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Abstract: Timely and accurate information on tree species is crucial for the sustainable management of natural 
resources, forest inventory, biodiversity detection, and carbon stock calculation. The advancement of remote 
sensing technology and artificial intelligence has facilitated the acquisition and analysis of remote sensing data, 
resulting in more precise and effective classification of tree species. Multimodal remote sensing data and deep 
learning seem to be the current tree species classification research mainstream, whether or not. The current 
review on the remote sensing data and deep learning tree species classification methods perspectives to analyze 
the unimodal and multimodal remote sensing data and classification methods in this realm is missing. To 
bridge the gap, we search for major trends in the remote sensing data and tree species classification methods, 
provide a detailed overview of classic deep learning-based methods for tree species classification, and discuss 
the limitations. 

Keywords: remote sensing; tree species classification; unimodal and multimodal remote sensing data; classic 
deep learning-based methods 
 

1. Introduction and Review Approach 
1.1. Significance of Tree Species Information 

Timely and accurate information on the spatial distribution of tree species (TS) has an 
immeasurable value. In forest management, information on TS classification is required for forest 
inventory[1], biodiversity assessment and monitoring[2], invasive species monitoring[3], and forest 
sustainable management. In ecology, large-scale spatial information on tree species improves the 
understanding of the ecology of tree species [4,5]. In the environmental field, tree species information 
facilitates the estimation of wildlife habitat [6]and forest insect abundance [7]. 

In recent decades, remote sensing technology has made great progress in spatial and spectral 
resolution, and a variety of remote sensing data has made it possible to classify TS. The interest of 
practitioners in remote sensing-derived tree species information is reflected in the survey conducted 
by Felbermeier et al [8]. They analyzed 347 questionnaires sent to professionals working in the 
forestry sector. Two-thirds of the interviewees reported deficiencies in forest information, and 90% of 
them expected improvements through the application of remote sensing. When asked which 
parameters should be addressed by remote sensing applications, tree species were ranked first out of 
63 parameters [9]. Additionally, in the sustainable management of urban trees, remote sensing 
methods have been an effective alternative to field surveys [10]. 

1.2. Objectives 
Generally, TS classification is done at the species level of the plant classification system, i.e., 

varieties, species, genera, and families. This review of tree species classification includes species 
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groups, dominant species, stands, and individual trees, but does not include forest type. The main 
objectives of this review on TS classification are as follows:  
Analysis of the literature on the classification of tree species by remote sensing in the past 25 years 
and quantifying general trends. 
Provide a detailed overview of the classic deep learning-based methods for classifying tree species. 
Identification of research gaps in TS classification and description of future trends in TS classification 
using remote sensing data 

1.3. Review Approach 
In this review, we browsed the literature from Web of Science (WOS) Core Collection and Google 

Scholar databases for the last 35 years, in the period of January 1988- June 2023, using the following 
keywords: remote sensing OR LiDAR OR UAV OR tree species OR clsssifi* OR map* OR indenti* OR 
discriminat* OR detect*. Given the fact that there were fewer qualified papers published in 1988-1998, 
this review is focused on papers published after 1998, especially after 2013. The studies that were 
found to satisfy the above conditional search were then further filtered based on the following 
criteria:  
1. TS classification objects must be group tree species OR main tree species OR dominant tree 

species OR stand tree species OR individual tree.  
The research must report on the corresponding specific remote sensing data. 
The research must report the tree species classification methods. 
The research must report the assessment of the classification result. 
A total of 300 papers met the criteria for review in this study. 

The remainder of the study is organized as follows: Section 2 analyzes the literature on TS 
classification by remote sensing in the past 25 years and the quantification of general trends. Section 
3 provides a detailed overview of classic deep learning-based methods for tree species classification. 
Limitations and future work in TS classification are discussed in Section 4. Section 5 conclusions are 
drawn. 

2. Trends in Tree Species Classification 
2.1. Remote Sensing Data for TS Classification 

Green plants are sensitive to solar radiation as a variety of phytochromes absorb visible light 
and their internal cellular structures are capable of multiple scaĴering of near-infrared light, while 
intracellular water and biochemical constituents absorb short-wave infrared [11]. The spectra of plant 
foliage and canopy are related by internal leaf structure, the thickness of cell walls, and biochemical 
components such as photosynthetic pigments [12–17], canopy structure, plant phenology, and 
background signals related to bare soil [15,18,19]. Different tree species have different characteristics 
such as internal structure, biochemical composition, and phenology, and thus absorb and reflect solar 
radiation with different intensities, so passive optical remote sensing measures the spectral response 
of the tree canopy to provide useful information for TS classification [19,20]. Active remote sensing 
Light Detection and Ranging (LiDAR) sensors can calculate parameters such as tree height, forest 
density, and leaf area index at the single wood and stand level from the recorded intensities[21,22], 
which, are mainly determined by the structural morphology of the tree foliage, so there are 
differences in the parameters of different tree species, and the active LiDAR and passive remote 
sensing data complement each other in the classification of tree species. Active remote sensing 
synthetic aperture radar (SAR) sensor is capable of observing the ground 24 hours a day, regardless 
of weather conditions, and can provide unique tree species classification information. 

Typical moderate spatial resolution satellite multispectral image (MSI)sensors include ASTER, 
Landsat-5 TM, Landsat-7 ETM+, Landsat-8 OLI/TIRS, Sentinel-2A MSI, and SPOT-1-5 [23–30]. 
Individual TS classification cannot be achieved using single sensor data at such resolutions, and 
moderate-resolution images achieve TS classification by coupling with other sensor data. Moderate-
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resolution images have an auxiliary role in the improvement of individual TS classification accuracy 
[31]. 

Since 2000, data from Very high spatial resolution (VHR) commercial satellite sensors have 
shown the potential to create digital base maps [32], and images acquired by VHR sensors enable the 
successful classification of tree species [33–40]. Typical VHR satellite sensors include GeoEye-1, 
Gaofen-2, IKONOS, Quickbird, Plé-aides, RapidEye and WorldView-2/3/4 (WV2/3/4). 

The most common hyperspectral image (HSI) sensors used for TS classification include AVIRIS, 
CASI, HYDICE, and HyMAP airborne sensors and Hyperion and CHRIS satellite sensors. The 
researchers used the subtle spectral information of HSI to successfully classify tree species. Satellite 
HSI sensor data, due to the small number of HSI sensors in operation, only a few HSI sensor data are 
currently available to classify tree species [41], of which the airborne HSI data are more useful and 
important for the classification of tree species[42–49]. 

Data acquired by LiDAR sensors measure the reflected energy from the target surface and record 
features of the reflected spectrum, such as amplitude, frequency, and phase [50] which allows for the 
extraction of tree structural parameters and vertical structural properties. LiDAR-derived height 
information allows for the classification of tree species [51–56], but TS classification accuracy is 
limited. LiDAR data are usually combined with optical remote sensing data [57–62], and it has been 
shown that the combination of LiDAR data and optical remote sensing data for TS classification can 
significantly improve the accuracy [63,64], because optical remote sensing data provide rich spectral, 
spatial, and textural information of tree species, and LiDAR data provide a vertical profile and 
structural information, which form a useful complement to each other and can more comprehensively 
describe the characteristics of tree species and achieve beĴer classification results. 

Unmanned Aerial Vehicles (UAV) remote sensing systems are flexible and can fly freely in 
unrestricted areas for data collection. They are also inexpensive, cloud-free, and can acquire data with 
high spatial, spectral, and temporal resolution [65,66]. UAV data can be used to accurately classify 
tree species and even individual trees [67–76], as different data provide different quantitative features 
for TS classification. UAV remote sensing systems are limited in the application of large-scale TS 
classification due to short flight endurance and unstable conditions such as high winds.  

SAR is primarily used to classify forest types because forest information by SAR relates mainly 
to canopy structure and water content [77]. 

Ancillary data are mainly topographic and meteorological information obtained, such as 
elevation, slope, slope direction, temperature, and precipitation [78–80]. 

2.2. Literature Trends in Remote Sensing Data 
Multimodal remote sensing data is currently considered mainstream due to its availability at 

low cost, and the emergence of literature on tree classification. In this paper, we statistically analyze 
the literature on tree species classification from a data-driven perspective. 

Detailed statistical analyses were performed on the 300 papers. The number of studies focusing 
on TS classification has constantly increased over the past 25 years (in Figure. 1), which indicates that 
TS classification is a hot topic in current research. This growth is closely linked to the development 
of remote sensing technology and its corresponding computer science and technology. Remote 
sensing technology has advanced significantly since 2010, particularly for UAV, hyperspectral data, 
and LiDAR data. Advances in computer science and technology have brought about the evolution of 
classifiers for TS classification. The employment of high-resolution spatial and spectral remote 
sensing data, along with sophisticated classification algorithms, has resulted in further facilitation of 
TS classification research. 
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Figure 1. Number of papers published per five-year interval for unimodal and multimodal data, 
respectively. 

Figure 1 shows that there is no advantage in tree classification between unimodal and 
multimodal remote sensing data. It is not possible to conclude that multimodal remote sensing data 
tree classification is the mainstream direction.  

A total of 208 papers were analyzed on the use of unimodal remote sensing data for tree species 
classification over the last 25 years. Among them, four papers were published from 01/01/1998 to 
01/01/2003, three of which used colored infrared aerial photographs and one used MSI. Additionally, 
a total of 92 papers were analyzed on the use of multimodal remote sensing data for tree species 
classification over the last 20 years. Multimodal data tree species classification literature before 2003 
was not found. Figure 2 shows the number of papers per five-year interval for various modal data. 

 

 

(a) Number of the unimodal data studies (b) Number of the multimodal data studies 

Figure 2. Number of papers per five-year interval for various modal data. 

Focusing on unimodal remote sensing data in Figure 2a, the most used unimodal data is HIS. In 
the 02/01/2018 and 01/01/2023 time span, the main unimodal data used for tree species classification 
were HIS (total of 28 cases), and RGB (24 cases). Since 2018, deep learning algorithms have dominated 
digital image processing. These algorithms rely on RGB images as input data, and the proliferation 
of drones has made it easier to obtain small-scale RGB images of tree species. Consequently, a vast 
amount of tree species classification literature on CNN and RGB has emerged within this timeframe. 
In the 02/01/2013 and 01/01/2018 time span, the main unimodal data were LiDAR (total of 16 cases) 
and HSI (total of 11 cases). In the 02/01/2008 and 01/01/2013 time span, the main unimodal data were 
LiDAR (7 cases), HIS (4 cases), and VHR(5 cases). In the 02/01/2003 and 01/01/2008 time span, the 
main unimodal data were HSI (4 cases) and MSI (5 cases). So, the main unimodal data for tree species 
classification were HSI, LiDAR, RGB, and VHR. 

Focusing on multimodal remote sensing data in Figure 2b, regardless of the time frame, the most 
used multimodal data is HIS & LiDAR. in the 02/01/2018 and 01/01/2023 time span, the main 
multimodal data used for tree species classification were HIS & LiDAR (total 26 cases), VHR & LiDAR 
(total 10 cases), and MSI & HSI (total 6 cases). In the 02/01/2013 and 01/01/2018 time span, the main 
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multimodal data were HIS & LiDAR (total 9 cases). In the 02/01/2008 and 01/01/2013 time span, the 
main multimodal data were HIS & LiDAR (total 5 cases).  

2.3. Methods for TS Classification 
2.3.1. Classification Methods of Unimodal Remote Sensing Data 

208 papers with unimodal data were statistically analyzed using the classification method that 
produced the best results (Figure 3). In addition to the main classifier in Figure 3, the remaining 30 
papers used other classifiers such as logistic regression classifiers, fractal geometry and quantitative 
structure models, and so on. 

 
Figure 3. Frequency of studies about the unimodal remote sensing data and the most efficient classifier per five-
year time interval. Abbreviations are: HIS = hyperspectral image; VHR = Very high (high) spatial resolution; 
LiDAR = Light detection and ranging; MSI = Multispectral image; RGB = Red, Green, and Blue; SAR = synthetic 
aperture radar; SVM = Support vector machine; RF = Random forest; CNN = convolutional neural network; MLC 
= maximum likelihood classifiers; LDA = linear discriminant analysis. 

Focusing on unimodal remote sensing data and its’ most efficient classifier in Figure 3, in the 
02/01/2018 and 01/01/2023 time span, the main classifiers were CNN, SVM, and RF. In the 02/01/2013 
and 01/01/2018 time span, the main classifiers were RF, and SVM, In the 02/01/2008 and 01/01/2013 
time span, the main classifiers used for optimal classification results were LDA. In the 02/01/2003 and 
01/01/2008 time span, the main classifiers used for optimal classification results were LDA and MLC. 
With the development of remote sensing and computer science and technology, the main 
classification methods of unimodal remote sensing were CNN, RF, and SVM. 

2.3.2. Classification Methods of Multimodal Remote Sensing Data 
92 papers with multimodal data were statistically analyzed using the classification method that 

produced the best results. The literature on tree species classification using multimodal data prior to 
the year 2003 was not retrieved. Two papers, one using HIS & LiDAR data and nearest neighbor rules 
classifier and another using MSI & SAR data and Bayes rule classifier were published from 02/01/2003 
to 01/01/2008. The statistical analysis results of the multimodal data and the main classifiers from 
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02/01/2008 to 01/01/2023 are shown in Figure 4. In addition to the main classifier in Figure 4, the 
remaining 12 papers used other classifiers such as spectrum angle mapper classifiers, nearest 
neighbor classifiers, and so on. 

 
Figure 4. Frequency of studies about the multimodal remote sensing data and the most efficient classifier per 
five-year time interval. 

Focusing on multimodal remote sensing data and its’ most efficient classifier in Figure 4, in the 
02/01/2018 and 01/01/2023 time span, the main classifiers were CNN, SVM, and RF. In the 02/01/2008 
and 01/01/2018 time span, the main classifiers were SVM and RF. In all, the most used classification 
method is SVM, followed by RF and CNN.  

2.4. Literature Trends in TS Classification Methods 
Figures 3 and 4 present the trends of the TS classification methods. Currently, there are two main 

types of methods, traditional machine learning methods and classic deep learning-based methods. 
The former includes RF, SVM, LDA, and MLC, among others. The laĴer refers specifically to CNNs 
and excludes methods such as transformers. Figure 5 depicts the tree classification process of these 
two methods. 
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Figure 5. The process of TS classification. 

Scales and categories for TS classification were determined based on a study of the natural 
variability and tree species composition of the study area. Remote sensing data for TS classification 
were collected and acquired based on data accessibility. The data underwent preprocessing, 
including atmospheric and terrain correction, de-clouding, and image inpainting. The tree samples 
were then labeled based on the complete ground inventory data, as the tree species categories in the 
remotely sensed data were not easily identifiable through visual interpretation alone. 

The classification process for tree species using traditional machine learning methods involves 
preprocessing, extracting and selecting features, classifying the species using classifiers, and 
evaluating the results. The process of classic deep learning-based methods involves preprocessing, 
and cuĴing the remote sensing image data with labels into a patch cube, dividing the patch cube into 
a training set and a test set, using the data from the training set to train the CNN, storing the 
parameters of the best classified CNN model, and finally testing the network with the data from the 
test set to obtain the final TS classification result. The main difference between these two methods is 
whether or not the feature extraction is automated. 

In Figure 6a, the study areas are categorized by size. Red dots represent areas larger than 10,000 
hectares, green rectangles represent areas between 1,000 and 10,000 hectares, blue triangles represent 
areas between 100 and 1,000 hectares, and magenta hexagrams represent areas smaller than 100 
hectares. In Figure 6b, the size of study areas for traditional machine learning methods is represented 
by green bubbles and classic deep learning-based methods are represented by orange bubbles. 
Meanwhile, a larger bubble indicates a larger study area. 
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Figure 6. The area size of the study site. 

Figure 6 only statistically analyzes the literature that presents the area and latitude/longitude 
range of the study area. In cases where multiple papers cover the same study area, only one area is 
counted. Figure 6a indicates that tree classification studies are typically conducted on a larger scale. 
Additionally, Figure 6b demonstrates that traditional machine learning methods are utilized for tree 
classification in large study areas, while classic deep learning-based methods are employed for tree 
classification in small study areas. It is worth noting that there are larger orange bubbles in Figure 6b, 
the classic deep learning-based methods are also beginning to be used for tree classification in large 
study areas. A multi-sensor, multi-label dataset for tree species classification using CNN was created 
by Steve Ahlswede et al [81]. using aerial images, Sentinel-1 images, and Sentinel-2 images. The study 
area, which covers approximately 47,710 km2, is located in the federal state of Lower Saxony, 
Germany. Xueliang Wang and Honge Ren [82] used HSI from the HJ-1A satellite and MSI from the 
Sentinel-2 satellite to classify tree species using CNN. The study was conducted in the Tahe Forestry 
Bureau, which is situated in the center of the Daxing’an Mountains in the northwest of China's 
Heilongjiang Province. The total area covered by the study was 14,420 km2. 

Fassnacht et al. [9] and Ruiliang Pu [31] provide a detailed overview of traditional machine 
learning methods for TS classification. This thesis only covers classic deep learning-based methods 
for TS classification. 

3. Literature Review on Classic deep Learning-Based Methods 
In 2015, the article "Deep Learning" was published in Nature, LeCun Y and others predicted that 

the future application of deep learning in images, video, audio, and other aspects will break through 
[83], and deep learning algorithms based on big data platform is the direction of the future 
development of artificial intelligence, and also the mainstream of modern artificial intelligence 
research. Image recognition is one of the important research contents of deep learning, and research 
on classic deep learning (convolutional neural network, CNN) applied to TS classification in remote 
sensing images will be more and more in 2018 and beyond. 

The classic deep learning structure consists of a convolutional layer, a pooling layer, and a fully 
connected layer, and the activation function (commonly used as Relu) is typically after the 
convolutional layer. The basic structure is shown in Figure 7, the convolutional layer and the pooling 
layer are used to extract TS features, and the fully connected layer is used to classify TS. The whole 
classification process is an automatic process, which is an end-to-end process, only the corresponding 
data of the input layer needs to be given, and features are automatically extracted from the network. 
It is more time-consuming and labor-intensive to create the samples (labels). 
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Figure 7. The Basic Structure of CNN. 

A total of 71 research papers were filtered. These papers focused on classic deep learning- based 
methods for tree species classification. Seventy papers were published between 02/01/2018 and 
01/01/2023, highlighting the rapid development of deep learning-based methods for TS classification, 
which is a relatively new field. 

3.1. Patch Size 
After preprocessing the remote sensing data, the images must be divided into patches of size 

m*n. These patches will form the CNN dataset, also known as the patch cube. The size of the patches 
is the size of the CNN input image and is crucial for the classification object, such as individual TS, 
dominant TS, and the design of the classification CNN network structure. Out of all the literature, 62 
papers provided a description of patch size, while 9 papers did not mention the size of the input 
image (patch size) for the CNN. Table 1 shows some patch sizes used for various data. 

Table 1. The patch sizes. 

Data Patch size 
LiDAR & HSI  11ⅹ11 

RGB & HSI 15ⅹ15 
MSI & HSI 500ⅹ500 

VHR 12ⅹ12, 15 × 15 
MSI 64ⅹ64, 400ⅹ400, 500ⅹ500 

HSI 3ⅹ3~15ⅹ15, 5ⅹ5~29ⅹ29, 9ⅹ9~21ⅹ21, 25ⅹ25, 27ⅹ27, 11ⅹ11, 
33ⅹ33, 64ⅹ64 

RGB 
224ⅹ224 (22%), 256ⅹ256 (33%), 512ⅹ512 (22%), 56ⅹ56, 32ⅹ32, 

128ⅹ128, 304ⅹ304 

LiDAR 256, 150, 128, 512, 1024, 2048, 4096, 8192, 3072, 5120, 6144, 
7168, 8192(sampling points) 

In Table 1, The bold patch size indicates a higher frequency of occurrence in the literature, and 
“3ⅹ3~15ⅹ15” means that the patch size was tested from 3ⅹ3 to 15ⅹ15 in Step 2. 

After analyzing and summarizing the literature on patch size, we have concluded that there are 
five ways to introduce patch size. (1) The patch size is the same as the input image size of the CNN 
model itself in some papers, such as 224ⅹ224, and 227ⅹ227. (2) The optimal patch size for classification 
results is given in some papers, while other patch sizes used for comparison are not mentioned. (3) 
some papers used multiple patch sizes without final analytical interpretation. (4) In three research 
papers, a variety of patch sizes have been tried and some analytical interpretations have been made. 
Long Chen et al. [47] used prototypical networks and HSI data to classify TS. They experimented 
with 3ⅹ3~31ⅹ31 patch sizes and found that under the same conditions, a patch size of 17ⅹ17 resulted 
in significantly improved classification accuracy. This suggests that the spatial and channel feature 
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extraction of prototypical networks for this patch size meets the requirements for high-precision 
classification. As patch size increases, more noise may be introduced, potentially causing fluctuations 
in classification accuracy. Janne Mäyrä et al.[58] utilized a 3D CNN network and HSI data to classify 
individual TS. The patch sizes used were 9ⅹ9, 13ⅹ13, 17ⅹ17, and 21ⅹ21 (square patches with diameters 
of 4, 6, 8, and 10 m, respectively). The results showed that the 9ⅹ9 patch size had the highest producer 
accuracy of 0.84. The classification accuracy was not significantly affected by the different patch sizes 
throughout the experiment. The paper demonstrates that larger image patches contain multiple trees 
of different species. Ying Sun et al. [84] utilized RGB to classify individual TS, and demonstrated the 
best performance for TS classification. RGB & CHM and RGB & VHR were also utilized but did not 
perform as well. The patch sizes used were 32ⅹ32, 48ⅹ48, and 64ⅹ64, with ResNet50 performing best 
in the 64ⅹ64 patch size. The study concluded that larger patch sizes are more effective in deep 
learning-based methods, while smaller patch sizes lead to higher overall accuracy in traditional 
machine learning methods. When using traditional machine learning methods, larger patch sizes may 
mix other information and influence the features of the tree species if the mean feature value was 
used. (5) Six research papers provided information on patch size and its corresponding spatial 
resolution (Table 2).  

Table 2. Patch size and its corresponding spatial resolution. 

Author 
Published 

Year 
Data Patch size 

Spatial 
resolution 

Classification 
object 

Accuracy 

Tao He et al.[85] 2023 MSI 64ⅹ64 10 m dominant TS 87.9% 
Caiyan Chen et 

al. [86] 
2023 MSI 32ⅹ32 0.31 m Individual TS  87.67% 

Eu-Ru Lee et al. 
[87]  

2023 
drone 

optic/LiDA
R 

27ⅹ27 21 cm 4 TS 95% 

Xueliang Wang 
et al. [82]  

2022 HIS/MSI 500ⅹ500 10m 6 TS 92% 

Shijie Yan et al. 
[88]  

2021 VHR 15ⅹ15 0.4m 6 Individual TS 82.7% 

Sebastian Egli et 
al. [89]  

2020 UAV RGB 120ⅹ80 1.25m 4 TS 88% 

3.2. Reference Data 
Classic deep learning-based methods belong to the supervised modeling approach. These 

datasets require remote sensing images and reference data, also known as annotations, samples, or 
labels. The most commonly used method for acquiring reference data was through field plot surveys 
(79%). A small percentage of the literature used forest management inventory data (7%), while 6% 
relied on visual interpretation. The remaining studies used public datasets with their own data labels. 

3.3. TS Classification Scales 
Determining the appropriate scale for TS classification depends on the needs of the application. 

The scale can range from dominant tree species to individual trees, and it is important to consider the 
required data resolution and labeling process. Based on classic deep learning-based methods, 51% of 
the research papers achieved the individual tree classification, 25% were focused on tree species 
classification, 19% on the dominant TS of main TS classification, and the remaining papers used 
public datasets. The classification of individual trees relies mainly on LiDAR and RGB data. In most 
cases, the crowns of individual trees are segmented and used for classification. In some literature, 
each image contains only one tree, and therefore, individual tree classification is performed directly. 

3.4. CNN Architectures and Application 
3.4.1. CNN from the Functional Perspective 
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Depending on the specific use, classic deep learning-based methods can be categorized into four 
main groups. The main function, representative networks, labeling structure, resulting output, and 
usage of these four groups in TS classification are shown in Table 3. 

Table 3. The four main groups of classic deep learning-based methods in TS classification. 

Group Main function 
representative 

networks 
Labeling structure Resulting output Usage 

Classic CNN [90–95] 
assignment of a TS class to an 

entire image 
VGG, Resnet 

Alexnet 
one patch one TS class the patch’ TS class high 

Object detection [96–
100]  

Location of a TS class with an 
image 

YOLO, R-CNN 
TS class, rectangular 

bounding box 
TS class & bounding box Rare 

Semantic 
segmentation [101–

106]  

Delineation of the explicit 
spatial extent of the TS class in 

the image 

U-Net, SegNet, 
DeepLab 

labels in the form of  
spatially explicit masks to 

provide a TS class 
assignment for each single 

pixel 

An individual 
prediction for each pixel 

high 

Instance 
segmentation [107–

109]  

Detection of individual things 
(classification + segmentation) 

Mask-R-CNN 
 

TS class, bounding box, 
mask 

TS class, bounding box, 
TS mask 

Rare 

CNNs can be classified into four categories: classic CNN, object detection, semantic 
segmentation, and instance segmentation based on their functions. Classic CNN, object detection, 
and instance segmentation have the function of classification, so classic CNN, object detection, and 
instance segmentation can be used to classify TS, while object detection and instance segmentation, 
which have additional functions such as localization, require more complex and time-consuming 
labeling. Before TS classification, semantic segmentation is performed to obtain the tree’s canopy. 

The statistical analysis results of the 71 papers categorized by the function of CNNs are 
presented in Figure 8. 

 
Figure 8. CNN networks for TS classification. 

Figure 8 shows that ResNet is the most commonly used classic CNN network for TS 
classification. In TS classification, the input image size to the network is relatively small, which limits 
the use of some classic networks. Self-designed shallower CNN networks are more common due to 
the feature extraction problems that arise in the convolutional and pooling layers when using classic 
CNN networks. The PointNet network is often preferred when segmenting individual trees for TS 
classification using LiDAR point cloud data (Figure 8). The infrequent use of object detection and 
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instance segmentation in TS classification is shown in Figure 8, labels could be complex, the bounding 
box is that they often do not explicitly define crown/canopy boundaries, and crown/canopy is not 
rectangular. Natural canopies often have smooth transitions or overlapping crowns, which limits the 
object detection and instance segmentation that can be applied in TS classification. But for certain tree 
species with non-overlapping crowns, it's important to try object detection and instance segmentation 
so that the tree transformation can be easily tracked afterward. 

3.4.2. CNN from the Functional Perspective 
Depending on the input remote sensing data, classic deep learning-based methods can be 

categorized into 1DCNN, 2DCNN, and 3DCNN, where the number refers to the dimensions of the 
convolutional kernel. The multi-temporal remote sensing data use Recurrent Neural Network (RNN) 
or 1DCNN. Other input data can use 1DCNN, 2DCNN, or 3DCNN. Among them, 2DCNN is the 
most commonly used in the TS classification (75%). 3DCNN was used most often for LiDAR and HSI 
data (19%), and the model was self-designed. 

Yanbiao Xi et al. [110] utilized 1DCNN in conjunction with spectral and crown texture features 
of HIS to classify 7 TS, resulting in an overall accuracy of 85.04%. The features were used to generate 
a vector as the input layer for the 1DCNN network, which comprised two convolutional layers, one 
max pooling layer, and fully connected layers. Research papers on 3DCNN tree classification have 
been concentrated between 2019 and 2021. Haiyan Guan et al. [111] and Maohua Liu et al. [56] utilized 
a self-designed 3DCNN and LiDAR data to achieve TS classification with an overall accuracy of 96.4% 
and 92.5%, respectively. Somayeh Nezami et al. [112] achieved TS classification using a self-designed 
3DCNN and RGB & HIS data, with a producer accuracy of 99.6%. Bin Zhang et al. [113] and Janne 
Mäyrä et al. [58] employed a self-designed 3DCNN and HSI data to classify the TS, achieving 
classification accuracy of 93.14% and 87%, respectively. The two studies utilized the canopy height 
model derived from LiDAR data to match ground reference data to aerial imagery. 

3.4.3. CNN from the Functional Perspective 
Multimodal data fusion is generally categorized into three types: input-stack fusion, feature-

stack fusion, and decision-level fusion. In the literature on TS classification based on classic deep 
learning-based methods, only two types of fusion were found: input-stack fusion (6 papers) and 
feature-stack fusion (3 papers). 

Bingjie Liu et al. [114] utilized PointMLP to extract features from LiDAR point cloud data and 
2DCNN to extract features from UAV RGB images for tree species classification with 98.52% accuracy. 
Xueliang Wang et al. [82] proposed the double-branch multi-source fusion (DBMF) method. One 
branch utilized the CNN network to abstract the spatial features for the MSI, while the other branch 
employed the bidirectional long short-term memory (Bi-LSTM) to abstract the spectral features for 
the HSI. The resulting features were concatenated to classify TS, achieving an overall accuracy of 92%. 
Ira Harmon et al.[115], Sean Hartling et al.[116], and Hui Li et al.[117] all utilized input-stack fusion 
used HCM & DEM & RGB/HSI data, VHR & LiDAR data, and MSI & LiDAR data to classify TS, 
respectively. 

3.5. CNN Architectures and Application 
Figure 9 shows the statistical results of the CNN operational framework for TS classification. 

There are lots of frameworks for deep learning. Based on the development of deep learning in 
artificial intelligence, the most popular framework in the past few years was Google's TensorFlow, 
but in the past two years, the most popular framework has been Facebook's PyTorch. Our statistical 
results from the literature are consistent with the development of deep learning artificial intelligence. 
Currently, the use of the PyTorch framework is gradually increasing and replacing TensorFlow. 
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Figure 9. the statistical results of CNN operational framework for TS classification. 

3.6. CNN Model Assessment in TS Classification 
The TS classification results were evaluated based on the overall accuracy (OA), precision, recall, 

and F1 score, kappa [58,86,91,105,109,118–120], these metrics are defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑈𝐴 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (1)

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑃𝐴 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2)

𝐹1 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
= 2 ∗

𝑈𝐴 . 𝑃𝐴

𝑈𝐴 + 𝑃𝐴
 (3)

𝑂𝐴 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
=  

𝑇𝑃 + 𝑇𝑁

𝑁
 (4)

𝑘𝑎𝑝𝑝𝑎 =  
𝑂𝐴 − 𝑃௘

1 − 𝑃௘

 (5)

The variables used in this study include TP (true positives), FP (false positives), FN (false 
negatives), TN (true negatives), 𝑃௘ (expected proportion of agreement), and N (total sample size). TP 
represents the number of positive samples correctly predicted by the CNN model, while FP 
represents the number of negative samples incorrectly predicted as positive. FN represents the 
number of positive samples incorrectly predicted as negative, while TN represents the number of 
negative samples correctly predicted by the model. 𝑃௘  is calculated by dividing the sum of the 
product of the actual sample size and the predicted sample size by the square of the total number of 
samples. The user's accuracy (UA), producer's accuracy (PA), and Dice similarity coefficient are 
equivalent to precision, Recall, and F1, respectively. UA measures the proportion of relevant positive 
predictions, while PA measures the proportion of correctly classified positive results. F1 is the 
weighted average of UA and PA, with a best value of 1 and a worst value of 0. The kappa coefficient 
and OA measure the overall consistency between the identification result and the reference data. The 
OA value ranges from 0 to 1, while the kappa coefficient value ranges from -1 to 1 and is typically 
greater than 0. Equations (1)-(5) compute their values based on the confusion matrix, ranging from 0 
to 1. A value of 1 indicates the highest similarity between the predicted TS and reference data, while 
0 indicates no similarity. 

In the sematic and instance segmentation, the intersection over union (IoU, also known as 
Jaccard Index) is used to evaluate the performance of the different trained models on independent 
testing datasets [109]. 

𝐼𝑜𝑈 =  
𝑎𝑟𝑒𝑎൫𝐵௔௖௧௨௔௟ ∩ 𝐵௣௥௘ௗ௜௖௧௘ௗ൯

𝑎𝑟𝑒𝑎൫𝐵௔௖௧௨௔௟ ∪ 𝐵௣௥௘ௗ௜௖௧௘ௗ൯
∗ 100% (6)
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The crown polygons from the test set (𝐵௔௖௧௨௔௟  ) and the predicted crown polygons from the 
segment CNN algorithm (𝐵௣௥௘ௗ௜௖௧௘ௗ) are compared using the intersection and union operations to 
determine their common and combined areas, respectively. 

4. Discussion of Current Limitations 
There are still many factors that limit the accuracy and precision of TS classification, such as 

spatial resolution, temporal resolution, spectral resolution, phenological transformation information, 
forest environments, shadows, cloud shading, small canopies, spectral shapes of different canopies, 
and canopy overlap, and so on [121]. At the same time, the current TS classification used in different 
study areas has some limitations because the algorithms themselves have prerequisites for using 
them, and the data may not always be able to meet the prerequisites of the algorithms perfectly. Thus, 
TS classification based on remote sensing is full of challenges, and there are many aspects worth our 
efforts in the future. 

4.1. Data Fusion 
Spatially sharpened data fusion method 

Pan-sharpening is a pixel-level fusion that can be applied to both single-sensor data and multi-
sensor images. Single-sensor fusion produces a high-resolution multispectral image by fusing a pan-
band and a low-resolution multispectral image. Such a sharpened image has a nominal pan high 
resolution but its MS property may be slightly different from the original MS property. Compared to 
the direct use of low-resolution MS images, sharpened images improve the quality of individual 
canopy object segmentation for optimal canopy object segmentation. Spatial sharpening of multi-
sensor images is performed using different optical sensor data, one high-resolution and one low-
resolution multispectral data. The low-resolution multispectral band image is then resampled to a 
higher resolution to make the images from both sensors the same size, and finally, the spatially 
sharpened data are obtained by using a spatial sharpening algorithm. No studies have been found in 
the literature reporting the direct use of spatial sharpened methods to improve TS classification, but 
spatial sharpened improves the spatial resolution and maintains the spectral properties of MS [122], 
and spatial sharpened fusion methods should be useful in practice for TS classification[31]. 
Feature-level data fusion method 

Feature-level fusion is the fusion of features extracted from different sensors, which is a simple 
overlapping of multi-source features to increase the number of features for TS classification, not true 
fusion. 
Spatiotemporal Data Fusion method 

At present, the spatiotemporal fusion algorithm of remote sensing data has matured. The 
spatiotemporal fused time series data have a high temporal and spatial resolution, which can respond 
well to the information of phenological changes of tree species. However, so far, spatiotemporal 
fusion has not been directly applied to the research of TS classification. 

Multi-source remote sensing data fusion has developed rapidly in recent years. The fusion of 
homogeneous remote sensing data has achieved the fusion of multi-sensor data in the three 
dimensions of time, space, and spectra, and obtained high-quality data with multi-temporal phase, 
high spectral, and high spatial and temporal resolution. The fusion of heterogeneous remote sensing 
data is mainly the fusion of optical remote sensing data and active remote sensing data, of which the 
fusion of SAR images and optical remote sensing data is more sophisticated. In the future, to 
effectively improve the accuracy and precision of TS classification, the real fusion algorithm of 
multimode remote sensing data will be applied to TS classification, or the existing multimode remote 
sensing data fusion algorithm will be improved to study TS classification. 

4.2. Phenology Information 
The multi-temporal remote sensing data have great significance in improving the classification 

accuracy of tree species [123–127], as current research has shown that time series images can 
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correspond to the phonological and seasonal characteristics of tree species, and the characteristics 
change differently for different tree species throughout the year [128]. However, the seasonal division 
of the series is currently not uniform; some literature divides the multi-temporal data into 4 seasons 
(Spring, Summer, Fall, and Winter), some in 2 seasons (Wet/Dry, Dry/Rainy, Growing/Non-Growing, 
and so on), and some in multiple seasons (Early Spring, Late Spring, and Midsummer). How to 
extract the valuable features from the multi-temporal data and how to use the features has not yet 
been completed, and it has not yet been concluded which combination of two-season, one-season, or 
multi-season time series images is most effective for the classification accuracy of tree species. For 
example, Li et al [123] used two seasons of WV2 (September 14, 2012) and WV3 (October 18, 2014) 
data to classify five tree species in Beijing, China, and Karlson et al [129] used two seasons of WV2 
images to classify five dominant species in West Africa and found that TS classification using two 
seasons of time series data was beĴer than that using single or multiple seasons. Ferreira et al [130] 
investigated whether using wet and dry seasons separately or in combination improved tree 
classification accuracy, and the study concluded that the two-season combination did not have higher 
tree classification accuracy than the single-season. Pu et al [124] tested combinations of two, three, 
four and five-season multi-temporal images for a study on TS classification ability, and they found 
that combining more than two combinations of seasonal images did not produce beĴer TS 
classification results than combinations of two seasonal images (dry-wet season images). 

Most current studies select the best seasonal time-series images and do not fully utilize images 
from all seasons when classifying tree species. In the literature, R. Pu and S. Landry [131] proposed a 
seasonal trajectory difference index, which integrates the possible contributions of all seasons as a 
feature for classifying tree species and can help improve the accuracy and precision of classifying tree 
species. How to take full advantage of the phonological and seasonal information, and combine the 
algorithms in the fields of time series processing and digital signal processing to create a characteristic 
or method with an explicit physical meaning of phenological variation, used to improve the accuracy 
of TS classification. 

4.3. Data Label 
The remote sensing data label is directly related to the usefulness of the final TS classification 

product. Currently, data is labeled through plot surveys, and it is generally difficult for someone 
familiar enough with the study area to accurately identify all the tree species through remote sensing 
data, so visual interpretation is essentially not used. For large-scale TS classification, the plot survey 
is very difficult and takes several years or more, resulting in a temporal mismatch between remote 
sensing data and labels. In some primary forests or parts of forests with complex terrain and difficult 
transportation, it is impossible to conduct field surveys, so it is even more difficult to solve the 
labeling problem. 

Weakly supervised learning labels at the image level or sparsely at the pixel level, reducing the 
cost of manual labeling. Even when results from other data studies are available and ground truth 
data is scarce, the method can help solve the labeling problem [132,133]. Semi-supervised learning 
lies between supervised and weakly supervised learning. It has been shown to train robust CNNs 
with a small number of high-quality labels [134]. In the future, weakly supervised learning or semi-
supervised learning can be used to support data labeling when large data sets are constructed. 

4.4. Patch Size 
When utilizing remote sensing for tree species classification, it is important to consider the 

optimal ground sampling density and spatial unit. Specifically, it is necessary to determine the spatial 
unit for obtaining tree species information and the optimal ground sampling density for deriving 
such information using a given sensor [9]. The size detailed statistics and analysis reveal that out of 
71 papers on classic deep learning-based methods of tree species classification, only three provide 
rough explanations of different patch sizes, and only six offer information on patch size and its 
corresponding spatial resolution. 
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Fromm et al.[135] have shown that the accuracy of detection of tree seedlings can vary by up to 
20% based on the resolution of the UAV image (0.3-6.3 cm). Similarly, when the pixel size was reduced 
from 40 cm to 60 cm, Neupane et al.[136] found a 17% decrease in detection accuracy for banana trees 
in plantations. So, when selecting the patch size for the TS classification, it is important to consider 
the spatial unit and optimal ground sampling density. This could contribute to the criteria for 
selecting the patch size. This is a very interesting problem, and it's worth trying to solve in the future. 

4.5. CNN Model Optimization Approaches 
Due to the increasing performance of computer hardware, CNN models now have billions of 

parameters. This gives them incredible fiĴing ability but also makes them highly susceptible to 
overfiĴing for a particular dataset. To improve the generalization ability of CNN models and alleviate 
the overfiĴing problem, the following strategies can be employed: To improve the dataset, consider 
using data augmentation procedures. To improve the CNN model, add regularization techniques to 
the weights. To improve the training process, consider stopping the model early. To improve the 
model structure, add the Dropout layer and the normalization layer. 

When a CNN model experiences overfiĴing, the first network structure typically considered for 
use is Dropout. Dropout reduces the coupling between nodes during training by replacing some 
nodes with masks to achieve regularity. There are also other improved versions of Dropout, such as 
Spatial Dropout, DropBlock, and Max-pooling Dropout. Normalization is a rapidly growing set of 
algorithms in deep learning. Batch normalization (BN) is a classical normalization algorithm that is 
frequently used to mitigate overfiĴing in deep learning. It normalizes features from the same channel 
of different samples and effectively solves the exploding gradient problem, making the CNN network 
model more stable. 

5. Conclusions 
In this study, a total of 300 publications related to the study of classifying and mapping TS using 

images from different remote sensing sensors were analyzed. In this regard, a review of the unimodal 
and multimodal remote sensor data and the classic deep learning-based methods for TS classification 
was carried out. After carrying out the review and summary, some conclusions with remarks and 
recommendations will be summarized in the following paragraphs. 

1. From the number of publications, tree species classification has become a hot topic in current 
research. From the unimodal and multimodal remote sensor data utilization, it is not possible to 
conclude that multimodal remote sensing data tree classification is the mainstream direction. The 
main unimodal data for TS classification were HSI, LiDAR, RGB, VHR, the most used multimodal 
data is HIS & LiDAR. 
According to the literature analysis of TS classification methods, the most commonly used classifiers 
for remote sensing data, whether unimodal or multimodal, are CNN, RF, and SVM. Therefore, this 
article summarizes the process of remote sensing TS classification and condenses the two major 
current TS classification methods: traditional machine learning methods and classic deep learning-
based methods.  
traditional machine learning methods are utilized for tree classification in large study areas, while 
classic deep learning-based methods are employed for tree classification in small study areas. The 
classic deep learning-based methods are beginning to be used for tree classification in large study 
areas. 
The classic deep learning-based methods for TS classification are reviewed in detail in terms of patch 
size, reference data, TS classification scales, CNN architectures and applications, CNN operational 
framework, and CNN model assessment.  
five limitations discussed and suggested to overcome in the future. (a) data fusion. spatial-temporal 
fusion algorithm and real fusion algorithm of multimodal remote sensing data should apply to TS 
classification or the existing multimodal remote sensing data fusion algorithm should be improved 
to study TS classification. (b) phenology information. A feature or method was created with an 
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explicit physical meaning of phenological variation used to improve the accuracy of TS classification 
(c)data label. Label production is very labor-intensive, and field surveys for TS classification labeling 
are time-consuming and laborious. It is recommended to combine field surveys with weakly 
supervised and semi-supervised learning for labeling. (d)patch size. When utilizing remote sensing 
data for tree species classification, it is important to consider the optimal ground sampling density 
and spatial unit. Specifically, it is necessary to determine the spatial unit for obtaining tree species 
information and the optimal ground sampling density for deriving such information using a given 
sensor The patch size has not been studied enough, the patch size may depend on the spatial 
resolution of the classification target, the distribution and size of the forest stand area, or other factors, 
which is an interesting problem to study. (e)CNN model optimization. To improve the generalization 
ability of CNN models and alleviate the overfiĴing problem, some strategies were given. 
Vision transformers (ViTs) have been trending in image classification tasks due to their promising 
performance when compared to convolutional neural networks (CNNs). Multimodal deep learning 
can fuse different modalities of remote sensing data to achieve richer information representation and 
more accurate TS classification. We believe that the Transformer & multimodal-based methods will 
be applied to TS classification shortly. The methods will comprehensively improve the effect of TS 
classification and create a new situation of TS classification by mining and fusing the data information 
of each modality. 
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