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Abstract: Few-shot object detection (FSOD) aims to address the challenge of requiring a substantial
amount of annotations for training in conventional object detection, which is very labor-intensive.
However, existing few-shot methods achieve high precision with the sacrifice of time-consuming
for exhaustive fine-tuning, or take poor performance in novel-class adaptation. We presume the
major reason is that the valuable correlation feature among different categories is insufficiently
exploited, hindering the generalization of knowledge from base to novel categories for object
detection. In this paper, we propose Few-Shot object detection via Correlation-RPN and
Transformer Encoder-Decoder (CRTED), a novel training network to learn object-relevant features
of inter-class correlation and intra-class compactness while suppressing object-agnostic features in
the background with limited annotated samples. And we also introduce a 4-way tuple-contrast
training strategy to positively activate the training progress of our object detector. Experiments over
two few-shot benchmarks (Pascal VOC, MS-COCO) demonstrate that, our proposed CRTED
without further fine-tuning can achieve comparable performance with current state-of-the-art fine-
tuned works. The codes and pre-trained models will be released.

Keywords: few-shot object detection; region proposal network; transformer encoder-decoder;
training strategies

1. Introduction

In recent years, [1-5] has seen remarkable advancements through the application of deep neural
models and large-scale training. Nevertheless, conventional object detection techniques typically
depend extensively on vast amounts of quantity and quality annotated data and necessitate extended
training duration, which has sparked the recent pursuit of few-shot object detection (FSOD). The
challenge in few-shot learning lies in the significant diversity of real-world objects and despite
noteworthy advancements, existing methods [6-10] primarily focus on image classification, seldom
delving into the complexities of few-shot object detection. This might be due to the non-trivial nature
of transferring knowledge from few-shot classification to few-shot object detection.

The core difficulty in object detection with limited examples lies in pinpointing unseen objects
against a cluttered background. This is essentially a general problem of locating objects from a few
annotated examples in new categories. Potential bounding boxes often overlook unseen objects or
generate numerous false detections in the background. We argue that it is due to the sub-optimal
scoring of promising bounding boxes by a region proposal network (RPN), making it challenging to
detect novel objects. This distinction underscores the inherent difference between few-shot
classification and object detection. Additionally, recent efforts in few-shot object detection [11-13]
necessitate fine-tuning, preventing their direct application to novel categories.

In this paper, we attempt to address the problem mentioned above in few-shot object detection.
First, we propose a novel network structure named Correlation-RPN based on general RPN to
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activate model pay more attention to object-relevant regions and help learn the matching correlation
between query and support image feature, for generalizing the knowledge learned from base classes
to novel classes. Secondly, we integrally migrate the transformer encoder-decoder into our
framework. With the new feature coding mechanism, we utilize decoder to get correlational metric
of feature representation after feature extraction in the backbone of our network. Thus, we introduce
a 4-way tuple-contrast training strategy to positively activate the training progress of our object
detector.
The main contributions of this work include:

® We propose a novel correlation-aware region proposal network structure called
Correlation-RPN, and migrate it to object detectors, improving detectors’ capacity of object
localization and generalization;

® We redesign a new feature coding mechanism and integrally migrate the encoder-decoder of
transformer into our model to effectively learn support-query feature similarity representation;

®  With our presented 4-way tuple-contrast training strategy, CRTED without further fine-tuning
can achieve comparable performance with most of the representative methods in few-shot object
detection.

2. Related Work

2.1. General Object Detection

Object detection remains a key topic in computer vision, particularly with the rise of deep
learning. CNN-based methods, always pre-trained on vast datasets, have gained popularity. These
methods split into two categories: proposal-based and proposal-free detectors. The RCNN series [14—
16] falls into the former, relying on pre-trained CNNs to classify region proposals from selective
search. SPP-Net [17] and Fast-RCNN [15] evolved from RCNN, extracting regional features via an
Rol pooling layer from convolutional maps. Faster-RCNN [16] introduced a region proposal network
(RPN) to enhance proposal quality. In contrast, YOLO [3,18-20] pioneered the proposal-free
approach, using a single CNN for classification and bounding box prediction. Later works refined
YOLO with default anchors for shape adjustment or multi-scale training. Proposal-free methods are
simpler and faster but still rely heavily on annotated samples, limiting their performance in few-shot
scenarios.

2.2. Few-Shot Object Detection

The challenging few-shot object detection (FSOD) problem aims to detect objects or novel classes
at instance-level with limited annotations. Prior works on few-shot object detection can be mainly
categorized into three paradigms: meta-learning, transfer-learning and metric-learning approaches.
Meta-learning methods aim at devising a periodic and stage-wise meta-training paradigm to train a
class-agnostic meta-model to help knowledge transfer from base classes to novel classes with few
annotated labels, known as “Learning to learn”. The Meta-RPN [21] and Meta faster-cnn [13] are
proposed to generate class-relevant proposals with improving the instance alignment. Transfer-
learning based methods, also known as the finetuning based methods, emphasize performing fine-
tuning for few-shot object detection, which trained base classes and novel classes together, and fine-
tuning the whole model, where the model is only trained on the base classes and then fine-tuned on
a balanced set including both base classes and novel classes. MPSR [22] adopt manually defined
positive sample refinement branch to mitigate the object scale scarcity issue for few-shot object
detection. Specially, TFA [23] pre-trains a base detector from abundant samples on a base set and
fine-tuning it for novel classes. Metric-learning approaches focus on learning good embedding spaces
or appropriate metrics that facilitate downstream tasks, including cosine similarity [24], euclidean
distance to class center, graph distances and so on. RepMet [25] achieves current SOTA results on
few-shot object detection by simultaneously learning the parameters of backbone network, the
embedding space, and the multimodal distribution of each training category within it in an end-to-
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end training manner. [21] exploits the similarity metric between the support set and query set in few-
shot setup to detect novel objects and suppress false detection in the background.

2.3. Transformer Encoder-Decoder

The Transformer architecture, initially designed for machine translation, has been widely
applied to various computer vision tasks. One notable example is DETRs, a representative class of
object detectors that leverage the strengths of Transformers. These models employ a transformer
encoder-decoder structure to understand and learn the relationships between the global image
context and objects, using CNN features as input, and producing final predictions. As a variant of
DETR, ViDT [26] introduced a pre-trained transformer to replace the CNN backbone, while
maintaining a randomly initialized transformer neck. More recently, ViTDet [27] and MIMDet [28]
have attempted to capitalize on the powerful network architecture pre-trained by MAE for object
detection tasks. However, ViTDet only utilizes the pre-trained MAE encoder and discards the pre-
trained decoder. In contrast, MIMDet retains the entire encoder-decoder for feature extraction,
focusing on leveraging the reconstruction capabilities of the MAE decoder to mask input image
patches, reducing additional inference costs. Unlike these approaches, imTED [29] employs a fully
pre-trained transformer encoder-decoder that not only extracts features but also performs
representation transformation, which offers a comprehensive utilization of the transformer's
capabilities, enhancing the performance of object detection tasks.

3. Approach

In this section, we will walk through the whole architecture designs in our proposed CRTED
step by step. The structure of CRTED is exhibited in Figure 1. First, before introducing CRTED, we
consider few-shot object detection task it aims to achieve. We start with the preliminaries on the few-
shot object detection setup that motivate our method. Then, we present our network architecture in
detail for few-shot object detection. Finally, we describe the learning procedure of a CRTED.
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Figure 1. The whole framework of our proposed CRTED. Query/support feature from the weight-
shared feature extractor will be conducted BS regularization and encoding, and then fed into
Correlation-RPN for further extracted. Finally, the few-shot detection result is obtained by mapped
to the query image with the decoder.

3.1. Preliminaries

Problem Definition In this work, we focus on processing the task of few-shot object detection
(FSOD). Given two sets of classes, a base set Ciuse and a novel set Cuovel, where Cease N Crove = 2. Defining
two datasets, a base dataset Duse with sufficient annotated objects of Cuws and a novel dataset Diovel
with few annotated objects of Cuowe. A few-shot object detector aims at classifying and localizing
objects of Ciuse U Crovet by learning from Diese U Duovet. In a task of Nw-way K-shot object detection with
Nin=|Cuoel, there are exactly K annotated instances for each novel class in Duower. The goal of this work
is to train a model that can detect novel classes in Cnovet by only providing K-shot labeled samples for
Cnovet and abundant images from Cuse. Basically, images from Cus are split into support image set S
containing support images s, with a close-up of the target object, and query image set Q» containing
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query images q. which potentially contains objects belonging to the support class. Given all support
images Sy, our model learns to detect objects in Q. For convenience, we denote Cease, Crovel, Diase and
Diovet as Cv, Cn, Dy and Dr in the following sections.

Rethink Region-Based Object Detectors The majority of current few-shot object detection
methods rely heavily on the Faster R-CNN framework [16], which leverages a region proposal
network (RPN) to generate potentially relevant bounding boxes to facilitate subsequent detection
tasks. The RPN plays a pivotal role, as it must not only distinguish between objects and the
background but also filter out negative objects belonging to non-matching support categories.
However, under the few-shot detection setting, where support image information is extremely
limited, the RPN often struggles. It tends to indiscriminately focus on every potential object with a
high objectness score, regardless of whether they belong to the support category or not. This behavior
can hamper the generalization of knowledge from base classes to novel classes, and it also places a
significant burden on the subsequent classification task of the detector, as it has to deal with a large
number of irrelevant objects. Previous studies [1,3,4,16,21,30] have attempted to address this
challenge by generating more accurate region proposals. Nevertheless, the issue persists, stemming
from the inherent limitations of region-based object detection frameworks within the few-shot
learning context. To truly address this challenge, it is essential to develop novel strategies that can
effectively leverage the limited support image information, enhancing the discriminative capabilities
of the RPN and ensuring that it focuses only on relevant objects, thus improving the overall
performance of few-shot object detection systems.

Rethink Transformer-Based Detection Frameworks Transformer [31] emerged as a
revolutionary self-attention-based building block specifically tailored for machine translation tasks.
This architecture revolutionizes the way sequences are processed, updating each element by scanning
through the entire sequence and subsequently aggregating information from it. Seeking to harness
the immense potential of the Transformer, DETRs [1] introduced an innovative approach by
integrating a transformer encoder-decoder architecture into an object detector. This integration
enabled the system to tackle the intricate challenge of attending to multiple support classes within a
single forward pass. Nevertheless, a notable issue persists: the vision transformers employed in
DETRs were randomly initialized, limiting their capabilities to solely processing feature
representations extracted by the backbone network. This constraint underscores the need for further
advancements to fully unlock the potential of vision transformers in object detection tasks.

3.2. Architecture

Correlation-Aware Region Proposal Network In generic object detection, RPN is useful to
provide region proposals and generate object-relevant anchors while suffer from performance drop
when in few-shot object detection, since the low-quality region proposals for novel classes and the
fatigue to capture inter-class correlation among different classes. Take inspiration of success of RPN-
based FSOD framework [21], we propose a novel network structure based on general RPN which
learns the matching correlation between the support set Sv and queries Q. Figure 2 shows the overall
architecture of our proposed Correlation-RPN. The Correlation-RPN can make use of the support
information to sensitively aware the similarities and difference between Sy and Qs which is able to
provide high-quality region proposals with objects of target or novel classes, while relatively
depressing proposals in background or in other categories.
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Figure 2. The overall view of Correlation-RPN design. Si: support set; Qu: queries; X: support feature
map; Y: query feature map. s and f denote support-query feature extractor. F denotes the similarity
of support-query feature map, which includes a1l x 1 x C and a 3 x 3 x C vector. Then the correlation
map computed is to be fed into RPN for generating proposals.

Specifically, we compute the correlational metric between the feature map of Sv and Qv in a
depth-wise manner. The similarity map then is utilized to build the region proposal generation. In
particular, we denote the support features of Sy as X € R#*Wx*¢

Y € RH*WXC the similarity is defined as:

and feature map of the query q. as

Fuse = ) @Xije Blsicawsjre ) € (1K) )
L

where F is the resultant correlation feature map and «, {3 are control coefficients to prevent overly
favoring features of either side. Here the X is used as the kernel to slide on the query feature map
[32,33] in a depth-wise cross correlation way [34]. Our work adopts the top architecture of the
Attention RPN [21]. We empirically find that a kernel size of K =1 performs well in our case, since
we argue that global feature can provide a great object prior for objectness classification, consistent
with [16]. In our case, the kernel is calculated by averaging on the support feature map X. The
correlation map is processed simultaneously by a 1 x 1 convolution and a 3 x 3 convolution followed
by the objectiveness branch and regression branch. The Correlation-RPN is trained jointly with the
network and elaborated as in the section 4.3.

Feature Metric Matching Based on the idea of [1,29], we integrally migrate the transformer
encoder-decoder as the pillars of correlational metric aggregation module into our object detector.
The feature metric matching is accomplished in transformer encoder by multi-head attention
mechanism. Specifically, given the support features of Sy, denoted as F, € R"*?, and the query image
qc, of which feature map is denoted as F,; € RIMXWXd the matching coefficients M can be obtained by:

M(HW,d,c) = Match (F,F,)

T
= Softmax ( (E(d, ) - )(Fy(HW, d) - ) ) ce{1,..,¢}

(2)

Vd
where HW is the feature spatial size, d is the feature dimensionality, C is the number of support
categories, and S is a cosine similarity shared by F; and F,, to ensure they are embedded into the
same linear feature projection space. To calculate cosine similarity as the correlational metric of each
pair of feature representation of F; and F,;, which is calculated via:

cos (fo fq) = C Z(lf}:s }lf;q ) ie{1,..,C} 3)

where f; and f, denote the single feature representation of F; and F. Finally, for each q, that
may contain multiple complex instances, we ensure a fact that the choice of the m potential support
cases for each of these instances is same. Therefore, the average correlation score of the m same
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potential support objects can be considered as the similarity or shared feature representation between
q. and the m potential Sy, with which we prefer the s, containing the most similar support instance
as the powerful support patch of s, in training. And this process has been experimentally
demonstrated to be helpful for our training. The effectiveness of support-query feature similarity
metric mining, i.e., distinguishing support objects similar to the query, is discussed in Section 4.3.

Encoding Matching In order to achieve class-agnostic object prediction, we propose the
utilization of a carefully crafted set of predefined task encodings, which serve as a bridge between
the given support classes and the abstract task encodings space. By mapping the support classes to
these encodings, we ensure that the final object predictions are constrained within the task encodings
space, rather than being limited to predicting specific classes on the surface level. Drawing inspiration
from the positional encodings employed in the Transformer architecture, we implement task
RH*4 ytilizing sinusoidal functions. This allows us to capture both local and global
patterns within the task encodings space, enhancing the representational power of our approach.

Furthermore, encoding matching and feature metric matching share the same matching
coefficients. This ensures consistency across different matching processes and simplifies the overall
pipeline. The matched encodings Qk are simply obtained through a straightforward process, further
streamlining the prediction framework:

encodings T €

Q:=MQ®T, 4)

where ® denote sinusoidal functional multiplication. In essence, our approach offers a more flexible
and generalizable framework for object prediction, enabling us to transcend the limitations of
traditional class-specific prediction methods and move towards a more abstract and powerful
representation of objects.

Modeling Background for Object Prediction Generally, under a few-shot object detection
setup, background does not belong to any target classes and usually takes up a lot of space in a
support or query image. Those images that objects only account for a small proportion and most of
the area is complex background, which we also called hard samples, as shown in Figure 3. Taking
the consideration of this reason, we propose a learnable prototype BG-P and a corresponding task
encoding BG-E (fixed to zeros), for explicitly modeling the background class. This can significantly
eliminate the matching ambiguity when query is very hard to match any of the given support classes.
And we additionally introduce a background-suppression (BS) regularization as an auxiliary branch
to help addressing this problem, which will be described in detail in the next section. The final output
of the feature metric matching module can be obtained via the following equation:

Qr = (M- o (F,), BS(F)), 5)

where 1(-) denotes Hadamard product, BS(-) denotes background-suppression operation and o (-
) denotes sigmoid function. By applying the matching coefficients M, we filter out features not
matched to Sy, producing a feature map Qr that inhibits the negative impact of hard samples and
highlights class-related objects from query set Qv for each individual support class.
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Figure 3. There are some hard samples selected from Pascal VOC test set and the 1-shot detection
results of our method.

3.3. Training Procedure

Two-Stage Training strategy Our training procedure consists of two stages: the base-class
training stage on samples from Cv (Ciain = Cv), followed by K-shot few-shot fine-tuning stage on a
balanced set of samples from both C» and Cx (Cirain = C» U Cr). More precisely, in the second stage where
only K labeled samples are individually available for each class in C», K samples are randomly
selected for each class in C» to balance the training iterations between C» and C.

Generally, a naive training strategy is matching the objects of same class by constructing a
training pair p.(q.,s.) where the q. and s, are both in the same c-th class. However, a powerful
model should not only can perform query-support feature similarity mining but also allow capturing
the inter-class correlation among different categories. For this reason, according to the different
matching results in Figure 4, we present a novel 4-way tuple-contrast training strategy to match the
same category while distinguishing different categories. We randomly choose a query image q,, a
support image s, and a hard sample s, containing the same c-th category object and one other
support image s, containing a different n-th category object, to construct the training pair
Pt(qc) Scr Sny Sn), where ¢ # n. In the training pair p¢(q., S¢, Sp, Sp), only the objects of c-th category in
the q. are needed and annotated as foreground, while all other objects are neglected and treated as
background.

During training, our model learns to match every proposal generated by the Correlation-RPN
in the g, with the object of s.. Thus, the model needs to not only match the same category objects
from p.(q. s.) and P, (s, sp), but also distinguish objects in different categories from P, (q., s,)-
Nevertheless, there are a massive amount of background proposals, especially with s, which usually
dominate the training. Taking the consideration of this reason, we adjust these training pairs p to
balance the ratio of proposals between queries and supports. The ratio of p is kept as 2:1:1 for
Pe(qcrSc), Dn(Sersp) and Pr(qc, sp). According to their matching scores, we pick all N p¢(q.,s.) and
select top 2N D (S, sp) and top N p,,(q.,Sn) respectively and calculate the matching loss on the
selected training pairs.
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Figure 4. The 4-way tuple-contrast training triplet and different training pairs. s.: positive support
image; sp: hard sample; s,: support image of novel class. The s, and s, both have the same class
with the ground truth in the g.. The training pair p¢(q., S, Sy, S,) consists of the query-support
training pair p;(q.,s.), the support-hard training pair py(s., sp) and the query-novel training pair
Pn(4crSn)-

Detection Loss Function During the training process, we use the multi-task loss on each
sampled proposal. It is worth mentioning that we choose the different loss function during
optimizing the network in two stages. In the first stage, for each bounding box B, we predict a 2D
classification vector p € [0,1] to represent the probability for target object and background
respectively. Inspired by [35-37], concretely, for a mini-batch of N Rol box features {r{,,ul, t}'c‘y}?],

our first stage loss Ly, is defined as follows with considerations tailored for detection:

1w, .
Lfirst = N z f(ux,y: pi) ' Lr,l;‘y (6)
i
N '~ ~
exp (7; - 7;/9)

1 -
L = Z S{t: =t} log = —,
N1 LT TR S ke i) exp (7 /9)

(7

where x, y denotes locations and 9 is the hyper-parameter temperature as in [36]. The 7}, refers to
encoded Rol feature of detector head for i-th region proposal generated by Correlation-RPN, u},
denotes the IOU score of 7, with matched ground truth bounding box B*, and t., denotes the
truth annotation.

The second stage output also includes the vector p € [0,1] for distinguishing between
background and target object classes. Different from the first stage, following the parameterization
in [14], we present a new regression vector t = (tx, ty, tw, th), to specify a scale-invariant translation
and height/width shift of log-space relative to a region proposal. In the second stage, we adopt binary
cross entropy (BCE) loss for classification and smooth L1 loss for regression. In combination:

N N
At . 1 2. .
Lsecona = ﬁ Z BCE(Ci 'pi) + NZ S {Ci == 1} ' Lsmooth(ti - uJLC.y)' (8)
i i

where c¢* refers to class label for target object and A,; denotes a balancing factor, which we
empirically set to 2.
Our total loss function is the combination of the first and second stage loss:

Liotar = Lfirst + P Lseconas C))
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where p =3 is a balancing factor for second stage loss.

Background-Suppression (BS) Regularization In our proposed structure of CRTED, feature
metric matching is developed with the encoder architecture design in transformer by multi-head
attention mechanism. It is sure that this design can moderate the training stress for objects with
various sizes, but it may still disturb the detector performance when for localization in the scenario
of hard samples, especially when in the few-shot condition. For this reason, we propose a novel
background-suppression (BS) regularization, by utilizing object knowledge in the domain of ground-
truth bounding boxes for each training pair p.(q., s.). Specifically, for the q. in p.(q., s;), we first
obtain the middle-level F,; of target domain generating from Correlation-RPN. Then, we adopt a
masking method that enables the ground-truth labels of target objects in the image s, to be mapped
to the convolutional cube. Consequently, we can identify the feature regions corresponding to
background, namely Rps. To minimize the adverse effects of background disturbances, we choose
L2 regularization to penalize the activation of Rpg:

Lgs = BS(Fq) = ||Rps |l2 (10)

With this Lgs, CRTED can depress regions of indifference while pay more attention to where we
interest, which is especially important for training in few-shot learning. More details and
visualization results of the experiment are shown in Sec. 4.3.

Proposal Consistency Control One of the differences of image classification and object detection
is that the former extract semantics from the entire image while the classification signals for the latter
come from region proposals. We adopt a settled IoU threshold T;,, to assure the consistency of
proposals, with the consideration that low IoU proposals may result in excessive deviation to the
center of regressed objects, therefore might include irrelevant semantic information. In the following
formula, f(-) is responsible for controlling the consistency of proposals, defined with proposal
consistency threshold ¢:

T .
Tipy = f(u;cy) = Nz S {ui = (P} ' T(u)lc,y)' (11)

where r(-) can re-weight for object proposals with different level of IoU scores. We experimentally
find that ¢ = 0.75 is a good cutoff point which the detector head can be trained according to most
centered object recommendations.

4. Experiments

We mainly perform extensive experiments in both few-shot object detection (FSOD) benchmark
datasets PASCAL VOC and MS COCO to assess the effectiveness of our proposed CRTED.

4.1. Few-Shot Object Detection Benchmarks

Pascal VOC [38] consists of images with object annotations of 20 categories where the categories
split for Cv and C» are 15 and 5 separately. We use train set Dy U D» from Pascal VOC 07+12 trainval
sets for training, where D» is randomly sampled from previously unseen novel classes with K-shot in
{1, 2, 3, 5, 10}. Following the existing works [12,39,40], we consider the same three random partitions
of base / novel classes and samplings introduced. Each split is referred as: Novel Split set 1: {“bottle”,

Za v VT ”

“aeroplane”, “sofa”, “cow”, “horse” / others}; Novel Split set 2: {“bus”, “horse”, “motorbike”, “cow”,
“sofa” / others}; Novel Split set 3: {“boat”, “cat”, “aeroplane”, “sheep”, “sofa” / others}. For fair
comparison, in each partition, we use the same sampled novel instances, and report AP50 for the
detection precision for Cv» (bAP50) and Cu (nAP50) on Pascal VOC 07 test set. Results are averaged
over 10 randomly sampled support datasets.

MS COCO [41] is a large-scale and more challenging object detection dataset, which consists of
80 categories where |Cuvl =60, |Cul =20 and C» are common to Pascal VOC. The train set D» U D» are
from MS COCO 2017 train set, and we perform evaluations on 5K images from COCO 2017 val

dataset, which the number of shots is set to 1, 2, 3, 5, 10 and 30. The COCO-style detection precision
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of Cv U Cu (AP), Cv (bAP) and Cu (nAP) are reported. Results are averaged over 5 randomly sampled
support datasets.

4.2. Implementation Details

We follow the training pipeline of [21], and the basic deep architecture of our CRTED is trained
end-to-end on 4 V100 GPUs parallel with optimizer Adam and a batch size of 8 for each
Pt (qc Scr Sny Sp)- During training, we find that more training iterations may result to the model over-
fit to the training set D» U D» and damage performance. The learning rate is thus experimentally set
to 0.01 during the first training stage and gradually decayed to 0.0002 for later 500 iterations, which
can lead to a better converge point. We first perform on MS COCO 2017 training dataset and ensure
only simple class object appearing in images for each p;(q., S¢, S, Sn). During few-shot training, for
one q. belonging to Cv U Cu in P(qc, Se) Sy Sn), we provide 40 support images, containing 30
belonging to C» and 10 belonging to C», termed as 4-way 10-shot contrastive training.

4.3. Ablation Studies

Evaluation of Correlation-RPN We take sufficient experiments to assess our Correlation-RPN
on different training strategies. To evaluate the proposal quality, we first compare the precision and
recall on top 50 proposals of the regular RPN, attention RPN and our proposed Correlation-RPN at
0.5 IoU threshold. In addition, we also add the average best overlap ratio (ABO) across ground truth
bounding box B* as one of our evaluation metrics. As demonstrated in Table 1, our model with
Correlation-RPN reveals better performance than the other two counterparts under the same training
pairs and K-shot, producing performance improvement on all the evaluation, which indicate that our
proposed RPN architecture can generate more object-relevant proposals to benefit the total detection
prediction.

Table 1. Ablation studies on proposed Correlation-RPN and other counterparts.

Method .
Regular-RPN  Attention-RPN Correlation-RPN Precision  Recall AP ABO
v 0.7923  0.8804 54.5 0.7127
v 0.8345  0.9130 56.9 0.7282
v 0.8509  0.9214 57.1 0.7335

Specially, the visualization comparison of the attention from superficial layers, between our
Correlation-RPN and other two counterparts, are also clearly offered in Figure 5. The results confirm
that our Correlation-RPN owns the better ability to pay attention to target domain and provide more
high-quality proposals. Especially when dealing with challenging samples, particularly objects that
are significantly occluded, our method demonstrates an impressive ability to achieve a high level of
confidence in accurate recognition, which ensures reliable and robust performance even in situations
where traditional methods might struggle.
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Figure 5. Visualization comparison between models with Correlation-RPN and other RPN
architecture on one-shot object detection on Pascal VOC class novel split 1. Correlation-RPN can focus
on the most representative region, resulting in more precise proposals and regression box.

Analysis of Matching Procedure for CRTED Figure 6 obviously shows the feature visualization
of different object classes learned with and without the matching procedure under the same
constraint. As demonstrated, with matching procedure introduced to learn inter-class correlation and
capture intra-class compactness, different classes are better separated from each other, which helps
to reduce model misclassification and boost generalization ability among similar categories.
Specially, Table 2 clearly verify the effectiveness of our proposed matching procedure. When we
adopt our method into the model, regardless of the number of support classes, CRTED can still boost
detection performance of novel classes under the 1-shot setup, which indicates the capacity of our
designed matching procedure in support-query feature similarity metric mining and the strong
power of Transformer Encoder-Decoder. It is worth nothing that when there are multiple support
classes, MP is able to exploit inter-class similarity of support-query image to obtain improvement of
few-shot detection performance, especially about 2.8% mAP under 5-shot setting.
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Figure 6. The t-SNE visualization of object classification in the feature space with and without our
proposed matching procedure MP on novel split set 2 of Pascal VOC.

Table 2. Ablation studies to validate the effectiveness of our presented MP. C means the number of
support classes.

Novel mAP (IoU = 0.5)
Meth P
ethod M C 1 ) 3 5 10
1 28.2 433 51.6 54.0 60.3
V4 1 31.3 45.2 53.1 56.8 63.0
CRTED 5 33.7 46.5 52.4 57.1 61.8
Vv 5 37.3 51.1 54.5 58.2 63.3

Impact of Background-Suppression (BS) Regularization For the purpose of enhancing few-
shot detection, we mainly evaluate whether our proposed BS regularization method can boost
transfer learning for CRTED. As shown in Figure 7 that our background-suppression (BS)
regularization can effectively help CRTED to reduce the background disturbances. And it is
obviously shown in Table 3, our proposed regularization method can significantly improve the
performance, when the support images s, in training set p;(q., S¢, Sp, Sp) is scarce in the few-shot
domain, especially in one-shot. Additionally, it is worth mentioning that we try to pick objects from
as many categories as possible to verify the effect, which show that BS is generally robust to different
categories.

Input Image Without BS With BS Input Image Without BS With BS

v‘sv

Figure 7. Feature heatmap of Background-Suppression (BS) regularization. Samples of different
categories are selected from COCO val set. BS can effectively weaken negative influence from
background disturbances, and then activate CRTED to pay attention to object-relevant regions.
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Table 3. Regularized transfer learning for CRTED of AP50 on the Pascal VOC dataset on C» U Cn. BL:
baseline. BS: background-suppression (BS) regularization. The mAP results show that, our proposed
BS regularization method can significantly boost the baseline CRTED, when in few-shot object

detection.
Shots for Split 1 1 2 3 5 10
CRTED & 68.7 69.4 70.8 73.6 75.5
CRTED su+ss 69.8 70.2 72.0 75.4 76.5
Shots for Split 2 1 2 3 5 10
CRTED s 65.5 66.8 69.9 713 73.3
CRTED sL+ss 67.7 68.0 71.3 71.8 73.7
Shots for Split 3 1 2 3 5 10
CRTED s 67.7 68.7 71.4 72.7 74.8
CRTED sL+ss 68.6 70.4 72.7 73.9 75.1

Ablation of Training CRTED Refer to Table 4. We train our network with different training
strategies and obtain 1.3% APs improvement at the p; 10-shot training strategy, comparing with the
P 10-shot training strategy. It is straightforward that the model performs better at training strategy
with p; than with p;, which shows the importance of training pairs p,, and pj, included in p;.
With adding p;,(q., s,), even the object in q. belonging to unseen class, the model can learn inter-
class correlation and intra-class compactness from novel classes to enhance generalization ability.
And model can improve robustness with py (s, sy), especially g, is a hard sample. It is clear that
with larger K-shot training, we achieve better performance which also indicates a certain number of
support images is beneficial to few-shot learning. We think that controlling the number of s; and s,
to 1 can suffice in training the model for distinguishing different classes. And from Figure 8, our
proposed training strategy can positively activate the training progress of our detector. Our full
model thus adopts the p; 10-shot training strategy.

60 0.50

—— Baseline
~— CRTED

—— Baseline
—— CRTED

30 20 40 60 80 100 0'200 2 4 6 8 10 12

epoch epoch

Figure 8. Comparison of performance gains (left) and object classification loss (right).

Table 4. Experimental results for different training strategies.

Training strategy AP APso AP7
pe 1-shot 48.5 55.9 41.1
P 1-shot 48.7 56.2 41.2
P 5-shot 57.7 68.1 47.3
Pe 5-shot 58.1 68.4 47.7
pe 10-shot 58.8 69.2 48.4

P, 10-shot 59.7 70.5 48.8
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4.4. Comparison with State-of-the-Arts

Comparisons between our approaches and state-of-the-art few-shot object detectors on Pascal
VOC and COCO are shown in Table 5 and Table 6. Following the default novel split setting of data
with different K-shot in previous researches, our proposed CRTED without further fine-tuning can
set comparable performance with fine-tuned methods or even new SOTA results for few-shot object
detection. Our CRTED outperforms A-RPN without fine-tuning by 2.6% on AP metrics, which
demonstrates the strong generalization ability of our detector, especially in few-shot scenario.
Specially, in terms of AP over different classes, our CRTED obtains the comparable performance for
several cases on Pascal VOC and performs better than most of the representative fine-tuned models
with 1-shot on COCO val dataset, boosting about ~0.3% to ~3.8% improvement.

Table 5. Performance comparison of nAPs0 on Pascal VOC. Red and green fonts denote the best and
second-best performance, respectively. With fine-tuning, CRTED achieves a new SOTA performance
on 1-shot setting, demonstrating its strong generalization capability.

. nAPso (Avg. on splits for each shot)

Method Fine-tune 1 N 3 5 10
FSRW [12] 4 16.6 17.5 25.0 349 42.6
Meta R-CNN [13] v 11.2 15.3 20.5 29.8 37.0
TFAw [23] v 27.6 30.6 39.8 46.6 48.7
TF Acos [23] 4 314 32.6 40.5 46.8 48.3
FSDetView [39] v 26.9 20.4 29.9 31.6 37.7

A-RPN [21] x 18.1 22.6 24.0 25.0 -

AirDet [42] x 21.3 26.8 28.6 29.8 -
DiGeo [43] v 31.6 36.1 45.8 51.2 55.1
X 20.7 25.6 28.6 30.0 344
CRTED (Qurs) N 31.8 32.8 34.0 45.0 48.9

Table 6. Performance comparison of AP with k-shot on COCO validation dataset. Red and green fonts
denote the best and second-best performance, respectively. CRTED achieves comparable performance
on baseline without fine-tuning and outperforms most of the representative methods with fine-tuning,
which indicates its strong power.

) Shots
Method Venue Fine-tune 1 5 3 5 10 30
FSRW [12] ICCV 2019 4 - - - - 5.6 9.2
Meta R-CNN [13] ICCV 2019 4 - - - - 8.7 12.4
TFA« [23] ICML 2020 4 2.8 4.1 6.3 7.9 9.1 -
TFAcos [23] ICML 2020 4 3.1 4.2 6.1 7.6 9.1 12.1
FSDetView [39] ECCV 2020 4 2.2 34 5.2 8.2 12.5 -
MPSR [22] ECCV 2020 4 3.3 5.4 5.7 7.2 9.8 -
A-RPN [21] CVPR 2020 x 43 4.7 5.3 6.1 74 -
W. Zhang et al. CVPR 2021 J 14 5.6 7.2 - - i
[44]
FSCE [45] CVPR 2021 V4 - - - - 11.1 15.3
FADI [46] NIPS 2021 V4 5.7 7.0 8.6 10.1 12.2 -
AirDet [42] ECCV 2022 x 6.0 6.6 7.0 7.8 8.7 12.1
CRTED Ours x 5.8 6.2 7.2 7.4 8.6 12.4

5. Conclusion

This paper presents a novel few-shot object detection model, CRTED, which introduces a newly
proposed object-relevant region-based modules Correlation-RPN and the powerful structure of
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Transformer Encoder-Decoder. Our model without fine-tuning has been trained and validated on
Pascal VOC and COCO datasets, and extensive qualitative experimental results have been given.
Specifically, with proposed matching procedure, BS regularization and novel 4-way tuple-contrast
training strategy, CRTED can perform comparably or even better than those detectors with
exhaustively fine-tuning in the same evaluation. We hope that this work can lead to good inspiration
for further works in few-shot object detection.
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