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Abstract: This paper concentrates on the general birth-death processes with two different types of catastrophes.

The Laplace transform of transition probability function for birth-death processes with two-type catastrophes are

is successfully expressed with the Laplace transform of transition probability function of the birth-death processes

without catastrophe. The first effective catastrophe occurrence time is considered. The Laplace transform of its

probability density function, expectation and variance are obtained.
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1. Introduction

Markov process is a very important branch of stochastic processes and has a very wide range of ap-
plications. Many research works can be referenced, such as, Anderson [1], Asmussen [3], Chen [9] and
others.

The birth-death process is a very important class of Markov processes, which has been widely
applied in finance, communications, population science and queueing theory. In the past few decades,
there are many works on generalizing the ordinary birth-death process and make the theory of birth-
death processes more and more fruitful. Recently, the stochastic models with catastrophe have aroused
much research interest. For example, Chen Zhang and Liu [5], Economou and Fakinos [12], Pakes [18]
considered the instantaneous distribution of continuous-time Markov chains with catastrophes. Chen
and Renshaw [7,8] analyzed the effect of catastrophes on the M/M/1 queuing model. Zhang and
Li [20] extended these results to the M/M/c queuing model with catastrophes. Li and Zhang [17]
further considered the effect of catastrophes on the MX/M/c queuing model. Di Crescenzo et al [10]
discussed the probability distribution and the relevant numerical characteristics of the first occurrence
time of an effective disaster for general birth-death process with catastrophes. Other related works can
be seen from Artalejo [2], Bayer and Boxma [4], Chen, Pollett, Li and Zhang [6], Dudin and Karolik [11],
Gelenbe [13], Gelenbe, Glynn and Sigman [14], Jain and Sigman [15],

In this paper, we mainly consider the property of the first occurrence time of effective catastrophe
for the general birth-death processes with two-type catastrophes.

We start our discussion by presenting the infinitesimal generator, i.e., the so called q-matrix.

Definition 1. Let {Nt : t ≥ 0} be a continuous-time Markov chain on state space Z+ = {0, 1, 2, · · · }, if its
q-matrix Q = (qij : i, j ∈ Z+) is by

Q = Q̂ + Qd, (1)

where Q̂ = (q̂ij : i, j ∈ Z+) and Qd = (q(d)ij : i, j ∈ Z+) are given by

q̂ij =



λi, i ≥ 0, j = i + 1,

µi, i ≥ 1, j = i − 1,

−λ0, i = j = 0,

−ωi, i = j ≥ 1,

0, otherwise.

(2)
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and

q(d)ij =



β, i = 0 or i ≥ 2, j = 1,

α, i ≥ 1, j = 0,

−β, i = j = 0,

−α, i = j = 1,

−γ, i = j ≥ 2,

0, otherwise.

(3)

with α, β ≥ 0, λi > 0 (i ≥ 0), µi > 0 (i ≥ 1) and ωi = λi + µi (i ≥ 1), γ = α + β, respectively.
Then {Nt : t ≥ 0} is called a birth-death processes with two-type catastrophes. Its probability transition

function is denoted by P(t) = (pij(t) : i, j ∈ Z+) and the corresponding resolvent is denoted by Π(λ) =

(πj,n(λ) : j, n ∈ Z+).

Remark 1. By Definition 1, α and β describe the rates of catastrophes. We called them α-catastrophe and
β-catastrophe, respectively. That is, α-catastrophe kills all the individuals in the system, while β-catastrophe
partially kills the individuals in the system with only one individual left. If α = β = 0, i.e., there is no
catastrophe, then {Nt : t ≥ 0} degenerates into an ordinary birth-death process, which is denoted by {N̂(t) :
t ≥ 0}, its q-matrix is denoted by Q̂. The probability transition function of {N̂t : t ≥ 0} is denoted by
P̂(t) = ( p̂ij(t) : i, j ∈ Z+) and the corresponding resolvent is denoted by Π̂(λ) = (π̂j,n(λ) : j, n ∈ Z+).

2. Probability Transition Function

From Definition 1, we see that a catastrophe may reduce the system state to 0 or 1. However, since
natural death rate µ1, µ2 > 0, when the system state transfer to 0 from 1 or transfer to 1 from 2, it is
difficult to distinguish whether it was a catastrophe or a natural death. Therefore, it is important to
discuss such effective catastrophe. For this purpose, we first construct the relationship of P(t) and P̂(t)
(or equivalently, Π(λ) and Π̂(λ)).

Lemma 1. (i) P(t) = (pj,n(t) : j, n ∈ Z+) satisfies the following Kolmogorov forward equations: for any
j, n ∈ Z+ and t ≥ 0,

p′j,0(t) = −(λ0 + γ)pj,0(t) + µ1 pj,1(t) + α,

p′j,1(t) = λ0 pj,0(t)− (ω1 + γ)pj,1(t) + µ2 pj,2(t) + β,

p′j,n(t) = λn−1 pj,n−1(t)− (ωn + γ)pj,n(t) + µn+1 pj,n+1(t), n ≥ 2,

(4)

or equivalently, in the resolvent version,
(λ + λ0 + γ)πj,0(λ)− δj,0 = µ1πj,1(λ) +

α
λ ,

(λ + ω1 + γ)πj,1(λ)− δj,1 = λ0πj,0(λ) + µ2πj,2(λ) +
β
λ ,

(λ + ωn + γ)πj,n(λ)− δj,n = λn−1πj,n−1(λ) + µn+1πj,n+1(λ), n ≥ 2.

(5)

(ii) P̂(t) = ( p̂j,n(t) : j, n ∈ Z+) satisfies the following Kolmogorov forward equations: for any j, n ∈ Z+

and t ≥ 0,  p̂′j,0(t) = −λ0 p̂j,0(t) + µ1 p̂j,1(t),

p̂′j,n(t) = λn−1 p̂j,n−1(t)− (λn + µn) p̂j,n(t) + µn+1 p̂j,n+1(t), n ≥ 1.
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or equivalently, in the resolvent version,{
(λ + λ0)π̂j,0(λ)− δj,0 = µ1π̂j,1(λ),

(λ + λn + µn)π̂j,n(λ)− δj,n = λn−1π̂j,n−1(λ) + µn+1π̂j,n+1(λ), n ≥ 1.

Proof. (i) By Kolmogorov forward equations and the honesty of P(t), we know that

p′j,0(t) = −(λ0 + β)pj,0(t) + (µ1 + α)pj,1(t) +
∞

∑
k=2

αpj,k(t)

= −(λ0 + β)pj,0(t) + µ1 pj,1(t) +
∞

∑
k=1

αpj,k(t)

= −(λ0 + β)pj,0(t) + µ1 pj,1(t) + α(1 − pj,0(t))

= −(λ0 + γ)pj,0(t) + µ1 pj,1(t) + α.

and

p′j,1(t) = (λ0 + β)pj,0(t)− (λ1 + µ1 + α)pj,1(t) + (µ2 + β)pj,2(t) +
∞

∑
k=3

βpj,k(t)

= λ0 pj,0(t)− (ω1 + α)pj,1(t) + µ2 pj,2(t) + β(1 − pj,1(t))

= λ0 pj,0(t)− (ω1 + γ)pj,1(t) + µ2 pj,2(t) + β.

The other equalities of (i) and (ii) follow directly from Kolmogorov forward equations and Laplace
transform. The proof is complete.

The following theorem plays an important role in the later discussion, it reveals the relationship
of P(t) and P̂(t) (or equivalently, Π(λ) and Π̂(λ)).

Theorem 1. For any j, n ∈ Z+, we have

pj,n(t) = e−γt p̂j,n(t) + α
∫ t

0
e−γs p̂0,n(s)ds + β

∫ t

0
e−γs p̂1,n(s)ds (6)

or equivalently in resolvent version,

πj,n(λ) = π̂j,n(λ + γ) +
1
λ
· [απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)] (7)

Proof. We first assume α = 0. The corresponding process is denoted by Ñt and its probability
transition function is denoted by P̃(t) = ( p̃j,n(t) : j, n ∈ Z+). Denote {At : t ≥ 0} = {N̂t : t ≥ 0}. Let
{Kt : t ≥ 0} be a Poisson process with parameter β, which is independent of {At : t ≥ 0}, note that
{Kt : t ≥ 0} can be viewed as a catastrophe flow. Let l(t) be the time until the first catastrophe before
time t. Then l(t) has the truncated exponential law

P(l(t) ≤ u) = 1 − e−βu I[0,t)(u).

Denote {A(0)
t : t ≥ 0} := {At : t ≥ 0}. Let {A(n)

t : t ≥ 0}n≥1 be an independent sequence copies

of {A(0)
t : t ≥ 0} but with A(n)

0 = 1. Define {Rt : t ≥ 0} by

Rt = A(Kt)
l(t) , t ≥ 0.

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 8 April 2024                   doi:10.20944/preprints202404.0545.v1



4 of 16

Then, {Rt : t ≥ 0} is a continuous-time Markov chain, it evolves like A(0)
t , at the first catastrophe time,

it jumps to state 1, and then evolves like A(1)
t , at the next catastrophe time, it jumps to state 1 again,

and so on. Let P̄(t) = ( p̄jn(t) : j, n ∈ Z+)) be the probability transition function of {Rt : t ≥ 0}. Then

p̄jn(t) = P(Rt = n|R0 = j) = Pj(Rt = n) = Ej[I{n}(Rt)] = Ej[Ej[I{n}(A(Kt)
l(t) )|Kt, l(t)]],

where Pj = P(·|R0 = j) and Ej is the mathematical expectation under Pj. Denote G(Kt, l(t)) :=

Ej[I{n}(A(Kt)
l(t) )|Kt, l(t)] for a moment. Then the above equality equals to

Ej[G(Kt, l(t))]

= Ej[Ej[G(Kt, l(t))|l(t)]]

= Pj(l(t) = t)Ej[G(Kt, l(t))|l(t) = t] + βξ
∫ t

0
e−βsEj[G(Kt, l(t))|l(t) = s]ds.

Since l(t) = t ⇔ Kt = 0 and R0 = j ⇔ A0 = j, we have

Pj(l(t) = t) = Pj(Kt = 0) = e−βt

and

Ej[G(Kt, l(t))|l(t) = t] = Ej[I{n}(A(0)
t )] = Ej[I{n}(At)] = p̂jn(t).

If s < t, then

Ej[G(Kt, l(t))|l(t) = s]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)G(k, s)

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)Ej[I{n}(A(Kt)
l(t) )|Kt = k, l(t) = s]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)Ej[I{n}(A(k)
s )]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)E[I{n}(A(k)
s )|A0 = j, A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(A(k)
s = n|A0 = j, A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(A(k)
s = n|A(k)

0 = 1]

=
∞

∑
k=1

Pj(Kt = k|l(t) = s)P(As = n|A0 = 1]

= p̂1,n(s).

Therefore,

p̄j,n(t) = e−βt p̂j,n(t) + βξ
∫ t

0
e−βs p̂1,n(s)ds.
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It is easy to check that p̄′j,n(0) = p̃′j,n(0). This implies that Rt and Ñt are same in sense of distribution.
Hence,

p̃j,n(t) = e−βt p̂j,n(t) + β
∫ t

0
e−βs p̂1,n(s)ds. (8)

Now consider the general case α > 0. Denote {Ãt : t ≥ 0} := {Ñt : t ≥ 0}. Let {K̃t : t ≥ 0} be a
Poisson process with parameter αξ, which is independent of {Ãt : t ≥ 0}. {K̃t : t ≥ 0} can be viewed
as a catastrophe flow with parameter α. Let l̃(t) be the time until the first catastrophe before time t.
Then l(t) has the truncated exponential law

P(l̃(t) ≤ u) = 1 − e−αu I[0,t)(u).

Denote {Ã(0)
t : t ≥ 0} := {Ãt : t ≥ 0}. Let {Ã(n)

t : t ≥ 0}n≥1 be an independent sequence copies

of {Ã(0)
t : t ≥ 0} but with Ã(n)

0 = 0 (n ≥ 1). Define {R̃t : t ≥ 0} by

R̃t = Ã(K̃t)

l̃(t)
, t ≥ 0.

Let P̌(t) = ( p̌j,n(t) : j, n ∈ Z+) be the probability transition function of {R̃t : t ≥ 0}. By a similar
argument as above, we know that

p̌j,n(t) = e−αt p̄j,n(t) + α
∫ t

0
e−αs p̄0,n(s)ds.

By (8)

p̌j,n(t) = e−αt[e−βt p̂j,n(t) + β
∫ t

0
e−βs p̂1,n(s)ds]

+α
∫ t

0
e−αs[e−βs p̂0,n(s) + β

∫ s

0
e−βu p̂1,n(u)du]ds

= e−(α+β)t p̂j,n(t) + α
∫ t

0
e−(α+β)s p̂0,n(s)ds + β

∫ t

0
e−(α+β)s p̂1,n(s)ds.

It is easy to check that p̌′j,n(0) = p′j,n(0). This implies that R̃t and Nt are same in sense of distribution.
Hence,

pj,n(t) = e−(α+β)t p̂j,n(t) + α
∫ t

0
e−(α+β)s p̂0,n(s)ds + β

∫ t

0
e−(α+β)s p̂1,n(s)ds.

(6) is proved. Taking Laplace transform on (6) implies (7). The proof is complete.

3. The First Occurrence Time of Effective Catastrophe

We now consider the first effective catastrophe of {Nt : t ≥ 0}. Let Cj is the first occurrence time
of effective catastrophe for {Nt : t ≥ 0} starting from state j. The probability density function of Cj is
denoted by dj(t). Let Cj,0 and Cj,1 be the first occurrence time of effective α-catastrophe and effective
β-catastrophe, respectively. It is obvious that Cj = Cj,0 ∧ Cj,1.

The property of Cj,0 or Cj,1 can be similarly discussed as in Di Crescenzo et al [10]. In this paper, we
mainly consider the property of Cj and the probabilities P(Cj ≤ t, Cj,0 < Cj,1) and P(Cj ≤ t, Cj,1 < Cj,0).
For this purpose, we construct a new process {Mt : t ≥ 0} such that {Mt : t ≥ 0} coincides with
{Nt : t ≥ 0} until the occurrence of catastrophe, but {Mt : t ≥ 0} enter into an absorbing state −1 if
the first effective catastrophe is β-type and enter into another absorbing state −2 if the first effective
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catastrophe is α-type. Therefore the state space of {Mt : t ≥ 0} is S = {−2,−1, 0, 1, · · · } and its
q-matrix Q̃ = (q̃jn : j, n ∈ S) is given by

q̃ij =



λi, i ≥ 0, j = i + 1,

µi, i ≥ 1, j = i − 1,

α, i ≥ 1, j = −2,

β, i = 0, j = −1,

β, i ≥ 2, j = −1,

−(λ0 + β), i = j = 0,

−(ω1 + α), i = j = 1,

−(ωi + γ), i = j ≥ 2,

0, otherwise.

Let H(t) = (hj,n(t) : j, n ∈ S) and Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-transition function and
Q̃-resolvent.

Lemma 2. For any j ≥ 0, we have

h′j,−2(t) = α(1 − hj,−2(t)− hj,−1(t)− hj,0(t)),

h′j,−1(t) = β(1 − hj,−2(t)− hj,−1(t)− hj,1(t)),

h′j,0(t) = −(λ0 + β)hj,0(t) + µ1hj,1(t),

h′j,1(t) = λ0hj,0(t)− (ω1 + α)hj,1(t) + µ2hj,2(t),

h′j,n(t) = λn−1hj,n−1(t)− (ωn + γ)hj,n(t) + µn+1hj,n+1(t), n ≥ 2,

(9)

or equivalently, in resolvent version,

λϕj,−2(λ) = α( 1
λ − ϕj,−2(λ)− ϕj,−1(λ)− ϕj,0(λ)),

λϕj,−1(λ) = β( 1
λ − ϕj,−2(λ)− ϕj,−1(λ)− ϕj,1(λ)),

(λ + λ0 + β)ϕj,0(λ)− δj,0 = µ1ϕj,1(λ),

(λ + ω1 + α)ϕj,1(λ)− δj,1 = λ0ϕj,0(λ) + µ2ϕj,2(λ),

(λ + ωn + γ)ϕj,n(λ)− δj,n = λn−1ϕj,n−1(λ) + µn+1ϕj,n+1(λ), n ≥ 2.

(10)

Proof. By Kolmogorov forward equation,

h′j,−2(t) =
∞

∑
k=1

αhj,k(t)

= α(1 − hj,−2(t)− hj,−1(t)− hj,0(t)).

h′j,−1(t) = βhj,0(t) +
∞

∑
k=2

βhj,k(t)

= β(1 − hj,−2(t)− hj,−1(t)− hj,1(t)).

The other equalities of (9) follow directly from Kolmogorov forward equations and (10) follows from
the Laplace transform of (9). The proof is complete.
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We now investigate the relationship of Φ(λ) and Π(λ). For this purpose, define

Aij(λ) = 1 − λπi,j(λ), i, j ≥ 0 (11)

and

H(λ) = λ−1{[λ + αA00(λ)][λ + βA11(λ)]− αβA10(λ)A01(λ)}. (12)

Theorem 2. Let Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-resolvent. Then

ϕ0,n(λ) =
(λ + βA11(λ))π0,n(λ)− βA01(λ)π1,n(λ)

H(λ)
, n ≥ 0, (13)

ϕ1,n(λ) =
−αA10(λ)π0,n(λ) + (λ + αA00(λ))π1,n(λ)

H(λ)
, n ≥ 0 (14)

and

ϕj,n(λ) = πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ), j ≥ 2, n ≥ 0, (15)

where

Fj(λ) =
αβA10(λ)Aj1(λ)− α(λ + βA11(λ))Aj0(λ)

λH(λ)
(16)

and

Gj(λ) =
αβA01(λ)Aj0(λ)− β(λ + αA00(λ))Aj1(λ)

λH(λ)
(17)

with (πj,n(λ) : j, n ≥ 0) being given by (7).

Proof. By (10) with j = 0, 1,
(λ + λ0 + β)ϕ0,0(λ)− 1 = µ1ϕ0,1(λ),

(λ + ω1 + α)ϕ0,1(λ) = λ0ϕ0,0(λ) + µ2ϕ0,2(λ),

(λ + ωn + γ)ϕ0,n(λ) = λn−1ϕ0,n−1(λ) + µn+1ϕ0,n+1(λ), n ≥ 2,

(18)


(λ + λ0 + β)ϕ1,0(λ) = µ1ϕ1,1(λ),

(λ + ω1 + α)ϕ1,1(λ)− 1 = λ0ϕ1,0(λ) + µ2ϕ1,2(λ),

(λ + ωn + γ)ϕ1,n(λ) = λn−1ϕ1,n−1(λ) + µn+1ϕ1,n+1(λ), n ≥ 2

(19)

and by (5) with j = 0, 1,
(λ + λ0 + γ)π0,0(λ)− 1 = µ1π0,1(λ) +

α
λ ,

(λ + ω1 + γ)π0,1(λ) = λ0π0,0(λ) + µ2π0,2(λ) +
β
λ ,

(λ + ωn + γ)π0,n(λ) = λn−1π0,n−1(λ) + µn+1π0,n+1(λ), n ≥ 2.

(20)
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
(λ + λ0 + γ)π1,0(λ) = µ1π1,1(λ) +

α
λ ,

(λ + ω1 + γ)π1,1(λ)− 1 = λ0π1,0(λ) + µ2π1,2(λ) +
β
λ ,

(λ + ωn + γ)π1,n(λ) = λn−1π1,n−1(λ) + µn+1π1,n+1(λ), n ≥ 2.

(21)

Let

ϕ0,n(λ) = A(λ)π0,n(λ) + B(λ)π1,n(λ), n ≥ 0. (22)

Substitute (22) into (18) and use (20), we have{
(λ + αA00(λ))A(λ) + αA10(λ)B(λ) = λ

βA01(λ)A(λ) + (λ + βA11(λ))B(λ) = 0.
(23)

Indeed, by the first equality of (18),

(λ + λ0 + β)[A(λ)π0,0(λ) + B(λ)π1,0(λ)]− 1 = µ1[A(λ)π0,1(λ) + B(λ)π1,1(λ)]

i.e.,

A(λ)[(λ + λ0 + β)π0,0(λ)− µ1π0,1(λ)] + B(λ)[(λ + λ0 + β)π1,0(λ)− µ1π1,1(λ)] = 1

It follows from the first equality of (20) and the first equality of (21) that

(λ + αA00(λ))A(λ) + αA10(λ)B(λ) = λ.

By the second equality of (18),

(λ + ω1 + α)[A(λ)π0,1(λ) + B(λ)π1,1(λ)]

= λ0[A(λ)π0,0(λ) + B(λ)π1,0(λ)] + µ2[A(λ)π0,2(λ) + B(λ)π1,2(λ)]

i.e.,

A(λ)[(λ + ω1 + α)π0,1(λ)− λ0π0,0(λ)− µ2π0,2(λ)]

+B(λ)[(λ + ω1 + α)π1,1(λ)− λ0π1,0(λ)− µ2π1,2(λ)] = 0

It follows from the second equality of (20) and the second equality of (21) that

βA01(λ)A(λ) + (λ + βA11(λ))B(λ) = 0.

Therefore, (23) holds. It follows from (23) that

A(λ) =
λ + βA11(λ)

H(λ)
and B(λ) =

−βA01(λ)

H(λ)
.

The other equalities of (18) also hold.
Let

ϕ1,n(λ) = C(λ)π0,n(λ) + D(λ)π1,n(λ), n ≥ 0. (24)

Substitute (24) into (19) and use (21), we have{
(λ + α − αλπ0,0(λ))C(λ) + α(1 − λπ1,0(λ))D(λ) = 0

β(1 − λπ0,1(λ))C(λ) + (λ + β − βλπ1,1(λ))D(λ) = λ.
(25)
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Indeed, by the second equality of (19),

(λ + ω1 + α)[C(λ)π0,1(λ) + D(λ)π1,1(λ)]− 1

= λ0[C(λ)π0,0(λ) + D(λ)π1,0(λ)] + µ2[C(λ)π0,2(λ) + D(λ)π1,2(λ)]

i.e.,

[(λ + ω1 + α)π0,1(λ)− λ0π0,0(λ)− µ2π0,2(λ)]C(λ)

+[(λ + ω1 + α)π1,1(λ)− λ0π1,0(λ)− µ2π1,2(λ)]D(λ) = 1

It follows from the second equality of (20) and the second equality of (21) that

βA01(λ)C(λ) + (λ + βA11(λ))D(λ) = λ.

By the first equality of (19),

(λ + λ0 + β)[C(λ)π0,0(λ) + D(λ)π1,0(λ)] = µ1[C(λ)π0,1(λ) + D(λ)π1,1(λ)]

i.e.,

[(λ + λ0 + β)π0,0(λ)− µ1π0,1(λ)]C(λ) + B(λ)[(λ + λ0 + β)π1,0(λ)− µ1π1,1(λ)] = 0

It follows from the first equality of (20) and the first equality of (21) that

(λ + αA00(λ))C(λ) + αA10(λ))D(λ) = 0.

Therefore, (25) holds. It follows from (25) that

C(λ) =
−αA10(λ)

H(λ)
and D(λ) =

λ + αA00(λ)

H(λ)
.

The other equalities of (19) also hold.
By (10) with j ≥ 2,

(λ + λ0 + β)ϕj,0(λ) = µ1ϕj,1(λ),

(λ + ω1 + α)ϕj,1(λ) = λ0ϕj,0(λ) + µ2ϕj,2(λ),

(λ + ωn + γ)ϕj,n(λ)− δj,n = λn−1ϕj,n−1(λ) + µn+1ϕj,n+1(λ), n ≥ 2

(26)

and by (5) with j ≥ 2,
(λ + λ0 + γ)πj,0(λ) = µ1πj,1(λ) +

α
λ ,

(λ + ω1 + γ)πj,1(λ) = λ0πj,0(λ) + µ2πj,2(λ) +
β
λ ,

(λ + ωn + γ)πj,n(λ)− δj,n = λn−1πj,n−1(λ) + µn+1πj,n+1(λ), n ≥ 2.

(27)

Let

ϕj,n(λ) = Dj(λ)πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ). (28)
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Substitute (28) into the last equality of (26), we have

Dj(λ)[(λ + ωn + γ)πj,n(λ)− λn−1πj,n−1(λ)− µn+1πj,n+1(λ)]− δj,n

+Fj(λ)[(λ + ωn + γ)π0,n(λ)− λn−1π0,n−1(λ)− µn+1π0,n+1(λ)] (29)

+Gj(λ)[(λ + ωn + γ)π1,n(λ)− λn−1π1,n−1(λ)− µn+1π1,n+1(λ)] = 0, n ≥ 2.

By the last equalities of (20), (21) and (27), we have Dj(λ)δj,n = δj,n for n ≥ 2 and hence Dj(λ) = 1.
Substitute (28) into the first and second equality of (26) and use (20), (21), we have{

(λ + αA00(λ))Fj(λ) + αA10(λ)Gj(λ) = αλπj,0(λ)− α,

βA01(λ)Fj(λ) + (λ + βA11(λ))Gj(λ) = βλπj,1(λ)− β.
(30)

Solving (30) yields (16) and (17). The proof is complete.

By Theorem 1, we know that

λπj,n(λ) = λπ̂j,n(λ + γ) + απ̂0,n(λ + γ) + βπ̂1,n(λ + γ).

Denote

an(λ) = 1 − απ̂0,n(λ + γ)− βπ̂1,n(λ + γ), n ≥ 0. (31)

Then, Ajn(λ) can be represented as

Ajn(λ) = an(λ)− λπ̂j,n(λ + γ), (32)

Hence, by some algebra, H(λ) can be represented as

H(λ) = αβ[a0(λ)π̂0,1(λ + γ) + a1(λ)π̂1,0(λ + γ)− λπ̂1,0(λ + γ)π̂0,1(λ + γ)]

+αa0(λ)β(λ) + βa1(λ)α(λ) + λα(λ)β(λ), (33)

where α(λ) = 1 − απ̂0,0(λ + γ), β(λ) = 1 − βπ̂1,1(λ + γ). Indeed,

λH(λ) = (αa0(λ) + λα(λ))(βa1(λ) + λβ(λ))

−αβ(a0(λ)− λπ̂1,0(λ + γ))(a1(λ)− λπ̂0,1(λ + γ))

= αβa0(λ)a1(λ) + αλa0(λ)β(λ)

+βλa1(λ)α(λ) + λ2α(λ)β(λ)

−αβa0(λ)a1(λ) + αβa0(λ)λπ̂0,1(λ + γ) + αβa1(λ)λπ̂1,0(λ + γ)

−αβλ2π̂1,0(λ + γ)π̂0,1(λ + γ)

= λαβ[a0(λ)π̂0,1(λ + γ) + a1(λ)π̂1,0(λ + γ)− λπ̂1,0(λ + γ)π̂0,1(λ + γ)]

+λ[αa0(λ)β(λ) + βa1(λ)α(λ) + λα(λ)β(λ)]

which implies (33).

Theorem 3. Let Φ(λ) = (ϕj,n(λ) : j, n ∈ S) be the Q̃-resolvent and Π̂(λ) = (π̂j,n(λ) : j, n ∈ Z+) be the
Q̂-resolvent. Then,

ϕj,n(λ) = π̂j,n(λ + γ) +
Uj(λ)π̂0,n(λ + γ) + Vj(λ)π̂1,n(λ + γ)

H(λ)
, j, n ≥ 0, (34)
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where

Uj(λ) = α(λ + α + β)β(λ)π̂j,0(λ + γ) + αβ(λ + α + β)π̂1,0(λ + γ)π̂j,1(λ + γ),

and

Vj(λ) = β(λ + α + β)α(λ)π̂j,1(λ + γ) + αβ(λ + α + β)π̂0,1(λ + γ)π̂j,0(λ + γ).

Proof. By (11), (12) and Theorem 1, we know that for any j, n ≥ 0,

Ajn(λ) = 1 − λπ̂j,n(λ + γ)− απ̂0,n(λ + γ)− βπ̂1,n(λ + γ)

= λ[π̂0,n(λ + γ)− π̂j,n(λ + γ)] + A0n(λ)

= λ[π̂1,n(λ + γ)− π̂j,n(λ + γ)] + A1n(λ).

Note that the right hand sides of (16) and (17) are well defined, we can define Fj(λ) and Gj(λ) for
j = 0, 1. Hence, it follows from Theorem 2 that for any j ≥ 0,

λH(λ)Fj(λ) = αβA10(λ)A01(λ) + αβλA10(λ)[π̂0,1(λ + γ)− π̂j,1(λ + γ)]

−α(λ + βA11(λ))A00(λ)− αλ(λ + βA11(λ))[π̂0,0(λ + γ)− π̂j,0(λ + γ)]

and

λH(λ)Gj(λ) = −βλA01(λ) + αβλA01(λ)[π̂0,0(λ + γ)− π̂j,0(λ + γ)]

−βλ(λ + αA00(λ))[π̂0,1(λ + γ)− π̂j,1(λ + γ)].

Therefore, by some algebra, one can get

λH(λ)[Fj(λ) +
α

λ
(1 + Fj(λ) + Gj(λ))]

= αλ(λ + α + β)(1 − βπ̂1,1(λ + γ))π̂j,0(λ + γ) + αβλ(λ + α + β)π̂1,0(λ + γ)π̂j,1(λ + γ)

=: λUj(λ), j ≥ 0. (35)

Similarly,

λH(λ)[Gj(λ) +
β

λ
(1 + Fj(λ) + Gj(λ))]

= βλ(λ + α + β)(1 − απ̂0,0(λ + γ))π̂j,1(λ + γ) + αβλ(λ + α + β)π̂0,1(λ + γ)π̂j,0(λ + γ)

=: λVj(λ), j ≥ 0. (36)

By Theorems 1 and 2, for any j ≥ 2, n ≥ 0,

ϕj,n(λ) = πj,n(λ) + Fj(λ)π0,n(λ) + Gj(λ)π1,n(λ)

= π̂j,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ

+Fj(λ)[π̂0,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ
]

+Gj(λ)[π̂1,n(λ + γ) +
απ̂0,n(λ + γ) + βπ̂1,n(λ + γ)

λ
]

= π̂j,n(λ + γ) + [Fj(λ) +
α

λ
(1 + Fj(λ) + Gj(λ))] · π̂0,n(λ + γ)

+[Gj(λ) +
β

λ
(1 + Fj(λ) + Gj(λ))] · π̂1,n(λ + γ),

where Fj(λ) and Gj(λ) are given in (16) and (17). By (35) and (36), we know (34) holds for j ≥ 2, n ≥ 0.
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As for j = 0, by (13) and Theorem 1,

ϕ0,n(λ)

=
λ(λ + βA11(λ))π0,n(λ)− βλA01(λ)π1,n(λ)

λH(λ)

=
(λ + βA11(λ))[(λ + α)π̂0,n(λ + γ) + βπ̂1,n(λ + γ)]− βA01(λ)[(λ + β)π̂1,n(λ + γ) + απ̂0,n(λ + γ)]

λH(λ)

=
(λ + α)(λ + βA11(λ))− αβA01(λ)

λH(λ)
π̂0,n(λ + γ) +

β[λ + βA11(λ)− (λ + β)A01(λ)]

λH(λ)
π̂1,n(λ + γ)

= π̂0,n(λ + γ) +
(λ + α)(λ + βA11(λ))− αβA01(λ)− λH(λ)

λH(λ)
π̂0,n(λ + γ)

+
β[λ + βA11(λ)− (λ + β)A01(λ)]

λH(λ)
π̂1,n(λ + γ).

By the definition of H(λ),

(λ + α)(λ + βA11(λ))− αβA01(λ)− λH(λ)

= (λ + α)(λ + βA11(λ))− αβA01(λ)− (λ + αA00(λ))(λ + βA11(λ)) + αβA10(λ)A01(λ)

= α(λ + βA11(λ))(1 − A00(λ))− αβA01(λ)(1 − A10(λ)).

On the other hand, by some algebra, one can see that

λU0(λ) = λH(λ)[F0(λ) +
α

λ
(1 + F0(λ) + G0(λ))]

= αβA10(λ)A01(λ))− α(λ + βA11(λ))A00(λ)) + α(λ + βA11(λ))− αβA01(λ)

= α(λ + βA11(λ))(1 − A00(λ))− αβA01(λ)(1 − A10(λ)),

λV0(λ) = λH(λ)[G0(λ) +
β

λ
(1 + F0(λ) + G0(λ))]

= αβA01(λ)A00(λ)− β(λ + αA00(λ))A01(λ) + β(λ + βA11(λ))− β2 A01(λ)

= β[λ + βA11(λ)− (λ + β)A01(λ)].

Therefore, (34) holds for j = 0. By a similar argument, (34) also holds for j = 1. The proof is
complete.

We now consider the probability distribution of Cj and the related probabilities P(Cj ≤ t, Cj,0 <

Cj,1) and P(Cj ≤ t, Cj,1 < Cj,0). It is easy to see that P(Cj ≤ t, Cj,k < Cj,1−k) is differentiable in t for
k = 0, 1. Let dj,k(t) = d

dt P(Cj ≤ t, Cj,k < Cj,1−k) for k = 0, 1. Also, let ∆j,k(λ) denote the Laplace
transform of dj,k(t) for k = 0, 1 and ∆j(λ) denote the Laplace transform of dj(t).

Theorem 4. For any j ≥ 0, we have

∆j,0(λ) =
α(λ + β)(1 − λϕj0(λ))− αβ(1 − λϕj,1(λ))

λ2 + (α + β)λ
,

∆j,1(λ) =
β(λ + α)(1 − λϕj1(λ))− αβ(1 − λϕj,0(λ))

λ2 + (α + β)λ

and

∆j(λ) =
α(1 − λϕj0(λ)) + β(1 − λϕj1(λ))

λ + α + β
,
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where ϕj,0(λ) and ϕj,1(λ) are given in Theorem 3. In particular,

P(Cj,0 < Cj,1) =
α[1 + β(ϕj,1(0)− ϕj0(0))]

α + β
,

P(Cj,1 < Cj,0) =
β[1 + α(ϕj0(0)− ϕj,1(0))]

α + β
,

where ϕj,0(λ) and ϕj,1(λ) are given by (34).

Proof. By the definitions of {Mt : t ≥ 0} and {Nt : t ≥ 0}, we know that for any j ≥ 0,

P(Cj,0 ≤ t, Cj,0 < Cj,1) =
∫ t

0
dj,0(τ)dτ = hj,−2(t),

P(Cj,1 ≤ t, Cj,1 < Cj,0) =
∫ t

0
dj,1(τ)dτ = hj,−1(t)

and

P(Cj ≤ t) =
∫ t

0
dj(τ)dτ = hj,−2(t) + hj,−1(t).

Therefore, dj,0(t) = h′j,−2(t), dj,1(t) = h′j,−1(t) and dj(t) = h′j,−2(t) + h′j,−1(t). Hence,

∆j,0(λ) = λϕj,−2(λ), ∆j,1(λ) = λϕj,−1(λ)

and

∆j(λ) = λϕj,−2(λ) + λϕj,−1(λ).

By (10) of Lemma 2, we know that

(λ + α)λϕj,−2(λ) + αλϕj,−1(λ) = α(1 − λϕj,0(λ))

and

βλϕj,−2(λ) + (λ + β)λϕj,−1(λ) = β(1 − λϕj,1(λ)).

Therefore, by the first two equalities of (10),

∆j,0(λ) = λϕj,−2(λ) =
α[(λ + β)(1 − λϕj0(λ))− β(1 − λϕj,1(λ))]

λ2 + (α + β)λ
,

∆j,1(λ) = λϕj,−1(λ) =
β[(λ + α)(1 − λϕj1(λ))− α(1 − λϕj,0(λ))]

λ2 + (α + β)λ

and hence

∆j(λ) =
α(1 − λϕj0(λ)) + β(1 − λϕj1(λ))

λ + α + β
.

Note that P(Cj < ∞) = ∆j(0) = 1, the last two assertions hold. The proof is complete.
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We now consider the mathematical expectation and variance of Cj.

Theorem 5. For any j ≥ 0,

E[Cj] =
1 + αϕj,0(0) + βϕj,1(0)

α + β

and

E[C2
j ] =

2[1 + αϕj,0(0) + βϕj,1(0)− (α + β)(αϕ′
j,0(0) + βϕ′

j,1(0))]

(α + β)2 ,

where ϕj,0(λ) and ϕj,1(λ) are given by (34).

Proof. By Theorem 4, we have

(λ + α + β)∆j(λ) = α(1 − λϕj,0(λ)) + β(1 − λϕj,1(λ))

Differentiating the above equality yields that

(λ + α + β)∆′
j(λ) + ∆j(λ) = −α(λϕj,0(λ))

′ − β(λϕj,1(λ))
′ (37)

Let λ = 0 and note that ∆j(0) = 1, we have

E[Cj] = −∆′
j(0) =

1 + αϕj,0(0) + βϕj,1(0)
α + β

.

Differentiating (37) yields that

(λ + α + β)∆′′
j (λ) + 2∆′

j(λ)

= −α(λϕj,0(λ))
′′ − β(λϕj,1(λ))

′′

= −α[λϕ′′
j,0(λ) + 2ϕ′

j,0(λ)]− β[λϕ′′
j,1(λ) + 2ϕ′

j,1(λ)].

Let λ = 0 in the above equality yields that

(α + β)∆′′
j (0) + 2∆′

j(0) = −2αϕ′
j,0(0)− 2βϕ′

j,1(0).

Therefore,

E[C2
j ] = ∆′′

j (0)

=
2(−∆′

j(0)− αϕ′
j,0(0)− βϕ′

j,1(0))

α + β

=
2[1 + αϕj,0(0) + βϕj,1(0)− (α + β)(αϕ′

j,0(0) + βϕ′
j,1(0))]

(α + β)2 .

The proof is complete.

Finally, if α = 0 or β = 0, we get the following result which is due to Di Crescenzo et al [10].

Corollary 1. (i) If β = 0, then for any j ≥ 0,

E[Cj] =
1
α
+

π̂j,0(α)

1 − απ̂0,0(α)
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and

E[C2
j ] =

2
α2

(
1 +

απ̂j,0(α)

1 − απ̂0,0(α)
−

α2π̂′
j,0(α)

1 − απ̂0,0(α)
−

α3π̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2

)
.

(ii) If α = 0, then for any j ≥ 0,

E[Cj] =
1
β
+

π̂j,1(β)

1 − βπ̂1,1(β)

and

E[C2
j ] =

2
β2

(
1 +

βπ̂j,1(β)

1 − βπ̂1,1(β)
−

β2π̂′
j,1(β)

1 − βπ̂1,1(β)
−

β3π̂j,1(β)π̂′
1,1(β)

(1 − βπ̂1,1(β))2

)
.

Proof. If β = 0, by Theorem 3,

ϕj,0(λ) = π̂j,0(λ + α) +
απ̂j,0(λ + α)π̂0,0(λ + α)

1 − απ̂0,0(λ + α)
=

π̂j,0(λ + α)

1 − απ̂0,0(λ + α)
.

Therefore,

ϕj,0(0) =
π̂j,0(α)

1 − απ̂0,0(α)

and

ϕ′
j,0(0) =

π̂′
j,0(α)

1 − απ̂0,0(α)
+

απ̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2 .

Hence, by Theorem 4,

E[Cj] =
1 + αϕj,0(0)

α
=

1
α
+

π̂j,0(α)

1 − απ̂0,0(α)

and

E[C2
j ] =

2
α2 [1 + αϕj,0(0)− α2ϕ′

j,0(0)]

=
2
α2

(
1 +

απ̂j,0(α)

1 − απ̂0,0(α)
−

α2π̂′
j,0(α)

1 − απ̂0,0(α)
−

α3π̂j,0(α)π̂
′
0,0(α)

(1 − απ̂0,0(α))2

)
.

(i) is proved. The proof of (ii) is similar.
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