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Abstract: The transportation industry is rapidly transitioning from Internal Combustion Engine 
(ICE) based vehicles to Electric Vehicles (EVs) to promote clean energy. However, large-scale 
adoption of EVs can compromise the reliability of the power grids by introducing large uncertainty 
in the demand. Demand response with a controlled charge scheduling strategy for EVs can mitigate 
such issues. In this paper, a deep reinforcement learning- based charge scheduling strategy is 
developed for individual EVs by considering user’s dynamic driving behavior and charging 
preferences. The temporal dynamics of user’s anxiety about charging the EV battery is rigorously 
addressed. A dynamic weight allocation technique is applied to continuously tune user’s priority 
for charging and cost-saving with respect to charging duration. The sequential charging control 
problem is formulated as a Markov decision process, and an episodic approach to the deep 
deterministic policy gradient (DDPG) algorithm with target policy smoothing and delayed policy 
update techniques is applied to develop the optimal charge scheduling strategy. A real-world 
dataset that captures user’s driving behavior, such as arrival time, departure time, and charging 
duration, is utilized in this study. The extensive simulation results reveal the effectiveness of the 
proposed algorithm in minimizing energy cost while satisfying user’s charging requirements. 

Keywords: deep deterministic policy gradient (DDPG); deep reinforcement learning; EV charge 
scheduling; Markov decision process (MDP) 

 

I. Introduction 

High renewable energy penetration and transportation electrification are the keys to building a 
secure and sustainable energy infrastructure due to their potential for reducing carbon emission and 
dependency on fossil fuels [1]. Many countries are adopting this potential as an initiative to promote 
their fuel efficiency and emission standards. For instance, the United States has outlined its target to 
increase the national Electric Vehicles (EV) sales shares to 50% by 2030 [2]. This is also reflected in the 
increasing trend of global sales of EVs in recent years. International Energy Agency (IEA) reported 
that there was a 41% growth in new EV registrations in the year 2020 alone, undeterred by the 
pandemic-related worldwide downturn in car sales [3]. Although EVs offer numerous environmental 
benefits, large-scale adoption of EVs may pose severe impacts on power grids due to the large and 
undesirable peaks in the load [4]. Enhancing the generation capacity and network restructuring can 
be a proactive measure. However, this solution requires substantial infrastructure investments and 
is a time-consuming approach that is unable to cope with the rapid growth of EV adoption in the 
transportation industry. Another feasible yet cost-effective solution is adopting the Demand 
Response (DR) programs that enable EV users to coordinate their charging schedules in response to 
time-varying electricity prices [5]. With a readily available Vehicle-to-Grid (V2G) technology [6], EV 
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users can also incentivize themselves by supplying energy to the grid and thus can contribute to the 
supply/demand balance for the grid. 

Time-varying electricity pricing is a widely adopted DR strategy that helps enhance grid 
reliability and reduce high generation cost caused by peak demand. Contrary to traditional flat-rate 
pricing, where customers are charged at the same rate throughout the day, time-varying pricing 
(TVP) allows the utilities to offer variable rates to their customers at different times of the day 
depending on total demand, supply, and other critical factors. TVP incentivizes the users to shift their 
demand from peak hours to off-peak hours and thus, reduce their energy costs as well as reduce the 
unwanted spikes in the load curve. Utilities offer a variety of TVP programs to their customers, 
among which Time-of-use (TOU) [7] is the most common pricing program, where the day is divided 
into two or three consecutive blocks of hours based on peak, off-peak, and mid-peak periods. In TOU, 
the prices vary from one block to another. Therefore, it is less reflective of the volatile nature of the 
wholesale electricity prices. In critical-peak-pricing (CPP), utilities use their load forecasting 
capability and identify a ‘critical event’ when the price increases dramatically due to deterrent system 
conditions or weather. Usually, these events are identified and communicated to the users at least a 
day in advance and are only applied up to 18 times per calendar year [8]. Both TOU and CPP are 
known in advance, and hence, customers can plan their energy usage accordingly. Another pricing 
program that closely follows the wholesale energy market is Real-time-pricing (RTP) [9]. In RTP, 
prices vary hourly (sometimes sub-hourly) to reflect the real-time fluctuations in the wholesale 
market due to variations in demand, supply, generator failure, etc. Although RTP is yet to be adopted 
by many utility companies, pilot projects run by several utilities, such as Commonwealth Edison 
Company (ComEd) and Georgia Power, have proven its economical and practical viability for 
efficient energy management [10,11]. RTP can be cleared day-ahead or every hour. EV users can 
respond to the hourly variable pricing signal by navigating their charging demand. Therefore, this 
paper considers that an hourly day-ahead pricing signal is available to the EV user. Additionally, we 
consider the grid to be bi-directional with net metering arrangements [12] to facilitate V2G technology. 
V2G allows the users to inject surplus energy of their EV batteries into the grid. Net metering is 
required to realize V2G as it enables bidirectional trading of energy between EV users and the grid 
[13]. 

An efficient charge scheduling strategy should meet the requirements of both EV users and 
utility companies. From the EV users’ perspective, the requirements consist of meeting their charging 
demand and meanwhile minimizing charging costs. From the utility’s perspective, the 
requirements include ‘peak shaving’ during peak hours and ‘valley filling’ during off-peak hours to 
facilitate the operation and increase the reliability of the grid. Therefore, an appropriate DR program 
that can meet these requirements is necessary to accommodate the large-scale adoption of EVs. By 
implementing an effective charging control strategy, EV users can benefit themselves and help the 
grid by responding to the pricing signal. On the flip side of the coin, the uncertainties pertaining to 
the user’s driving behavior, i.e., random arrival and departure times of EVs to and from a charging 
station, need to be addressed rigorously to develop a charging control scheme. Moreover, users’ 
sporadic charging preferences and time-varying energy prices of the utilities also need to be 
accounted for by an effective solution. 

Reinforcement Learning (RL) has been used in many studies as the solution method for optimal 
charge scheduling of EVs. In general, RL helps to learn the policy of selecting the best action in a given 
environment. An on-policy RL algorithm such as state-action-reward-state-action (SARSA) [14] is 
used in [15] where discrete state and action spaces are considered. However, a discrete state space 
limits the actual representation of a real-world charging environment. Reference [16] uses Hyperopia 
SARSA (HSA), where a linear function approximator is used to evaluate the charging actions. 
Another deficiency of on-policy RL is that the same policy is used for decision-making and 
evaluation, which potentially limits exploration of the RL agent. To overcome this, off-policy RL 
leverages experiences generated by random policies facilitating better simulations of real-world 
scenarios. Off-policy RL, such as Q-learning [17], is used to derive optimal charging strategy for EVs, 
focusing on various objectives, such as minimizing the charging cost, maximizing EV user’s revenue, 
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satisfying charging demand, and balancing the grid load [18–21]. However, Q-learning inherently 
suffers in real-world scenarios where the state and action spaces are large and continuous. 
Moreover, both SARSA and Q-learning suffer from limited approximation capability in the case of 
policy evaluation, such as action-value estimation. 

Recent successes of Deep Reinforcement Learning (DRL) [22,23] have inspired many researchers 
to address the problem of EV charge scheduling using DRL. Reference [24] applies Deep Q-Learning 
(DQN) to minimize electricity bill and user’s range anxiety. User’s range anxiety, defined as the 
difference between the current and the desired battery energy, is applied at the departure time. 
Reference [25] uses Kernel Density Estimation (KDE) to approximate variables related to charger 
usage patterns, such as arrival time, charging duration, and charging amount from real-world data. 
However, in both [24] and [25], the EV charge scheduling problem is solved using DQN considering 
discrete charging rates as action space. DQN can only handle discrete action space and, therefore, are 
not suitable for the problems where continuous action space is required. Authors in [26] address this 
issue by formulating the problem as a Constrained Markov Decision Process (CMDP) and derive a 
continuous charge scheduling strategy using Constrained Policy Optimization (CPO) [27]. User’s 
range anxiety is handled using the constraints and a cost function. However, this work disregards 
user’s anxiety during the charging periods, which is an essential factor when determining an optimal 
charging strategy. Reference [28] uses continuous soft actor-critic (SAC) algorithm to learn an optimal 
charging control strategy. The reward function includes three types of sensitivity coefficients based 
on user’s preference that requires manual tuning. Reference [29] also considers continuous charging 
actions and proposes a Control Deep Deterministic Policy Gradient (CDDPG) algorithm to learn the 
optimal charging policy. This algorithm uses two replay memories: one to store all the experiences 
generated before the end of an episode and the other to store only the last experience of an episode. 
Experiences are then sampled from both memories to train the model. While the performance is 
favorable, sampling from two different replay memories introduces biased updates that consequently 
affect the learning performance. To ensure that the unbiased sampling property of RL is maintained, 
the importance-sampling technique can be implemented [30]. 

Despite the promising outcomes, the preceding methods lack a few critical aspects when 
determining the charge scheduling strategy. Firstly, the influence of the remaining charging duration 
is ignored in the literature when defining user’s anxiety. More specifically, the variation of user’s 
anxiety with time is not addressed. In our work, we address this variation by defining an anxiety 
function not only in terms of uncharged battery energy but also in terms of the remaining charging 
duration. Secondly, the previous works used manually tuned constant coefficients to represent user’s 
preference for meeting energy demand over minimizing energy cost. In a practical scenario, a user 
is naturally more inclined to minimize energy cost during the first few hours of the charging duration. 
As it approaches the departure time, the importance of charging the battery to satisfy the energy 
requirement increases when compared to minimizing cost. Using constant coefficients cannot 
account for this scenario effectively. Thus, we introduce a dynamic weight allocation technique to 
address this issue and avoid the need for manual tuning of coefficients. Thirdly, the randomness of 
user’s driving behavior, such as arrival time, departure time, etc., was modeled by using a normal 
distribution in most studies. However, the distribution was defined based on assumptions that may 
fail to reflect the unpredictability in the real-world. In this paper, a real-world dataset is utilized to 
extract key information, such as arrival time, departure time, charging duration, and battery SOC. 

In this work, the anxiety is applied during the entire time horizon of the charging duration to 
address the influence of time on user’s anxiety. 2) A dynamic weight allocation technique is used to 
implement the time-varying importance of the components of the reward function. Upon arrival, the 
weight of energy cost is the highest, and the weight of the anxiety components is the lowest. In sharp 
contrast, at departure, the weight of the energy cost is the lowest, and the weight of the anxiety 
components is the highest. 3) This paper proposes an episodic approach to the widely used Deep 
Deterministic Policy Gradient (DDPG) algorithm [31], in which each episode corresponds to the 
complete charging duration between the arrival and departure times. Moreover, this paper 
incorporates target policy smoothing and delayed policy update techniques from the Twin Delayed 
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DDPG (TD3) algorithm [32] to address the inherent instability and overfitting problems of the 
DDPG algorithm. 4) Finally, a real-world dataset is used to derive a realistic model for user's random 
driving behavior, such as arrival time, departure time, and battery SOC. The performance is 
compared with two state-of-the-art DRL algorithms: DDPG and TD3. The simulation results exhibit 
the effectiveness of the proposed algorithm in terms of energy cost minimization and energy 
demand satisfaction. 

The objective of this paper is to develop a charge scheduling strategy that ensures the maximum 
battery SOC by the time of departure, while minimizing the energy costs through a controlled and 
dynamic decision-making technique. To obtain the optimal strategy for EV charging control, we 
propose a model-free DRL-based algorithm. The main contributions of this article are as follows. 1) 
User’s anxiety is redefined in terms of the remaining energy and the remaining charging duration. 
More specifically, user’s anxiety consists of two components: a) the difference between the present 
battery SOC and the target SOC, and b) the ratio of the difference between the present battery SOC 
and the target SOC to the remaining charging duration. Unlike the previously mentioned studies, in 
which the anxiety was applied only on the departure time. 

The rest of the paper is structured as follows: Section II discusses the system model and a 
detailed MDP formulation. In Section III, a brief background of DRL followed by the proposed 
algorithm is presented. In Section IV, performance evaluation of the proposed algorithm along with 
detailed analysis of the results is provided. Finally, Section V concludes this paper.  

II. System Model and Problem Formulation 

A. EV Charge Scheduling Model 

An overall system model is presented in Figure 1. This paper focuses on deriving an EV 
charging control strategy for home energy management, i.e., we only consider the charging period 
when the EV is parked at home. Figure 1a illustrates the information and power flow between the 
components of the system. Day-ahead pricing signal and user’s driving data, such as arrival time 
and departure time, are stored and processed by the bidirectional home charge controller. The 
vehicle’s battery SOC is received by the charge controller in real-time. The gray dotted lines 
represent the unidirectional information flow that is received and processed by the charge 
controller. This information potentially serves as the state variables of the MDP, which is 
described in a later subsection. Based on the information, the charge controller makes charging or 
discharging decisions for the EV. The solid lines represent the power flow. Figure 1b illustrates the 
sequential charging and discharging setup for one specific charging period. The total charging period 
is essentially the hourly time difference between the arrival time and the next departure time of an 
EV. We consider hourly charging time intervals or time steps and define the remaining charging 
duration ∆t according to the following equation: ∆𝑡 =  𝑡ௗ − 𝑡, for 𝑡௔ ≤ 𝑡 <  𝑡ௗ,                            (1) 

in which 𝑡௔  and 𝑡ௗ  denote the arrive time and departure time, respectively. Specifically, the 
remaining charging duration ∆t equals the total charging period when the EV is connected to the 
charger or at arrival time ta. Further, ∆t decreases by one hour at each time step until the charging 
period ends, and ∆t reduces to 1 at the last hour before the departure time 𝑡ௗ. Since hourly time 
steps are considered, ∆t is a discrete variable whose value can range from 1 to 24 hours. In real-
world scenarios, ∆t typically ranges from 1 to 14 hours based on the realistic vehicle data set 
used in this study [34]. 
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(a) (b) 

Figure 1. (a) System model and (b) Sequential charging/discharging set up for one charging period. 

Each EV has two charging modes: G2V and V2G. The battery dynamics are described as 
follows: 𝐸௧ାଵ = 𝐸௧ ൅ 𝜂𝑎௧, for 𝐸 ∈ ሺ0,𝐶ሿ,                                                (2) 

in which 𝐸௧ is the stored energy of the EV battery, 𝜂 is the charging/discharging efficiency factor of 
the EV battery, and 𝑎௧ is the charging/discharging power determined by the control algorithm at 
time t. Specifically, 𝑎௧ is positive and 𝜂 is less than 1 when the battery is being charged, and at is 
negative and 𝜂 is greater than 1 for battery discharging. Further, 𝐸௧ is limited by the battery capacity 
C. Battery SOC, 𝑠𝑜𝑐௧ at time t is the ratio of the current stored battery energy 𝐸௧  and the rated 
capacity of the battery C [33], which can be expressed as follows: 𝑠𝑜𝑐௧ = ா೟஼ .                                 (3) 

Then, based on (2), the dynamics in the state of charge can be described by the following equation: 

𝑠𝑜𝑐௧ାଵ = 𝑠𝑜𝑐௧ ൅ 𝜂 ா೟஼ , for 𝑠𝑜𝑐 ∈ ሺ0, 1ሿ.                                                   (4) 

At each time step, a bill is generated when the battery is charged, i.e., when 𝑎௧ is positive, and 
revenue is generated when discharged, i.e., when 𝑎௧ is negative. We consider this scenario based on 
the net metering arrangement where a bi- directional meter measures both the incoming and 
outgoing electricity for G2V and V2G modes, respectively. We denote this bill/revenue for 
charging/discharging energy at time t as 𝜉௧ and calculate it using the equation below: 𝜉௧ = 𝑝௧𝑎௧,                                 (5) 
in which 𝑝௧ denotes the energy price at time t. User’s anxiety due to uncharged battery energy at 
each time step is defined by the absolute deficit in the present SOC from the user’s target SOC. 
Therefore, user’s charge anxiety 𝜙௧ is defined as follows: 𝜙௧ = ൫𝑠𝑜𝑐௧௔௥௚௘௧ − 𝑠𝑜𝑐௧൯ା.           (6) 

Intuitively, user’s anxiety is proportional to the difference between the target SOC and the 
current SOC. However, we notice that user’s anxiety also varies with time, in the sense that it is 
inversely proportional to the remaining charging duration ∆t. This is because the user tends to be 
more anxious when the remaining charging duration is less compared to when the remaining 
charging duration is more even at the same SOC level. With this insight, we define this anxiety as 
user’s time anxiety 𝜓௧ as follows: 

𝜓௧ = ൫௦௢௖೟ೌೝ೒೐೟ି௦௢௖೟൯శ∆௧ .              (7) 

The charging control model aims to minimize individual EV user’s electricity cost, charge 
anxiety, and time anxiety. However, the randomness of critical parameters, such as user’s driving 
and charging behavior, user’s charging preference, and time-varying prices, prevent us from 
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applying a direct optimization rule to our model. In the following subsection, we develop an MDP-
based formulation for the proposed charging control model to address this issue. 

B. MDP Formulation 

The problem of EV charge scheduling can be viewed as a sequential decision-making problem 
where the environment is partially random, and MDP provides effective mathematical modeling for 
such problems. We formulate the model from the previous subsection as a finite MDP with discrete 
time steps. Specifically, at each time step, the charge controller observes the environment state 𝑠௧, 
takes an action 𝑎௧ that controls the charging/discharging power, receives a reward 𝑟௧ for that action 
from the environment, and moves to a new state 𝑠௧ାଵ. This process is repeated until the charging 
period is complete. In this paper, we define the MDP model with 5-tuples {S, A, P, R, γ} where S 
represents the state space of the environment, A represents the continuous action space, P is the state 
transition probability, R is the immediate reward function, and γ is the discount factor. The details about the MDP 
are presented in the following. 

1) State: We include the vehicle’s battery SOC, electricity price, and user's driving behavior 
as the state variables. More specifically, the state of our EV charge scheduling agent at time t is 
defined as 𝑠௧ a 3-tuple state-space represented by the following, 𝑠௧ = ሼ𝑠𝑜𝑐௧, 𝑝௧, ∆𝑡ሽ and 𝑠௧ ∈ 𝑆,                            (8) 

in which 𝑠𝑜𝑐௧ denotes battery SOC at time t, pt denotes per unit price of energy at time t, and ∆t 
denotes the remaining charging duration from time t to departure time 𝑡ௗas described in (1). 
Note that ∆t encapsulates the user’s driving behavior (arrival time and departure time). 

2) Action: The action 𝑎௧ is the charging/discharging power at time t. We define the action as a 
continuous variable for fine-grained control and limit the variable as the following to represent the 
real-world charging scenario. 𝐸௠௔௫ௗ௜௦ ≤ 𝑎௧ ≤ 𝐸௠௔௫௖௛ ,                              (9) 

where 𝐸௠௔௫ௗ௜௦  and 𝐸௠௔௫௖௛  are maximum dischargeable and chargeable energy in one hour, 
respectively (note that 𝐸௠௔௫ௗ௜௦  is negative and 𝐸௠௔௫௖௛  is positive). The action is positive when the 
vehicle is charging or in G2V mode and negative when the vehicle is discharging or in V2G mode. 

3) Transition Probability: The transition probability of an MDP represents the dynamics of an 
environment with randomness pertaining to the environment and the state variables. The transition 
from state 𝑠௧ to 𝑠௧ାଵ is governed by the transition probability 𝑃ሺ𝑠௧ାଵ|𝑠௧,𝑎௧ሻ. For the EV 
charge scheduling problem, the transition probability is influenced by the action 𝑎௧, the battery 
dynamics from (4), charging duration modeled in (1), and the randomness of hourly electricity 
price. Random arrival and departure time and unpredictable charging preference of the user 
affect the charging duration and battery SOC. Therefore, we adopt a model-free approach to solve 
the MDP, where the agent learns the dynamics of the environment by continuously optimizing its 
policy. 

4) Reward: Reward is the immediate response from the environment for the transition from one 
state to another state by executing an action. In this work, we consider user’s energy cost from (5), 
charge anxiety from (6), and time anxiety from (7) to formulate the reward function. The reward 𝑟௧ at time t is defined by the following equation: 𝑟௧ = −൫𝜅௣ሺ∆𝑡ሻ𝜉௧ + 𝜅௖ሺ∆𝑡ሻ𝜙௧ + 𝜅௖ሺ∆𝑡ሻ𝜓௧൯,                     (10) 

where κp and κc are the price sensitivity factor and the charge sensitivity factor, respectively, which 
represent user’s sensitivity towards electricity price, charge anxiety, and time anxiety. Intuitively, a 
large electricity bill and a significant uncharged battery energy should yield the least reward. 
However, in practice, some users are likely to tolerate large uncharged energy to avoid higher 
charging cost. The variations of such preferences can be handled by using the sensitivity factors. 
In contrast to other studies [24,25], where these factors were constant or manually tuned, we propose 
a dynamic weight allocation technique to tune the weights between the components automatically. 
More specifically, we define κp and κc as the following functions of remaining charging duration ∆t, 
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such that their values change with time within the total charging duration without the need for 
manual tuning: 𝜅௣ሺ∆𝑡ሻ = ∆௧೔೙೔∆௧೔೙೔ି∆௧ାଵ                                          (11a) 

 𝜅௖ሺ∆𝑡ሻ = ∆௧೔೙೔∆௧                                                  (11b) 

All components are normalized to ensure the same scale and κp, κc ϵ [1, ∆𝑡௜௡௜], in which ∆𝑡௜௡௜ =𝑡ௗ − 𝑡௔, i.e., the initial charging duration when EV arrives. 
We consider that the user is more sensitive to reducing energy cost during the first half of the 

charging duration and more sensitive to satisfying charging demand during the last half of the 
charging duration. Figure 2 depicts the scenario where both the price and charge sensitivity factors 
vary with time but in opposite directions. Based on the compared values of the sensitivity factors 
in Figure 2, the total charging period can be divided into two time zones: 1) a price-sensitive zone 
and 2) a charge-sensitive zone. In the price-sensitive zone, the price sensitivity factor κp is greater 
than the charge sensitivity factor κc, which represents the case that the user is more sensitive to 
the price of the electricity than the anxiety. As time approaches the departure time, the price-
sensitivity factor decreases, and the charge-sensitivity factor increases. In the charge-sensitive zone, 
the charge-sensitivity factor κc is greater than the price sensitivity factor κp, which represents that case 
that the user is more sensitive to the uncharged battery SOC and anxiety than the price. 

 
Figure 2. Price Sensitivity and Charge Sensitivity Factor for a 12-hour Charging Period. 

5) Objective Function: The charging/discharging action executed under a given state is evaluated 
using the action- value function. The action-value, 𝑄గ(𝑠,𝑎) is the expected total discounted reward, 
starting from a state 𝑠, taking an action 𝑎, and then following a policy 𝜋. The term action-value is 
referred to as Q-value for brevity in the rest of the paper. Q-value is calculated using (12). 𝑄గ(𝑠,𝑎) = 𝔼గሾ∑ 𝛾௞𝑟௧ା௞ାଵ|ஶ௞ୀ଴ 𝑠௧ = 𝑠,𝑎௧ = 𝑎ሿ                   (12) 

where π represents the charging/discharging policy that maps the system state to the action. 𝛾𝜖[0,1] 
denotes the discount factor that balances the importance between the immediate reward and future 
rewards. 𝛾 = 0  represents a myopic policy where only the immediate reward is considered to 
calculate the Q-value, while 𝛾 = 1 represents a most farsighted policy where all the future rewards 
and the immediate reward is of equal importance. 

The objective of the EV charging control problem is to generate the optimal policy π that 
maximizes the Q-value. Therefore, the optimization problem is formulated as 𝑄∗(𝑠,𝑎) = maxగ 𝑄గ(𝑠,𝑎)                           (13) 

in which 𝑄∗(𝑠,𝑎) represents the optimal Q-value. 

III. Proposed Approach 

In this section, we provide a brief discussion on state-of-the-art RL algorithms and their 
suitability for the EV charge scheduling application. The later subsection presents the proposed 
approach and the developed algorithm. 
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A. Preliminaries  

When considering the most suitable RL algorithm for the formulated EV charge scheduling 
problem, the algorithm’s ability to operate on a large and continuous action space is stressed. While 
many of the fundamental RL algorithms are suitable for discrete actions of the agent, DDPG can 
handle applications with large and continuous state and action spaces. DDPG adopts an actor-critic 
setup where the agent concurrently learns the Q-values using the Q-learning method in a critic 
network Q (note that Q was used in the previous section to denote Q-values and is reused here to 
denote the critic network in accordance with literatures) and a policy by using the policy gradient 
methods, i.e., SARSA in an actor network µ. Additionally, DDPG utilizes a target critic network to 
calculate the loss function and a target policy network to calculate an action that maximizes the Q-
value of the target critic network. The loss functions used in DDPG are given below: 𝐿𝒄𝒓𝒊𝒕𝒊𝒄 = 𝔼 ൤ቀ𝑅 + 𝛾𝑄′൫𝑠௧ାଵ,𝜇′(𝑠௧ାଵ)൯ − 𝑄(𝑠௧ ,𝑎௧)ቁ𝟐൨                         (14a) 𝐿௔௖௧௢௥ = 𝔼ൣ𝑄൫𝑠௧ , 𝜇(𝑠௧)൯൧,                                                 (14b) 

in which Q′ and µ′ are the target critic and the target actor networks, respectively. Also, DDPG 
addresses the issue of having highly correlated data by using replay memory and the issue of moving 
target by implementing a soft update of the target weights. In this article, we adopt the principle of 
DDPG algorithm, with a few key improvements that are presented in the next subsection.  

B. The proposed algorithm 

An episodic update is employed in the proposed algorithm. Conventionally, in DDPG, all the 
network parameters are updated at each step. Therefore, each transition of an episode occurs by 
following a newer policy. Specifically, if an episode is of length L, updating at each time step causes 
each transition within that episode to be generated by following L different policies. Consequently, 
each policy corresponds to only one transition that is stored in the replay memory. Note that having 
more examples from a similar policy increases exploration. Hence, in the proposed algorithm, instead 
of updating at each step, we update the network parameters after the completion of an entire episode. 
This approach results in generating more examples by following the same policy. Moreover, this 
helps improve the exploration of the agent because, in this case, the agent is taking actions using the 
same policy at different steps of the episode. 

DDPG uses Temporal Difference updates, where the Q-value of a state is estimated based on 
the projected Q-values of the subsequent states. This generates a residual error that eventually 
accumulates to a large amount as the number of iterations increases. Due to the resulting estimation 
error, the variance in value estimation increases proportionally as the error. Since the actor, critic, and 
target networks are updated simultaneously, the errors due to the high variance result in highly 
divergent behavior. Therefore, a delay is implemented to the policy update to allow the critic network 
to minimize the residual error and to become stable [32]. The delay causes the policy network to 
update less frequently than the critic network. Thus, the policy network uses the Q-values with a 
lower variance, resulting in better convergence. 

In the case of continuous action space, the actions with very close values typically have similar 
Q-values for a given state. If the Q-values are not similar for close action values for a given state, 
then the agent will always be implicitly dictated to pick the action for which the function 
approximator (neural network) returns the highest Q-value and thus may never explore the action 
values that are closer. This eventually leads to an overfitting issue, especially for a deterministic 
policy. To avoid this, we implement target policy smoothing as suggested by Reference [32] by 
adding a small Gaussian perturbation (the term ϵ in Figure 3 and Algorithm 1) around the action so 
that all the actions within this small area would have similar Q-values. The perturbation is limited to 
a very small region (specified by the term c for the truncated Gaussian distribution of ϵ in Figure 3 
and Algorithm 1) around the action. Further, the action is clipped to ensure that it remains within the 
range of valid action values.  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 April 2024                   doi:10.20944/preprints202404.0598.v1



 9 

 

 
Figure 3. Schematic diagram of the proposed algorithm. 

Algorithm 1 Episodic Deep Reinforcement Learning 
Initialize the critic network Q(s, a|θQ) and the actor 
 µ(s|θµ) networks with weights θQ and θµ, resp. 
Initialize target network Q′ and µ′ with weights 
 θQ’← θQ and θµ'← θµ 

Initialize replay buffer D 
for episode = 1, M 
 Receive initial observation state s1 

 for t = 1, …, T 
     if t ≤ policy start steps  
         Select a random action. 
     else 
        Select action at = µ(st|θµ) + ϵ, ϵ ∼ N(0, σ2) 
         Observe reward rt and new state st+1 

        Store transition (st, at, rt, st+1) in D 
 for k = 1, K 
      Sample a random minibatch of N transitions 
         (si, ai, ri, si+1) from D 
     ai ←µ′(si+1|θµ′) + ϵ, ϵ ∼ N(0, σ2,−c, c) 
      yi← ri + γQ′(si+1, ai|θQ′) 
         Update critic by minimizing the loss 

         𝐿 = 1/𝑁∑ ൫𝑦௜ − 𝑄(𝑠௜ ,𝑎௜|𝜃ொ)൯ଶ௜   

         if t mod policy delay 

Update the actor network:         ∇ఏഋ𝐽 ൎ 1/𝑁∑ ∇௔𝑄(𝑠,𝑎|𝜃ொ)௜ |௦೔,ఓ(௦೔)∇ఏഋ𝜇(𝑠|𝜃ఓ)|௦೔   

Update target networks:     𝜃ொᇲ ← 𝜏𝜃ொ + (1 − 𝜏)𝜃ொᇲ  

  𝜃ఓᇲ ← 𝜏𝜃ఓ + (1 − 𝜏)𝜃ఓᇲ  

Algorithm 1 summarizes the implementation of policies with delayed update and target policy 
smoothing. At first, actor, critic, and target networks are initialized with random parameters 𝜃ொ , 𝜃ఓ , 𝜃ொᇲ , and 𝜃ఓᇲ , respectively. The environment is reset at the beginning of each episode, providing an 
initial state. Random actions are chosen during the first few steps to conduct exploration. After that, 
action is selected according to the actor policy and then added with an exploration with random 
perturbation, 𝜇൫𝑠௧|𝜃𝜇൯ + 𝜖, 𝜖�𝑁(0,𝜎ଶ). This action is executed to generate an immediate reward and 
the next state. Such transitions are continuously stored into a replay memory D in a first-in-first-out 
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(FIFO) manner. After each episode, a sample mini batch of transitions is selected randomly to update 
critic networks with the target policy smoothing technique. The actor and target network updates 
are delayed to minimize the variance in the target critic’s estimations. A schematic diagram of the 
proposed algorithm is illustrated in Figure 3. 

One key difference between the proposed algorithm and DDPG together with TD3 is the episodic 
update. In DDPG, the networks are updated at each time step. In TD3, the critic networks are updated 
at each time step, and the actor and target network updates are delayed. Whereas in the proposed 
algorithm, the networks are updated after each episode. This way, each example of an episode is 
generated under the same policy which potentially increases exploration and consequently results in 
better convergence. Additionally, the target policy smoothing and delayed policy update techniques 
are not present in DDPG but in TD3. TD3 also uses two critic networks and two corresponding target 
networks. However, in our proposed algorithm, we only use a single critic network and a 
corresponding target network to optimize the resource requirement. The extensive simulation results 
presented in the next section show that greater control performance can be achieved using the 
proposed algorithm than using DDPG and TD3. 

IV. Performance Evaluation 

In this section, we evaluate the performance of our proposed algorithm through extensive 
simulations. First, the experimental settings that include preprocessing of real data, simulation setup, 
and benchmarks are presented. The following subsection presents a comparison with different 
benchmarks in terms of convergence. After that, the performance of the proposed algorithm is 
evaluated in terms of the cumulative reward over one year. The algorithm is further compared 
with the benchmarks in terms of satisfying user’s energy demand. Finally, the effect of the charging 
control strategy on minimizing electricity cost and satisfying charging demand are demonstrated in 
detail. 

A. Experimental Settings 

1) Real-world Data Preprocessing: Information such as arrival time, departure time, and battery 
SOC are critical for an effective EV charge scheduling strategy. We aim to acquire this information 
by utilizing a real-world dataset instead of using hypothetical scenarios to provide a more practical 
solution. We consider a large-scale real-world dataset [34] that represents energy consumption data 
of 383 personal cars in Ann Arbor, Michigan, USA. This diverse fleet consists of 264 gasoline vehicles, 
92 hybrid electric vehicles (HEVs), and 27 PHEV/EVs. The data for the PHEV/EVs are used for 
our research. Specifically, this time-series dataset includes GPS signals, such as latitude and 
longitude, OBD-II data, such as speed and engine RPM, and battery usage data, such as battery SOC, 
current, and voltage on a millisecond time scale. Note that the data acquisition was performed only 
when the vehicles were driven from November 2017 to November 2018. We estimate a probabilistic 
model to extract the information related to the arrival time, the departure time, and the battery SOC 
of the PHEV/EVs. To extract the required information from the data, we perform data preprocessing 
in the following steps. 1) We consider the daily home charging scenarios. Therefore, the arrival time, 
the departure time, and the battery SOC at the arrival time are simply the last clock time, the first clock 
time, and the SOC at the last clock time of each day, respectively. 2) A closer observation of the data 
extracted from the previous step reveals that the vehicles were not driven using battery on some days. 
This is reasonable because PHEVs can also be operated by gasoline. Although this does not affect the 
arrival and departure times, it fails to represent an accurate scenario of battery SOC at arrival time. 
Additionally, we noticed that some days the vehicles were driven for a very short time, i.e., 2 minutes 
or less. This largely affects the distribution of arrival time and departure time. Therefore, to ensure 
the relevance of the real data, we discard the gasoline-driven days and the short trip days. Finally, we 
fit the processed data into a truncated normal distribution. The mean and standard deviation of arrival 
time are 21:00 and 2 hours, respectively, and bounded by 17:00 and 24:00 (these values are rounded to 
integer hours as the time step for the formulated problem is on an hourly basis). For departure time, 
the mean and standard deviation are 11:00 and 5 hours, respectively, with the boundary of 5:00 and 
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16:00. Battery SOC is represented by the fraction of the total capacity of the battery C, and its mean 
and standard deviation are 40% and 20% respectively, which is bounded by 0% and 80%. The 
distribution of arrival time, departure time, and battery SOC is summarized in Table 1. 

Table 1. User’s driving behavior. 

Parameters Distributions Boundaries 
Arrival Time N (21, 22) [17, 24] 

Departure Time N (11, 52) [5, 16] 
Battery SOC N (0.4C, (0.2C)2) [0, 0.8C] 

We utilize the day-ahead wholesale electricity market clearing price as the electricity pricing 
data because the retail price is linked with the day-ahead wholesale market price in the real-time 
pricing mechanism. Since the majority of the energy transaction is cleared in the day-ahead market, 
the day-ahead price is a good indicator of the real-time retail price. Therefore, day-ahead prices 
are used in this study. More specifically, we utilize the day-ahead energy price from Midwest 
Independent Transmission System Operator (MISO), the same power grid operator that serves 
Michigan, Ann Arbor area. 

2) Simulation Setup: The Nissan Leaf is considered to be the representative EV with a rated battery 
capacity of 24 kWh and a maximum chargeable/dischargeable energy of 6 kWh per hour for our 
experiment. The action space boundaries are calculated by normalizing the maximum chargeable/ 
dischargeable energy with respect to the battery capacity. Therefore, the action space ranges between 
-.25 and .25. We assume that the user requires the EV to be fully charged at the departure time; 
therefore, the target SOC is set to 1, which represents 100% SOC level. During training, two different 
network structures are used for policy optimization and value estimation. More specifically, we used 
three hidden layers of sizes 1000, 500, and 200 for the actor or policy network and two hidden layers 
of sizes 400 and 200 for the critic network. The corresponding target networks are of similar sizes. 
After each episode, the critic network is updated for K = 28 times, and the policy network is updated 
for 14 times. The training was conducted for 110,000 episodes. The overall training setup is 
summarized in Table 2. 

Table 2. Training Hyperparameters. 

Parameter Value 
Number of critic updates, K 28 

Number of policy and target updates, K/2 14 
Discount factor, γ 0.99 

Learning rate 0.00001 
Soft update factor, τ 0.99 

Replay memory size, D 108 
minibatch size 120 

3) Benchmark: When selecting the benchmarks to evaluate the proposed method, the efficiency 
and stability of an algorithm are the key factors. The two most widely used DRL-based algorithms 
are DDPG and TD3 because of the stability they exhibit in many applications. Many literatures adopt 
DDPG and TD3 as their benchmarks due to these features, and likewise, we select DDPG and TD3 
algorithms as the benchmark to evaluate our proposed method. Additionally, we also compare our 
algorithm to traditional scenario where the user does not adopt any control strategy. 

a) DDPG: In DDPG, the actor and critic networks and their corresponding target networks are 
updated at each time step of an episode. No policy delay is implemented, and the Gaussian 
perturbation is not added to the action. 

b) TD3: TD3 uses one actor network and two critic networks. Similar to the proposed approach, 
a policy delay and a small Gaussian perturbation is implemented. However, in TD3, the critic 
networks are updated at each time step, and the actor and target networks are updated by 
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considering policy delay (generally every two timesteps). In contrast, the proposed method updates 
the networks after every episode. 

c) Uncontrolled charging: The proposed algorithm is further compared with the scenario where 
the user adopts no charging control schemes. This is the traditional and myopic scenario where the 
EV is charged at a maximum allowable rate until the battery SOC reaches the target SOC. Once 
reaching the target SOC, the charging is ended. Also, in uncontrolled charging, there is no 
discharging action to support the V2G applications. 

All the experiments are conducted on a workstation with an 8-core Intel Core i7-7700 CPU @ 
3.60GHz, and the methods are implemented using Python 3.6 and TensorFlow 2.6.0. 

B. Comparison with Benchmarks 

1) Training Performance: The convergence of the proposed algorithm is compared to those of the 
DDPG and TD3 in terms of average training returns in Figure 4. As illustrated in Figure 4, the average 
training return is relatively low during the initial phase, but as the number of episodes increases, the 
reward also increases. This is true for the proposed approach and the two benchmark approaches. 
However, the proposed algorithm reaches convergence relatively faster than the benchmarks. The 
proposed algorithm reaches convergence at around 80,000 episodes, whereas both DDPG and TD3 
reach convergence at around 105,000 episodes. The proposed algorithm’s convergence level is also 
the highest among the three algorithms. Figure 4 indicates that the average training return of the 
proposed algorithm converges to approximately -7, whereas DDPG and TD3 converge to roughly -8 
and -15, respectively. The overall convergence comparisons reveal the effectiveness of the proposed 
algorithm in terms of faster and higher convergence compared with DDPG and TD3.  

 
Figure 4. Comparison of convergence during training. 

2) Testing Performance: After the training phase, the actor networks are used to determine the 
charging/ discharging actions, which are then used to obtain a real-time charge scheduling strategy 
for the EV. We use one year of the real-world dataset to evaluate the performance of the proposed 
algorithm and compare it with the benchmarks. First, the cumulative reward for one year is 
considered as the metric for performance evaluation. Cumulative reward consists of the accumulated 
daily return, energy cost, charge anxiety, and time anxiety for one year. Intuitively, the algorithm 
with the highest cumulative return or the lowest cumulative energy cost, charge anxiety, and time 
anxiety is performing better than the others. The cumulative return is calculated by 𝑅= ∑ (∑ 𝑟௧௧ )ଷ଺ହ௠ୀଵ . 
The cumulative energy cost is calculated by 𝐶= ∑ (∑ 𝜉௧௧ )ଷ଺ହ௠ୀଵ . The cumulative charge anxiety and the 
cumulative time anxiety are given by 𝐴ଵ= ∑ (∑ 𝜙௧௧ )ଷ଺ହ௠ୀଵ  and 𝐴ଶ= ∑ (∑ 𝜓௧௧ )ଷ଺ହ௠ୀଵ , respectively. Figure 5 
illustrates the comparison between the proposed algorithm and the benchmarks in terms of 
cumulative return (Figure 5a), energy cost (Figure 5b), charge anxiety (Figure 5c) and time anxiety 
(Figure 5d). 
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(a) (b) 

(c) (d) 

Figure 5. (a) Cumulative total return, (b) Cumulative energy cost, (c) Cumulative charge anxiety, and 
(d) Cumulative time anxiety. 

The numerical comparisons of the cumulative rewards over a year are further presented in 
Table 3. As demonstrated in Figure 5 and Table 3, the proposed algorithm shows better performance 
in terms of total return and time anxiety than those of the DDPG and TD3. According to Figure 5b, 
TD3 generates the lowest energy cost. However, TD3 fails to meet the charging demand 
significantly as shown in Figures 5c and 5d. Although the cumulative energy costs using the 
proposed algorithm and the DDPG are almost similar, the overall performance of the proposed 
algorithm is better than DDPG as illustrated in Figure 5a. Note that the charge anxiety is the lowest 
in the uncontrolled charging scenario. This is reasonable because the battery is always charged to its 
full capacity in uncontrolled charging. Moreover, for simplicity, we ignore the self-discharging of the 
battery when calculating the charge anxiety and time anxiety. Nevertheless, among all the algorithms 
compared in this section, the cumulative energy cost for one year is significantly higher when 
uncontrolled charging is adopted. 

Table 3. Numerical comparison of the rewards. 

 Total returnEnergy cost Charge anxiety Time anxiety 
Proposed  −2334.77 21.91 855.83 103.27 

DDPG −2420.82 21.15 922.02 107.16 
TD3 −5819.73 5.09 2013.63 292.75 

Uncontrolled −4462.19 72.83 703.96 153.26 

The performance of the proposed algorithm is further evaluated in terms of satisfying the user’s 
energy demand. We analyze the vehicle’s SOC at the time of departure for one year and calculate 
the average error. Here, the error indicates the difference between the vehicle’s SOC at the departure 
time and user’s target SOC. The distribution of the error is presented in Table IV along with mean 
percentage error for one year. From Table IV, it can be seen that the proposed algorithm satisfies 
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user’s charging demand more effectively than the benchmarks. The mean departure-time SOC for one 
year is over 98% in the case of the proposed algorithm with a standard deviation of 2.1%. Whereas, in 
the case of DDPG, the mean departure-time SOC is around 93% and in the case of TD3, the mean is 
the lowest (72%). 

Table 4. Departure-time soc and mean percentage error. 

 Proposed DDPG TD3 
Mean SOC 0.984 0.934 0.72 

Standard deviation of SOC 0.021 0.008 0.044 
Mean percentage error 3% 6% 28% 

C. Charge scheduling 

To demonstrate the charge scheduling strategy of the pro- posed algorithm, a 48-hour 
charge/discharge schedule of an individual EV in response to the dynamic energy price is presented 
in Figure 6. The areas in green of Figures 6a and 6b indicate the time periods when the EV is not at 
home. It can be observed from Figure 6a that the EV is charging when the price is low and 
discharging when the price is high. Also, from Figures 6a and 6b, we can see that at the time of arrival, 
if the battery energy is too low, the EV is charged aggressively to meet the demand, and if the initial 
SOC is high, the EV is discharged to reduce energy cost. 

 

(a) (b) 

Figure 6. (a) 48-hour charge/discharge scheduling in response to dynamic energy price and (b) Battery 
energy due to charging/discharging. 

V. Introduction 

In this paper, the problem of EV charge scheduling is solved using a DRL-based method. The 
relationship between charging time and user’s anxiety is rigorously addressed in the reward function 
during the MDP formulation of the problem. A dynamic weight allocation technique is also 
introduced to represent user’s time-varying priorities for cost minimization and demand 
requirement. An episodic approach to the DDPG algorithm, along with target policy smoothing and 
delayed policy update techniques, are developed. A real-world dataset is utilized to validate a 
practical and optimal charging control strategy. The effectiveness of the proposed algorithm is 
demonstrated through extensive simulation results using the real data from different perspectives. 
The simulation results demonstrate that the algorithm can attain the maximum battery SOC at 
departure time while minimizing energy costs. Although the results make the feasibility of the 
proposed algorithm promising, the study is based on a few assumptions which are aimed to be 
discussed in the future work of the authors. 

Although some research work incorporates battery degradation model in their problem 
formulation, the reasoning behind such models needs to be studied more extensively in terms of EV 
batteries before utilizing them in the reward function. For the conciseness of our work, we refrained 
from adding the battery degradation research in this paper. However, battery degradation due to the 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 9 April 2024                   doi:10.20944/preprints202404.0598.v1



 15 

 

rapid and frequent charging-discharging cycles needs to be studied extensively, and incorporating 
this into the problem formulation would make the problem more realistic. 
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