature 
of transferring knowledge from few-shot classification to few-shot object detection.  

The core difficulty in object detection with limited examples lies in pinpointing unseen objects 
against a cluttered background. This is essentially a general problem of locating objects from a few 
annotated examples in new categories. Potential bounding boxes often overlook unseen objects or 
generate numerous false detections in the background. We argue that it is due to the sub-optimal 
scoring of promising bounding boxes by a region proposal network (RPN), making it challenging to 
detect novel objects. This distinction underscores the inherent difference between few-shot 
classification and object detection. Additionally, recent efforts in few-shot object detection [11–13] 
necessitate fine-tuning, preventing their direct application to novel categories. 

In this paper, we attempt to address the problem mentioned above in few-shot object detection. 
First, we propose a novel network structure named Correlation-RPN based on general RPN to 
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activate model pay more attention to object-relevant regions and help learn the matching correlation 
between query and support image feature, for generalizing the knowledge learned from base classes 
to novel classes. Secondly, we integrally migrate the transformer encoder-decoder into our 
framework. With the new feature coding mechanism, we utilize decoder to get correlational metric 
of feature representation after feature extraction in the backbone of our network. Thus, we introduce 
a 4-way tuple-contrast training strategy to positively activate the training progress of our object 
detector. 

The main contributions of this work include: 
 We propose a novel correlation-aware region proposal network structure called     

Correlation-RPN, and migrate it to object detectors, improving detectors’ capacity of object 
localization and generalization; 

 We redesign a new feature coding mechanism and integrally migrate the encoder-decoder of 
transformer into our model to effectively learn support-query feature similarity representation; 

 With our presented 4-way tuple-contrast training strategy, CRTED without further fine-tuning 
can achieve comparable performance with most of the representative methods in few-shot object 
detection. 

2. Related Work 

2.1. General Object Detection 

Object detection remains a key topic in computer vision, particularly with the rise of deep 
learning. CNN-based methods, always pre-trained on vast datasets, have gained popularity. These 
methods split into two categories: proposal-based and proposal-free detectors. The RCNN series [14–
16] falls into the former, relying on pre-trained CNNs to classify region proposals from selective 
search. SPP-Net [17] and Fast-RCNN [15] evolved from RCNN, extracting regional features via an 
RoI pooling layer from convolutional maps. Faster-RCNN [16] introduced a region proposal network 
(RPN) to enhance proposal quality. In contrast, YOLO [3,18–20] pioneered the proposal-free 
approach, using a single CNN for classification and bounding box prediction. Later works refined 
YOLO with default anchors for shape adjustment or multi-scale training. Proposal-free methods are 
simpler and faster but still rely heavily on annotated samples, limiting their performance in few-shot 
scenarios. 

2.2. Few-Shot Object Detection 

The challenging few-shot object detection (FSOD) problem aims to detect objects or novel classes 
at instance-level with limited annotations. Prior works on few-shot object detection can be mainly 
categorized into three paradigms: meta-learning, transfer-learning and metric-learning approaches. 
Meta-learning methods aim at devising a periodic and stage-wise meta-training paradigm to train a 
class-agnostic meta-model to help knowledge transfer from base classes to novel classes with few 
annotated labels, known as “Learning to learn”. The Meta-RPN [21] and Meta faster-cnn [13] are 
proposed to generate class-relevant proposals with improving the instance alignment. Transfer-
learning based methods, also known as the finetuning based methods, emphasize performing fine-
tuning for few-shot object detection, which trained base classes and novel classes together, and fine-
tuning the whole model, where the model is only trained on the base classes and then fine-tuned on 
a balanced set including both base classes and novel classes. MPSR [22] adopt manually defined 
positive sample refinement branch to mitigate the object scale scarcity issue for few-shot object 
detection. Specially, TFA [23] pre-trains a base detector from abundant samples on a base set and 
fine-tuning it for novel classes. Metric-learning approaches focus on learning good embedding spaces 
or appropriate metrics that facilitate downstream tasks, including cosine similarity [24], euclidean 
distance to class center, graph distances and so on. RepMet [25] achieves current SOTA results on 
few-shot object detection by simultaneously learning the parameters of backbone network, the 
embedding space, and the multimodal distribution of each training category within it in an end-to-
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end training manner. [21] exploits the similarity metric between the support set and query set in few-
shot setup to detect novel objects and suppress false detection in the background. 

2.3. Transformer Encoder-Decoder 

The Transformer architecture, initially designed for machine translation, has been widely 
applied to various computer vision tasks. One notable example is DETRs, a representative class of 
object detectors that leverage the strengths of Transformers. These models employ a transformer 
encoder-decoder structure to understand and learn the relationships between the global image 
context and objects, using CNN features as input, and producing final predictions. As a variant of 
DETR, ViDT [26] introduced a pre-trained transformer to replace the CNN backbone, while 
maintaining a randomly initialized transformer neck. More recently, ViTDet [27] and MIMDet [28] 
have attempted to capitalize on the powerful network architecture pre-trained by MAE for object 
detection tasks. However, ViTDet only utilizes the pre-trained MAE encoder and discards the pre-
trained decoder. In contrast, MIMDet retains the entire encoder-decoder for feature extraction, 
focusing on leveraging the reconstruction capabilities of the MAE decoder to mask input image 
patches, reducing additional inference costs. Unlike these approaches, imTED [29] employs a fully 
pre-trained transformer encoder-decoder that not only extracts features but also performs 
representation transformation, which offers a comprehensive utilization of the transformer's 
capabilities, enhancing the performance of object detection tasks. 

3. Approach 

In this section, we will walk through the whole architecture designs in our proposed CRTED 
step by step. The structure of CRTED is exhibited in Figure 1. First, before introducing CRTED, we 
consider few-shot object detection task it aims to achieve. We start with the preliminaries on the few-
shot object detection setup that motivate our method. Then, we present our network architecture in 
detail for few-shot object detection. Finally, we describe the learning procedure of a CRTED. 

Query Image

Support Images
Feature 

Extractor
Background 
Suppression

Correlation 
RPN

Feature
 Code

Encoder Decoder

Detection Result

 
Figure 1. The whole framework of our proposed CRTED. Query/support feature from the weight-
shared feature extractor will be conducted BS regularization and encoding, and then fed into 
Correlation-RPN for further extracted. Finally, the few-shot detection result is obtained by mapped 
to the query image with the decoder. 

3.1. Preliminaries 

Problem Definition In this work, we focus on processing the task of few-shot object detection 
(FSOD). Given two sets of classes, a base set Cbase and a novel set Cnovel, where Cbase ∩ Cnovel = ∅. Defining 
two datasets, a base dataset Dbase with sufficient annotated objects of Cbase and a novel dataset Dnovel 
with few annotated objects of Cnovel. A few-shot object detector aims at classifying and localizing 
objects of Cbase ∪ Cnovel by learning from Dbase ∪ Dnovel. In a task of Nn-way K-shot object detection with 
Nn = |Cnovel|, there are exactly K annotated instances for each novel class in Dnovel. The goal of this work 
is to train a model that can detect novel classes in Cnovel by only providing K-shot labeled samples for 
Cnovel and abundant images from Cbase. Basically, images from Cbase are split into support image set Sb 
containing support images 𝑠௖ with a close-up of the target object, and query image set Qb containing 
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query images 𝑞௖ which potentially contains objects belonging to the support class. Given all support 
images Sb, our model learns to detect objects in Qb. For convenience, we denote Cbase, Cnovel, Dbase and 
Dnovel as Cb, Cn, Db and Dn in the following sections.  

Rethink Region-Based Object Detectors The majority of current few-shot object detection 
methods rely heavily on the Faster R-CNN framework [16], which leverages a region proposal 
network (RPN) to generate potentially relevant bounding boxes to facilitate subsequent detection 
tasks. The RPN plays a pivotal role, as it must not only distinguish between objects and the 
background but also filter out negative objects belonging to non-matching support categories. 
However, under the few-shot detection setting, where support image information is extremely 
limited, the RPN often struggles. It tends to indiscriminately focus on every potential object with a 
high objectness score, regardless of whether they belong to the support category or not. This behavior 
can hamper the generalization of knowledge from base classes to novel classes, and it also places a 
significant burden on the subsequent classification task of the detector, as it has to deal with a large 
number of irrelevant objects. Previous studies [1,3,4,16,21,30] have attempted to address this 
challenge by generating more accurate region proposals. Nevertheless, the issue persists, stemming 
from the inherent limitations of region-based object detection frameworks within the few-shot 
learning context. To truly address this challenge, it is essential to develop novel strategies that can 
effectively leverage the limited support image information, enhancing the discriminative capabilities 
of the RPN and ensuring that it focuses only on relevant objects, thus improving the overall 
performance of few-shot object detection systems.  

Rethink Transformer-Based Detection Frameworks Transformer [31] emerged as a 
revolutionary self-attention-based building block specifically tailored for machine translation tasks. 
This architecture revolutionizes the way sequences are processed, updating each element by scanning 
through the entire sequence and subsequently aggregating information from it. Seeking to harness 
the immense potential of the Transformer, DETRs [1] introduced an innovative approach by 
integrating a transformer encoder-decoder architecture into an object detector. This integration 
enabled the system to tackle the intricate challenge of attending to multiple support classes within a 
single forward pass. Nevertheless, a notable issue persists: the vision transformers employed in 
DETRs were randomly initialized, limiting their capabilities to solely processing feature 
representations extracted by the backbone network. This constraint underscores the need for further 
advancements to fully unlock the potential of vision transformers in object detection tasks.  

3.2. Architecture 

Correlation-Aware Region Proposal Network In generic object detection, RPN is useful to 
provide region proposals and generate object-relevant anchors while suffer from performance drop 
when in few-shot object detection, since the low-quality region proposals for novel classes and the 
fatigue to capture inter-class correlation among different classes. Take inspiration of success of RPN-
based FSOD framework [21], we propose a novel network structure based on general RPN which 
learns the matching correlation between the support set Sb and queries Qb. Figure 2 shows the overall 
architecture of our proposed Correlation-RPN. The Correlation-RPN can make use of the support 
information to sensitively aware the similarities and difference between Sb and Qb, which is able to 
provide high-quality region proposals with objects of target or novel classes, while relatively 
depressing proposals in background or in other categories.  
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Figure 2. The overall view of Correlation-RPN design. Sb: support set; Qb: queries; X: support feature 
map; Y: query feature map. Fs and Fq denote support-query feature extractor. F denotes the similarity 
of support-query feature map, which includes a 1 × 1 × C and a 3 × 3 × C vector. Then the correlation 
map computed is to be fed into RPN for generating proposals. 

Specifically, we compute the correlational metric between the feature map of Sb and Qb in a 
depth-wise manner. The similarity map then is utilized to build the region proposal generation. In 
particular, we denote the support features of Sb as 𝑋 ∈ 𝑅ு×ௐ×஼ and feature map of the query 𝑞௖ as 𝑌 ∈ 𝑅ு×ௐ×஼, the similarity is defined as: 𝑭௛,௪,௖ =  ෍ 𝛼𝑋௜,௝,௖௜,௝ ∙ 𝛽𝑌௛ା௜ିଵ,௪ା௝ିଵ,௖, 𝑖, 𝑗 ∈  ሼ1, … , 𝐾ሽ                                 (1) 

where F is the resultant correlation feature map and α, β are control coefficients to prevent overly 
favoring features of either side. Here the X is used as the kernel to slide on the query feature map 
[32,33] in a depth-wise cross correlation way [34]. Our work adopts the top architecture of the 
Attention RPN [21]. We empirically find that a kernel size of K = 1 performs well in our case, since 
we argue that global feature can provide a great object prior for objectness classification, consistent 
with [16]. In our case, the kernel is calculated by averaging on the support feature map X. The 
correlation map is processed simultaneously by a 1 × 1 convolution and a 3 × 3 convolution followed 
by the objectiveness branch and regression branch. The Correlation-RPN is trained jointly with the 
network and elaborated as in the section 4.3. 

Feature Metric Matching Based on the idea of [1,29], we integrally migrate the transformer 
encoder-decoder as the pillars of correlational metric aggregation module into our object detector. 
The feature metric matching is accomplished in transformer encoder by multi-head attention 
mechanism. Specifically, given the support features of Sb, denoted as 𝐹௦ ∈ 𝑅ு×ௗ, and the query image 𝑞௖, of which feature map is denoted as 𝐹௤ ∈ 𝑅ு×ௐ×ௗ, the matching coefficients M can be obtained by:  𝑴(𝐻𝑊, 𝑑, 𝑐) =  𝑀𝑎𝑡𝑐ℎ ൫𝐹௦, 𝐹௤൯ 

= 𝑆𝑜𝑓𝑡𝑚𝑎𝑥 ൭ (𝐹௦(𝑑, 𝑐) ∙ 𝑆)൫𝐹௤(𝐻𝑊, 𝑑) ∙ 𝑆൯்√𝑑 ൱ , 𝑐 ∈  ሼ1, … , 𝐶ሽ                        (2) 

where HW is the feature spatial size, d is the feature dimensionality, C is the number of support 
categories, and S is a cosine similarity shared by 𝐹௦ and 𝐹௤, to ensure they are embedded into the 
same linear feature projection space. To calculate cosine similarity as the correlational metric of each 
pair of feature representation of 𝐹௦ and 𝐹௤, which is calculated via: 

𝑐𝑜𝑠 ൫𝑓௦, 𝑓௤൯ =  1𝐶  ෍ ቆ 𝑓௦ ∙ 𝑓௤|𝑓௦| ∙ |𝑓௤|ቇ஼
௜ , 𝑖 ∈  ሼ1, … , 𝐶ሽ                                  (3) 

where 𝑓௦  and 𝑓௤  denote the single feature representation of 𝐹௦  and 𝐹௤ . Finally, for each 𝑞௖  that 
may contain multiple complex instances, we ensure a fact that the choice of the m potential support 
cases for each of these instances is same. Therefore, the average correlation score of the m same 
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potential support objects can be considered as the similarity or shared feature representation between 𝑞௖ and the m potential Sb, with which we prefer the 𝑠௖ containing the most similar support instance 
as the powerful support patch of 𝑠௖  in training. And this process has been experimentally 
demonstrated to be helpful for our training. The effectiveness of support-query feature similarity 
metric mining, i.e., distinguishing support objects similar to the query, is discussed in Section 4.3. 

Encoding Matching In order to achieve class-agnostic object prediction, we propose the 
utilization of a carefully crafted set of predefined task encodings, which serve as a bridge between 
the given support classes and the abstract task encodings space. By mapping the support classes to 
these encodings, we ensure that the final object predictions are constrained within the task encodings 
space, rather than being limited to predicting specific classes on the surface level. Drawing inspiration 
from the positional encodings employed in the Transformer architecture, we implement task 
encodings 𝑻 ∈ 𝑅ு×ௗ utilizing sinusoidal functions. This allows us to capture both local and global 
patterns within the task encodings space, enhancing the representational power of our approach. 

Furthermore, encoding matching and feature metric matching share the same matching 
coefficients. This ensures consistency across different matching processes and simplifies the overall 
pipeline. The matched encodings QE are simply obtained through a straightforward process, further 
streamlining the prediction framework: 

QE = 𝑴 ⨂ 𝑻,                                                                       (4) 

where ⨂ denote sinusoidal functional multiplication. In essence, our approach offers a more flexible 
and generalizable framework for object prediction, enabling us to transcend the limitations of 
traditional class-specific prediction methods and move towards a more abstract and powerful 
representation of objects. 

Modeling Background for Object Prediction Generally, under a few-shot object detection 
setup, background does not belong to any target classes and usually takes up a lot of space in a 
support or query image. Those images that objects only account for a small proportion and most of 
the area is complex background, which we also called hard samples, as shown in Figure 3. Taking 
the consideration of this reason, we propose a learnable prototype BG-P and a corresponding task 
encoding BG-E (fixed to zeros), for explicitly modeling the background class. This can significantly 
eliminate the matching ambiguity when query is very hard to match any of the given support classes. 
And we additionally introduce a background-suppression (BS) regularization as an auxiliary branch 
to help addressing this problem, which will be described in detail in the next section. The final output 
of the feature metric matching module can be obtained via the following equation: 

QF = τ(𝑴 ∙ 𝜎(𝐹௦), 𝐵𝑆(𝐹௤)),                                                        (5) 

where τ(∙) denotes Hadamard product, 𝐵𝑆(∙) denotes background-suppression operation and 𝜎(∙) denotes sigmoid function. By applying the matching coefficients M, we filter out features not 
matched to Sb, producing a feature map QF that inhibits the negative impact of hard samples and 
highlights class-related objects from query set Qb for each individual support class.  
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Figure 3. There are some hard samples selected from Pascal VOC test set and the 1-shot detection 
results of our method. 

3.3. Training Procedure 

Two-Stage Training strategy Our training procedure consists of two stages: the base-class 
training stage on samples from Cb (Ctrain = Cb), followed by K-shot few-shot fine-tuning stage on a 
balanced set of samples from both Cb and Cn (Ctrain = Cb ∪ Cn). More precisely, in the second stage where 
only K labeled samples are individually available for each class in Cn, K samples are randomly 
selected for each class in Cb to balance the training iterations between Cb and Cn.  

Generally, a naive training strategy is matching the objects of same class by constructing a 
training pair 𝑝௖෥ (𝑞௖, 𝑠௖) where the 𝑞௖ and 𝑠௖ are both in the same c-th class. However, a powerful 
model should not only can perform query-support feature similarity mining but also allow capturing 
the inter-class correlation among different categories. For this reason, according to the different 
matching results in Figure 4, we present a novel 4-way tuple-contrast training strategy to match the 
same category while distinguishing different categories. We randomly choose a query image 𝑞௖, a 
support image 𝑠௖  and a hard sample 𝑠௛  containing the same c-th category object and one other 
support image 𝑠௡  containing a different n-th category object, to construct the training pair 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡), where c ≠ n. In the training pair 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡), only the objects of c-th category in 
the 𝑞௖ are needed and annotated as foreground, while all other objects are neglected and treated as 
background.  

During training, our model learns to match every proposal generated by the Correlation-RPN 
in the 𝑞௖ with the object of 𝑠௖. Thus, the model needs to not only match the same category objects 
from 𝑝௖෥ (𝑞௖, 𝑠௖) and 𝑝௛෦(𝑠௖, 𝑠௛), but also distinguish objects in different categories from 𝑝௡෦(𝑞௖, 𝑠௡). 
Nevertheless, there are a massive amount of background proposals, especially with 𝑠௛, which usually 
dominate the training. Taking the consideration of this reason, we adjust these training pairs 𝑝෤ to 
balance the ratio of proposals between queries and supports. The ratio of 𝑝෤  is kept as 2:1:1 for 𝑝௖෥ (𝑞௖, 𝑠௖), 𝑝௛෦(𝑠௖, 𝑠௛) and 𝑝௡෦(𝑞௖, 𝑠௡). According to their matching scores, we pick all N 𝑝௖෥ (𝑞௖, 𝑠௖) and 
select top 2N 𝑝௛෦(𝑠௖, 𝑠௛) and top N 𝑝௡෦(𝑞௖, 𝑠௡) respectively and calculate the matching loss on the 
selected training pairs.  
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Figure 4. The 4-way tuple-contrast training triplet and different training pairs. 𝑠௖: positive support 
image; 𝑠௛: hard sample; 𝑠௡: support image of novel class. The 𝑠௖ and 𝑠௡ both have the same class 
with the ground truth in the 𝑞௖ . The training pair 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡) consists of the query-support 
training pair 𝑝௖෦(𝑞௖, 𝑠௖), the support-hard training pair 𝑝௛෦(𝑠௖, 𝑠௛) and the query-novel training pair 𝑝௡෦(𝑞௖, 𝑠௡). 

Detection Loss Function During the training process, we use the multi-task loss on each 
sampled proposal. It is worth mentioning that we choose the different loss function during 
optimizing the network in two stages. In the first stage, for each bounding box 𝐵, we predict a 2D 
classification vector 𝑝 ∈  [0, 1]  to represent the probability for target object and background 
respectively. Inspired by [35–37], concretely, for a mini-batch of N RoI box features ൛𝑟௫,௬௜ , 𝑢௫,௬௜ , 𝑡௫,௬௜ ൟ௜ே, 
our first stage loss 𝑳௙௜௥௦௧ is defined as follows with considerations tailored for detection:   𝑳௙௜௥௦௧ = 1𝑁 ෍ 𝑓൫𝑢௫,௬௜ , 𝑝௜൯ ∙ 𝑳௥ೣ ,೤೔ே

௜                                                   (6) 
𝑳௥ೣ ,೤೔ = 1𝑁௧೔ − 1 ෍ Sሬ⃗  ൛𝑡௜ = 𝑡௝ൟ ∙ log exp (𝑟ప෥ ∙ 𝑟ఫ෥/𝜗)∑ Sሬ⃗  ሼ𝑘 ≠ 𝑖ሽ ∙ exp (𝑟ప෥ ∙ 𝑟௞෥ /𝜗)ே௞ୀଵ

ே
௝ୀଵ,௝ஷ௜ ,            (7) 

where x, y denotes locations and 𝜗 is the hyper-parameter temperature as in [36]. The 𝑟௫,௬௜  refers to 
encoded RoI feature of detector head for i-th region proposal generated by Correlation-RPN, 𝑢௫,௬௜  
denotes the IOU score of 𝑟௫,௬௜  with matched ground truth bounding box 𝐵∗, and 𝑡௫,௬௜  denotes the 
truth annotation. 

The second stage output also includes the vector 𝑝 ∈  [0, 1]  for distinguishing between 
background and target object classes. Different from the first stage, following the parameterization 
in [14], we present a new regression vector 𝑡 = ൫𝑡௫, 𝑡௬, 𝑡௪, 𝑡௛൯, to specify a scale-invariant translation 
and height/width shift of log-space relative to a region proposal. In the second stage, we adopt binary 
cross entropy (BCE) loss for classification and smooth L1 loss for regression. In combination: 

  𝑳௦௘௖௢௡ௗ = 𝜆௖௟௦𝑁  ෍ 𝑩𝑪𝑬(𝑐௜∗, 𝑝௜)ே
௜ + 1𝑁 ෍ Sሬ⃗  ሼ𝑐௜∗ == 1ሽே

௜ ∙  𝑳௦௠௢௢௧௛൫𝑡௜ − 𝑢௫,௬௜ ൯,           (8) 
where 𝑐∗  refers to class label for target object and 𝜆௖௟௦  denotes a balancing factor, which we 
empirically set to 2. 

Our total loss function is the combination of the first and second stage loss: 𝑳௧௢௧௔௟ = 𝑳௙௜௥௦௧ + 𝜌 ∙ 𝑳௦௘௖௢௡ௗ,                                                       (9) 
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where 𝜌 = 3 is a balancing factor for second stage loss. 

Background-Suppression (BS) Regularization In our proposed structure of CRTED, feature 
metric matching is developed with the encoder architecture design in transformer by multi-head 
attention mechanism. It is sure that this design can moderate the training stress for objects with 
various sizes, but it may still disturb the detector performance when for localization in the scenario 
of hard samples, especially when in the few-shot condition. For this reason, we propose a novel 
background-suppression (BS) regularization, by utilizing object knowledge in the domain of ground-
truth bounding boxes for each training pair 𝑝௖෥ (𝑞௖, 𝑠௖). Specifically, for the 𝑞௖ in 𝑝௖෥ (𝑞௖, 𝑠௖), we first 
obtain the middle-level 𝐹௤ of target domain generating from Correlation-RPN. Then, we adopt a 
masking method that enables the ground-truth labels of target objects in the image 𝑠௖ to be mapped 
to the convolutional cube. Consequently, we can identify the feature regions corresponding to 
background, namely 𝑹஻ௌ. To minimize the adverse effects of background disturbances, we choose 
L2 regularization to penalize the activation of 𝑹஻ௌ:   𝑳஻ௌ = 𝐵𝑆൫𝐹௤൯ =  ||𝑹஻ௌ ||ଶ                                                      (10) 
With this 𝑳஻ௌ, CRTED can depress regions of indifference while pay more attention to where we 
interest, which is especially important for training in few-shot learning. More details and 
visualization results of the experiment are shown in Sec. 4.3. 

Proposal Consistency Control One of the differences of image classification and object detection 
is that the former extract semantics from the entire image while the classification signals for the latter 
come from region proposals. We adopt a settled IoU threshold 𝑻௜௢௨  to assure the consistency of 
proposals, with the consideration that low IoU proposals may result in excessive deviation to the 
center of regressed objects, therefore might include irrelevant semantic information. In the following 
formula, 𝑓(∙)  is responsible for controlling the consistency of proposals, defined with proposal 
consistency threshold φ:   𝑻௜௢௨ = 𝑓൫𝑢௫,௬௜ ൯ = 1𝑁 ෍ Sሬ⃗  ሼ𝑢௜ ≥ 𝜑ሽே

௜ ∙  𝑟൫𝑢௫,௬௜ ൯,                                   (11) 
where 𝑟(∙) can re-weight for object proposals with different level of IoU scores. We experimentally 
find that φ = 0.75 is a good cutoff point which the detector head can be trained according to most 
centered object recommendations.  

4. Experiments 

We mainly perform extensive experiments in both few-shot object detection (FSOD) benchmark 
datasets PASCAL VOC and MS COCO to assess the effectiveness of our proposed CRTED. 

4.1. Few-Shot Object Detection Benchmarks 

Pascal VOC [38] consists of images with object annotations of 20 categories where the categories 
split for Cb and Cn are 15 and 5 separately. We use train set Db ∪ Dn from Pascal VOC 07+12 trainval 
sets for training, where Dn is randomly sampled from previously unseen novel classes with K-shot in 
{1, 2, 3, 5, 10}. Following the existing works [12,39,40], we consider the same three random partitions 
of base / novel classes and samplings introduced. Each split is referred as: Novel Split set 1: {“bottle”, 
“aeroplane”, “sofa”, “cow”, “horse” / others}; Novel Split set 2: {“bus”, “horse”, “motorbike”, “cow”, 
“sofa” / others}; Novel Split set 3: {“boat”, “cat”, “aeroplane”, “sheep”, “sofa” / others}. For fair 
comparison, in each partition, we use the same sampled novel instances, and report AP50 for the 
detection precision for Cb (bAP50) and Cn (nAP50) on Pascal VOC 07 test set. Results are averaged 
over 10 randomly sampled support datasets. 

MS COCO [41] is a large-scale and more challenging object detection dataset, which consists of 
80 categories where |Cb| = 60, |Cn| = 20 and Cn are common to Pascal VOC. The train set Db ∪ Dn are 
from MS COCO 2017 train set, and we perform evaluations on 5K images from COCO 2017 val 
dataset, which the number of shots is set to 1, 2, 3, 5, 10 and 30. The COCO-style detection precision 
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of Cb ∪ Cn (AP), Cb (bAP) and Cn (nAP) are reported. Results are averaged over 5 randomly sampled 
support datasets. 

4.2. Implementation Details 

We follow the training pipeline of [21], and the basic deep architecture of our CRTED is trained 
end-to-end on 4 V100 GPUs parallel with optimizer Adam and a batch size of 8 for each 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡). During training, we find that more training iterations may result to the model over-
fit to the training set Db ∪ Dn and damage performance. The learning rate is thus experimentally set 
to 0.01 during the first training stage and gradually decayed to 0.0002 for later 500 iterations, which 
can lead to a better converge point. We first perform on MS COCO 2017 training dataset and ensure 
only simple class object appearing in images for each 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡). During few-shot training, for 
one 𝑞௖  belonging to Cb ∪ Cn in 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡) , we provide 40 support images, containing 30 
belonging to Cb and 10 belonging to Cn, termed as 4-way 10-shot contrastive training.     

4.3. Ablation Studies 

Evaluation of Correlation-RPN We take sufficient experiments to assess our Correlation-RPN 
on different training strategies. To evaluate the proposal quality, we first compare the precision and 
recall on top 50 proposals of the regular RPN, attention RPN and our proposed Correlation-RPN at 
0.5 IoU threshold. In addition, we also add the average best overlap ratio (ABO) across ground truth 
bounding box 𝐵∗ as one of our evaluation metrics. As demonstrated in Table 1, our model with 
Correlation-RPN reveals better performance than the other two counterparts under the same training 
pairs and K-shot, producing performance improvement on all the evaluation, which indicate that our 
proposed RPN architecture can generate more object-relevant proposals to benefit the total detection 
prediction.  

Table 1. Ablation studies on proposed Correlation-RPN and other counterparts. 

Method Precision Recall AP ABO 
Regular-RPN Attention-RPN Correlation-RPN 

√   0.7923 0.8804 54.5 0.7127 
 √  0.8345 0.9130 56.9 0.7282 
  √ 0.8509 0.9214 57.1 0.7335 

Specially, the visualization comparison of the attention from superficial layers, between our 
Correlation-RPN and other two counterparts, are also clearly offered in Figure 5. The results confirm 
that our Correlation-RPN owns the better ability to pay attention to target domain and provide more 
high-quality proposals. Especially when dealing with challenging samples, particularly objects that 
are significantly occluded, our method demonstrates an impressive ability to achieve a high level of 
confidence in accurate recognition, which ensures reliable and robust performance even in situations 
where traditional methods might struggle. 
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Support Image

Regular-RPN

Attention-RPN

Correlation-RPN

Support Image

Query Image Attention Results  

Figure 5. Visualization comparison between models with Correlation-RPN and other RPN 
architecture on one-shot object detection on Pascal VOC class novel split 1. Correlation-RPN can focus 
on the most representative region, resulting in more precise proposals and regression box. 

Analysis of Matching Procedure for CRTED Figure 6 obviously shows the feature visualization 
of different object classes learned with and without the matching procedure under the same 
constraint. As demonstrated, with matching procedure introduced to learn inter-class correlation and 
capture intra-class compactness, different classes are better separated from each other, which helps 
to reduce model misclassification and boost generalization ability among similar categories. 
Specially, Table 2 clearly verify the effectiveness of our proposed matching procedure. When we 
adopt our method into the model, regardless of the number of support classes, CRTED can still boost 
detection performance of novel classes under the 1-shot setup, which indicates the capacity of our 
designed matching procedure in support-query feature similarity metric mining and the strong 
power of Transformer Encoder-Decoder. It is worth nothing that when there are multiple support 
classes, MP is able to exploit inter-class similarity of support-query image to obtain improvement of 
few-shot detection performance, especially about 2.8% mAP under 5-shot setting. 
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CRTED w/o MP CRTED w/ MP

 

Figure 6. The t-SNE visualization of object classification in the feature space with and without our 
proposed matching procedure MP on novel split set 2 of Pascal VOC. 

Table 2. Ablation studies to validate the effectiveness of our presented MP. C means the number of 
support classes. 

Method MP C 
Novel mAP (IoU = 0.5) 

1 2 3 5 10 

CRTED 

 1 28.2 43.3 51.6 54.0 60.3 
√ 1 31.3 45.2 53.1 56.8 63.0 
 5 33.7 46.5 52.4 57.1 61.8 
√ 5 37.3 51.1 54.5 58.2 63.3 

Impact of Background-Suppression (BS) Regularization For the purpose of enhancing few-
shot detection, we mainly evaluate whether our proposed BS regularization method can boost 
transfer learning for CRTED. As shown in Figure 7 that our background-suppression (BS) 
regularization can effectively help CRTED to reduce the background disturbances. And it is 
obviously shown in Table 3, our proposed regularization method can significantly improve the 
performance, when the support images 𝑠௖ in training set 𝑝௧෥ (𝑞௖, 𝑠௖, 𝑠௛, 𝑠௡) is scarce in the few-shot 
domain, especially in one-shot. Additionally, it is worth mentioning that we try to pick objects from 
as many categories as possible to verify the effect, which show that BS is generally robust to different 
categories. 

Input Image Without BS With BS Input Image Without BS With BS

 
Figure 7. Feature heatmap of Background-Suppression (BS) regularization. Samples of different 
categories are selected from COCO val set. BS can effectively weaken negative influence from 
background disturbances, and then activate CRTED to pay attention to object-relevant regions. 
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Table 3. Regularized transfer learning for CRTED of AP50 on the Pascal VOC dataset on Cb ∪ Cn. BL: 
baseline. BS: background-suppression (BS) regularization. The mAP results show that, our proposed 
BS regularization method can significantly boost the baseline CRTED, when in few-shot object 
detection. 

Shots for Split 1 1 2 3 5 10 
CRTED BL 68.7 69.4 70.8 73.6 75.5 

CRTED BL+BS 69.8 70.2 72.0 75.4 76.5 
Shots for Split 2 1 2 3 5 10 

CRTED BL 65.5 66.8 69.9 71.3 73.3 
CRTED BL+BS 67.7 68.0 71.3 71.8 73.7 

Shots for Split 3 1 2 3 5 10 
CRTED BL 67.7 68.7 71.4 72.7 74.8 

CRTED BL+BS 68.6 70.4 72.7 73.9 75.1 

Ablation of Training CRTED Refer to Table 4. We train our network with different training 
strategies and obtain 1.3% AP50 improvement at the 𝑝௧෥  10-shot training strategy, comparing with the 𝑝௖෥  10-shot training strategy. It is straightforward that the model performs better at training strategy 
with 𝑝௧෥  than with 𝑝௖෥ , which shows the importance of training pairs 𝑝௡෦ and 𝑝௛෦, included in 𝑝௧෥ . 
With adding 𝑝௡෦(𝑞௖, 𝑠௡), even the object in 𝑞௖ belonging to unseen class, the model can learn inter-
class correlation and intra-class compactness from novel classes to enhance generalization ability. 
And model can improve robustness with 𝑝௛෦(𝑠௖, 𝑠௛), especially 𝑞௖ is a hard sample. It is clear that 
with larger K-shot training, we achieve better performance which also indicates a certain number of 
support images is beneficial to few-shot learning. We think that controlling the number of 𝑠௛ and 𝑠௡ 
to 1 can suffice in training the model for distinguishing different classes. And from Figure 8, our 
proposed training strategy can positively activate the training progress of our detector. Our full 
model thus adopts the 𝑝௧෥  10-shot training strategy. 

 
Figure 8. Comparison of performance gains (left) and object classification loss (right). 

Table 4. Experimental results for different training strategies. 

Training strategy AP AP50 AP75 𝑝௖෥  1-shot 48.5 55.9 41.1 𝑝௧෥  1-shot 48.7 56.2 41.2 𝑝௖෥  5-shot 57.7 68.1 47.3 𝑝௧෥  5-shot 58.1 68.4 47.7 𝑝௖෥  10-shot 58.8 69.2 48.4 𝑝௧෥  10-shot 59.7 70.5 48.8 
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4.4. Comparison with State-of-the-Arts 

Comparisons between our approaches and state-of-the-art few-shot object detectors on Pascal 
VOC and COCO are shown in Table 5 and Table 6. Following the default novel split setting of data 
with different K-shot in previous researches, our proposed CRTED without further fine-tuning can 
set comparable performance with fine-tuned methods or even new SOTA results for few-shot object 
detection. Our CRTED outperforms A-RPN without fine-tuning by 2.6% on AP metrics, which 
demonstrates the strong generalization ability of our detector, especially in few-shot scenario. 
Specially, in terms of AP over different classes, our CRTED obtains the comparable performance for 
several cases on Pascal VOC and performs better than most of the representative fine-tuned models 
with 1-shot on COCO val dataset, boosting about ~0.3% to ~3.8% improvement.  

Table 5. Performance comparison of nAP50 on Pascal VOC. Red and green fonts denote the best and 
second-best performance, respectively. With fine-tuning, CRTED achieves a new SOTA performance 
on 1-shot setting, demonstrating its strong generalization capability. 

Method Fine-tune nAP50 (Avg. on splits for each shot) 
1 2 3 5 10 

FSRW [12] √ 16.6 17.5 25.0 34.9 42.6 
Meta R-CNN [13] √ 11.2 15.3 20.5 29.8 37.0 

TFAfc [23] √ 27.6 30.6 39.8 46.6 48.7 
TFAcos [23] √ 31.4 32.6 40.5 46.8 48.3 

FSDetView [39] √ 26.9 20.4 29.9 31.6 37.7 
A-RPN [21] × 18.1 22.6 24.0 25.0 - 
AirDet [42] × 21.3 26.8 28.6 29.8 - 
DiGeo [43] √ 31.6 36.1 45.8 51.2 55.1 

CRTED (Ours) 
× 20.7 25.6 28.6 30.0 34.4 
√ 31.8 32.8 34.0 45.0 48.9 

Table 6. Performance comparison of AP with k-shot on COCO validation dataset. Red and green fonts 
denote the best and second-best performance, respectively. CRTED achieves comparable performance 
on baseline without fine-tuning and outperforms most of the representative methods with fine-tuning, 
which indicates its strong power.  

Method Venue Fine-tune 
Shots 

1 2 3 5 10 30 
FSRW [12] ICCV 2019 √ - - - - 5.6 9.2 

Meta R-CNN [13] ICCV 2019 √ - - - - 8.7 12.4 
TFAfc [23] ICML 2020 √ 2.8 4.1 6.3 7.9 9.1 - 
TFAcos [23] ICML 2020 √ 3.1 4.2 6.1 7.6 9.1 12.1 

FSDetView [39] ECCV 2020 √ 2.2 3.4 5.2 8.2 12.5 - 
MPSR [22] ECCV 2020 √ 3.3 5.4 5.7 7.2 9.8 - 
A-RPN [21] CVPR 2020 × 4.3 4.7 5.3 6.1 7.4 - 

W. Zhang et al. 
[44]   

CVPR 2021 
√ 4.4 5.6 7.2 - - - 

FSCE [45] CVPR 2021 √ - - - - 11.1 15.3 
FADI [46] NIPS 2021 √ 5.7 7.0 8.6 10.1 12.2 - 

AirDet [42] ECCV 2022 × 6.0 6.6 7.0 7.8 8.7 12.1 
CRTED  Ours × 5.8 6.2 7.2 7.4 8.6 12.4 

5. Conclusion 

This paper presents a novel few-shot object detection model, CRTED, which introduces a newly 
proposed object-relevant region-based modules Correlation-RPN and the powerful structure of 
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Transformer Encoder-Decoder. Our model without fine-tuning has been trained and validated on 
Pascal VOC and COCO datasets, and extensive qualitative experimental results have been given. 
Specifically, with proposed matching procedure, BS regularization and novel 4-way tuple-contrast 
training strategy, CRTED can perform comparably or even better than those detectors with 
exhaustively fine-tuning in the same evaluation. We hope that this work can lead to good inspiration 
for further works in few-shot object detection. 
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