Pre prints.org

Article Not peer-reviewed version

Text-to-Image Segmentation with
Open-Vocabulary and Multitasking

Lihu Pan , Yunting_Yang i , Zhengkui Wang , Rui Zhang

Posted Date: 9 April 2024
doi: 10.20944/preprints202404.0631.v1

Keywords: image segmentation; open vocabulary; multitask; multi-modal interaction

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 9 April 2024 d0i:10.20944/preprints202404.0631.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Text-to-Image Segmentation with Open-Vocabulary
and Multitasking

Lihu Pan **, Yunting Yang !, Zhengkui Wang 2 and Rui Zhang !

1 School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan,
030024, China; yangyunting606@163.com(Y.Y.); zhangrui@tyust.edu.cn(R.Z.)

2 InfoComm Technology Cluster, Singapore Institute of Technology, 138683, Singapore;
zhengkui.wang@singaporetech.edu.sg

* Correspondence: panlh@tyust.edu.cn

Abstract: Open-vocabulary learning has recently gained prominence as a means to enable image segmentation
for arbitrary categories based on textual descriptions. This advancement has extended the applicability of
segmentation systems to a broader range of generally purpose scenarios. However, current methods often
revolve around specialized architectures and parameters tailored to specific segmentation tasks, resulting in a
fragmented landscape of segmentation models. In response to these challenges, we introduce OVAMTSeg, a
versatile framework designed for Open-Vocabulary and Multitask Image Segmentation. OVAMTSeg harnesses
adaptive prompt learning to empower the model to capture category-sensitive concepts, enhancing its
robustness across diverse multi-task and scenario contexts. Text prompts are employed to effectively capture
semantic and contextual features of the text, while cross-attention and cross-modal interactions enable the
fusion of image and text features. Furthermore, a transformer-based decoder is incorporated for dense
prediction. Extensive experimental results underscore the effectiveness of OVAMTSeg, showcasing its state-
of-the-art performance and superior generalization capabilities across three segmentation tasks. Notable
achievements include a 47.5 mloU in referring expression segmentation, 51.6 mIoU on Pascal-VOC with four
unseen classes, 46.6 mloU on Pascal-Context in zero-shot segmentation, 65.9 mIoU on Pascal-5i, and 35.7 mIoU
on COCO-20i datasets for one-shot segmentation.

Keywords: image segmentation; open vocabulary; multitask; multi-modal interaction

1. Introduction

Image segmentation represents a deeply explored and pivotal domain within the field of
computer vision. Its primary objective is the simultaneous categorization and grouping of pixels
belonging to distinct objects within an image. Recent strides in image segmentation owe their success
largely to the availability of expansive dataset [1-3], meticulously annotated to include pixel-level
masks and object category labels. However, these annotations, although invaluable, come at a
significant cost in terms of time and labor. Consequently, the predefined categories within current
segmentation tasks remain restricted in scope, far removed from the vast and diverse lexicon that
humans employ to describe the complexities of the real world. Such limitations in the learning
objectives of existing segmentation systems impose a substantial impediment to scalability,
particularly when attempting to accommodate richer and more encompassing semantic nuances.

To address the inherent constraints of predefined categories and unlock the potential for
handling custom-defined classes beyond the confines of training data, the paradigm of open-
vocabulary learning has gained prominence. Open-vocabulary learning leverages the power of large-
scale visual-language pre-training models, exemplified by prominent models like CLIP[4] and
ALIGN[5], to compute semantic similarity between visual concepts and textual descriptions.
Notably, a burgeoning body of research in segmentation based open-vocabulary studies[6,7] has
emerged with the goal of devising task-specific architectures and parameters tailored to single
segmentation tasks. For instance, ZSSeg[6] harnesses the capabilities of off-the-shelf pre-trained CLIP
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models and demonstrates competitive performance in open-vocabulary semantic segmentation.

However, when extending these methods to a broader spectrum of segmentation scenarios, they

exhibit significant limitations. Firstly, a unified model cannot be seamlessly applied to address

multiple segmentation tasks, necessitating retraining and the deployment of numerous custom
models for diverse tasks. Additionally, while CLIPSeg [8] successfully handles multiple segmentation
tasks within a compact framework, its reliance on fixed-format text prompts (e.g., "photos of...") may
impose restrictions on the generalization of human language understanding in practical applications.

Moreover, it lacks the adaptability to dynamically adjust the modality correlation degree for different

tasks and data, and it is not inherently designed for open-vocabulary tasks.

In response to the challenges outlined above, we propose OVAMTSeg, a framework tailored for
open-vocabulary and multitask image segmentation. OVAMTSeg, designed with precision and
versatility in mind, is driven by two primary objectives:

(1) Multitasking: OVAMTSeg seamlessly adapts to a spectrum of tasks, encompassing referring
expression segmentation, zero-shot, and one-shot image segmentation.

(2) Open-Vocabulary: OVAMTSeg exhibits the capacity to generalize across a wide array of
segmentation categories, embracing the flexibility to accommodate arbitrary categories.

OVAMTSeg unfolds as a two-stage segmentation paradigm. The initial stage entails the
extraction of universal mask proposals, while the subsequent stage is dedicated to the precise
segmentation of these masks. Crucially, OVAMTSeg operates as a unified framework, cultivating a
profound understanding of both textual and visual features for segmentation tasks, driven by text
and image prompts. An adaptive prompt learning mechanism is introduced to encode category-
specific concepts into the textual abstraction, endowing OVAMTSeg with the versatility to tackle
diverse segmentation tasks spanning arbitrary categories, all within a single, unified model.

To further elevate its performance, OVAMTSeg augments the text encoder and integrates a
multimodal interaction module. This strategic enhancement facilitates the dynamic adjustment of
modality correlations, enabling a more adaptable fusion of text and image features across distinct
tasks and datasets.

In summary, OVAMTSeg emerges as a task-flexible, category agnostic, and performance-driven
framework. The following concisely lists our contributions:

e  We introduce OVAMTSeg, a universal open-vocabulary framework renowned for its capacity
to efficiently segment images based on arbitrary text or image prompts. OVAMTSeg effectively
addresses the intricate challenges posed by zero-shot, one-shot, and referring expression
segmentation tasks.

e eAdaptive prompt learning empowers OVAMTSeg to explicitly encode category-specific
information into a compact textual abstraction, facilitating the model’s adeptness in generalizing
to diverse textual descriptions. Additionally, we enhance the text encoder and introduce a
multimodal interaction module to optimize cross-model fusion.

e Our model's efficiency and effectiveness are meticulously demonstrated through
comprehensive evaluations across various benchmark datasets. Extensive experimental results
conclusively establish that our proposed model surpasses current standards by a substantial
margin, rendering it a highly viable choice for multitask deployment.

2. Related Work

2.1. Open Vocabulary Segmentation

In recent years, deep learning techniques [9-14] have advanced image segmentation [15-20],
especially in open-vocabulary segmentation, addressing unseen categories. Research divides into
two main areas: mapping visual features to semantics and cross-modal alignment with pre-trained
models. SPNet [7] uses a unique mapping strategy to project visual features onto a fixed semantic
word coding matrix, facilitating the prediction of category probability distributions. ZS3Net [3]
extends SPNet by mapping semantic space to visual space, generating pixel-level features for
previously unseen categories and supervising the visual segmentation model. On the other hand,
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cross-modal alignment utilizes the strong zero-shot abilities of pre-trained cross-modal models like
CLIP[4] for executing open vocabulary segmentation tasks. LSeg [21] calculates pixel-wise image
features using a convolutional neural network and aligns them with text embeddings from a pre-
trained text model. These methods leverage cross-modal alignment and pre-trained models to
innovate open lexical segmentation.

2.2. Multitask Image Segmentation Architecture

Multitask image segmentation architecture aims to unify various segmentation tasks,
eliminating the need for separate training modes. Leading universal segmentation methods like
MaskFormer [22] treat segmentation as a mask classification problem, excelling in semantic and
panoptic tasks. CLIPSeg [8] offers adaptability to new tasks using text or image prompts during
inference, sparing the cost of retraining. This hybrid approach accommodates referring expression,
zero-shot, and one-shot segmentation, informing our multitask segmentation model.

2.3. Prompt Learning

Prompt learning, originally a prominent concept in natural language processing [22-24], has
gained widespread recognition in vision and visual language models [6,25]. CoOp [25] presents
ongoing immediate enhancement of subsequent data to synchronize with pre-trained visual
language models. DenseCLIP [6] fine-tunes the pre-trained text encoder by employing distinct
prompt templates for functions like detection and segmentation, ensuring precise alignment of text
and visual features. MAPLE [26] argues that prompts should be applied in all modes or branches to
achieve optimal performance, deviating from the conventional practice of applying prompts in only
one mode.

In the context of open-vocabulary segmentation tasks, prompt templates are meticulously
crafted based on provided category labels and subsequently transformed into text embeddings. These
embeddings are then deployed for alignment with the representations of unseen classes, facilitating
the achievement of remarkable results.

3. Methods

Our proposed framework is centered on a unified open-vocabulary segmentation pardigm
aimed at optimizing an all-encompassing model to excel in referring expression, one-shot, and zero-
shot segmentation tasks spanning arbitrary categories. At its core, this framework is founded upon
the CLIP model, serving as the foundational backbone as depicted in Figure 1. To enhance its
capabilities, we have made significant improvements to both the text prompt and text encoder.
Moreover, we have incorporated an efficient multi-modal interaction module for seamless fusion of
image and text features. Additionally, we employ a compact and parametrically efficient transformer
decoder to extend the model’s functionality. We establish a connection between the decoder and the
CLIP encoder, inspired by the U-Net network structure[27]. Activations at specific layers S are
extracted from the visual encoder and then mapped onto the token embedding size D our decoder.
To guide the decoder in segmenting the target, we employ the FILM module[28] to modulate the
input activation. The decoder generates binary segmentation by linearly projecting the output of its
last transformer block. In our experiments, we use a projection dimension of 64. To leverage the
semantic information of deep features, we extract the activation information of CLIP in the
transformer module using 5=[3,7,9], resulting in a three-layer decoder. While keeping the improved
CLIP encoder frozen, we train the decoder to perform the image segmentation task.
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Figure 1. Architecture of OVAMTSeg: Our enhancement of the static CLIP model(green and blue)

involves adding a transformer that divides the query image according to either a support image or a
text prompt. Fusing text and visual features through a multi-modal interaction module(gray).
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3.1. Adaptive Prompt Learning

Traditional approaches to prompt template design often rely on human linguistic expertise to
craft smooth and effective semantic templates. While such hand-crafted templates are intuitive and
easy to comprehend, they come with inherent limitations, demanding substantial manual effort and
expertise, thus incurring high costs. In response to this challenge, we introduce an innovative
adaptive prompt learning module. This module transforms diverse classes of text into a set of
learnable vectors, which are subsequently amalgamated into text embeddings, simplifying the
training of the model.

The introduction of adaptive prompts has not only broadened the applicability of our
OVAMTSeg framework to a wider spectrum of unseen categories but has also significantly enhanced
performance in open-domain scenarios. Specifically, the adaptive prompt P is generated based on the
following template, where [x] represents semantic categories or phrases.

P =[V1i[V]y - VInlx]VInss - [V1n, )

Where each [V],(n € {1,2,...,N}) has the same dimension (512 dimensions) as the word
embedding|[x], is a learnable vector, and N is a hyperparameter that specifies the number of context
tokens. During the training, we are given the semantic categories or phrases involved. These adaptive
prompts are then embedded in the pre-trained text encoder¥:

E =¥(P([x]). ()

E represents the obtained text embedding vector. Given the high flexibility of the input categories or
phrases, it can be seamlessly adapted to unseen categories in the Open-Vocabulary segmentation
task.

3.2. Feature Extraction Dual-Encoder

Text Encoder. Text encoders are employed to convert text information into a high dimensional
vector representation, allowing text and images to be compared in the singular embedded area. The
text encoder adopts the ResNet-50 structure. Our modifications involve replacing the replacement of
the global average pooling layer with an attention pooling mechanism, utilizing multi-head QKV
attention. This enhancement enables the text encoder to effectively capture semantic and contextual
features of the text, including cross-word associations, which improves its semantic representation
capacity. The text encoder embeds N possible labels into an unbroken vector space T € R"t*dt,
resulting in N vectorsT;, Ty, ..., Ty € R"*%  with their arrangement unaffected by the input label
sequence. The number N is flexible and can vary freely.
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Image Encoder. Ourimage encoder utilizes the Visual Transformer It begins by converting the
three-dimensional image x € R™*W*Cinto a two-dimensional sequence x; € RN*(**X€) where(H x
W)represents the original image size, C is the channel count, and the image is divided into evenly
sized (P,P) blocks. This resultsin N = HW/P?  blocks, which also function as the actual length of
input sequence for the Visual Transformer. Next, the patch sequence undergoes transformation into
1D tokens {f}; through a trainable linear projection. To capture positional information,
positional embeddings and an additional [CLS]token are introduced. These tokens fJ, fi’, -, fy are
then fed into Sy -layer transformer blocks to model correlations among individual patches, where

v

N = 11. Finally, a linear projection maps f; to the combined space of image and text embedding,
acting as the overarching representation of the image.

3.3. Multimodal Interaction Module

In order to achieve complete interaction between image and text modes, we designed an
proficient multi-modal for merging image and text embedding. In contract to other well-known
multi-modal interaction modules, our design of the model enhances the accuracy of image and text
correspondence more accurately and improves the semantic understanding ability of the model. The
multi-modal interaction module consists of a multi-head cross-attention layer and four transformer
modules. Given text and supporting images. The text hidden representation T = {t;,t,,-,t5}, T €
R™*4t and image hidden representation I* € R"*% are obtained by the text and image encoder
respectively. I*is the image feature mapping output at the last layer of the image encoder. Since the
dimension of [*is different from the dimension of T, the hidden representation dimension needs to
be converted to the same dimension as T. It can be converted by the following formula:

1 =I*W1+b1, (3)

Where I = {il, iy, ini}, I € R™*%, Then, the text T and image I are fed into the multi-modal
interaction module. To fuse image and text representations more effectively, the text representation
T is used as the query (Q), and the image representation I is used as the key (K) and value (V). This
allows the model to adjust the correlation between patterns, thereby achieving more flexible text-
image fusion for different tasks and data. Full interaction between image and text representations can

be achieved by:
F = Transformer(MAC(Q,K,V)), (4)
Where MAC() is multi-head cross-attention, which can be achieved in the following ways:
MAC(Q,K,V) = softmax (QTIZT) V. 5)

where d is the embedding dimension of tokens.
4. Experimental Results

4.1. Experimental Settings

The experiments were conducted using the PyTorch [29] deep learning framework in Python
3.8, within the Anaconda3 environment, and implemented using the PyCharm compiler. The training
of our model consisted of 20,000 iterations, utilizing the PhraseCut+ dataset. We employed a batch
size of 64 and set the image size to 352x352 pixels. During the model’s training process, we employed
the AdamW optimization algorithm to iteratively optimize the network. The initial learning rate was
set to 0.001. As the model approaches the global minimum of the loss function, the corresponding
learning rate gradually decreases towards a minimum point. To achieve this, we utilized the Cosine
Annealing method for dynamic learning rate adjustment without warm-up. The minimum learning
rate was set to 0.0001. Simultaneously, we adopted the technique of automatic mixed precision to
enhance the training process. Our model’s loss function exclusively employed the binary cross-
entropy function.
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4.2. Datasets

PhraseCut+ is employed as the primary dataset for our training process. It is an extension of the
PhraseCut dataset [30], encompassing 345,486 phrase regions meticulously labeled with category
names, attributes, and object relationships within the images. Each phrase corresponds to a binary
segmentation mask in the image. PhraseCut+ enhances the original dataset by introducing visual
support samples and negative samples. This augmentation makes it particularly well-suited for
models that jointly process text and visual inputs. The dataset extends the phrase regions using
automatically learned templates and ensures partial object visibility by considering object position
information during random cropping.

Pascal-VOC2012 [31]serves as the basis for our zero-shot image segmentation experiments.
Pascal-VOC2012 is a comprehensive dataset featuring images for training, validation, and testing.
The validation subset consists of 1,449 images, each accompanied by pixel-level semantic
segmentation masks used for image segmentation tasks. It includes annotations for 20 object
categories along with a background category. We follow previous studies’ practice [1,28] by
partitioning these 20 categories into 16 seen classes and 4 unseen classes ("cow,
"airplane,” and "sofa") to evaluate open word segmentation performance. Additionally, we employ
the Pascal-5i dataset [21], a one-shot segmentation dataset derived from Pascal-VOC2012, which
contains 20 object classes evenly distributed across four sections.

For our zero-shot segmentation experiment, we employ the Pascal-Context dataset [32], which
consists of 5,105 validation samples, spanning 59 item classes in addition to a background class.
Similarly to Pascal-VOC, we select four unseen categories ("cow," "motorbike," "sofa," and "cat") from
the foreground category for evaluation.

The COCO-20i dataset [33] is commonly used for one-shot segmentation tasks and is derived
from the COCO dataset. It includes annotations for 80 object classes evenly divided into four sections,
each containing 20 categories.

The test results involve selecting the best-performing group from among these four sections.
These datasets provide a diverse and comprehensive foundation for evaluating the performance of
our proposed open-vocabulary and multitask image segmentation framework.

"non

motorbike,"

"nn

4.3. Evaluation Metrics.

In our experimental evaluation, we employ several key metrics to assess the performance of our
model: Mean Intersection over Union (mloU), Intersection over Union for Foreground (IoUrg),
Intersection over Union for Binary Segmentation (loUrwv), and Average Precision (AP).

Mean Intersection over Union (mloU): mloU is calculated as the average of the Intersection over
Union (IoU) values across different foreground object categories. It is defined as:

1
mloU = Ezg:1 IoU,. (6)

Where C represents the number of object categories, and IoU. signifies the Intersection over Union
for category C. This metric quantifies the degree of overlap between the predicted segmentation and
the ground truth labels for each category, providing an overall measure of segmentation quality.

Intersection over Union for Binary Segmentation (IoUgv): IoUgpiv assesses segmentation
performance without considering specific object classes. It computes the average of the IoU values
for both foreground and background regions across all test images:

IoUpy = (I0Upg + 10Upg). 7)

Where IoUp; represents the IoU for the foreground, and IoUp; represents the IloU for the
background. This metric provides insights into the segmentation quality when class information is
disregarded.

Average Precision (AP): AP is determined by the area beneath the recall-precision curve (ROC).
The assessment focuses on the model's capacity to differentiate between accurate and inaccurate
matches, shedding light on its balance between precision and recall.
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4.4. Comparison to State-of-the-Art Methods

Referring Expression Segmentation Comparative Experiment. Referring expression
segmentation associates natural language reference expressions with corresponding objects in the
image to perform semantic segmentation on the image. We conducted a comprehensive comparison
of OVAMTSeg with contemporary state-of-the-art open-vocabulary referring expression
segmentation methods, including MDETR [34], HulaNet [35], Mask-RCNN [35], RMI [35], and
CLIPSeg [8]. The results are summarized in Table 1. Our approach outperforms the two-stage
HulaNet approach. However, the mloU of OVAMTSeg is worse than MDETR, which operates at full
image resolution and received two rounds of fine-tuning on PhraseCut. Notably, OVAMTSeg
outperforms CLIPSeg with the same training method in all aspects, indicating that our model is

effective.
Table 1. Referring Expression Segmentation performance on PhraseCut+.

Model mloU IoUre AP
MDETR([34] 53.7 - -
HulaNet[35] 41.3 50.8 -
Mask-RCNN top[35] 394 47.4 -
RMI[35] 21.1 42.5 -

CLIPSeg|[8] 434 54.7 76.7

Ours 47.5 57.1 80.4

Zero-Shot Segmentation Comparative Experiment. As shown in Tables 2 and 3, we compare
the open vocabulary zero-shot segmentation performance on Pascal-VOC and Pascal-Context
datasets, including SPNet[7], ZS3Net[3], CSRL[6], CaGNet[36], OSR[37], JoEm[38], CLIPSeg[8]. Tab.2
and Tab.3 can be condened as the following observations: i) OVAMTSeg achieves 51.6% and 46.6%
mloU towards unseen classes on Pascal-VOC and Pascal-Context, which goes beyond the best
method CLIPSeg and OSR by +4.3% and +3.5%, respectively. It suggests that OVAMTSeg can be
adapted to a wider range of scenarios. ii) Among the baselines, OSR demonstrates promising results
for the seen classes but encounters challenges with respect to the unseen classes. In comparison, our
model performs well in unseen classes compared to models trained on Pascal-VOC and Pascal-
Context datasets. This variation in performance can be attributed to the fact that other models are
trained on datasets with fixed classes, whereas OVAMTSeg is capable of discerning a wider range of
classes.iii) OVAMTSeg and CLIPSeg perform better on unseen classes compared to seen classes. This
could be because seen classes pose inherent difficulties in segmentation, while unseen classes tend to
be relatively larger and easier to segment.

Table 2. Performance in zero-shot segmentation using Pascal-VOC with 4 unseen classes. m/oUs and
mloUu denote the mIoU(%) of classes that are observed and those that are not. The training of our
model occurs on PhraseCut+ with the Pascal classes removed. The term IN-seen refers to the pre-
training phase of ImageNet where previously unseen classes are eliminated.

Model pre-train mloUs mloUu
SPNet[7] IN 67.3 21.8
ZS3Net[3] IN-seen 66.4 23.2
CSRL[6] IN-seen 69.8 31.7
CaGNet[36] IN 69.5 40.2
OSR[37] IN-seen 75.0 44.1
JoEm[38] IN-seen 67.0 334

CLIPSeg[8] CLIP 20.8 47.3

Ours CLIP 28.3 51.6
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Table 3. Zero-shot segmentation performance on Pascal-Context with 4 unseen classes. Our model is
trained on PhraseCut+ with the Pascal classes removed.

Model pre-train mloUs mloUu
SPNet[7] IN 36.3 18.1
ZS3Net[3] IN-seen 37.2 24.9
CSRL[6] IN-seen 39.8 23.9
CaGNet[36] IN 24.8 18.5
OSR[37] IN-seen 41.1 43.1
JoEm[38] IN-seen 36.9 30.7
CLIPSeg[8] CLIP 16.8 40.2
Ours CLIP 25.3 46.6

One-Shot Segmentation Comparative Experiment. Differing from zero-shot segmentation,
one-shot segmentation requires the understanding of both text prompts and annotated support
images. To aid in this comprehension, we used the same visual prompts methods as CLIPSeg,
including object cropping, background blur, and darkening. We evaluate the proposed model on
PASCAL-5i, COCO-20i, and compare the results with recent methods. To ensure fairness during
training, classes that overlap with these datasets are removed. As shown in Table 4, OVAMTSeg
achieves 85.6% AP, outperforming CLIPSeg by 4.3%, respectively. Table 5 presents a performance
comparison when the model is trained on the COCO-20i dataset. Similarly, we note consistent
findings where our model performs effectively. OVAMTSeg also attains the highest results with an
AP of 86.6%. The COCO-20i results show that OVAMTSeg also performs well when trained on other
datasets than PhraseCut+. Particularly, HSNet and PFENet exhibit superior performance in the
performance metric of mloU, which can be attributed to their explicit design for one-shot
segmentation.

Table 4. One-shot performance on Pascal-5i.

Model vis.backb. mloU TIoUsgiv AP
PPNet[39] RN50 52.8 69.2 -
RePRI[40] RN50 59.1 - -

PFENet[41] RN50 60.8 73.3 -
HSNet[42] RN50 64.0 76.7 -
MGNet[43] RN50 52.1 68.2 -
HCNet[44] RN50 62.1 71.7 -
DRNet[45] RN50 53.3 72.8 -
SRPNet[46] RN50 61.5 - -
CLIPSeg[8] ViT(CLIP) 59.5 75.0 82.3
Ours ViT(CLIP) 65.9 77.1 86.8

Tian et al. [41] replace visual samples in the network with textual label word vectors and employ
PFENet for zero-shot segmentation, adhering to the protocol of zero-shot segmentation. and utilize
PFENet for zero-shot segmentation following the one-shot segmentation protocol. In this context,
OVAMTSeg significantly surpasses their performance scores, as evidenced in Table 6. This indicates
the challenge in applying one-time oriented techniques such as PFENet to different tasks, in contrast
to our OVAMTSeg, which exhibits significant generalization potential.

Table 5. One-shot performance on COCO-20i(OVAMTSeg trained on COCO-20i).

Model vis.backb. mloU IoUsin AP
PPNet[39] RN50 29.0 - -
RePRI[40] RN50 34.0 - -

PFENet[41] RN50 35.8 - -

do0i:10.20944/preprints202404.0631.v1
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HSNet[42] RN50 39.2 682 -
MGNet[43] RN50 34.9 63.9 -
HCNet[44] RN50 407 63.4 -
DRNet[45] RN50 365 60.9 -
CLIPSeg]8] ViT(CLIP) 332 58.4 405
Ours ViT(CLIP) 35.7 62.5 463

Table 6. Zero-shot performance on Pascal-5i. Scores were derived by adhering to the one- shot

segmentation assessment method.

Model vis.backb. mloU TIoUpv AP
PFENet[41] VGGI6 54.2 - -
LSeg[21] ViT(CLIP) 52.3 67.0 -

CLIPSeg[8] ViT(CLIP) 724 83.1 93.5

Ours ViT(CLIP) 78.5 87.3 93.8

4.5. Ablation Study

Adaptive Prompt Analysis. We evaluate various prompt configurations to assess the
importance of the adaptive prompt in the context of open vocabulary segmentation, as presented in
Table 7. The static template prompt utilizes the sentence structure "A photo of class," where "class" is
replaced with specific class names. These class-specific prompts are then encoded into the text
features. As shown in Table 7, the adaptive prompt yields a noteworthy enhancement of 2.2% mloU
and 2.3% AP performance for referring expression segmentation, respectively, when compared to the
fixed prompt. Similarly, the adaptive prompt leads to 2.6% mloU performance improvement tover
the fixed prompt for unseen classes in zero-shot segmentation, and achieves a lead of 2.6% mloU and
1.2% AP for one-shot segmentation. This underscores the role of the adaptive prompt in facilitating
the capture of category-sensitive concepts through learnable parameters.

Multi-Task Analysis. To assess the benefits of the multitask approach in OVAMTSeg, we
performed a comparative examination by comparing the model's performance with single-task
training for individual tasks. As depicted in Table 7, the outcomes under the multitask category are
derived from a single unified model, while the single-task results are obtained from three separate
individual models. Our model achieves remarkable results, with a 47.5% mloU and an 80.4% AP on
referring expression segmentation, surpassing the performance of the one-shot counterparts.
Furthermore, open-vocabulary zero-shot and one-shot segmentation exhibit consistent and
impressive results, particularly in terms of performance on unseen classes. OVAMTSeg consistently
improves metrics across almost all tasks, highlighting the effectiveness of the multi-task training
approach in enhancing network generalization and surpassing the performance of one-shot models.

Text Encoders. OVAMTSeg inherently accommodates various text encoders. We illustrate the
impact of employing different text encoders in Table 7. It is important to highlight that all text
encoders feature the same transformer-based architecture that purely operates on text prompts. The
main difference between the encoders is the image encoder that was paired during CLIP pre-training
(for example, the text encoder denoted by "ViT-B/32" was trained in conjunction with a ViT-B/16
image encoder) and the size of the embedding dimension. We observed that employing RN50x16
achieves the highest performance among all text encoders. We hypothesize that this is due to the
larger embedding dimension provided by this encoder.

Table 7. Comparison of various task paradigms, prompt strategies, and text encoders. Evaluation
includes Referring Expression Segmentation performance on PhraseCut+, zero-shot segmentation
performance on Pascal-VOC, and one-shot performance on Pascal-5i.

Method Referring
Expression
mloU AP mloUs mloUu mloU AP

Zero-Shot One-Shot
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Prompt Fixed 454 78.1 57.8 49.0 63.3 85.4
Adaptive 47.5 80.4 28.3 51.6 65.9 86.6

Task Single-Task 41.3 - 75.0 44.1 64.0 -
Paradigm Multi-Task 47.5 80.4 28.3 51.6 65.9 86.6
Text ViT-B/32(512) 43.6 79.0 255 49.2 63.5 85.2
Encoder ViT-B/16 (512) 444 79.3 26.0 49.8 64.1 85.4
RN50 x 4(640) 44.8 79.4 26.2 50.1 64.5 85.6
RN50 x 16(768) 46.2 79.8 27.4 51.0 65.6 85.9

Component Analysis. We conducted ablation studies on OVAMTSeg, and the results are
presented in Table 8. When the model operates without any adaptive prompt, text encoder extension,
and replaces the attention-based multi-modal interaction with a simple concatenation sum, its
performance across various metrics is notably subpar. The introduction of adaptive prompt learning
significantly enhances the model’s performance, particularly in the context of unseen classes during
one-shot segmentation. Subsequently, the text encoder extension and multi-modal interaction
components are gradually incorporated into the framework. This incremental integration yields
performance improvements across various tasks during inference. These results underscore the
critical contributions of each component. Adaptive prompt learning facilitates OVAMTSeg in
capturing category-sensitive characteristics, while the text encoder extension aids in effectively
capturing textual features. Additionally, the multi-modal interaction component plays a pivotal role
in enhancing the cross-modal alignment of visual and text features.

Table 8. Ablation studies were conducted to analyze the effectiveness of the proposed modules.
Referring Expression Segmentation performance on PhraseCut+. Zero-shot segmentation
performance on Pascal-VOC, and one-shot performance on Pascal-5i.

Adaptive  Text Encoder = Multimodal Referring Zero-Shot One-Shot
Prompt Extension Interaction Expression
mloU AP mloUs mloUsx  mloU AP
X X X 43.6 72.8 23.1 25.3 60.2 78.1
v X X 45.9 77.6 25.9 48.8 63.7 83.5
v v X 46.6 78.3 26.8 49.9 64.6 84.3
v v v 47.5 80.4 28.3 51.6 65.9 86.6

4.6. Qualitative Results

Figure 2 presents qualitative results, highlighting the notable differences in prediction accuracy
between OVAMTSeg and CLIPSeg for identical text prompts. For example, in the second image
where the text prompt is "glass," OVAMTSeg’s predictions exhibit precise delineation of the two
glasses, accurately capturing their outlines. In contrast, CLIPSeg’s predictions result in a less refined
separation of the glasses” shapes. Similarly, when the text prompt is "bottle," OVAMTSeg correctly
identifies and predicts two small bottles, demonstrating its ability to discern subtle distinctions.
However, CLIPSeg’s predictions in this scenario are less accurate, as it erroneously identifies both
the wine glass and the bottle. Despite these successes, certain challenges persist. In the second image,
where the text indicates "fork," both OVAMTSeg and CLIPSeg incorrectly predict the knife to be a
fork, in addition to accurately predicting the strengths and limitations of both OVAMTSeg and
CLIPSeg in their responses to specific text prompts.the presence of an actual fork. These visual
comparisons underscore the strengths and limitations of both OVAMTSeg and CLIPSeg in their
responses to specific text prompt.
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Figure 2. Qualitative results of the multi-task open vocabulary segmentation. We compare the
segmentation results of the proposed OVAMTSeg and CLIPSeg.

5. Conclusions

In this paper, we have presented OVAMTSeg, a universal framework designed to excel in
multitask open-vocabulary segmentation. Our investigation delved into a novel text prompt method,
showcasing competitive performance across a spectrum of tasks, including referring expression,
zero-shot, and one-shot image segmentation. Furthermore, we have enhanced the text encoder to
bolster its semantic representation capabilities. Additionally, we introduced a multi-modal
interaction module that dynamically adjusts the correlation between modalities. This adaptation
enables more flexible fusion of textual and image features across diverse tasks and datasets. Our
contributions stand as a testament to the potential of open-vocabulary and multitask segmentation.
We are convinced that our work not only provides valuable insights but also outlines a promising
direction for future research in this dynamic field.

The research results indicate that the image size should be around 350x350 pixels, as going
significantly larger or smaller can impact experimental accuracy negatively. In addition, our
experiments are confined to a few benchmarks. In future studies, additional modalities like sound
and touch could be integrated. Second, we will attempt to improve the model to accommodate inputs
of any image size.
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