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Abstract: Open-vocabulary learning has recently gained prominence as a means to enable image segmentation 

for arbitrary categories based on textual descriptions. This advancement has extended the applicability of 

segmentation systems to a broader range of generally purpose scenarios. However, current methods often 

revolve around specialized architectures and parameters tailored to specific segmentation tasks, resulting in a 

fragmented landscape of segmentation models. In response to these challenges, we introduce OVAMTSeg, a 

versatile framework designed for Open-Vocabulary and Multitask Image Segmentation. OVAMTSeg harnesses 

adaptive prompt learning to empower the model to capture category-sensitive concepts, enhancing its 

robustness across diverse multi-task and scenario contexts. Text prompts are employed to effectively capture 

semantic and contextual features of the text, while cross-attention and cross-modal interactions enable the 

fusion of image and text features. Furthermore, a transformer-based decoder is incorporated for dense 

prediction. Extensive experimental results underscore the effectiveness of OVAMTSeg, showcasing its state-

of-the-art performance and superior generalization capabilities across three segmentation tasks. Notable 

achievements include a 47.5 mIoU in referring expression segmentation, 51.6 mIoU on Pascal-VOC with four 

unseen classes, 46.6 mIoU on Pascal-Context in zero-shot segmentation, 65.9 mIoU on Pascal-5i, and 35.7 mIoU 

on COCO-20i datasets for one-shot segmentation. 
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1. Introduction 

Image segmentation represents a deeply explored and pivotal domain within the field of 

computer vision. Its primary objective is the simultaneous categorization and grouping of pixels 

belonging to distinct objects within an image. Recent strides in image segmentation owe their success 

largely to the availability of expansive dataset [1–3], meticulously annotated to include pixel-level 

masks and object category labels. However, these annotations, although invaluable, come at a 

significant cost in terms of time and labor. Consequently, the predefined categories within current 

segmentation tasks remain restricted in scope, far removed from the vast and diverse lexicon that 

humans employ to describe the complexities of the real world. Such limitations in the learning 

objectives of existing segmentation systems impose a substantial impediment to scalability, 

particularly when attempting to accommodate richer and more encompassing semantic nuances.  

To address the inherent constraints of predefined categories and unlock the potential for 

handling custom-defined classes beyond the confines of training data, the paradigm of open-

vocabulary learning has gained prominence. Open-vocabulary learning leverages the power of large-

scale visual-language pre-training models, exemplified by prominent models like CLIP[4] and 

ALIGN[5], to compute semantic similarity between visual concepts and textual descriptions. 

Notably, a burgeoning body of research in segmentation based open-vocabulary studies[6,7] has 

emerged with the goal of devising task-specific architectures and parameters tailored to single 

segmentation tasks. For instance, ZSSeg[6] harnesses the capabilities of off-the-shelf pre-trained CLIP 
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models and demonstrates competitive performance in open-vocabulary semantic segmentation. 

However, when extending these methods to a broader spectrum of segmentation scenarios, they 

exhibit significant limitations. Firstly, a unified model cannot be seamlessly applied to address 

multiple segmentation tasks, necessitating retraining and the deployment of numerous custom 

models for diverse tasks. Additionally, while CLIPSeg [8] successfully handles multiple segmentation 

tasks within a compact framework, its reliance on fixed-format text prompts (e.g., "photos of...") may 

impose restrictions on the generalization of human language understanding in practical applications. 

Moreover, it lacks the adaptability to dynamically adjust the modality correlation degree for different 

tasks and data, and it is not inherently designed for open-vocabulary tasks.  

In response to the challenges outlined above, we propose OVAMTSeg, a framework tailored for 

open-vocabulary and multitask image segmentation. OVAMTSeg, designed with precision and 

versatility in mind, is driven by two primary objectives:  

(1) Multitasking: OVAMTSeg seamlessly adapts to a spectrum of tasks, encompassing referring 

expression segmentation, zero-shot, and one-shot image segmentation.  

(2) Open-Vocabulary: OVAMTSeg exhibits the capacity to generalize across a wide array of 

segmentation categories, embracing the flexibility to accommodate arbitrary categories. 

OVAMTSeg unfolds as a two-stage segmentation paradigm. The initial stage entails the 

extraction of universal mask proposals, while the subsequent stage is dedicated to the precise 

segmentation of these masks. Crucially, OVAMTSeg operates as a unified framework, cultivating a 

profound understanding of both textual and visual features for segmentation tasks, driven by text 

and image prompts. An adaptive prompt learning mechanism is introduced to encode category-

specific concepts into the textual abstraction, endowing OVAMTSeg with the versatility to tackle 

diverse segmentation tasks spanning arbitrary categories, all within a single, unified model.  

To further elevate its performance, OVAMTSeg augments the text encoder and integrates a 

multimodal interaction module. This strategic enhancement facilitates the dynamic adjustment of 

modality correlations, enabling a more adaptable fusion of text and image features across distinct 

tasks and datasets.  

In summary, OVAMTSeg emerges as a task-flexible, category agnostic, and performance-driven 

framework. The following concisely lists our contributions:  

• We introduce OVAMTSeg, a universal open-vocabulary framework renowned for its capacity 

to efficiently segment images based on arbitrary text or image prompts. OVAMTSeg effectively 

addresses the intricate challenges posed by zero-shot, one-shot, and referring expression 

segmentation tasks.  

• •Adaptive prompt learning empowers OVAMTSeg to explicitly encode category-specific 

information into a compact textual abstraction, facilitating the model’s adeptness in generalizing 

to diverse textual descriptions. Additionally, we enhance the text encoder and introduce a 

multimodal interaction module to optimize cross-model fusion.  

• Our model’s efficiency and effectiveness are meticulously demonstrated through 

comprehensive evaluations across various benchmark datasets. Extensive experimental results 

conclusively establish that our proposed model surpasses current standards by a substantial 

margin, rendering it a highly viable choice for multitask deployment.  

2. Related Work  

2.1. Open Vocabulary Segmentation  

In recent years, deep learning techniques [9–14] have advanced image segmentation [15–20], 

especially in open-vocabulary segmentation, addressing unseen categories. Research divides into 

two main areas: mapping visual features to semantics and cross-modal alignment with pre-trained 

models. SPNet [7] uses a unique mapping strategy to project visual features onto a fixed semantic 

word coding matrix, facilitating the prediction of category probability distributions. ZS3Net [3] 

extends SPNet by mapping semantic space to visual space, generating pixel-level features for 

previously unseen categories and supervising the visual segmentation model. On the other hand, 
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cross-modal alignment utilizes the strong zero-shot abilities of pre-trained cross-modal models like 

CLIP[4] for executing open vocabulary segmentation tasks. LSeg [21] calculates pixel-wise image 

features using a convolutional neural network and aligns them with text embeddings from a pre-

trained text model. These methods leverage cross-modal alignment and pre-trained models to 

innovate open lexical segmentation.  

2.2. Multitask Image Segmentation Architecture 

Multitask image segmentation architecture aims to unify various segmentation tasks, 

eliminating the need for separate training modes. Leading universal segmentation methods like 

MaskFormer [22] treat segmentation as a mask classification problem, excelling in semantic and 

panoptic tasks. CLIPSeg [8] offers adaptability to new tasks using text or image prompts during 

inference, sparing the cost of retraining. This hybrid approach accommodates referring expression, 

zero-shot, and one-shot segmentation, informing our multitask segmentation model.  

2.3. Prompt Learning 

Prompt learning, originally a prominent concept in natural language processing [22–24], has 

gained widespread recognition in vision and visual language models [6,25]. CoOp [25] presents 

ongoing immediate enhancement of subsequent data to synchronize with pre-trained visual 

language models. DenseCLIP [6] fine-tunes the pre-trained text encoder by employing distinct 

prompt templates for functions like detection and segmentation, ensuring precise alignment of text 

and visual features. MAPLE [26] argues that prompts should be applied in all modes or branches to 

achieve optimal performance, deviating from the conventional practice of applying prompts in only 

one mode.  

In the context of open-vocabulary segmentation tasks, prompt templates are meticulously 

crafted based on provided category labels and subsequently transformed into text embeddings. These 

embeddings are then deployed for alignment with the representations of unseen classes, facilitating 

the achievement of remarkable results.  

3. Methods 

Our proposed framework is centered on a unified open-vocabulary segmentation pardigm 

aimed at optimizing an all-encompassing model to excel in referring expression, one-shot, and zero-

shot segmentation tasks spanning arbitrary categories. At its core, this framework is founded upon 

the CLIP model, serving as the foundational backbone as depicted in Figure 1. To enhance its 

capabilities, we have made significant improvements to both the text prompt and text encoder. 

Moreover, we have incorporated an efficient multi-modal interaction module for seamless fusion of 

image and text features. Additionally, we employ a compact and parametrically efficient transformer 

decoder to extend the model’s functionality. We establish a connection between the decoder and the 

CLIP encoder, inspired by the U-Net network structure[27]. Activations at specific layers S are 

extracted from the visual encoder and then mapped onto the token embedding size D our decoder. 

To guide the decoder in segmenting the target, we employ the FiLM module[28] to modulate the 

input activation. The decoder generates binary segmentation by linearly projecting the output of its 

last transformer block. In our experiments, we use a projection dimension of 64. To leverage the 

semantic information of deep features, we extract the activation information of CLIP in the 

transformer module using S=[3,7,9], resulting in a three-layer decoder. While keeping the improved 

CLIP encoder frozen, we train the decoder to perform the image segmentation task. 
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Figure 1. Architecture of OVAMTSeg: Our enhancement of the static CLIP model(green and blue) 

involves adding a transformer that divides the query image according to either a support image or a 

text prompt. Fusing text and visual features through a multi-modal interaction module(gray). 

3.1. Adaptive Prompt Learning  

Traditional approaches to prompt template design often rely on human linguistic expertise to 

craft smooth and effective semantic templates. While such hand-crafted templates are intuitive and 

easy to comprehend, they come with inherent limitations, demanding substantial manual effort and 

expertise, thus incurring high costs. In response to this challenge, we introduce an innovative 

adaptive prompt learning module. This module transforms diverse classes of text into a set of 

learnable vectors, which are subsequently amalgamated into text embeddings, simplifying the 

training of the model.  

The introduction of adaptive prompts has not only broadened the applicability of our 

OVAMTSeg framework to a wider spectrum of unseen categories but has also significantly enhanced 

performance in open-domain scenarios. Specifically, the adaptive prompt P is generated based on the 

following template, where [𝑥] represents semantic categories or phrases. 

𝑃 = [𝑉]1[𝑉]2⋯[𝑉]𝑀[𝑥][𝑉]𝑀+1⋯[𝑉]𝑁, (1) 

Where each [𝑉]𝑛(𝑛 ∈ {1,2, . . . , 𝑁}) has the same dimension (512 dimensions) as the word 

embedding[𝑥], is a learnable vector, and N is a hyperparameter that specifies the number of context 

tokens. During the training, we are given the semantic categories or phrases involved. These adaptive 

prompts are then embedded in the pre-trained text encoderΨ: 

𝐸 = 𝛹(𝑃([𝑥])). (2) 

𝐸 represents the obtained text embedding vector. Given the high flexibility of the input categories or 

phrases, it can be seamlessly adapted to unseen categories in the Open-Vocabulary segmentation 

task. 

3.2. Feature Extraction Dual-Encoder 

Text Encoder. Text encoders are employed to convert text information into a high dimensional 

vector representation, allowing text and images to be compared in the singular embedded area. The 

text encoder adopts the ResNet-50 structure. Our modifications involve replacing the replacement of 

the global average pooling layer with an attention pooling mechanism, utilizing multi-head QKV 

attention. This enhancement enables the text encoder to effectively capture semantic and contextual 

features of the text, including cross-word associations, which improves its semantic representation 

capacity. The text encoder embeds N  possible labels into an unbroken vector space T ∈ ℝnt×dt , 

resulting in N vectorsT1, T2, . . . , TN ∈ ℝnt×dt , with their arrangement unaffected by the input label 

sequence. The number N is flexible and can vary freely. 
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Image Encoder.  Our image encoder utilizes the Visual Transformer It begins by converting the 

three-dimensional image 𝑥 ∈ ℝH×W×Cinto a two-dimensional sequence 𝑥1 ∈ ℝ𝑁×(𝑝2×𝐶), where(𝐻 ×

𝑊)represents the original image size, C is the channel count, and the image is divided into evenly 

sized (𝑃, 𝑃) blocks. This results in 𝑁 = 𝐻𝑊/𝑃2   blocks, which also function as the actual length of 

input sequence for the Visual Transformer. Next, the patch sequence undergoes transformation into 

1𝐷  tokens {𝑓𝑖
𝑣}𝑖=1

𝑛  through a trainable linear projection. To capture positional information, 

positional embeddings and an additional [𝐶𝐿𝑆]token are introduced. These tokens 𝑓𝑐𝑙𝑠
𝑣 , 𝑓1

𝑣, ⋯,𝑓𝑁
𝑣  are 

then fed into 𝑆𝑁 -layer transformer blocks to model correlations among individual patches, where 

𝑁 = 11. Finally, a linear projection maps 𝑓𝑐𝑙𝑠
𝑣  to the combined space of image and text embedding, 

acting as the overarching representation of the image. 

3.3. Multimodal Interaction Module  

In order to achieve complete interaction between image and text modes, we designed an 

proficient multi-modal for merging image and text embedding. In contract to other well-known 

multi-modal interaction modules, our design of the model enhances the accuracy of image and text 

correspondence more accurately and improves the semantic understanding ability of the model. The 

multi-modal interaction module consists of a multi-head cross-attention layer and four transformer 

modules. Given text and supporting images. The text hidden representation 𝑇 = {𝑡1, 𝑡2, ⋯ , 𝑡𝑠}, 𝑇 ∈

ℝ𝑛𝑡×𝑑𝑡  and image hidden representation 𝐼∗ ∈ ℝ𝑛𝑖×𝑑𝑖  are obtained by the text and image encoder 

respectively. 𝐼∗is the image feature mapping output at the last layer of the image encoder. Since the 

dimension of 𝐼∗is different from the dimension of 𝑇, the hidden representation dimension needs to 

be converted to the same dimension as 𝑇. It can be converted by the following formula: 

𝐼 = 𝐼∗𝑊𝐼 + 𝑏𝐼, (3) 

Where 𝐼 = {𝑖1, 𝑖2, ⋯ 𝑖𝑛𝑖}, 𝐼 ∈ ℝ𝑛𝑖×𝑑𝑖. Then, the text 𝑇 and image 𝐼 are fed into the multi-modal 

interaction module. To fuse image and text representations more effectively, the text representation 

T is used as the query (Q), and the image representation I is used as the key (K) and value (V). This 

allows the model to adjust the correlation between patterns, thereby achieving more flexible text-

image fusion for different tasks and data. Full interaction between image and text representations can 

be achieved by:  

𝐹 = 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑟(𝑀𝐴𝐶(𝑄, 𝐾, 𝑉)), (4) 

Where 𝑀𝐴𝐶(∙) is multi-head cross-attention, which can be achieved in the following ways:  

𝑀𝐴𝐶(𝑄, 𝐾, 𝑉) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 (
𝑄𝐾𝑇

√𝑑
)𝑉. (5) 

where d is the embedding dimension of tokens.  

4. Experimental Results 

4.1. Experimental Settings 

The experiments were conducted using the PyTorch [29] deep learning framework in Python 

3.8, within the Anaconda3 environment, and implemented using the PyCharm compiler. The training 

of our model consisted of 20,000 iterations, utilizing the PhraseCut+ dataset. We employed a batch 

size of 64 and set the image size to 352×352 pixels. During the model’s training process, we employed 

the AdamW optimization algorithm to iteratively optimize the network. The initial learning rate was 

set to 0.001. As the model approaches the global minimum of the loss function, the corresponding 

learning rate gradually decreases towards a minimum point. To achieve this, we utilized the Cosine 

Annealing method for dynamic learning rate adjustment without warm-up. The minimum learning 

rate was set to 0.0001. Simultaneously, we adopted the technique of automatic mixed precision to 

enhance the training process. Our model’s loss function exclusively employed the binary cross-

entropy function. 
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4.2. Datasets  

PhraseCut+ is employed as the primary dataset for our training process. It is an extension of the 

PhraseCut dataset [30], encompassing 345,486 phrase regions meticulously labeled with category 

names, attributes, and object relationships within the images. Each phrase corresponds to a binary 

segmentation mask in the image. PhraseCut+ enhances the original dataset by introducing visual 

support samples and negative samples. This augmentation makes it particularly well-suited for 

models that jointly process text and visual inputs. The dataset extends the phrase regions using 

automatically learned templates and ensures partial object visibility by considering object position 

information during random cropping.  

Pascal-VOC2012 [31]serves as the basis for our zero-shot image segmentation experiments. 

Pascal-VOC2012  is a comprehensive dataset featuring images for training, validation, and testing. 

The validation subset consists of 1,449 images, each accompanied by pixel-level semantic 

segmentation masks used for image segmentation tasks. It includes annotations for 20 object 

categories along with a background category. We follow previous studies’ practice [1,28] by 

partitioning these 20 categories into 16 seen classes and 4 unseen classes ("cow," "motorbike," 

"airplane," and "sofa") to evaluate open word segmentation performance. Additionally, we employ 

the Pascal-5i dataset [21], a one-shot segmentation dataset derived from Pascal-VOC2012, which 

contains 20 object classes evenly distributed across four sections.  

For our zero-shot segmentation experiment, we employ the Pascal-Context dataset [32], which 

consists of 5,105 validation samples, spanning 59 item classes in addition to a background class. 

Similarly to Pascal-VOC, we select four unseen categories ("cow," "motorbike," "sofa," and "cat") from 

the foreground category for evaluation.  

The COCO-20i dataset [33] is commonly used for one-shot segmentation tasks and is derived 

from the COCO dataset. It includes annotations for 80 object classes evenly divided into four sections, 

each containing 20 categories.  

The test results involve selecting the best-performing group from among these four sections. 

These datasets provide a diverse and comprehensive foundation for evaluating the performance of 

our proposed open-vocabulary and multitask image segmentation framework. 

4.3. Evaluation Metrics. 

In our experimental evaluation, we employ several key metrics to assess the performance of our 

model: Mean Intersection over Union (𝑚𝐼𝑜𝑈), Intersection over Union for Foreground (𝐼𝑜𝑈𝐹𝐺), 

Intersection over Union for Binary Segmentation (𝐼𝑜𝑈𝐵𝐼𝑁), and Average Precision (𝐴𝑃).  

Mean Intersection over Union (𝑚𝐼𝑜𝑈): 𝑚𝐼𝑜𝑈 is calculated as the average of the Intersection over 

Union (𝐼𝑜𝑈) values across different foreground object categories. It is defined as:  

𝑚𝐼𝑜𝑈 =
1

𝐶
∑ 𝐼𝑜𝑈𝐶
𝐶
𝐶=1 . (6) 

Where 𝐶 represents the number of object categories, and 𝐼𝑜𝑈𝐶 signifies the Intersection over Union 

for category 𝐶. This metric quantifies the degree of overlap between the predicted segmentation and 

the ground truth labels for each category, providing an overall measure of segmentation quality.  

Intersection over Union for Binary Segmentation (𝐼𝑜𝑈𝐵𝐼𝑁): 𝐼𝑜𝑈𝐵𝐼𝑁 assesses segmentation 

performance without considering specific object classes. It computes the average of the 𝐼𝑜𝑈 values 

for both foreground and background regions across all test images:  

𝐼𝑜𝑈𝐵𝐼𝑁 =
1

2
(𝐼𝑜𝑈𝐹𝐺 + 𝐼𝑜𝑈𝐵𝐺). (7) 

Where 𝐼𝑜𝑈𝐹𝐺  represents the 𝐼𝑜𝑈 for the foreground, and 𝐼𝑜𝑈𝐵𝐺  represents the 𝐼𝑜𝑈 for the 

background. This metric provides insights into the segmentation quality when class information is 

disregarded.  

Average Precision (𝐴𝑃): 𝐴𝑃 is determined by the area beneath the recall-precision curve (ROC). 

The assessment focuses on the model's capacity to differentiate between accurate and inaccurate 

matches, shedding light on its balance between precision and recall. 
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4.4. Comparison to State-of-the-Art Methods 

Referring Expression Segmentation Comparative Experiment. Referring expression 

segmentation associates natural language reference expressions with corresponding objects in the 

image to perform semantic segmentation on the image. We conducted a comprehensive comparison 

of OVAMTSeg with contemporary state-of-the-art open-vocabulary referring expression 

segmentation methods, including MDETR [34], HulaNet [35], Mask-RCNN [35], RMI [35], and 

CLIPSeg [8]. The results are summarized in Table 1. Our approach outperforms the two-stage 

HulaNet approach. However, the 𝑚𝐼𝑜𝑈 of OVAMTSeg is worse than MDETR, which operates at full 

image resolution and received two rounds of fine-tuning on PhraseCut. Notably, OVAMTSeg 

outperforms CLIPSeg with the same training method in all aspects, indicating that our model is 

effective.  

Table 1. Referring Expression Segmentation performance on PhraseCut+. 

Model  mIoU  IoU𝐹𝐺  AP 

MDETR[34] 53.7 - - 

HulaNet[35] 41.3 50.8 - 

Mask-RCNN top[35] 39.4  47.4 - 

RMI[35]  21.1  42.5  -  

CLIPSeg[8]  43.4  54.7  76.7  

Ours  47.5  57.1  80.4  

Zero-Shot Segmentation Comparative Experiment. As shown in Tables 2 and 3, we compare 

the open vocabulary zero-shot segmentation performance on Pascal-VOC and Pascal-Context 

datasets, including SPNet[7], ZS3Net[3], CSRL[6], CaGNet[36], OSR[37], JoEm[38], CLIPSeg[8] . Tab.2 

and Tab.3 can be condened as the following observations: i) OVAMTSeg achieves 51.6% and 46.6% 

mIoU towards unseen classes on Pascal-VOC and Pascal-Context, which goes beyond the best 

method CLIPSeg and OSR by +4.3% and +3.5%, respectively. It suggests that OVAMTSeg can be 

adapted to a wider range of scenarios. ii) Among the baselines, OSR demonstrates promising results 

for the seen classes but encounters challenges with respect to the unseen classes. In comparison, our 

model performs well in unseen classes compared to models trained on Pascal-VOC and Pascal-

Context datasets. This variation in performance can be attributed to the fact that other models are 

trained on datasets with fixed classes, whereas OVAMTSeg is capable of discerning a wider range of 

classes.iii) OVAMTSeg and CLIPSeg perform better on unseen classes compared to seen classes. This 

could be because seen classes pose inherent difficulties in segmentation, while unseen classes tend to 

be relatively larger and easier to segment.  

Table 2. Performance in zero-shot segmentation using Pascal-VOC with 4 unseen classes. 𝑚𝐼𝑜𝑈𝑠 and 

𝑚𝐼𝑜𝑈𝑢 denote the mIoU(%) of classes that are observed and those that are not. The training of our 

model occurs on PhraseCut+ with the Pascal classes removed. The term IN-seen refers to the pre-

training phase of ImageNet where previously unseen classes are eliminated. 

Model  pre-train  mIoU𝑠  mIoU𝑢 

SPNet[7] IN 67.3 21.8 

ZS3Net[3]  IN-seen 66.4 23.2 

CSRL[6] IN-seen 69.8 31.7 

CaGNet[36] IN 69.5 40.2 

OSR[37] IN-seen  75.0 44.1 

JoEm[38]  IN-seen  67.0  33.4 

CLIPSeg[8]  CLIP  20.8  47.3  

Ours  CLIP 28.3        51.6 
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Table 3. Zero-shot segmentation performance on Pascal-Context with 4 unseen classes. Our model is 

trained on PhraseCut+ with the Pascal classes removed. 

Model  pre-train  mIoU𝑠  mIoU𝑢 

SPNet[7] IN 36.3  18.1 

ZS3Net[3]  IN-seen 37.2  24.9 

CSRL[6] IN-seen 39.8   23.9 

CaGNet[36] IN 24.8  18.5 

OSR[37] IN-seen  41.1   43.1 

JoEm[38]  IN-seen  36.9   30.7 

CLIPSeg[8]  CLIP  16.8   40.2 

Ours  CLIP 25.3  46.6 

One-Shot Segmentation Comparative Experiment. Differing from zero-shot segmentation, 

one-shot segmentation requires the understanding of both text prompts and annotated support 

images. To aid in this comprehension, we used the same visual prompts methods as CLIPSeg, 

including object cropping, background blur, and darkening. We evaluate the proposed model on 

PASCAL-5i, COCO-20i, and compare the results with recent methods. To ensure fairness during 

training, classes that overlap with these datasets are removed. As shown in Table 4, OVAMTSeg 

achieves 85.6% AP, outperforming CLIPSeg by 4.3%, respectively. Table 5 presents a performance 

comparison when the model is trained on the COCO-20i dataset. Similarly, we note consistent 

findings where our model performs effectively. OVAMTSeg also attains the highest results with an 

AP of 86.6%. The COCO-20i results show that OVAMTSeg also performs well when trained on other 

datasets than PhraseCut+. Particularly, HSNet and PFENet exhibit superior performance in the 

performance metric of mIoU, which can be attributed to their explicit design for one-shot 

segmentation.  

Table 4. One-shot performance on Pascal-5i. 

Model  vis.backb.  mIoU  IoU𝐵𝐼𝑁  AP 

PPNet[39]  RN50 52.8 69.2 - 

RePRI[40] RN50 59.1  - - 

PFENet[41] RN50 60.8 73.3 - 

HSNet[42] RN50 64.0 76.7 - 

MGNet[43]  RN50  52.1  68.2 - 

HCNet[44]  RN50  62.1  71.7 - 

DRNet[45]  RN50  53.3  72.8  -  

SRPNet[46]  RN50  61.5  -  -  

CLIPSeg[8]  ViT(CLIP)  59.5  75.0 82.3 

Ours  ViT(CLIP) 65.9 77.1 86.8 

Tian et al. [41] replace visual samples in the network with textual label word vectors and employ 

PFENet for zero-shot segmentation, adhering to the protocol of zero-shot segmentation. and utilize 

PFENet for zero-shot segmentation following the one-shot segmentation protocol. In this context, 

OVAMTSeg significantly surpasses their performance scores, as evidenced in Table 6. This indicates 

the challenge in applying one-time oriented techniques such as PFENet to different tasks, in contrast 

to our OVAMTSeg, which exhibits significant generalization potential. 

Table 5. One-shot performance on COCO-20i(OVAMTSeg trained on COCO-20i). 

Model  vis.backb.  mIoU  IoU𝐵𝐼𝑁  AP 

PPNet[39]  RN50 29.0 - - 

RePRI[40] RN50 34.0  - - 

PFENet[41] RN50 35.8 - - 
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HSNet[42] RN50 39.2 68.2 - 

MGNet[43]  RN50  34.9  63.9 - 

HCNet[44]  RN50  40.7        63.4 - 

DRNet[45]  RN50  36.5  60.9  -  

CLIPSeg[8]  ViT(CLIP)  33.2  58.4 40.5 

Ours  ViT(CLIP) 35.7 62.5 46.3 

Table 6. Zero-shot performance on Pascal-5i. Scores were derived by adhering to the one- shot 

segmentation assessment method. 

Model  vis.backb.  mIoU  IoU𝐵𝐼𝑁 AP 

PFENet[41]  VGG16  54.2  -  -  

LSeg[21]  ViT(CLIP)  52.3  67.0  -  

CLIPSeg[8]  ViT(CLIP)  72.4  83.1 93.5 

Ours  ViT(CLIP) 78.5 87.3 93.8 

4.5. Ablation Study 

Adaptive Prompt Analysis. We evaluate various prompt configurations to assess the 

importance of the adaptive prompt in the context of open vocabulary segmentation, as presented in 

Table 7. The static template prompt utilizes the sentence structure "A photo of class," where "class" is 

replaced with specific class names. These class-specific prompts are then encoded into the text 

features. As shown in Table 7, the adaptive prompt yields a noteworthy enhancement of 2.2% mIoU 

and 2.3% AP performance for referring expression segmentation, respectively, when compared to the 

fixed prompt. Similarly, the adaptive prompt leads to 2.6% mIoU performance improvement tover 

the fixed prompt for unseen classes in zero-shot segmentation, and achieves a lead of 2.6% mIoU and 

1.2% AP for one-shot segmentation. This underscores the role of the adaptive prompt in facilitating 

the capture of category-sensitive concepts through learnable parameters.  

Multi-Task Analysis. To assess the benefits of the multitask approach in OVAMTSeg, we 

performed a comparative examination by comparing the model's performance with single-task 

training for individual tasks. As depicted in Table 7, the outcomes under the multitask category are 

derived from a single unified model, while the single-task results are obtained from three separate 

individual models. Our model achieves remarkable results, with a 47.5% 𝑚𝐼𝑜𝑈 and an 80.4% AP on 

referring expression segmentation, surpassing the performance of the one-shot counterparts. 

Furthermore, open-vocabulary zero-shot and one-shot segmentation exhibit consistent and 

impressive results, particularly in terms of performance on unseen classes. OVAMTSeg consistently 

improves metrics across almost all tasks, highlighting the effectiveness of the multi-task training 

approach in enhancing network generalization and surpassing the performance of one-shot models. 

Text Encoders. OVAMTSeg inherently accommodates various text encoders. We illustrate the 

impact of employing different text encoders in Table 7. It is important to highlight that all text 

encoders feature the same transformer-based architecture that purely operates on text prompts. The 

main difference between the encoders is the image encoder that was paired during CLIP pre-training 

(for example, the text encoder denoted by "ViT-B/32" was trained in conjunction with a ViT-B/16 

image encoder) and the size of the embedding dimension. We observed that employing RN50×16 

achieves the highest performance among all text encoders. We hypothesize that this is due to the 

larger embedding dimension provided by this encoder. 

Table 7. Comparison of various task paradigms, prompt strategies, and text encoders. Evaluation 

includes Referring Expression Segmentation performance on PhraseCut+, zero-shot segmentation 

performance on Pascal-VOC, and one-shot performance on Pascal-5i. 

Method Referring 

Expression 

Zero-Shot One-Shot 

mIoU AP mIoUs mIoUu mIoU AP 
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Prompt Fixed 45.4 78.1 57.8 49.0 63.3 85.4 
Adaptive 47.5 80.4 28.3 51.6 65.9 86.6 

Task 

Paradigm 
Single-Task 41.3 - 75.0 44.1 64.0 - 
Multi-Task 47.5 80.4 28.3 51.6 65.9 86.6 

Text 

Encoder 
ViT-B/32(512) 43.6 79.0 25.5 49.2 63.5 85.2 
ViT-B/16 (512) 44.4 79.3 26.0 49.8 64.1 85.4 
RN50 × 4(640) 44.8 79.4 26.2 50.1 64.5 85.6 
RN50 × 16(768) 46.2 79.8 27.4 51.0 65.6 85.9 

Component Analysis. We conducted ablation studies on OVAMTSeg, and the results are 

presented in Table 8. When the model operates without any adaptive prompt, text encoder extension, 

and replaces the attention-based multi-modal interaction with a simple concatenation sum, its 

performance across various metrics is notably subpar. The introduction of adaptive prompt learning 

significantly enhances the model’s performance, particularly in the context of unseen classes during 

one-shot segmentation. Subsequently, the text encoder extension and multi-modal interaction 

components are gradually incorporated into the framework. This incremental integration yields 

performance improvements across various tasks during inference. These results underscore the 

critical contributions of each component. Adaptive prompt learning facilitates OVAMTSeg in 

capturing category-sensitive characteristics, while the text encoder extension aids in effectively 

capturing textual features. Additionally, the multi-modal interaction component plays a pivotal role 

in enhancing the cross-modal alignment of visual and text features.  

Table 8. Ablation studies were conducted to analyze the effectiveness of the proposed modules. 

Referring Expression Segmentation performance on PhraseCut+. Zero-shot segmentation 

performance on Pascal-VOC, and one-shot performance on Pascal-5i. 

Adaptive 

Prompt 

Text Encoder 

Extension 

Multimodal 

Interaction 

Referring 

Expression 

Zero-Shot One-Shot 

mIoU AP mIoUs mIoUu mIoU AP 

✗ ✗ ✗ 43.6 72.8 23.1 25.3 60.2 78.1 

✓ ✗ ✗ 45.9 77.6 25.9 48.8 63.7 83.5 

✓ ✓ ✗ 46.6 78.3 26.8 49.9 64.6 84.3 

✓ ✓ ✓ 47.5 80.4 28.3 51.6 65.9 86.6 

4.6. Qualitative Results  

Figure 2 presents qualitative results, highlighting the notable differences in prediction accuracy 

between OVAMTSeg and CLIPSeg for identical text prompts. For example, in the second image 

where the text prompt is "glass," OVAMTSeg’s predictions exhibit precise delineation of the two 

glasses, accurately capturing their outlines. In contrast, CLIPSeg’s predictions result in a less refined 

separation of the glasses’ shapes. Similarly, when the text prompt is "bottle," OVAMTSeg correctly 

identifies and predicts two small bottles, demonstrating its ability to discern subtle distinctions. 

However, CLIPSeg’s predictions in this scenario are less accurate, as it erroneously identifies both 

the wine glass and the bottle. Despite these successes, certain challenges persist. In the second image, 

where the text indicates "fork," both OVAMTSeg and CLIPSeg incorrectly predict the knife to be a 

fork, in addition to accurately predicting the strengths and limitations of both OVAMTSeg and 

CLIPSeg in their responses to specific text prompts.the presence of an actual fork. These visual 

comparisons underscore the strengths and limitations of both OVAMTSeg and CLIPSeg in their 

responses to specific text prompt. 
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Figure 2. Qualitative results of the multi-task open vocabulary segmentation. We compare the 

segmentation results of the proposed OVAMTSeg and CLIPSeg. 

5. Conclusions  

In this paper, we have presented OVAMTSeg, a universal framework designed to excel in 

multitask open-vocabulary segmentation. Our investigation delved into a novel text prompt method, 

showcasing competitive performance across a spectrum of tasks, including referring expression, 

zero-shot, and one-shot image segmentation. Furthermore, we have enhanced the text encoder to 

bolster its semantic representation capabilities. Additionally, we introduced a multi-modal 

interaction module that dynamically adjusts the correlation between modalities. This adaptation 

enables more flexible fusion of textual and image features across diverse tasks and datasets. Our 

contributions stand as a testament to the potential of open-vocabulary and multitask segmentation. 

We are convinced that our work not only provides valuable insights but also outlines a promising 

direction for future research in this dynamic field. 

The research results indicate that the image size should be around 350×350 pixels, as going 

significantly larger or smaller can impact experimental accuracy negatively. In addition, our 

experiments are confined to a few benchmarks. In future studies, additional modalities like sound 

and touch could be integrated. Second, we will attempt to improve the model to accommodate inputs 

of any image size. 
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