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Birth-Death Processes with Two-Type Catastrophes

Junping Li *

Guangdong University of Science & Technology, Dongguan, 523083, China; Central South University, Changsha, 410083, China;
jpli@mail.csu.edu.cn

Abstract: This paper concentrates on the general birth-death processes with two different types of catastrophes.
The Laplace transform of transition probability function for birth-death processes with two-type catastrophes are
is successfully expressed with the Laplace transform of transition probability function of the birth-death processes
without catastrophe. The first effective catastrophe occurrence time is considered. The Laplace transform of its

probability density function, expectation and variance are obtained.
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1. Introduction

Markov process is a very important branch of stochastic processes and has a very wide range of ap-
plications. Many research works can be referenced, such as, Anderson [1], Asmussen [3], Chen [9] and
others.

The birth-death process is a very important class of Markov processes, which has been widely
applied in finance, communications, population science and queueing theory. In the past few decades,
there are many works on generalizing the ordinary birth-death process and make the theory of birth-
death processes more and more fruitful. Recently, the stochastic models with catastrophe have aroused
much research interest. For example, Chen Zhang and Liu [5], Economou and Fakinos [12], Pakes [18]
considered the instantaneous distribution of continuous-time Markov chains with catastrophes. Chen
and Renshaw [7,8] analyzed the effect of catastrophes on the M/M/1 queuing model. Zhang and
Li [20] extended these results to the M /M /c queuing model with catastrophes. Li and Zhang [17]
further considered the effect of catastrophes on the MX /M /c queuing model. Di Crescenzo et al [10]
discussed the probability distribution and the relevant numerical characteristics of the first occurrence
time of an effective disaster for general birth-death process with catastrophes. Other related works can
be seen from Artalejo [2], Bayer and Boxma [4], Chen, Pollett, Li and Zhang [6], Dudin and Karolik [11],
Gelenbe [13], Gelenbe, Glynn and Sigman [14], Jain and Sigman [15],

In this paper, we mainly consider the property of the first occurrence time of effective catastrophe
for the general birth-death processes with two-type catastrophes.

We start our discussion by presenting the infinitesimal generator, i.e., the so called g-matrix.

Definition 1. Let {N; : t > 0} be a continuous-time Markov chain on state space Z. = {0,1,2,-- -}, i its
q-matrix Q = (q; :i,j € Z4) is by

Q=0+Qu )

()

where Q = (4 i,j € Zy) and Qg = (qi] ti,j € Z,) are given by

A, 020, j=i+1,

w, i1 j=i-1,

dij=4q —Ao, i=j=0, 2)
—wj, 1=j21,

0, otherwise.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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and
B, i=00ri>2,j=1,
o, i>1,j=0,
@ _ J=B i=j=0, 3)
ql] -, i=j=1,
_,Y/ l :] 2 2/
0, otherwise.

witha,p>0,A; >0(i>0), u; >0 (i >1)and w; = Aj+p; (i > 1), v = a+ B, respectively.
Then {N; : t > 0} is called a birth-death processes with two-type catastrophes. Its probability transition
function is denoted by P(t) = (p;j(t) : i,j € Z+) and the corresponding resolvent is denoted by TI(A) =

(jn(A) 2 jym € Zy).

Remark 1. By Definition 1, « and B describe the rates of catastrophes. We called them w-catastrophe and
B-catastrophe, respectively. That is, a-catastrophe kills all the individuals in the system, while B-catastrophe
partially kills the individuals in the system with only one individual left. If « = B = 0, i.e., there is no
catastrophe, then {N; : t > 0} degenemtes into an ordinary birth-death process, which is denoted by {N(t) :
t > 0}, its g-matrix is denoted by Q. The probability transition function of {N; : t > 0} is denoted by
P(t) = (pij(t) = 1,j € Z) and the corresponding resolvent is denoted by TI(A) = (ejn(A) i jn€Zy).

2. Probability Transition Function

From Definition 1, we see that a catastrophe may reduce the system state to 0 or 1. However, since
natural death rate y1, pup > 0, when the system state transfer to 0 from 1 or transfer to 1 from 2, it is
difficult to distinguish whether it was a catastrophe or a natural death. Therefore, it is important to
discuss such effective catastrophe. For this purpose, we first construct the relationship of P(t) and P(t)
(or equivalently, TT(A) and TT(A)).

Lemma 1. (i) P(t) = (pju(t) : j,n € Z) satisfies the following Kolmogorov forward equations: for any
jneZiandt >0,

Pio(t) = =(Ao+7)pjo(t) + papja(t) +a
Pia(t) = Aopjo(t) — (w1 +7)pja(t) + p2pja(t) + B, (4)
Pin(®) = Ancapjn-1(t) = (@n +7)Pjn(t) + pns1pjnsa(t), n =2,

or equivalently, in the resolvent version,
(A+Ao+7)7j0(A) =80 = prrrin(A) + 5,

(A + w1 + 7)1 (A) = 81 = Aomio(A) + paria(A) + £, (5)
(A4 wn+7)7u(A) = 6jn = An17jn—1(A) + Hns1 g1 (A), 1220

(i) P(t) = (Pju(t) : j,n € Zy) satisfies the following Kolmogorov forward equations: for any j,n € Z
and t > 0,

Pio(t) = —Aopjo(t) + mpja(t),
ﬁ;}"(t) = M—1Pjn-1(t) = (An + 1) Pjn(8) + pn1Pjmsa (8), n > 1.
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or equivalently, in the resolvent version,

{()\ +A0)7j0(A) = 850 = 17t (A),
A+ A0+ 1) jn(A) = 6 = An-aftjn-1(A) + U1 i1 (A), n > 1.

Proof. (i) By Kolmogorov forward equations and the honesty of P(t), we know that
piot) = —(Ao+B)pjo(t) + (1 +a)pja(t) + ) apji(t)
k=2

= (Aot Bpin(D) - ppia(t) + ki apilh)

= —(Ao+B)pjolt) +p1pja(t) +a(l—pjo(t))
= —(Ao+7)pjot) +p1pji(t) +a.

and

S
T
-
—~
—
~—
I

(Ao +B)pjo(t) — (M +p1+a)pii(t) + (p2 + B)pj2(t) + Iiﬁpj,k(f)

Aopjo(t) — (w1 +a)pja(t) + papja(t) + B(1 = pja(t))
Aopjo(t) — (w1 +7)pj1(t) + papj2(t) + B

The other equalities of (i) and (ii) follow directly from Kolmogorov forward equations and Laplace
transform. The proof is complete. [

The following theorem plays an important role in the later discussion, it reveals the relationship
of P(t) and P(t) (or equivalently, TT(A) and TT(A)).

Theorem 1. Forany j,n € Z, we have

t t
pin(t) = e"’tﬁj,n(t)+1x/o e‘”’sﬁoln(s)ds+ﬁ/0 e pyn(s)ds (6)

or equivalently in resolvent version,
. 1 . A
Ta(N) = A7)+ [arton(A ) + Brra(A +7)] @)

Proof. We first assume a = 0. The corresponding process is denoted by N; and its probability
transition function is denoted by P(t) = (fju(t) : j,n € Z). Denote {A; : t > 0} = {N;:t>0}. Let
{K¢ : t > 0} be a Poisson process with parameter , which is independent of { A; : t > 0}, note that
{K; : t > 0} can be viewed as a catastrophe flow. Let I(t) be the time until the first catastrophe before
time ¢. Then [(t) has the truncated exponential law

P(l(t) < u) =1- e_ﬁ"l[o,t)(u).

Denote {Ago) 11 >0} :={A;:t >0} Let {Agn) : t > 0},>1 be an independent sequence copies
of {ASO) :t > 0} but with A(()") = 1. Define {R; : t > 0} by

Ri= A, t>0.
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(0)

Then, {R; : t > 0} is a continuous-time Markov chain, it evolves like A;, at the first catastrophe time,

it jumps to state 1, and then evolves like Agl), at the next catastrophe time, it jumps to state 1 again,
and so on. Let P(t) = (Pju(t) : j,n € Z,)) be the probability transition function of {R; : t > 0}. Then

Pin(t) = P(R = n|Ro = j) = Pi(Ry = n) = EilLy (Re)] = Ej[EjlLy (Aff)) Ko, 1)),

where P; = P(-|[Ro = j) and E; is the mathematical expectation under P;. Denote G(Ky, I(t)) :=
Ej[I{ny (Al(gg)) |K¢, I(t)] for a moment. Then the above equality equals to

Ej[G(Ky, 1(t))]

E;[Ej[G(Ke, 1(1))[1(t)]]

= B = DEIG 1)) = ]+ 68 [ e PEGKIE)IE) = slas

Since I(t) =t < Ky =0and Ry = j & A = j, we have

and

If s < t, then

Ej[G(Ky, I(£))[1(t) = s]

= L Pi(Ke =KI() = 9G(k)

= ]ipj(Kt = k[I(t) = s)Ej[I{n}(A,(ffg))th =k 1(t) =]
_ ;Pf(Kt = K[I(£) = 5)E; [Ty (%))

= Y B = kI = )E D ()] Ao = A =1
B ;ipjuq = K1) = 5)P(AY = n|Ag = j, A =1
= LRk =k = 9P(af = wiaf =1

= Y Bi(Ks = k[I(1) = $)P(As = n|Ag = 1]

— )

Therefore,

t
Pin(t) = P py(t) + B2 [ e P p()ds.
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It is easy to check that f)}n (0) = ﬁ;{n(O). This implies that R; and N; are same in sense of distribution.
Hence,

t
Pin(t) = e Ppin(t)+ 'B/o e PSPy (s)ds. (8)

Now consider the general case a > 0. Denote {A; : t >0} := {N;:t > 0}. Let {K;: t >0} bea
Poisson process with parameter a¢, which is independent of {A; : + > 0}. {K; : t > 0} can be viewed
as a catastrophe flow with parameter «. Let [(t) be the time until the first catastrophe before time t.
Then I(t) has the truncated exponential law

P(I(t) < u) = 1— e ™ Ijg (1),

Denote {Afo) it >0} :={A;:t>0}. Let {AE") : t > 0},>1 be an independent sequence copies
of {A”) : ¢ > 0} but with A = 0 (n > 1). Define {R; : t > 0} by

5. ik
R = Af(t) , t>0.

Let P(t) = (Pju(t) : j,n € Z,) be the probability transition function of {R; : t > 0}. By a similar
argument as above, we know that

Pin(t) = e piu(H) + /O "ot 50 1 (s)ds.
By (8)
Bnlt) = NP pa() 46 [ P pra(s)as
b [ el Popon(s) B [ e P py ()dulds

¢ t
= @B a [ @B ()ds+ B [ B py (s)ds,

It is easy to check that ;5;”(0) = p;-’n (0). This implies that R; and N; are same in sense of distribution.
Hence,

t t
pin(t) = =@ P (1) +a /0 e~ @HB)s gy (s)ds + B /0 e~ @S p,  (s)ds.

(6) is proved. Taking Laplace transform on (6) implies (7). The proof is complete. [

3. The First Occurrence Time of Effective Catastrophe

We now consider the first effective catastrophe of {N; : t > 0}. Let C; is the first occurrence time
of effective catastrophe for {N; : t > 0} starting from state j. The probability density function of C; is
denoted by d;(t). Let C;o and C;; be the first occurrence time of effective a-catastrophe and effective
p-catastrophe, respectively. It is obvious that C; = Cjo A Cj 1.

The property of C; g or C; 1 can be similarly discussed as in Di Crescenzo et al [10]. In this paper, we
mainly consider the property of C; and the probabilities P(C; < t,Cjo < C;1) and P(C; < t,C;1 < Cjp)-
For this purpose, we construct a new process {M; : t > 0} such that {M; : t > 0} coincides with
{N; : t > 0} until the occurrence of catastrophe, but {M; : t > 0} enter into an absorbing state —1 if
the first effective catastrophe is B-type and enter into another absorbing state —2 if the first effective
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catastrophe is a-type. Therefore the state space of {M; : t > 0} is S = {-2,—-1,0,1,--- } and its
g-matrix Q = (§jn : j,m € S) is given by

il i>0,j=i+1,
s, i>1,j=i-1,
Q, i>1,j=-2,
B, i=0,j=-1,
gij = B, i>2,j=-1,

—(Ao+B), i=j=0,
—(w1+1x), i=j=1,
—(wi+7), i=j>2,
0, otherwise.

Let H(t) = (hju(t) : j,n € S) and ®(A) = (¢ju(A) : j,n € S) be the Q-transition function and
Q-resolvent.

Lemma 2. For any j > 0, we have

t

o(8) = a(l =Ry o(t) = hj () = hjo(t)),
(t) =

(1— jo z(t)— ji—1(8) = hja(t)),

-1

(t) = —(Ao + B)hjo(t) + uihji(t), )
(t) Aohjo(t) — (w1 + a)hj1(t) + p2hja(t),
in(t) = A lh]n 1(t) = (@n + hjn(t) + pnabjna (t), n =2,

or equivalently, in resolvent version,

Apj—2(A) = a(f = ¢j,2(A) — ¢ -1(A) = §j0(A)),

Agj,—1(A) = B(F — ¢j,—2(A) — ¢j,—1(A) — ¢j1(A)),

(A+ A0+ B)pjo(A) = dj0 = mpj(A), (10)
(A4 w1+ a)Pj1(A) = 61 = Aodjo(A) + Hagjn(A),

A+ wn +7)Pju(A) = 0jn = Aa1Pjn-1(A) + pur1@jni1(A), n>2.

Proof. By Kolmogorov forward equation,

W () = kofjl ahi (£)
= a(l—hj_o(t) —hj_1(t) — hip(t))

W _(t) = PBhio(t) + :ﬁz Bl ()
= Bl —hjo(t) —hj1(t) = hj(t)).

The other equalities of (9) follow directly from Kolmogorov forward equations and (10) follows from
the Laplace transform of (9). The proof is complete. [
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We now investigate the relationship of ®(A) and IT(A). For this purpose, define
Aij(A) =1—=Am;(A), i,j=0 (11)
and
H(A) = A7HA + aAgo(M)][A + BA11 (A)] — aBA1o(A) Aot (A)}- (12)
Theorem 2. Let ®(A) = (¢j,(A) : j,n € S) be the Q-resolvent. Then
_ (A +BA(A))mon(A) — BAe1(A) 1,0 (D)
Poa (1) = iy , n>0, 13)
pia(A) —aA10(A) 70,4 (A) ;E;;L ”‘AOO()\))nLn()‘)I 1> 0 (14)
and
$in(A) = 7in(A) + E(M)70(A) + Gi(M)tia(2), j22, 120, (15)
where
~ aBAp(A)Aj(A) —a(A+ BA11(A))Ajpp(A)
Fi(A) = XHOY (16)
and
Gi(A) = aBAg1(A)Ajo(A) — B(A +aAgo(A))Aj(A) 17)

AH(M)
with (71;,,(A) @ j,n > 0) being given by (7).

Proof. By (10) withj=0,1,

(A+ Ao+ B)poo(A) =1 = pgoa(A),

(A + w1 +a)po1(A) = Aodoo(A) + pago2(A), (18)
A+ wn +7)Pon(A) = Ap1popu—1(A) + pnp1dopnt1(A), n>2,

(A+ Ao+ B)p1o(A) = p11,1(A),
A+ wr+a)p11(A) — 1= Aopr10(A) + pagr12(A), (19)
A+ wn +7)P10(A) = Apc1P10-1(A) + pn1Prn(A), n>2

and by (5) withj =0, 1,

()\ + Ag + 'Y)NO,O(/\) —-1= H17T0,1 (A) + %,
(A 4wy +9)m1(A) = Aomtop(A) + pamoa(A) + § (20)
A+ wn +7)m00(A) = Ay17mou—1(A) + 1 mon1(A), 1> 2.
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(A+ Ao +7)mo(A) = prma(A) + 5,
(A+wi +9)m1(A) =1 = Aomip(A) + parrio(A) + 5, (21)
A+ wn +7)m10(A) = A1 1(A) + pug17tu1(A), 1> 2
Let
$on (A) A(/\)ﬂo,n(/\) + B(A) T,n (A), n>0. (22)
Substitute (22) into (18) and use (20), we have
{(A +adon(A)A(A) +aAp(A)B(A) = A 23
BAo(A)A(A) + (A + BA11(A))B(A) =0

Indeed, by the first equality of (18),

ie.,

(A + Ao+ B)[A(A)00(A) + B(A)m1,0(A)] =1 = p1[A(A) 10,1 (A) + B(A)711,1(A)]

AM[(A+ Ao+ B)1mo,0(A) — p17t0,1(A)] + BA)[(A + Ag + B)10(A) — prma(A)] =1

It follows from the first equality of (20) and the first equality of (21) that

(/\ + aAgg (A))A(/\) + DCAlo()L)B()L) = A.

By the second equality of (18),

ie.,

(A 4wy +a)[A(A) 70,1 (A) + B(A)mry1(A)]
Ao[A(A)10,0(A) + B(A)71,0(A)] + pia[

A(M)m02(A) + B(A)m12(A)]

AM[(A+ w1 +a)mo1(A) — Aorto(A) — parto2(A)]
+B()L)[(/\ +wq + 0()71’1,1 ()\) — AO”l,O(A) — }1271’1,2()L)] =0

It follows from the second equality of (20) and the second equality of (21) that

BAn(A)AA) + (A + A (A))B(A) = 0.

Therefore, (23) holds. It follows from (23) that

_ —BAn(A)
The other equalities of (18) also hold.
Let
(Pl,n (/\) = C()‘)T[O,n ()‘) + D(A) T,n (A), n 2> 0. (24)
Substitute (24) into (19) and use (21), we have
{(A + & — a7 (A))C(A) 4+ a(1 — At (A))D(A) = 0 25)
B(1 = Am1(A))C(A) + (A + B — PAm,1(A)) D(A) = A
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Indeed, by the second equality of (19),

A+ w1 +a)[C(A) 70,1 (A) + D(A) 7ty (A)] =1
= Ao[C(A)7m0,0(A) + D(A)711,0(A)] + H2[C(A) 7m02(A) + D(A)711,2(A)]

ie.,

[(A +wi +a)m1(A) — Ag7to,0(A) — p2mo2(A)]C(A)
FH[(A + wi +a)m1(A) = Agrip(A) — parmrip(A)]|D(A) =1

It follows from the second equality of (20) and the second equality of (21) that
BA0(A)C(A) + (A + A1 (A))D(A) = A.

By the first equality of (19),

(A+ 20+ B)[C(A)mo0(A) + D(A)m10(A)] = pa[C(A) 70,1 (A) + D(A)711,1(A)]
ie.,
[(A+ Ao+ B)mo0(A) = p170,1(A)]C(A) + B(A)[(A + Ao + B)7r1,0(A) — pr7m,a(A)] = 0

It follows from the first equality of (20) and the first equality of (21) that
(A + aAgo(A))C(A) +aA19(A))D(A) = 0.

Therefore, (25) holds. It follows from (25) that

C(A) = _”ﬁ&;” and D(A) = 2T 2Aw(A) +§‘(4/€;’<A>

The other equalities of (19) also hold.
By (10) with j > 2,

(A+2Ao+B)pjo(A) = pigja(A),
(A+wr+a)gj1(A) = Aodjo(A) + padja(A), (26)
(A +wy + 7)¢j,n</\) - 5]’,11 = /\nflcpj,nfl(/\) =+ Vn+1¢j,n+1 (/\)r nz=?2

and by (5) with j > 2,

(A+Ao+7)7j0(A) = mmi(A) + 5,
(A + w1 + 7)1 (A) = Aomtip(A) + pamjn(A) + &, (27)
A+ wn + )70 (A) =80 = Anc1Tjn 1 (A) + pug1 T (A), 1> 2.

Let

$jn(A) = Dj(M) 7151 (A) + Fj(A) 70,0 (A) + Gj(A) 11,0 (A). (28)
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Dj(/\) [(A +wn +7) Tin (A) = An—a nj,n—l()‘) — Hn+17Tn4+1 (A)] - ‘5j,n
+F (M)A +wn +7)70,0(A) = Au—170,0-1(A) = Hnr170,u11(A)] (29)
+Gi(M[A +wn +7)710(A) = Au17t10-1(A) = 1T w1 (A)] =0, n>2.

By the last equalities of (20), (21) and (27), we have D;(A)d; , = J;,, for n > 2 and hence D;j(A) = 1.
Substitute (28) into the first and second equality of (26) and use (20), (21), we have

{(7\ +aA(A))Fj(A) +aA1p(A)Gj(A) = admjo(A) —
BA(A)E(A) 4+ (A4 BA1(A))Gj(A) = BATj (A) —

Solving (30) yields (16) and (17). The proof is complete. O

By Theorem 1, we know that

(30)

ATt (A) = AR (A + ) + afton(A + ) + BrLu (A + 7).

Denote

ap(A) =1—afgu(A+v) — BALn(A+7), n>0.

Then, Aj,, (1) can be represented as
Ajn()‘) = an()‘) - /\7:[]',71()L + r)/)/
Hence, by some algebra, H(A) can be represented as

H(A) = aplag(A) o1 (A + ) +ar(A) R oA +7) —
+aag(A)B(A) + Bay(A)a(A) + Aa(A)B(A),

where a(A) =1 —afyo(A +7), B(A) =1— B11(A+ 7). Indeed,

AH(A) = (aa
—ap(

= aPap(A)ai(A) + arag(A)B(A)
+BAay(A)a(A) + A%a(A)B(A)

A) +Aw(A))(Bar(A) +AB(A))

ag(A) = Aftyp(A + 7)) (a1 (A) = Ao (A + 7))

(31)

(32)

ATt o(A + 7)Ao (A + )]

(33)

—aBag(A)ar(A) + apag(A)A o1 (A +7) +aBar(A)AR10(A + )

—aPA* A1 o(A+ 7)Ao (A +7)
= AaBlag(A ) o1 (A +7) +a1(A)
+A[wag(A)B(A) + Bar(A)a(A)

which implies (33).

Theorem 3. Let ®(A) = (¢j,(A) : j,n € S) be the Q-resolvent and TI(A) =

O-resolvent. Then,

U;

fiio(A+9) —
+ Aa(A)B(A)]

(A)ftou(A+7) + V(/\)nln(/\+'7>

ATt oA+ 7)o (A + )]

(Ajn(A) 1 j,n € Zy) be the

j,n>0, (34)
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where
Ui(A) = a(A+a+ B)BA)Rjo(A+7) +ap(A+a+ B) oA+ 7)1 (A +7),
and

V.

i(A) = BA+a+B)a(A) (A +7) +aB(A+a+ ) o1 (A +7)70(A + 7).

Proof. By (11), (12) and Theorem 1, we know that for any j,n > 0,

Ap(A) = 1=A%(A+7) —afton(A+7) — BR1u(A + )
)\[ﬁO,n (/\ + '7) - ﬁj,n (A + 7)] + Aon (/\)
= A[ﬁl,n (/\ + '7) - ﬁj,n (A + 'Y)] + A1 (/\)

Note that the right hand sides of (16) and (17) are well defined, we can define F;(A) and G;(A) for
j =0,1. Hence, it follows from Theorem 2 that for any j > 0,

AH(ME(A) = apAio(A)Ao(A) +aBAAg(A)[fo1 (A + ) — 1 (A +7)]
—a(A+ BA11(A)) Ago(A) — aA(A + BA11(A)) [Fo0(A +7) — Rjo(A + )]

and

—BA(A +aAgo(A)) [0 (A + ) — 1 (A + 7))

Therefore, by some algebra, one can get

o

AH(A) [F](/\) + 1 (1+ Fj()\) + Gj()\))]
= aAMA+a+B)(1—BR1a(A+ 7)) Rj0(A+7) +aBAA+a+ B)A1o(A+ 1) Rj1 (A + )
= AU;(A), j=>0. (35)

Similarly,

AHWIGM) + B+ B0y +60))
= PAA+a+B)(1 —afoo(A+v)Aj1(A+7) +aBA(A+a+ B) o1 (A +7)Aj0(A+7)
— AVi(A), j>o0. (36)

By Theorems 1 and 2, foranyj > 2,n >0,

$in(A) = Tu(A) + F(A)mon(A) + Gj(A)m1,n(A)
aﬁo,n()L + ’)/) + ﬁﬁl,n (/\ + '7)
A
afton(A+ ) + AL (A + 7)]
A
0(7"\[0,;1 (/\ + 'Y) + ﬁﬁl,n ()\ + 7)]
A

= ﬁj,n</\ + ’)’) +

+E (M) [Ron(A+7) +

+Gj(A) [t (A +7) +

= A+ 1)+ [FQ) + L1+ FQR) +G)] - Aga(A+7)
HGN) + B B + 6N Aad+ ),

where Fj(A) and G;j(A) are given in (16) and (17). By (35) and (36), we know (34) holds for j > 2,1 > 0.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2024 d0i:10.20944/preprints202404.0545.v1

12 of 16

As for j = 0, by (13) and Theorem 1,

$o,n (A)
_ AMA+BAN(A))mon(A) = BAAG (A)7T1,0(A)
B AH(A)
_ (A+BANM)A + ) oA +7) + B +7)] = BAn (M) [(A + B) rrn(A +7) + afton(A +7)]
AH(V)
_ (A+a)(A+ 5;\411{1(())\\))) —apAn (M) Aom(A+7) + BIA+ BAI (A/\)I;(/(\))\ +B)An (V)] An(A+7)
— ﬁO,n ()L + 'Y) + (/\ + 0()()\ + ﬁAll (ig(})‘xﬁAm ()‘) - /\H(/\) ﬁO,n ()\ + ,Y)
" BA + BAn (AA)P;(E\))\ +B)An (A)] Ain A+ 7).

By the definition of H(A),

(A+a)(A+BA1(A)) —aBAn(A) —AH(A)
(A+a)(A+BA1(A)) —aBAg(A) — (A +adAg(A)) (A + BA11(A)) +aBA1o(A) Aot (A)
a(A+ BA11(A) (1= Ago(A)) — aBAo1(A)(1— A1o(A)).

On the other hand, by some algebra, one can see that

AUp(A) = AH(A)[Fo(A) + %(1 + Fo(A) + Go(A))]
= aBA1(A)Ao (L)) — a(A + BA11(A))Ag(A)) +a(A + BA11(A)) —aBAgi(A)
= a(A+BA1N))(1— Ap(A)) —aBAg(A)(1— A1p(A)),

MWoh) = AHWIGo() + B 1+ R2) + Go(a))]

aBAo1(A)Ago(A) — B(A + &Aoo (A)) Agi (A) + B(A + BA11(A)) — B*Ag1 (M)
= BA+BA1(A) = (A+B)An(M)]

Therefore, (34) holds for j = 0. By a similar argument, (34) also holds for j = 1. The proof is
complete. [

We now consider the probability distribution of C; and the related probabilities P(C; < t,C;o <
Cj1)and P(C; < t,Cj1 < Cjp). Itis easy to see that P(C; < t,Cjx < Cj1_y) is differentiable in t for
k=01 Letd;(t) = %P(Cj < t,Cjx < Cj1-¢) fork = 0,1. Also, let A;x(A) denote the Laplace
transform of d; () for k = 0,1 and A;(A) denote the Laplace transform of d; ().

Theorem 4. Forany j > 0, we have

A+ B)(1—Adio(A) — aB(1 — Ay (A
Aj,o(/\):“( ) Af]i((o)é)+/30;§( Pia)

A+ a)(1—Agp(A)) — aB(l— Adjo(A
Aj,l(/\):ﬁ( )( Af]i((ilﬁ)i( $jo(A))

and

a(1=Agjo(A) + B(1 = AP (M)

Bj(A) = Ata+p

7
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where ¢jo(A) and ¢;1(A) are given in Theorem 3. In particular,

a[1+ B(¢;1(0) — ¢;0(0))]
a+pB

P(Cj,o < Cj,l) =

4

B[1+ a(¢jo(0) — ¢;,1(0))]
x+ B

P(C]‘,l < Cj,()) =

where ¢;o(A) and ¢;1(A) are given by (34).

Proof. By the definitions of {M; : t > 0} and {N; : t > 0}, we know that for any j > 0,

t
P(Cj,() <t, C]',O < Cj,l) = A dj,o(T)dT = h]‘,_z(t),
t
P(lel <t, Cj,l < leo) = A djll(T)dT = hj,—l (t)
and

p(cjgt):/t

o d](T>dT = hj’,z(f) + hjrfl(t).

Therefore, djo(t) = h;-,_z(t), di(t) = h},_l(t) and d;(t) = h},_z(t) + h},_l(t). Hence,
ANio(A) = Adj,2(A),  Bj1(A) = Agj_1(A)
and
Ai(A) = Adj2(A) +Ag;_1(A).
By (10) of Lemma 2, we know that

(A +a)Adj,2(A) + addj,1(A) = a(l — Agjo(A))
and

PAGj,—2(A) + (A + B)AGj,—1(A) = B(1 = Adj1(A)).
Therefore, by the first two equalities of (10),

a[(A+B)(1—Agjo(A) — B(1 = Adja(A))]
A2+ (a+ B)A ’

Ajp(A) = Agj2(A) =

BlA+a)(1 = Agj1(A)) — a(l = Adjo(A))]
A2+ (a+B)A

Aii(A) = Agj1(A) =

and hence

a(1=Agjo(A)) + (1 — A (A))
Ata+pB

AN =

Note that P(C; < o0) = A;(0) = 1, the last two assertions hold. The proof is complete. [
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We now consider the mathematical expectation and variance of C;.
Theorem 5. Foranyj > 0,
1+ ag;(0) + Bp;1(0
a+p
and
o 201+ agio(0) + ;1 (0) — (a+ B)(ag)o(0) + ¢4 (0))]
E[C‘ ] = 5 ’
! (a+B)
where ¢jo(A) and ¢;1(A) are given by (34).
Proof. By Theorem 4, we have
(A+a+pB)Aj(A) = a(l=Agjo(A) + (1 —A¢j1(A))
Differentiating the above equality yields that
(A +a+B)AIA) +Aj(A) = —a(Agjo(A) — B(Adj1 (A)) (37)

Let A = 0 and note that A;(0) = 1, we have

_ 1+ ag;0(0) + B¢jr(0) '

E[Cj) = ~/(0) e

Differentiating (37) yields that

(A +a+ AT (A) +24%(7)
= —a(Agjp(A)" = B(Ag1(A))”
—a[Agio(A) + 2955 (M)] — BAG]1(A) + 2971 (A)].

Let A = 0 in the above equality yields that

(2 + B)AT(0) +24j(0) = —2a;((0) — 284, (0).

Therefore,
E[C}] = A7(0)
2~ 8(0) — a0 — g (0))
- a+p
201+ apj0(0) + Bya (0) — (& + B) (a}(0) + B, (0)

(a+ p)?
The proof is complete. [

Finally, if &« = 0 or B = 0, we get the following result which is due to Di Crescenzo et al [10].

Corollary 1. (i) If § = 0O, then for any j > 0,
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and

2 artjp(a) We(a) w3ﬁj,0(vc)ﬁ6,0(¢x)>

E[Cf] a2 <1 1—afgo(a) 1—amg(a) (1 —afgo(a))?

(ii) If « = 0, then for any j > 0,

L1 71 (B)
ElGil = p "1 — BA1(B)

and

]_,32

Proof. If B = 0, by Theorem 3,

20 2 Bra(B)  BHA(B) B (B (B)
FIG] Gﬂ—mmmifmmm - prap)? )

aftig(A+ a) g o(A + a) ftio(A+a)
0(A) = 7oA L ' = —r :
(P]'O( ) ﬂ]'O( +w>+ 1*0(7%0,0(/\+1X) 1*0(7%0,()()\+06)
Therefore,
' o Tola)
9j0(0) = 1—astop(a)
and
¢ o(0) = io(®) artjo (o) 7t o ()
0 1—affgo(a) (1 —afoe(x))?
Hence, by Theorem 4,
14 ag;o(0 7ol
« a  1—afgp(a)
and
2 2 2.1
E[C] = E[l + agjo(0) — a”¢j4(0)]
_o2 (L @) @) a () rge(e)
a2 1—amo(e) 1—afgo(a) (1—afgo(n))?

(i) is proved. The proof of (ii) is similar. [
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