Pre prints.org

Article Not peer-reviewed version

On Approximate Variational Inequalities
and Bilevel Programming Problems

Balendu Bhooshan Upadhyay, I. M. Stancu-Minasian i , Subham Poddar , Priyanka Mishra

Posted Date: 8 April 2024
doi: 10.20944/preprints202404.0484.v1

Keywords: limiting subdifferentials; e-quasi solutions; approximate convex functions; variational inequalities

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2024 d0i:10.20944/preprints202404.0484.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
On Approximate Variational Inequalities and Bilevel
Programming Problems

B.B. Upadhyay *, .M. Stancu-Minasian >**, Subham Poddar >' and Priyanka Mishra **

1
2

Department of Mathematics, Indian Institute of Technology Patna, India; Email: bhooshan@iitp.ac.in

"Gheorghe Mihoc-Caius Iacob" Institute of Mathematical Statistics and Applied Mathematics of the Romanian Academy,
Bucharest, Romania

Department of Mathematics, Indian Institute of Technology Patna, India; Email: subham_2321ma06@iitp.ac.in
Department of Mathematics, Indian Institute of Technology Patna, India; Email:priyanka.iitpl4@gmail.com
Correspondence: stancu_minasian@yahoo.com

+ ¥ A W

These authors contributed equally to this work.

Abstract: In this paper, we consider a class of bilevel programming problems (abbreviated as, BLPP). Ex-
ploiting the generalized approximate convexity assumptions, we investigate the relations among the solutions
of approximate Minty (respectively, Stampacchia) type variational inequalities (abbreviated as, AMTVI (re-
spectively, ASTVI)), and the local e-quasi solutions of the BLPP. Moreover, by employing the generalized
Knaster-Kuratowski-Mazurkiewicz (abbreviated as, KKM)-Fan’s lemma, we derive some existence results
for the solutions of approximate variational inequalities (abbreviated as, AVI), namely, AMTVI and ASTVL A
non-trivial example is given to highlight the importance of the established results. To the best of our knowledge,
there is no research paper available in the literature that establishes relationships between the AVI and the BLPP

under the assumptions of generalized approximate convexity in terms of limiting subdifferentials.
Keywords: Limiting subdifferentials; e-quasi solutions; Approximate convex functions; Variational inequalities

MSC: 90C34, 90C46, 90C48, 90C29

1. Introduction

Bilevel programming problems are a type of problem where one participant, called the leader,
tries to make decisions that consider how another participant, called the follower, will react. The
leader’s decisions impact the follower’s choices. The upper-level part of the problem deals with what
the leader wants to achieve and the conditions they need to satisfy, while the lower-level deals with
the follower’s goals and the constraints associated with them. The origin of the concept of BLPP can be
attributed to the influential contributions of Von Stackelberg [41]. The first mathematical bilevel model
was developed in 1973 by Bracken and McGill [7]. Subsequently, numerous researchers have created
fascinating theories and applications, including optimistic and pessimistic methods, single-level
reformulation, optimality criteria, duality results, algorithms, etc. BLPPs have important applications
across multiple fields of modern research, including engineering, medicine, and economics as well
as BLPPs offer numerous benefits from both theoretical and practical standpoints see, for instance,
[4,5,21] and the references cited therein.

Bilevel programming problems are hierarchical problems consisting of two decision parameters.
These variables are not independent of each other but act according to a certain hierarchy. In this type
of problem, the variables of the first problem act as leaders, and the variables of the second problem
act as followers. Obtaining the optimal solution for the second problem is crucial for determining
the objective function value of the first problem. Numerous researchers, such as Bard [1-3] and
Outrata [38], have explored bilevel programming problems due to their fascinating attributes and
significant relevance. Dempe [13] derived the necessary and sufficient optimality criteria for BLPP.
Yezza [48] established the first-order necessary optimality criteria for general BLPPs. Moreover, Yezza
[48] formulated the general multilevel programming problem and deduced the necessary conditions
of optimality in the general case. Dempe [14] rectified deficiencies in [48], specifically addressing
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Proposition 2.1 and Theorem 5.1. The optimistic version of BLPPs and its necessary optimality
conditions are studied by Dempe [16]. For further insights into bilevel programming problems, we
refer to [2,15] and the references cited therein.

The concept of variational inequality (abbreviated as, VI) was introduced by Hartman and
Stampacchia [22]. Variational inequalities appear in the forms of Minty VI [30] and Stampacchia VI
[42]. Variational inequalities have several applications in the fields of economics, game theory, and
traffic analysis, see, [11,17,23]. Giannessi [17] introduced the notion of vector VI for finite-dimensional
Euclidean spaces. VI problems have been studied by several scholars as tools for solving optimization
problems, for more exposition, see, [17,18,26,44—47], and the references cited therein. Komlési [25]
derived the equivalence among the solutions of Minty and Stampacchia VI and the optimal solution
of the minimization problem. Kinderlehrer and Stampacchia [23] studied the relations between the
solutions of VI and minimization problems. Crespi et al. [10] investigated the relations between the
solutions of Minty VI and scalar optimization problems. Kohli [24] studied the relations between
variational inequalities and BLPP involving generalized convex functions in terms of convexificators.

The main motivation and objective for investigating the relationships between the solutions of AVI,
namely, AMTVI, ASTVI, and the local e-quasi solutions of BLPP in the notion of limiting subdifferential
are threefold. Firstly, in several real-world problems, nonsmooth phenomena occur frequently. To
deal with such problems, Clarke introduced the notion of subdifferential for a certain class of locally
Lipschitz functions [9]. However, the convexity of the Clarke subdifferential has led to various
limitations. To overcome these shortcomings stemming from its convexity, Mordukhovich proposed
the concept of the limiting subdifferential [35]. Limiting subdifferential offers an improved Lagrange
multiplier rule compared to the Clarke subdifferential and is recognized as the smallest subdifferential
among all known robust subdifferentials. Secondly, Convexity and generalized convexity are pivotal
in the domains of operations research, economics, and engineering. Moreover, within optimization
theory, convexity plays a crucial role as it ensures that a stationary point serves as a global minimizer,
and the first-order optimality criteria are transformed into sufficient conditions for identifying a point
as a global minimizer. Mangasarian [29] generalized the notion of convex function by introducing
the class of pseudoconvex functions. For a detailed study of generalized convex functions, we refer
to [8,31,34]. Ngai et al. [36] introduced the notion of approximate convex function. Recently, several
generalizations of approximate convex functions have been introduced, for example, Bhatia et al. [6]
and Gupta et al. [20]. Thirdly, to the best of our knowledge, there is only one research paper (see,
[25]) available in the literature that investigates the relationships between the solutions of BLPP and
variational inequalities. However, the investigation of the relationships between the solutions of AVI
and the local e-quasi solutions of BLPP in the notion of limiting subdifferentials has not been explored
yet. Consequently, this paper aims to address this specific research gap by establishing the results that
make relationships between the solutions of AMTVI, ASTVI, and the local e-quasi solutions of BLPP in
the notion of limiting subdifferentials.

Motivated by the works of [6,10,24,32,43], in this paper, we consider BLPP and establish the
relationships between the solutions of approximate convex functions, namely, AMTVI and ASTVI, and
the local e-quasi solutions of BLPP. Moreover, we deduce some existence results for the solutions of
AMTVI and ASTV], by employing the assumption of generalized KKM-Fan’s lemma.

The novelty and contributions of this paper are threefold. Firstly, the results of this paper extend
the analogous results in [10,25] from single-level optimization problems to more general optimization
problems, namely, bilevel optimization problems. Secondly, since the limiting subdifferential is the
least among all the known robust subdifferentials and offers an enhanced Lagrange multiplier rule
compared to the Clarke subdifferential, therefore our findings naturally sharpen the analogous results
of [6,24,32,43]. Thirdly, the established results of this paper extend the analogous results in [6,24,27,43]
for a broader class of approximate convex functions.

The organization of this article is as follows. In Section 2, we recall some basic definitions and
preliminaries. In Section 3, employing the potent tool of limiting subdifferential, we investigate the
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equivalence among the solutions of AMTVI and ASTVI, and the local e-quasi solution of nonsmooth
BLPP. In Section 4, a generalized Fan lemma has been employed to establish the existence results for
the solutions of AVI.

2. Definition and Preliminaries

Throughout this paper, we use the notation (-, -) to denote the Euclidean inner product in the
n-dimensional Euclidean space R". For a nonempty subset () of R* x R" equipped with the Euclidean
norm || - ||, we signify the closure and interior of Q) by clQ) and int(), respectively.

The definition of a convex set, provided below is from [34].

Definition 1. A set ) is termed as a convex set, provided for all (1, 02), (91, 92) € Q, one has
(91, 92) + u((91,92) — (p1,92)) € Q,Vu € [0,1].
Now, we recall the following definitions related to nonsmooth analysis from [35].

Definition 2. For a continuous function x : R" x R™ — R, Fréchet subdifferential of x is defined as follows:

ox(p1, 92) == {v eR"xR™:

i inf X(91,95) = x(o1, 92) = (o (¢1,95) = (p1,02)) 0
(6,.65) = (91,62) (01, 95) — (91, 02) | -

Definition 3. The limiting subdifferential of x at (91, 9,) € R" x R™, denoted by opx (91, 92 ), is defined as

omx(P1,P2) =  limsup  ox(p1, ¢2),
(WIIPZ)H(EPEZ)

where lim sup is the Painlevé-Kuratowski outer limit.

Remark 1. For a locally Lipschitz function x at (1, 2) € Q, the set valued map G : R" x R™ = R" x R™,
defined by G (o1, 92) := Imx (91, 92), is closed.

Definition 4. If x is finite at (§y,§,) € R” x R™, then x is lower-reqular at (§1,%,) if Ox(F1, 2) =
Imx (91, P2)-

Now, we consider the following bilevel programming problem:
BLPP: min ®(p1, ©2)

1,82
subject to: Hi(p1,02) <0,j € J:={1,...,ma}, 02 € P(p1),
min ¢(p1, 92)
©2

subject to h;(p1,2) <0,i € I:={1,...,m}

where @ : R" x R" — R, ¢ : R" x R™ —>R,Hj:R” xR"™ - R,jeJ,and h; : R" x R" - R,i € I are
real valued functions and

P(p1) = argmin{¢p(p1, ©2) : hi(p1, 92) <0,i € I}.
§2

So, the basic idea is that based on the choice of the leader, the follower minimizes his objective function
and the leader then uses the obtained solution g, = py (1) to minimize his objective function. BLPP

do0i:10.20944/preprints202404.0484.v1
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is said to be well defined if we can uniquely determine the optimal solution of the lower level problem
for every o1 € R". In literature, two types of solution concepts have been studied for the problems
having more than one optimal solutions for lower level problem, such as optimistic solution and
pessimistic solution.

In the optimistic approach, the follower considers an optimal solution which is the best from the
leader’s perspective. Therefore, one has the following optimistic bilevel programming problem:

OBLPP: miny,(p1),p1 € R”
1

where 95 (1) = f%izn{q’(pl,m) tHij(p1,92) < 0,5 € J, 02 € (1)}
and 1P (p1) is the set of optimal solutions for the following lower level problem
min ¢ (1, 02)
2
subject to h; (1, p2) < 0,i € L.

Let, S be the set of all feasible solutions to the problem BLPP, that is,

S:={(p1,p2) €R" x R" : Hj(p1,92) <0, j €], hi(p1,02) <0, i€, p2 € P(p1)}

Now, we introduce two following notations which will be used in this sequel.

= {(p1,02) € R" x R"™ : Hj(p1,92) <0, j €], hi(p1,92) <0, i €I},
]'—m(@z) = ¢(p1,92), Y(1,902) € Q.

Therefore, it is evident that S = {(p1, p2) € QO : o = argmin F, (p2)}.
In the rest of the paper, we will assume that (2 is a non-empty convex subset of R” x R™.

The following definition from Ngai and Penot [37] represents the notion of approximate convexity
of a real-valued function.

Definition 5. A function x : QO — R is termed as an approximate convex function around (91, 9,) € Q,
provided for any € > 0,3d > 0, the following inequality is satisfied:

x(n(pt 03) + (1= ) (ol 03)) < (@1’@2)"'( —w)x(p}, p3)+
Wl (01, 93) = (01, 03)|,

forall (91, 03), (93, 03) € B($1,2),d) N Qand p € [0,1].

We have the following characterization for lower semicontinuous approximate convex functions
from Ngai and Penot [37].

Proposition 1. A lower semicontinuous function x : Q) — R is approximate convex around (91, 9,), if and
only if for any € > 0,3d > 0, such that

x(9363) —x (o ob) = (& (o} 63) = (ol o)) €| (¢3. 63) = (o1 3) |

forany (p}, 1), (92, 03) € B((91,92),d) N Qand any ¢ € dpx (01, 03)-

On the lines of Bhatia et al. [6] and Golestani et al. [19], in the following definitions, we define the
notion of generalized approximate convex functions in terms of limiting subdifferentials.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 8 April 2024 d0i:10.20944/preprints202404.0484.v1

50f18

Definition 6. A function x : 3 — R is termed as an approximate d);—pseudoconvex of type I around
(91, 92) € Q, ifforall e > 0,3d > 0, such that for all (0}, 03), (03, 03) € B((91,92),d) N Q, and if

<€, (@%,@%) - (@i @%)> > 0, for some ¢ € BMx(@% @%)/

then
x(oh o) —x (63, 03) = —€|| (o1 k) — (6} 63) |.

Definition 7. A function x : 3 — R is termed as an approximate 0 p—pseudoconvex of type II around
(91, 92) € Q, ifforall e > 0,3d > 0, such that for all (0}, 03), (03, 93) € B((91,92),d) N Q, and if

(¢ (ol 03) = (6 63)) +¢| (01 03) = (63 63) || = 0. for some & € duix (92, 63),

then
x(ehe3) = x (ot 3)

Remark 2. It is evident from the above definitions, if x : QO — R is approximate 0 p;—pseudoconvex of type II
around p € Q, then x is also approximate 0y —pseudoconvex of type I around p € (). But the converse may
not true. For example, let x : [—1,1] — R be given as

X(p) =
0?41, >0

It can be verified that the limiting subdifferentiable of x is:

1, p <0
IMx(p) =4 [Leo), p=0
20, >0

Then, one can show that x is approximate d 1 —pseudoconvex of type I around G = 0, but not approximate 9 ;-
pseudoconvex of type Il around © = 0.

Remark 3. The pseudoconvexity of the function x at o € Q) implies the approximate d 1 —pseudoconvexity of
X of type I around ©. But the converse may not be true. For example, let x : [—27t,271] — R be given as

x(py={ ¥ L <0
sinp+e¥, >0

The limiting subdifferential of x is given as

—20, p <0,
Imx(p) =<10,2], p =0,
cosp+e, p>0.

Then ) is approximate dp;—pseudoconvex of type I around ', but not pseudoconvex at p, as for o > 7,

(C,p—19) >0, € dmx(p) does not imply x(p) > x(p)-
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Definition 8. A function x : QO — R is termed as an approximate 0y —quasiconvex of type I around
(91, 92) € Q, ifforall e > 0,3d > 0, such that for all (0}, 03), (03, 03) € B((91,92),d) N Q, and if

x(l 0h) < x(st 03)

th
: (& (o ob) = (6363)) —¢|| (o1 k) — (6} 03) | < 0.vE € dun (o2, 3)

Definition 9. A function x : QO — R is termed as an approximate 0y;—quasiconvex of type II around
(91, 92) € Q, ifforall e > 0,3d > 0, such that for all (0}, 03), (03, 93) € B((91,92),d) N Q, and if

x(ohed) < x(ed 63) +ef| (01 03) - (63 03)

7

then
(& (ol o) = (v} 63)) < 0.V € amx(h, o).

Remark 4. From the above definitions, it follows that, if x : QO — R is approximate 0 1 —quasiconvex of type II
around p € Q, then x is approximate d 1 —quasiconvex of type I around © € (). But the converse need not to
be true. For example, let x : [—7t, 1] — R be given as

x(p) = ¥ p<0
sinp, © >0

We can show that the limiting subdifferential of x is:

omx(p) =4100,1, =0
cosp, p>0

Therefore, one can conclude that, x is approximate 0y —quasiconvex of type I around © = 0, but not approximate
o pm—quasiconvex of type Il around © = 0.

Definition 10. A function x : (0 — R is termed as an approximate 0y--quasiconvex function around
(91, 92) € Q, provided for each € > 0,3d > 0, such that the following implication holds:

x(otoh) < x(od 03) —e| (o1 o) = (k. 63) |
— (& (ol 03) = (6}.63)) +¢| (ol 0d) = (6}.63) | <0,
for any (p%, p%), (p%, p%) € B((p1,92),d) N Qand forall § € BM)((p%, p%)

Definition 11. A function x : 0 — R is termed as an approximate dy;—pseudoconvex function around
(91, 92) € O, provided for each € > 0,3d > 0, such that the following implication holds:

x(oh o) <x(od 03) = (o1 o) = (k. 63) |

— (& (ol 01) = (6}.63)) +¢| (o1 0d) = (}.63) | <0,

forany (o1, 03), (91, 93) € B((P1,§2),d) N Qand for all § € dnx (93, 03).
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Remark 5. It is worthwhile to mention that, the limiting subdifferential of a locally Lipschitz function at a
point is included in Clarke subdifferential at that point. Therefore, if x : Q3 — R is locally Lipschitz and exhibits
generalized approximate convexity around p € Q) in terms of the Clarke subdifferential, (see, Bhatia et al. [6]),
then x is also generalized dp—approximate convex function around © € Q). However, the converse may not be

true. Indeed, consider the lower semicontinuous function x : [—1,1] — Q defined as
p =
?+1, >0

One can verify that the limiting subdifferentiable of x is as follows:

1, p <0
Imx(p) =4 [L,e0), p=0
20, p > 0.

This illustrates that x is approximate dp—pseudoconvex of type I around = 0, but not approximate
pseudoconvex of type I around © = 0, in terms of Clarke subdifferential, as x is not locally Lipschitz at p = 0,
and hence, Clarke subdifferential may not exist at g = 0.

Definition 12. A multivalued mapping G : Q — 22 is said to be approximate e-pseudomonotone around
(91, 92), if there exists d > 0, such that for each (p%, 03), (92, 03) € B((91,92),4) NQ, if

(¢.(oh0}) = (1.63) ) +e| (o 0}) = (e} 63) | = 0
then
(¢ (ol od) = (b1 03)) 20
whenever ¢ € G(pl,03),¢ € G(p3, 03).

The subsequent mean value theorem for locally Lipschitz functions from [34], will be used in the
sequel.

Theorem 1. Let ® be Lipschitz on an open set containing [(p%, p%), (p%, p%)} in Q). Moreover, if ® is lower
regular on ((032, 03), (91, ©3)). Then, one has

o (ol o1) - 2ot 03) = (& (ol 03) - (b2 63) ).
for some & € AP (uq, uz); (u1,u2) € ((03, 03), (01, 03))-

The following notions of e-quasi solution and local e-quasi solution for BLPP are adaptations
of the notions of e-quasi solution and local e-quasi solution for scalar optimization problems from
Loridan [28].

Definition 13. Let € > 0 be given. A point (91, 9,) € Q) is said to be an e-quasi solution to the BLPP if for
any (o1, p2) € Q, the following inequalities hold:

D(p1,02) > O(P1,92) — €ll(91, 92) — (91, 92) I,
For(92) = Fo (92) — €llo2 — 92

do0i:10.20944/preprints202404.0484.v1
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Definition 14. Let € > 0 be given. A point (§y,9,) € Q) is considered to be a local e-quasi solution to the
BLPP, if there exists d > 0 such that the following inequalities hold:

D(p1,02) > O(P1,92) — €ll(91, 92) — (91, 92) I,
-7:@1(@2) > F@l (@2) - EH@Z _EZHI

forany (91, 02) € B((%1,92),4) N Q.

Now, we consider the following AMTVI and ASTVI in terms of limiting subdifferentials:

AMTVL: Find (py, §,) € Q such that for ane > 0,3d > 0, such that for each (p1, p2) € B((P1,92),4) N
Qand all ; € dyP(p1, p2) and & € Iy Fy, (92), the following inequalities hold:

<€1/ ([er @2) - (@1/@2» > _6”(@1/ K)Z) - (@1/@2)”'
(G2, 02 — P2) > —€llp2 — Pol|-

ASTVI: Find (9y, 9,) € Q) such that for an € > 0,3d > 0, such that for each (g1, p2) € B((91,$2),d) N
Q, there exists {1 € Iy P (P, Pp) and {o € IpmF, (§2) such that the following inequalities hold:

(€ (01,02) — (1, 92)) = —€ll(p1,92) — (P12,
(C2 02 — 92) = —€llp2 — Pall-

Remark 6. For € = 0, the above variational inequalities AMTVI and ASTVI reduce to local versions of
nonsmooth Minty and Stampacchia Vs, respectively (see, [10,24,25]). Kohli [24] studied the Minty and
Stampacchia VI problems in terms of convexificators. Nevertheless, the results in Sections 3 and 4 of the paper
are more general than that of Kohli [24] in view of the fact that generalized approximate convex functions
employed in this work are more general than generalized convex functions utilized by Kohli. Furthermore,
the findings in Sections 3 and 4 are sharper than that of Kohli [24] as limiting subdifferential is smaller than
convexificator which is employed in the work of Kohli.

3. Relationship among BLPP, ASTVI, and AMTVI

This section is devoted to studying the equivalence relationships between the solutions of AVI,
namely, AMTVI, ASTVI, and the local e-quasi solutions of the BLPP within the framework of limiting
subdifferential.

From now onwards, let € > 0 be given and ® be a lower semicontinuous function unless otherwise

specified.

Theorem 2. Let ® and F,, be approximate convex functions around (91, 9,) € Q. If (91, 9) is local e-quasi
solution of BLPP, then (©y, %, ) solves AMTVI with respect to (w.r.t) 2e.

Proof. Let (1, {,) is a local e-quasi solution of BLPP, but (%1, {,) does not solve AMTVI w.r.t 2e.
Then for all d > 0 we can get (91, p2) € B((91,92),d) NQand &1 € 0P (1, 2) and & € IpF o, (1)
such that

(€1 (91, 92) = (91,92)) + 2€[| (01, 02) — (P1,92)[| <O, or

(1)
(G2, 02 — §2)) + 2¢€llp2 — Pa|| <O.

Since ® and F,, are approximate d)—convex around (91, ), therefore for each € > 0, we can get
d > 0, such that, for every (p1, p2) € B((£1,$2),d) NQ and &1 € oy P(p1, 2) and & € IpuF, (91),
one has

D(P1,92) — P91, 92) > (G1, (91, 92) — (901, 92)) — €l[ (91, P2) — (91, 92), and

2
For(B2) — Fonl2) = (@252 — 02} — €llo2 - Bl ®
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From (2) together with the fact that € > 0, we get
@ (1, 02) — P(P1, 92) +ell(p1, 92) — (91, 92l 3)
< (C1(p1, 92) — (P1,92)) + 2 (91, 92) — (1, 92) I,
Fon(92) = Fr (92) + €ll902 — 0ol < (82, 02 — P2) + 2¢€][02 — Pa|- 4)

From (1), (3), and (4), for each (p1, p2) € B((91,92),d) N ), it follows that

D (1, 92) — P(P1, 92) + €l (91, 92) — (P1,92)[| <0, or
Fon(92) — Fp (92) +€llp2 — 92|l <0,

this contradicts the fact that ({1, P,) is a local e-quasi solution of BLPP. [

Theorem 3. Let ® and F,, be locally Lipschitz lower-regular functions at (©1, ;). Moreover, assume that
(91, 92) solves AMTVIw.r.t € < € and ®, F,, are approximate convex functions around (9, 9,) € Q). Then,
in conclusion (91,9 ) is a local e-quasi solution of BLPP.

Proof. By arguing, let us suppose that (91, 9,) € Q solves AMTVIw.r.t €’ < ¢, but (p1,p,) isnot a
local e-quasi solution of BLPP. Hence, for alld > 0, 3(p1, p2) € B((91,92),d) N, such that

D(p1,902) < P(P1,92) —€ll(01, 92) — (P1,92)|l, or

_ _ (G))
For(92) < Fo, (92) — €llp2 — a-

Let (p1(p), p2(1)) = (91, 92) + u((p1,02) — (P1,92)) for all u € [0,1]. Since, @ and F,, are ap-
proximate convex functions around (1, ), hence for each € > 0, 3d > 0, and for all (p1, p2) €

B((p1,92),d) N Q), we have

O (91, 92) + 1((p1,92) — (91, 92))) <p®(p1, 92) + (1 — w)(P1, P2)+

o (6)
en(1—u)l (o1, 02) — (91, 92) I, » € [0,1].

For (02 + 192 = 92)) < uFpi(92) + (1= 1) Fp, (92) +ep(1 = p)llo2 =@l p€[01] (7))
Let 1 €]0,1[ be arbitrary. Now invoking the mean value theorem, there exist y, y5 € (0, 1) and
&1 € am®((P1, P2)+ 11 ((p1,92) — (P1,92))) and &5 € ImFy, (P2 + H5(p2 — $2)) such that

1(&1, (91, 92) — (P1,92)) = (91, 92) + 1((91,02) — (P1,92))) — D (%1, 92)- 8)

1(Gs, 92 — P2) = Foy (02 + (02 — $2)) — Fo ($2)- )
Exploiting (6)—(9), we have

(61, (p1,92) — (91, 92)) < D(p1,902) — P(P1, P2) +€(1 — )| (01, 02) — (B1, P2, (10)

(G292 = 92) < Foy (92) — Fo (92) +en(1 = p)ll o2 — - (11)
From (5), (10) and (11), it follows that

(€1, (91, 92) — (01, 92)) < —epull(91,02) — (1, 92) ||, or

' ~ B (12)
(82,92 — P2) < —ept|lp2 — 2.
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Since p}, py > 0, from (12), it follows that

(€1, (1), 92(11)) = (1, 92)) + €[ (91(11), 92(11)) = (P2, B2) || <0, or

* !/ —_— ! i —_— !/ (13)
(83, 92(H2) — 92) < €'ll92(pz) — P2ll, where €’ = ep.

This contradicts the fact that (p;, ;) solves AMTVIL. [

Theorem 4. Let (p1,p,) € Q is a local e-quasi solution of BLPP with ® and F, are approximate
opm—quasiconvex functions of type II around (91, ©, ). Then (91, P, ) solves AMTVI w.r.t same €.

Proof. Since (9, p,) € Q) is a local e-quasi solution of BLPP, therefore 3d > 0 and for all (p1, 02) €
B(($1,92),4) N Q, we have

D (1, 92) = ©(P1,92) —€ll(91, 92) — (91, 92) |, and

_ _ (14)
For(92) = Fo (92) — €llo2 — 92l

Moreover, as ® and F, (p2) are approximate dj;—quasiconvex functions of type II, hence for any
€ > 0, we can get d’ > 0 and for each (1, p2) € B((§1,92), 4" ) NQ, if

D(p1,92) < (g1, 92) +€ll (901, 92) — (©1,92) I,

then
(& (91, 92) — (91, 902)) <0,V¢ € oMP(p1, 92),
and
Fou(92) < For(02) +€elloz =02l = (1,02 — p2) <0, Vi1 € OmF, (92).-

Let d = min{d,d’}. Then from (14) and d)—quasiconvexity of type II of ® and F,,, for every
(p1,92) € B ((@1,@2),@ N Q, it follows that

(& (01, 92) — (91, 92)) = 0> —€||(01, 02) — (1, 92) I,

and
(1,902 —92) 2 0= —€llp2 — Pall,
that is,
(€ (01, 02) — (91, 92)) +€ll(p1, 02) — (P1, P2)[| = 0,VE € I P(p1, 02) and
(1,902 — P2) +€llp2 — P2ll = 0, Vi1 € OmFy, (02)-

Hence, the theorem is proved. O

Theorem 5. Let (1, 0, ) is a solution of ASTVI w.r.t € with ® and F,, are approximate 9y —pseudoconvex
functions around (1, 9,). Then (91, 9,) is a local e-quasi solution of BLPP.

Proof. By arguing, suppose that (1, §,) solves ASTVI w.r.t €, but not a local e-quasi solution of BLPP.
Hence, for each d > 0, we can get (p1, p2) € B((P1, 92),d) N Q, such that

D(p1,02) < D(P1,92) —€ll(01, 92) — (P1,92) ], or

i ~ (15)
For(92) < Fo, (92) — €llg2 — @2l

do0i:10.20944/preprints202404.0484.v1
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Since ® and F,, are approximate d)—pseudoconvex functions around (1, ), then for every € > 0
there exists d > 0 and for any (p1, 02) € B((91, 92),d) N Q, (15) implies

(G, (o1, 02) — (91, 92)) +€ll (91, 902) — (1, 92)]| <0, V¢ € 0P (H1, 92)
(11, 92 — P2) T €llp2 —all <0, V1 € I Fy, (92),

this contradicts our assumption. [

Theorem 6. Let (q, p,) solves ASTVI w.r.t €, and ® and F, (p2) are approximate 0p—pseudoconvex
functions of type Il around (91, 9,). Then (1, 9,) is a local e-quasi solution of BLPP.

Proof. Let (py, ;) solves ASTVI w.r.t €. Then we can get a d > 0, such that for each (p1, p2) €
B((91,92),d) NQ, there exist § € P (91, P2) and 17 € Iy Fy, (P,) such that

(€ (91, 92) — (91, 92)) €l (91, 92) — (91, 92)|| > 0, and

2 - (16)
(1,02 —2) +e€llp2 — P2 = 0.

Since ® and F,, are approximate dp—pseudoconvex functions of type II around ($1, ), then for
every € >0, 3d" > 0, and for any (91, 2) € B((§1,§2),d") N Q, if

<€, (@1; 92) - (@1/@2» + 6”(@1, pZ) - (@1/@2)” > 0, for some (;( € aM(D(@lr@2)/
(11,02 — 92) +€llp2 — P2l > 0, for some 17 € I Fy,, (P2)
then
q)(plr @2) > q>(@1!@2)/
]:@1(392) > ‘7:@1(@2)~

Let d = min{d,d’'}. Then from (16) and d)—pseudoconvexity of type Il of ® and F,,, for every
(p1,42) €B ((@1,@2),@ N Q, it follows that

D(p1,902) = ©(P1,92) = P(P1,92) — €ll(91, 902) — (91, 92) ||, and
For(92) = Fo (92) > Fpy (92) — €ll2 — Pall-

Hence, (1, ) is a local e-quasi solution of BLPP. Hence, the theorem is proved. O

Theorem 7. Let ® and F,, be locally Lipschitz functions at (9, %,). Moreover, assume that (91,9, ) be a
local e-quasi solution of BLPP with ® and F,, are approximate 0 y—quasiconvex functions of type II around
(P1,02). Then (91, 95) is a solution of ASTVI w.r.t same €.

Proof. Let ({7, p,) € Q is a local e-quasi solution of BLPP. Then we can get a d > 0, such that for each
(91, 92) € B(($1,92),d) N Q, we have

D(p1,02) > P(P1,92) — €ll(91, 92) — (D1, 92)

_ _ (17)
For(92) = Fo, (92) — €llp2 — 9al-

Since ® and F|,, are approximate d;—quasiconvex functions of type Il around (%, ©, ), therefore for
alle > 0,wecangetad > 0and forall (g1, 02) € B((p1,92),d") NQ, if

qD(@l/@Z) < q)(plr p2)) + €||(@1, @2) - (51162)”
For(92) < Fp,(92) +€llp2 — Ball,
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then
(¢, (91, 92) — (91,92)) <0,V € ImP(p1, 92)
(

1,92 — 2) <0, V1 € ImFp, (92)-

Letd = min{d,d'} and (g (1), 92(1)) = (91, 92) + (91, 92) — (91, §2)), 1 € (0,1), such that p < d.
Then from (17), it follows that

D (01 (1), 92(1)) > D(p1,92) — €l (P1(1), P2(1)) — (91, 22|

(18)
For(@2(1) = For(2) — €llp2(1) — Ball-

Employing (18) and approximate d;;—quasiconvexity of type II of the functions ® and F,,, one has

(S (91, 92) — (01(1), 2 (1)) < 0,8 € amP(1 (1), P2 (1)),
(M, 02 — 02 (1)) <0, Vigu € ImFy, (92(1)),

that is,
(& (91, 92) — (B1,P2)) = 0,8, € ImP(H1 (1), P2 (1)), (19)
(s 2 = 92) 20, Vigu € OmFy, (92(1))-
By making use of (19), we have
(G (91, 02) = (91, 92)) +€ll(p1, 902) = (F1,92) | =0, Y&y € AP (1 (1), P2 (p)) (20)

(Mus 902 — $2) +€llo2 = Pall >0, Vg, € ImF o, (P2(H))-

Since, 0 ® and 9y Fy, are closed, &, € OMP(P1(1), P2(1)), My € OMmF oy (P2(1)), Sy = &, 1y — 11,
and (p1 (1), P2(p)) = (91, 92) as p — 0, we have § € P (1, 92) and 17 € ImF, (P2). Therefore,
for any (1, p2) € B((91,92),d) NS, there exist { € Oy P(H1, o) and 17 € Iy F, () such that

(& (91, 92) — (91, 92)) el (91, 02) — (1, 92)[| =0

~ _ (21)
(11, 92 — $2) +€llp2 — P2l > 0.

Hence, the theorem is proved. O

Theorem 8. Let (1, ©,) is a solution of ASTVIw.r.t € and 0P and 9y F,, are approximate e-pseudomonotone.
Then (91, ) solves AMTVI w.r.t same €.

Proof. Let (1, P,) solves ASTVIw.r.te. Then we can getad > 0 and for all (g1, p2) € B((91,$2),d) N
Q, there exists ¢ € 0P (P, P2) and 17 € Iy Fy, (P2) such that

(& (91, 2) — (91, 92)) +€ll (91, 92) — (B1, 92| =0,

- _ (22)
(1,902 —92) +€llp2 — 2l 2 0.

Since d) P, IpmF,, are approximate e-pseudomonotone, then there exists 0 < d’ < d, such that from
(22), for all (p1, p2) € B(($1,$2),d") NQand all § € OmP(p1, 02), 17 € IMF, (92), we have

(¢ (p1,92) — (P1,92)) =0

23
(11, 902 —P2) > 0. @)

Since € > 0, from (23), it follows that

(8, (p1,92) — (91, 92)) +€ll (91, 92) — (P1,92)[| >0,
(11, 92 — §2) +€llp2 — Pl > 0.
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Hence, (91, $,) is a solution of AMTVIw.rte. [

The following example illustrates the importance of the established results.

Example 1. We consider the following bilevel programming problem:

BLPP: min ®(p1, 02) = |p1] + |92
1,62

subject to H(p1, 92) = p192 < 0,02 € P(p1),

where (1) is the set of optimal solutions of the following convex optimization problem

I{;}izw(m, 92) = [92]

03—, ©2>0

subject to Iy (1, p2) = —pTp2 < 0, (91, 2) = {
— P2, g2 <0

where ®,¢p : R xR - R, H: R xR — Rand hy,hy : R x R — R. The set (1) of optimal solution for
lower-level problem is given by

P(p1) == {0}, Vp1 € R,
and F, (92) = |g2|. Moreover, we have
®(1,0) := |p1]

Let S denotes the set of all feasible solutions of BLPP, that is, S = {(1,0) : ¢1 € R}. Then, for e = 1, it can
be verified that (0,0) is a local e-quasi solution of the problem.
Moreover, it can be seen that

oM®(0,0) = {(¢1,82) : |61 £ &2 <1} U{(81,82) : &1 € [-1,1],]81] = —&2 < 1},

Fin (0) = [-1,1],

and ® and F,, are approximate dp;—pseudoconvex and approximate 9y —quasiconvex around (0,0).
Furthermore, we can verify that (0,0) is a solution of (AMTVI) w.r.t €, as forall (p1, 92) € B ((O, 0), %) N

S, we have
(€1, (91, 92) — (0,0)) + €| (91, 02) — (0,0)| > 0,

(82,92 —0) +€llp2—0[[ >0

Moreover, (0,0) also solves ASTVI w.r.t same €, as for all (p1, ) € B ((O, 0), %) N Q), there exists
01 € om®(0,0) and {p € OpmFy, (0) such that

(€1, (p1,2) = (0,0)) + €[l (91, 2) — (0,0)] = O,
(C2, 2 = 0) +€llg2 — 0| > 0.

4. Existence Results

In this section, we employ the generalized KKM-Fan’s lemma to derive certain conditions for the
existence of the solution of AMTVI and ASTVL
The following definition of KKM map is from Rezaie and Zafarani [40].
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Definition 15. A set-valued map B : R" — 2" is termed as a KKM map, if for any subset {01,020, 0p}
of R", it fulfills

P
conv{p1, 02,...,0p} € |J B(gi),
i=1
where conv{p1, 02, ..., pp} denotes the convex hull of {1, 92, ..., 9p}-
The following KKM-Fan's lemma is from [40].

Lemma 1. Let B,M : K C R" — 2" be two set valued mappings, such that the following are satisfied:

1. M(y) C B(y), forally € K,
2. M is a KKM-map,
3. B(y) is closed for all y € K and is bounded for at least one y € K.

Then (N B(y) # @.
yek

Theorem 9. Let () be a nonempty, compact set and ®, F, : Q) — R be locally Lipschitz functions. Then
ASTVI has a solution in Q).

Proof. For each (p1, p2) € ), define the set-valued mappings B, M : () — 20 by

B(p1, 92) = M(p1,92) = {($1,92) € Q: (G, (91, 92) — (91, 92)) +€ll (91, 92) — (P1,92)[| =0,
for some ¢ € I P(B1,D2), (1, 92 — §2) +€ll2 — Poll > 0, for some i € I F, (9) }-

Clearly, B and M are nonempty. Now, we claim that M is a KKM map. If not, there exists a finite set
{(p%, ©3), -, (pf, pg) } CQandy >0,k=1,...,pwith Zlf:l px = 1, such that

- k _k g k _k
(91, 02) = kZ m (0, 05) ¢ U M(of, o5) (24)
=1 k=1
From (24), it follows that (o7, 03) & M(pll‘, pg) forallk =1,...,p, thatis
(& (oh 68) = (01, 03)) +¢| (&, 68) = (91, 93)|| < 0, V& € dm (07, 03) -
(n, (65— 03)) +ellgh — o3l < 0, ¥y € Ty, (93).

Multiplying (25) by yy and adding the resulting inequality we get

0> é@yk(@’f/ 05) — (i, 03)) + ekéukﬂ (oh 68) — (01, 03)

>€iy<k k)i(**) +€i(k k)i(**)
=\ & k| 91,82 £1/ 62 k:le #1892 £1/ 62
=0,
and ) »
0> k;@/uk(p’i) — (93)) +€k; | (95) = (03)|
P P
> <n,k_21 (95 - <p;>> +e k;m(pé) —(93)

:O,
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which is a contradiction. Hence, B = M is a KKM map.

Now, our aim is to show that the set-valued map B is closed for all (1, p2) € Q. Let { (o}, 04) }
be a sequence in B, such that (p, p5) — (o}, 3) € Q. We have to show that (p}, p5) € B. Since
(p¥, %) € B, therefore there exist &, € In®P (9}, o) and 17, € IpFy, (04), such that

(Cn (01, 92) — (01, 93)) +€ll(p1, 92) — (91, 02)Il >0,

26
(n, (92) — (93)) +€llp2 — gh|| > 0. (26)

Since 9P and dpF, are closed, & € ImP (9], ©4), n € OMmFp, (94), & — & 1 — 1 and
(01, 05) = (93, 05). Wehave & € an®(p3, p3) and 7 € o Fp, (93),

(8, (91, 92) — (901, 93)) +€ll(p1,902) — (91, 93)I >0,
(11, 902 — 93) +€llp2 — 3| > 0.

Hence, B is closed. Since, Q) is bounded therefore B is bounded for each (p1, pp) € Q. Therefore,
utilizing Lemma 1, we have

(1 Blpi,92) #9,
(p1.92)€Q
which implies that for some (g1, 02) € Q, we get a (1, 9»), such that for all { € 0y P (D1, ),
11 € OmFyp, (2) we get

(€ (91, 02) — (01 — 92)) +€ll(p1,02) — (H1,$2)[| =0
(1,92 —92) +€llp2 — P2 > 0.

Hence, ASTVI has a solutionin Q). O

Theorem 10. Let () be a nonempty compact set and ®, F,, : () — R be locally Lipschitz function. Then
AMTVI has a solution in Q).

Proof. Let set-valued mapping B = M : Q — 22 be such that

B(p1,92) = {(@,@z) € O : V¢ € InP(p1, 92), V1 € ImFy, (2) such that
(€, (91, 92) = (91, 92)) +€ll (01, 902) — (P12
>0, (1,02~ P2} +ellp2 —Fall 20, ¥(pn, 02) € Q.

Now, proceeding along the lines of Theorem 9, we get the required result. [

5. Conclusions and Future Directions

In this paper, we have considered BLPP, as well as AMTVI and ASTVI in terms of limiting
subdifferential. We have derived the relationships among the solutions of the AMTVI and ASTVI and
the local e-quasi solution to the nonsmooth BLPP under the appropriate assumptions of generalized
approximate convexity. Furthermore, existence results for the solution of AMTVIand ASTVI have been
established by employing generalized KKM-Fan’s lemma. A non-trivial example has been provided to
illustrate the importance and relevance of these findings.

The results derived in this paper extend several noteworthy findings in the literature for certain
classes of generalized approximate convex functions using the notion of limiting subdifferential as
well as generalizing them for a wider class of optimization problems. In particular, the results of
this paper extend the analogous results in [10,25] from single-level optimization problems to more
general optimization problems, namely, bilevel optimization problems. Moreover, since the limiting
subdifferential is the least among all the known robust subdifferentials and offers an enhanced

do0i:10.20944/preprints202404.0484.v1
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Lagrange multiplier rule compared to the Clarke subdifferential, therefore our findings naturally
sharpen the analogous results of [6,24,32,43]. Furthermore, the established results of this paper extend
the corresponding results in [6,24,27,43] for a broader class of approximate convex functions.

Considering the contributions of Deb and Sinha [12] and Oveisiha and Zafarani [39], we aim to
extend the findings of this paper to multiobjective bilevel programming problems and to a broader
space, such as the Asplund space, in our future research endeavors.
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