Submitted:
03 April 2024
Posted:
07 April 2024
You are already at the latest version
Abstract
Keywords:
1. Introduction
2. Methodology
2.1. Coordinate Systems and Symbols
2.2. Equation of Motion of the Submarine
2.2. Simulation Method
3. Numerical Modelling
3.1. Case Study


3.2. CFD-Based Modeling
4. Results
5. Conclusions
Funding Statement
References
- Nguyen, T.T.; Yoon, H.K.; Park, Y.; and Park, C.. “Estimation of hydrodynamic derivatives of full-scale submarine using RANS solver.” J. Ocean Eng. Technol. 2018, Volume 20, 386-392.
- Cho, Y.J.; Seok, W.; Cheon, H.H; Rhee, S.H. Maneuvering simulation of an X-plane submarine using computation fluid dynamics. Int. J. Nav. Archit. Ocean Eng. 2020, Volume 12, 843–855. [Google Scholar] [CrossRef]
- Wu, S.J.; Lin, C.C.; Liu, T.L.; Su, I.H. Robust design on the arrangement of a sail and control planes for improvement of underwater vehicle’s maneuverability. Int. J. Nav. Archit. Ocean Eng. 2020, Volume 12, 617–635. [Google Scholar] [CrossRef]
- Jeon, M.J.; Yoon, H.K.; Hwang, J.; Cho, H.J. Analysis of the dynamic characteristics for the change of design parameters of an underwater vehicle using sensitivity analysis. Int. J. Nav. Archit. Ocean Eng. 2018, Volume 10, 508–519. [Google Scholar] [CrossRef]
- Kim, H.; Ranmuthugala, D.; Leong, Z.Q.; Chin, C. Six-DOF simulation of an underwater vehicle undergoing straight line and steady turning manoeuvres. Ocean Eng. 2018, Volume 150, 102–112. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Y.; Sun, Y.; Zeng, J.; Wan, L. Design and simulation of X-rudder AUV’s motion control. Ocean Eng. 2017, Volume 137, 204–214. [Google Scholar] [CrossRef]
- Zhang, Y; Li, Y; Zhang, G.; Zeng, J.; Wan, L. Design of X-rudder autonomous underwater vehicle’s quadruple-rudder allocation with Le’vy flight character. Int. J. Adv. Robot. Syst.2017, Volume 14, 1-15.
- Broglia, R.; Cannarozzo, M.; Dubbioso, G.; Zaghi, S. Free Running Prediction of a Fully Appended Submarine: Effects of Stern Plane Configurations. In Proceedings of the VI International Conference on Computational Methods in Marine Engineering, Rome, Italy, 15-17 June 2015. [Google Scholar]
- Piaggio, B.; Vernengo, G.; Ferrando, M.; Mazzarello, G.; Viviani, M. Submarine Manoeuvrability Design: Traditional Cross-Plane vs. x-Plane Configurations in Intact and Degraded Conditions. J. Mar. Sci. Eng 2022, 10, 1–38. [Google Scholar] [CrossRef]
- Park, J.H.; Shin, M.S.; Jeon, Y.H. and Kim, Y.G. Simulation-Based Prediction of Steady Turning Ability of a Symmetrical Underwater Vehicle Considering Interactions Between Yaw Rate and Drift/Rudder Angle. J. Ocean Eng. Technol. 2021, Volume 35, 99-112.
- Ke, L; Ye, J.; and Liang, Q. Experimental Study on the Flow Field, Force, and Moment Measurements of Submarines with Different Stern Control Surfaces. J. Mar. Sci. Eng. 2023, Volume 11, 1-20.
- Pan, Y.; Zhang, H.; Zhou, Q. Numerical simulation of unsteady propeller force for a submarine in straight ahead sailing and steady diving maneuver. Int. J. Nav. Archit. Ocean Eng. 2019, 11, 899–913. [Google Scholar] [CrossRef]
- Han, K.; Cheng, X.; Liu, Z.; Huang, C.; Chang, H.; Yao, J.; and Tan, K. Six-DOF CFD Simulations of Underwater Vehicle Operating Underwater Turning Maneuvers. J. Mar. Sci. Eng. 2021, Volume 9, 1–24. [Google Scholar] [CrossRef]
- Guo, H.; Li, G.; Du, L. Investigation on the flow around a submarine under the rudder deflection condition by using URANS and DDES methods. Appl. Ocean Res. 2023, 131, 1–28. [Google Scholar] [CrossRef]
- Vali, A.; Saranjam, B.; and Kamali, R. Experimental and Numerical Study of a Submarine and Propeller Behaviors in Submergence and Surface Conditions. J. Appl. Fluid Mech. 2018, Volume 11, 1297–1308. [Google Scholar] [CrossRef]
- Fureby, C.; Anderson, B.; Clarke, D.; Erm, L.; Henbest, S.; Giacobello, M.; Jones, D.; Nguyen, M.; Johansson, M.; Jones, M.; Kumar, C.; Lee, S.K.; Manovski, P.; Norrison, D.; Petterson, K.; Seil, G.; Woodyatt, B.; Zhu, S. Experimental and numerical study of a generic conventional submarine at 10° yaw. Ocean Eng. 2016, Volume 116, 1–20. [Google Scholar] [CrossRef]
- Fossen, T.I. Guidance and Control of Ocean Vehicles, 3rd ed.; John Wiley and Son: Baffins Lane, Chichest West Sussex, England, 1999; pp. 168–180. [Google Scholar]
- Menter, F. Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications. AIAA 1994, Volume 32, 1598–1605. [Google Scholar] [CrossRef]
- Wilcox, C.D. Turbulence Modeling for CFD, 3rd, ed.; DCW Industries Inc.: 5354 Palm Drive, La Cafiada, California, America, 2006. [Google Scholar]
- ITTC - Recommended Procedures and Guidelines: Practical guidelines for ship CFD application, 2011. https://ittc.info/media/1357/75-03-02-03.pdf.
- Oh, K.J.; Kang, S.H. Full scale Reynold number effects for the viscous flow around the ship stern. Computational Mechanics 1992, Volume 9, 85–94. [Google Scholar] [CrossRef]









| Title 1 | Cross-rudder plane | X-rudder plane | Y-rudder plane |
| -5.27E-3 | -8.81E-3 | -9.06E-3 | |
| -4.91E-3 | -9.66E-3 | -7.40E-3 | |
| 8.62E-3 | 1.17E-2 | 8.07E-3 | |
| -2.57E-3 | -2.74E-3 | -1.60E-4 | |
| 9.48E-3 | 1.12E-2 | 7.95E-3 | |
| -6.97E-3 | -4.28E-3 | -4.47E-3 | |
| -4.48E-5 | -7.61E-6 | -8.11E-5 | |
| -1.43E-4 | -2.38E-5 | -2.11E-5 | |
| 3.76E-3 | 4.84E-3 | 3.54E-3 | |
| -1.54E-3 | -1.35E-3 | -2.11E-3 | |
| -3.73E-3 | -5.05E-3 | -3.52E-3 | |
| 9.67E-4 | 1.03E-3 | -1.71E-4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
