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Abstract: Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable diseases
characterized by the gradual loss of neurons, culminating in the decline of cognitive and/or motor
functions. Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common NDs and
represent an enormous burden both in terms of human suffering and economic cost. The available
therapies for AD and PD only provide symptomatic and palliative relief for a limited period and
are unable to modify the diseases’ progression. Over the last decades, research efforts have been
focused on developing new pharmacological treatments for these NDs. However, to date, no
breakthrough treatment has been discovered. Hence, the development of disease-modifying drugs
able to halt or reverse the progression of NDs remains an unmet clinical need. This review
summarizes the major hallmarks of AD and PD and the drugs available for pharmacological
treatment. It also sheds light on potential directions that can be pursued to develop of new, disease-
modifying drugs to treat AD and PD, thereby decreasing the social and economic burdens linked to
these NDs.
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1. Introduction

Neurodegenerative diseases (NDs) are a set of progressive, chronic, and incurable neurological
disorders characterized by the loss of neurons and synaptic connections, which irreversibly produce
a series of events commonly related to motor disability, cognitive impairment, and dementia [1]. They
represent an enormous disease burden, both in terms of human suffering and economic costs [2],
being the foremost contributors of incapacity and dependence due to their debilitating nature [3].
The most common NDs include Alzheimer’s disease (AD), Parkinson’s disease (PD), Huntington’s
disease (HD), and Amyotrophic Lateral Sclerosis (ALS).

The etiology of NDs is not completely understood and the onset of neurodegeneration may
precede the clinical symptoms by many years. However, it is generally accepted that the pathogenesis
of NDs is multifactorial, involving a complex combination of genetic, environmental, and
endogenous factors acting cooperatively or independently [4,5]. Although each disease presents its
particular molecular mechanisms and clinical manifestations (Figure 1), NDs share common
pathogenic events [6].

Despite the intensive research performed so far, to date, no breakthrough treatment has yet been
discovered. The NDs available therapies only provide symptomatic and palliative relief for a limited
period [7] and are unable to modify the disease progression [8,9]. Therefore, the development of
disease-modifying drugs able to prevent, halt or reverse the progression of NDs remains an unmet
clinical need. In this review, we summarize the major hallmarks of AD and PD, the drugs available
for pharmacological treatment, and future directions for the development of new and disease-
modifying drugs to treat these NDs.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Figure 1. Primary brain regions affected in the most common neurodegenerative diseases. Adapted
from [6].

2. Alzheimer’s and Parkinson’s Diseases: The Epidemiologic Forecast

The average human lifespan of the worldwide population has been rising in the last decades
[10]. Several factors seem to contribute to this success, namely the cumulative progress in sanitation
and medical care, rising living standards, and the decline in child mortality [10,11]. Although the
increased life expectancy must be celebrated, a proportional rise in the frequency and prevalence of
NDs is expected [10,12]. Therefore, the rise of elderly populations has been soaring with the increased
incidence of age-related degenerative diseases, reaching epidemic proportions in high-income
countries [13]. Several genetic risk factors, lifestyles, and environmental exposure to a diversity of
pollutants are implicated in the neurodegeneration process [14]. In 2020, the worldwide population
with age higher than 65 years was estimated to be 727 million, a 195 million increase since 2010. Over
the next three decades, the number of worldwide elderly is projected to more than double, reaching
over 1.5 billion in 2050. By mid-century, one in six people globally will be aged 65 years or older [15].
Although the increase in longevity represents a progress per se, it can become a social, economic, and
medical burden when it is not associated with the maintenance of the quality of life. The World
Health Organization indicated that central nervous system (CNS) diseases are the major medical
challenge of the 215t Century. Among them, NDs, namely AD and PD are the most prevalent CNS
disorders [16].

The World Health Organization recognized AD as the most common form of dementia in the
elderly, accounting for 50-56%, and a major cause of death, being considered one of the greatest
global public health challenges [17,18]. Currently, the number of people aged 65 and older affected
by AD dementia is more than 55 million worldwide and it is expected that this number will rapidly
increase to 132 million by 2050 [19,20].

The overall number of people diagnosed with PD has also been growing progressively at a
global level. In 2019, approximately 8.5 million individuals had received a PD diagnosis. Estimates
suggest that, in 2019, PD resulted in 5.8 million disability-adjusted life years, an increase of 81% since
2000, and caused 329,000 deaths, an increase of over 100% since 2000. This estimation is expected to
increase to 12 million people in 2050 [21,22].

3. Alzheimer’s and Parkinson’s Diseases Major Hallmarks
3.1. Alzheimer’s Disease

Alzheimer’s disease was first diagnosed in 1906 by Dr. Alois Alzheimer, when he noticed
changes in the brain tissue of a woman who had died of an unusual mental illness [23].

AD is an irreversible, complex, and progressive ND that results in cognitive impairment and
memory injury. Despite its prevalence among the elderly, AD dementia is distinct from a normal
aging process [24]. The progression of AD can be divided into three stages. The first is often
mistakenly attributed to age-related upsets or manifestations of stress [25]. In this stage, the patient
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has memory lapses such as forgetting familiar words or the location of everyday objects, which
denotes its lack of ability to produce new memories and skills [26,27]. The second stage of AD is
typically the longest one and can last for many years. Herein, the progressive deterioration of neurons
can lead to problems with speech and severe difficulties in reading and writing. During this phase,
memory problems worsen, and the patient may fail to recognize close relatives [28]. In the most
advanced phase, AD patients show loss of cognitive and motor functions, confusion, and
disorientation, having most patients have mobility problems, hallucinations, and delirium, leading
to absolute dependence on 24-hour supervision, hospital care, and unavoidable death [29,30].

Although the specific cause of AD is still unknown, it is well recognized that a multiplicity of
pathological stimuli can play a key role, which causes an increased risk of disease development
[31,32]. Age and family history of the disease are considered the strongest risk factors for familial and
sporadic AD [33]. The presence of ¢4 allele of the apolipoprotein E4 (ApoE4) genotype, found on
chromosome 19, appears to be a primarily risk factor for patients with sporadic AD [34-36]. In
addition, genetic mutations in APP on chromosome 21, presenilin-1 (PSEN-1) on chromosome 14,
and presenilin-2 (PSEN-2) on chromosome 1 can also cause familial AD [37,38]. Other putative risk
factors include head trauma, depression, diabetes mellitus, hypothyroidism, and a series of vascular
factors [39,40].

A conclusive diagnosis of AD requires a detailed post-mortem microscopic examination of the
brain [37]. However, AD can be currently diagnosed with more than 95% accuracy in living patients
by carefully analyzing the patients’ family history, assessing cognitive function with
neuropsychological tests, and evaluating AD biomarkers, namely with high-tech neuroimaging data
or cerebrospinal fluid analysis [41,42].

The progressive cognitive impairment observed in AD patients can be associated with the
significant reduction of brain size [43]. The brain atrophy arises from the loss of synapses and from
the selective neuronal death in the hippocampus and in the cerebral cortex [43—-46]. The most
prominent losses are observed in neurons with long projections, such as cholinergic neurons in the
basal forebrain (Figure 2A) [47]. These neurons innervate the hippocampus, thalamus, amygdala,
and neocortex, and play key roles in attention, cognitive flexibility, and learning [48]. Although the
neurons that degenerate in AD are mostly cholinergic [49], glutamatergic neurons are also affected
[50].

AD is characterized by extensive atrophy of the brain caused by two main neuropathologic
changes — the formation of amyloid plaques (also called senile plaques) and the appearance of
neurofibrillary tangles (NFTs) — that lead to neuronal loss and synaptic changes in brain-specific areas
essential for cognitive and memory functions (Figure 2B) [51].
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Figure 2. Major hallmarks of AD. (A) Degeneration of cholinergic neurons in the basal forebrain. (B)
Formation of senile plaques and neurofibrillary tangles. Adapted from [52].

The amyloid plaques result from the abnormal extracellular accumulation and deposition of
insoluble aggregates of fibrillar 3-amyloid (A) [53]. Sequential cleavage of the amyloid precursor
protein (APP) in the cell membrane by the enzymes -3 and Y-secretases gives rise to the family of A3
peptides (most commonly 40-42 amino acids in length) [54,55]. Although the formation of Af is
believed to be a physiological process in normal aging [56], AB1-42 isoform was identified as a major
contributor to the disease process [57,58].

Intracellular NFTs are formed by aggregated misfolded tau protein (tau-P), the major
microtubule-associated protein predominantly found in the axons of mature neurons [59]. In AD, tau
hyperphosphorylation induces a loss of function that hampers its ability to bind to microtubules,
leading to microtubule depolymerization that compromises the axonal trafficking and the dendrite
structure [60]. When tangle-bearing neurons die, NFTs become extraneuronal and activate a series of
neurotoxic processes that can cause synaptic dysfunction and neuronal death [61]. Overall, AD brains
show a decline in neuronal mass in regions related to cognition and memory, which leads to a
depletion of cholinergic neurons and acetylcholine (ACh), resulting in synaptic dysfunction [47,62].

Other pathological features also play a crucial role in the progress of AD, including cholinergic
deficit, enhanced brain oxidative stress and overproduction of free radical, mitochondrial
dysfunction, and disruption of metal homeostasis [63]. The downstream consequences of
neuropathological processes contribute to neurodegeneration with extensive neuronal loss, synaptic
changes, and brain neurotoxic events leading to macroscopic atrophy [18,64].
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3.2. Parkinson’s Disease

Initially described by the English surgeon James Parkinson in 1817, Parkinson’s disease is the
second most prevalent ND and the most common movement disorder [65].

Clinical manifestations of PD include four cardinal motor symptoms: bradykinesia, resting
tremor, rigidity, and postural instability [66,67]. Patients with PD may also experience numerous non-
motor symptoms, such as autonomic deficiency, cognitive impairment, neuropsychiatric problems
(mood, cognition, behavior, or thought alterations), sensory (especially altered sense of smell), and
sleep disorders [7,67-69]. Non-motor symptoms are common in the PD early stages (pre-
motor/prodromal phase) and frequently precede the onset of motor symptoms [68,69]. Motor
dysfunction worsens with the disease progression and is managed with symptomatic treatments [69].
However, long-term therapy is associated with gradual loss of efficacy and the emergence of adverse
effects such as motor fluctuations, dyskinesia, and psychosis [69,70]. Late-stage PD is characterized
by treatment-resistant motor and non-motor symptoms that substantially contribute to the patient’s
disability [69]. The median age of onset of PD is 60 years, and the mean duration from diagnosis to
death is 15 years [67].

Parkinson’s disease is mostly sporadic, resulting from a complex interplay between genetic
susceptibility and environmental factors [66]. However, approximately 5-10 % of PD cases are caused
by familial genetic mutations [71,72] that usually result in early-onset PD [73]. Mutations in SNCA,
LRRK2 and VPS35 genes were associated with autosomal dominant PD, while mutations in PINK1,
PARK7/DJ-1, PARK2/PARKIN, PLA2G6, ATP13A2, and FBX(O7 cause autosomal recessive PD and/or
parkinsonism [74]. Despite being extensively studied, the gun trigger that causes PD remains
unknown. An appraisal of the literature points towards a complex multifactorial etiology, in which a
multiplicity of pathological stimuli contributes to the neurodegenerative cascade. So far, the main
causes include impaired calcium homeostasis, iron overload, inflammation, protein aggregation, and
defective metabolism [75]. In addition, several studies showed that oxidative stress can cause
neuronal death and mitochondrial dysfunction [76].

The motor dysfunction observed in PD is linked to the loss of dopaminergic neurons in specific
areas of the substantia nigra pars compacta (SNpc) region of the midbrain, which contributes to severe
dopamine (DA) deficiency in the putamen and the caudate nucleus [77]. The cell bodies of
nigrostriatal neurons are in the SNpc and their axon terminals projected to the dorsal striatum (i.e.,
putamen and caudate nucleus) (Figure 3A) [5,72]. Dopamine synthesized in this brain region is
directed to the striatum and frontal cortex, allowing control of the musculoskeletal system and
movement. Therefore, the degeneration of dopaminergic neurons leads to a decrease in DA levels.
Symptoms of PD only develop after the loss of 50-60 % of nigral neurons and the depletion of 70-85
% of DA levels [67,78]. Although the neuropathology of PD is primarily characterized by
dopaminergic neuron loss, neurodegeneration also extends to other neurotransmitter systems [68].
Indeed, cholinergic (nucleus basalis of Meynert, dorsal nucleus of vagus), serotonergic (raphe), and
noradrenergic (locus coeruleus) neurons are also affected [79].
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Figure 3. Major hallmarks of Parkinson’s disease. (A) Degeneration of nigrostriatal dopaminergic
neurons. (B) Formation of Lewy inclusions. Adapted from [80,81].

One pathological hallmark of PD is the formation of Lewy bodies, which are lamellated and
fibrillated aggregates that include a-synuclein (aSyn) and ubiquitin [82]. Accumulation of aSyn
results in the death of dopaminergic neurons [83]. In dopaminergic neurons, aSyn regulates the
synthesis, storage, and release of DA [84]. aSyn is prone to form oligomeric and fibrillar bodies in the
cytosol or associate to the cellular membrane [85]. The formation of aSyn inclusions begins in the
lower brainstem nuclei [86,87], spreads through the pons to the midbrain and basal forebrain and
reaches the neocortex [86]. These inclusions may accumulate in neuronal perikarya (Lewy bodies)
and neuronal processes (Lewy neurites) (Figure 3B) [88,89]. The presence of these aggregates is
associated with the accumulation of synaptic vesicles, decreased DA release, impairment of
degradation pathways, and increased oxidative stress [84].

4. Alzheimer’s and Parkinson’s Diseases Pharmacotherapy

Neurodegeneration is a complex process resulting from multiple defects [90]. The most obvious
pathological features of AD and PD include the selective loss of neuronal populations with a
consequent decrease of neurotransmitter levels, and the formation of protein aggregates [66,91].
These observations led to the identification of the primary brain enzymatic targets (e.g.
cholinesterases (ChEs), monoamine oxidases (MAOs), catechol-O-methyltransferase (COMT)) [90],
which are related to the regulation of neurotransmitter levels, and to the subsequent development of
the currently available therapeutic agents [92,93].
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4.1. Targeting Neurotransmitter Depletion in Alzheimer’s Disease

Cholinergic neurons are widely distributed in both the central and the peripheral nervous
systems [48]. Although they represent less than 1 % of neurons in the nervous system, almost every
brain region and peripheral target receives cholinergic innervation [94]. Cholinergic neurons in the
basal forebrain contain extensive cortical projections that are involved in the modulation of other
neurotransmitter systems [95].

Studies focusing on the cholinergic system have received particular attention since the decline
of cholinergic function was linked to age-related learning impairments and memory loss in AD [96].
The damage or the presence of abnormalities in cholinergic pathways, especially in the basal
forebrain neurons, was correlated with the level of cognitive decline in late-stage AD patients [97].
Together with the loss of cholinergic markers, such as choline acetyltransferase (ChAT) and AChE,
these observations led to the formulation of the “cholinergic hypothesis” [98], which states that the
dysfunction of the cholinergic system contributes to the cognitive deficits in AD [99].

Acetylcholine (ACh) was the first neurotransmitter to be identified [100,101] and is widely
distributed in the nervous system, playing important functional roles in attention, memory, learning,
stress response, wakefulness and sleep, and sensory information [102]. The hippocampal and cortical
levels of ACh in the brain of AD patients are decreased by approximately 90 % [103]. It has also a
very important role in the structural and functional remodeling of cortical circuits by establishing
synaptic contacts in networks of cells [104,105].

The synthesis of ACh is catalyzed by ChAT in the cytosol of presynaptic cholinergic neurons in
a single-step reaction, in which choline and acetyl-coenzyme A (acetyl-CoA) are used as substrates
(Figure 4) [106]. While acetyl-CoA is synthesized by mitochondria, choline is taken up from the
extracellular space since it is not synthesized in neurons [107]. The rate-limiting step for the synthesis
of ACh is the uptake of choline by the Na*-dependent, high-affinity choline transporter (ChT1) [108].
The neurotransmitter ACh is then accumulated in synaptic vesicles by the vesicular acetylcholine
transporter (VAT). This transporter uses an electrochemical gradient generated by a proton
adenosine triphosphate (ATP)ase to perform the uptake of one ACh molecule in exchange for two
protons [107-109]. During neurotransmission, ACh is released from the presynaptic neuron into the
synaptic cleft, where it binds to cholinergic receptors (muscarinic or nicotinic) in the postsynaptic and
presynaptic membranes [106,110].

The action of ACh may persist for a long time due to the chemical stability of the
neurotransmitter [111]. Therefore, the rapid hydrolysis of ACh by cholinesterases is a process to
prevent cholinergic overactivation [112]. Two ChEs are present in mammals and can metabolize Ach:
acetylcholinesterase (AchE) and butyrylcholinesterase (BchE) [98]. While the Ch obtained from Ach
inactivation is taken up by pre-synaptic neuron via ChT1 [98,106,111], acetic acid is further
decomposed [111].
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Figure 4. Enzymes and transporters involved in the synthesis, storage, and metabolism of
acetylcholine.  Abbreviations: ~ Ach, acetylcholine; =~ AchE, acetylcholinesterase;  BchE,
butyrylcholinesterase; ChT1, high-affinity choline transporter; VAT, vesicular acetylcholine
transporter. Adapted from [110,113].
Although different approaches have been investigated to improve cholinergic

neurotransmission by modulating ACh release [114,115], cholinesterase inhibitors are the only
pharmacological strategy approved so far. Cholinesterase inhibitors enhance cholinergic
neurotransmission through the inhibition of ChEs, thereby decreasing the breakdown of ACh and
increasing its levels at the synaptic cleft. AChE inhibitors are used to treat cognitive and behavioral
symptoms of AD patients. Currently available AChE inhibitors used in AD therapy include
donepezil, rivastigmine, and galantamine (Figure 5) [116].

AChE inhibitors can be prescribed with memantine (Figure 5), an uncompetitive and low-
affinity N-methyl-D-aspartate (NMDA) receptor (NMDAR) antagonist approved for the treatment of
moderately severe to severe AD [117-119]. The NMDAR is an ionotropic receptor of glutamate, the
main neurotransmitter in CNS [115]. The activation of NMDAR generates a long-lasting influx of Ca?*
into neurons, which is thought to be involved in the cellular processes that underlie learning and
memory [120,121]. In AD, an increase of extracellular glutamate is observed, leading to excessive
activation of NMDAR with consequent intracellular accumulation of Ca* and neuronal death [122].
By blocking excessive NMDAR activation, memantine antagonizes
excitotoxicity and prevents neuronal cell death [123].

glutamate-mediated
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4.2. Targeting Neurotransmitter Depletion in Parkinson’s Disease

Dopamine is a catecholamine neurotransmitter present in the CNS and in some peripheral areas
[124]. In the brain, DA transmission is associated with the control of fine motor movements and with
cognitive functions that include learning, reward, attention, and decision-making [124,125]. The DA
released in the nigrostriatal pathway is linked to the performance of voluntary movements, as well
as the selection and initiation of suitable motor actions [126].

In the cytoplasm of the presynaptic dopaminergic neuron, DA biosynthesis occurs in two steps
(Figure 6). The first step involves the hydroxylation of tyrosine into L-3,4-dihydroxyphenylalanine
(L-DOPA) by tyrosine hydroxylase (TH), which is followed by a decarboxylation reaction catalyzed
by aromatic amino acid decarboxylase (AADC) to afford DA [81,127]. The neurotransmitter is then
transported into synaptic vesicles by the vesicular monoamine transporter (VMAT?2) or metabolized
by intraneuronal monoamine oxidase A (MAO-A) [128]. Following the release into the synaptic cleft,
DA binds to the dopaminergic receptors present in the postsynaptic neuron [127]. The transport of
the released DA into the presynaptic neuron occurs via DA transporter (DAT) and is followed by DA
recycling into the synaptic vesicles or by DA deamination by MAO-A. Alternatively, the DA
transported into non-dopaminergic post-synaptic neurons and glial cells is metabolized by MAO-B
and COMT [128].
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The loss of nigrostriatal dopaminergic neurons is associated with the development of motor
symptoms of PD, namely the difficulty in initiating and terminating movements, gait disturbance,
and muscular rigidity [126]. Therefore, to reduce the severity of motor handicaps, most PD therapies
are based on enhancing the dopaminergic signaling [92,130].

The use of the DA precursor L-DOPA (Figure 7) remains the gold-standard treatment for PD
[131]. Unlike DA, L-DOPA can cross the blood-brain barrier (BBB) and increase DA synthesis in the
brain [127]. To prevent the peripheral metabolic activation to DA, L-DOPA is commonly
administered with decarboxylase inhibitors (e.g.: carbidopa, benserazide) [132]. Despite the efficacy
of L-DOPA in ameliorating motor symptoms, its long-term use is associated with progressive loss of
efficacy together with motor fluctuations and dyskinesia [70,133].

In addition to L-DOPA, other therapeutic approaches involve the use of selective MAO-B
inhibitors (rasagiline, selegiline, safinamide)) COMT inhibitors (entacapone, tolcapone and
opicapone) [134,135], or agonists of postsynaptic DA receptors (pramipexole, ropinirole,
apomorphine) (Figure 7) [136,137].
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Due to their pivotal role in neurotransmitter catabolism and their affinity for specific
neurotransmitters, MAOs are considered attractive drug targets in the treatment of depression and
NDs [138,139]. In particular, MAO-B is the main isozyme involved in DA metabolism in the aged
parkinsonian brain [140]. While MAO-A activity is maintained with aging, the activity and
expression of MAO-B in the human brain increase approximately 4-fold in most brain areas such as
the basal ganglia [140,141], possibly as a result of glial cell proliferation and the concomitant loss of
neuronal cells [142]. The amplified MAO-B activity leads to nigrostriatal DA depletion and to a higher
production of H202 and toxic aldehydes, which contribute to increased oxidative stress and neuronal
degeneration [140,141].

MAO-B inhibitors (Figure 7) are currently used in PD therapies to prevent DA catabolism and
prolong the action of DA in the basal ganglia [143]. The inhibition of MAO-B may also decrease the
formation of dopamine-derived oxidative products and thereby delay the disease progression [144].
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Usually, MAO-B inhibitors are prescribed either as monotherapy or in combination with L-DOPA.
Their use in monotherapy is more effective at the early stages of PD and may delay the use of L-
DOPA [145]. When combined with L-DOPA, MAO-B inhibitors prolong the therapeutic effects of L-
DOPA, decrease the dose of L-DOPA required to control the symptoms, and reduce the occurrence
of L-DOPA-associated side effects [140,145].

COMT has received considerable attention due to its involvement in the metabolism of L-DOPA
[146]. Given adjunctively with L-DOPA, COMT inhibitors (Figure 7) decrease L-DOPA premature
inactivation, prolonging its half-life and improving its delivery to the brain [146,147]. In addition,
COMT inhibitors enable a decrease in both the dose and administration frequency of L-DOPA,
reducing “off” time (i.e., decreasing periods of time when symptoms are more noticeable and
movements are more difficult) and increasing “on” time (i.e., increasing periods when PD patients
experience good symptom control), thereby improving and prolonging the clinical response to L-
DOPA [147].

Inhibitors of peripheral (entacapone, opicapone, Figure 7) and cerebral COMT (tolcapone,
Figure 7) were developed and are available for the adjunctive treatment of PD. Peripheral COMT
inhibition decreases the systemic decomposition of L-DOPA. Still, COMT inhibition in the CNS has
the additional advantage of decreasing the metabolism of both L-DOPA and DA in the brain [128].

4.3. Alzheimer’s and Parkinson’s Diseases: Looking for New Targets

Currently, the pharmacotherapy for AD and PD consists of drugs approved by the Food and
Drug Administration (FDA) that regulate neurotransmitter levels. Unfortunately, they only provide
valuable but modest symptomatic benefits, being unable to modify the course of these diseases
[9,148]. These treatments are also accompanied by limitations. For instance, AChE inhibitors offer
relatively short-lasting positive effects in AD patients [149] and display cholinomimetic actions on
the gastrointestinal tract that result in diarrhea, nausea, and vomiting [150]. The efficacy of PD
medicines also decreases over time, and the chronic treatment often culminates in motor
complications (e.g.: L-DOPA-induced dyskinesia) [151].

The need of beneficial neuroprotective agents has been the driving force for the development of
new and innovative therapeutic strategies, preferably with disease-modifying outcomes. For
instance, over the last years, efforts have been made to develop new drug candidates able to tackle
increased oxidative stress, metal dyshomeostasis (iron, copper), neuroinflammation, and aggregation
of misfolded protein (Table 1). The following subsections will discuss the development of
pharmacological agents targeting oxidative stress or adenosine receptors in NDs as representative
examples.

Table 1. Examples of therapeutic targets looked for drug discovery and development for AD and
PD.

(Patho)physiological Target

process AD PD

copper [152]; iron [153]; zinc [154]  Copper [155]; iron [156](ref)
Metal dyshomeostasis

Mitochondria and MCL1 [157] ROCK [158], d-opioid
metabolic functions receptor [159]
Amyloid-f [160]; B-secretase DJ1 [166]; LRRK2 [167];
. [161]; y-secretase [162]; GSK3-(3 Pink1 [168]; a-synuclein
Mutated/misfolded
. [163]; RAGE [164]; Tau [165] [169]; CK1d [170];
proteins

CK15+GSK3b [171]
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NRLP3 inflammasome [172] Adenosine receptors [173];
cannabinoid receptor 2 [174];
monoacylglycerol lipase
[175]; NRLP3 Inflammasome
[176]; PPAR [177]; TRPC5
[178]
Apoptosis [179]; ferroptosis [180]; Apoptosis [182];

Neuroinflammation

sigma 1 and 2 receptors [181] autophagy/neuroinflammati

. on [183]; CDNF
Neuroprotection _ o
peptidomimetic [184];

ferroptosis [185]; nurrl [186];
sigma 1 and 2 receptors [187]
Aldose reductase [190];
Antioxidants [188]; NRF2

Oxidative stress ) ) NREF2 signaling pathway
signaling pathway [189]

[191]
AChE [110]; a7nAChR [192]; 5-HT2A [195]; adenosine
butyrylcholinesterase [193]; receptors [196,197]; a6AChR
NMDA receptor [194] [198]; COMT [199];
Synaptic activity dopaminergic D1-D4

receptors [200-202]; GPR6
[203]; MAO-B [204]; mGlu4
[205]; PDE4 [206]

4.3.1. Oxidative Stress as a Target in Alzheimer’s and Parkinson’s Diseases

Oxidative stress is one of the major contributors to the pathogenic cascade that leads to
neurodegeneration in AD and PD [207,208]. Evidences of reactive species (RS)-mediated injuries,
with increased levels of oxidative markers and damaged cell components, were observed in AD
and PD brains [209]. A decline in the pool of endogenous antioxidants and a decrease in the activity
of antioxidant enzymes were also reported [25,210].

The brain is particularly prone to oxidative stress-induced damage. Although the brain
constitutes only ~ 2 % of the total body weight, it is responsible for more than 20 % of the body's
oxygen consumption, with a significant amount of oxygen being converted into reactive oxygen
species (ROS) [208,211,212]. Despite this massive oxygen consumption, the brain presents a lower
content of endogenous antioxidants (e.g.: glutathione, catalase) in comparison to other tissues, thus
being more sensitive to cellular redox dyshomeostasis [211,213]. In addition, redox-active metals (e.g.:
iron, copper) accumulate in specific brain regions and catalyze the formation of ROS [120,208].
Finally, the high levels in polyunsaturated fatty acids in the brain increase the susceptibility to lipid
peroxidation and subsequent formation of toxic compounds [208,211,214].

The increased oxidative stress in NDs is strictly connected to other pathological events, namely
mitochondrial dysfunction, dopamine oxidation, neuroinflammation, and accumulation of protein
aggregates (e.g. AP, a-syn) (Figure 10) [215].
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Figure 10. Pathological events of neurodegenerative diseases associated with increased oxidative

stress.

Although RS are generated in several cellular compartments, mitochondria is one of the main
sources of the overproduction of ROS [121]. The formation of ROS in mitochondria occurs primarily
at the ETC present in the inner mitochondrial membrane (Figure 11) [122,208]. The mitochondrial
ETC consists of a series of membrane-bound complexes (complexes I, II, III and IV) [117], which
generate a proton gradient across the inner mitochondrial membrane through electron transfers,
leading to the production of ATP by ATP synthase (complex V) [208]. Metabolic intermediates
formed during the Krebs cycle are used for oxidative phosphorylation [118]. During the ETC, a small
proportion of electrons occasionally leak and directly reduce Oz to 0;~ [118,119], which in turn is

converted into other ROS such as H:0: and HO® [121]. The formation of 03  occurs mainly in

complexes I and III [119,216]. Enzymes from the Krebs cycle (e.g.: a-ketoglutarate dehydrogenase,
pyruvate dehydrogenase, aconitase) may also generate ROS [216,217].
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Figure 11. Formation of ROS in mitochondria. Abbreviations: ADP, adenosine diphosphate; ATP,
adenosine triphosphate; CAT, catalase; Cyt C, Cytochrome C; GPx, Glutathione peroxidase; I,
complex I; II, complex II; III, complex III; IV, complex IV; NADH, Nicotinamide adenine dinucleotide;
Q, coenzyme Q10; SOD1, superoxide dismutase 1; SOD2, superoxide dismutase 2; V, complex V (ATP
synthase). Adapted from [117,218].

Mitochondrial ETC is one of the primary targets of the harmful effects inflicted by high levels of
ROS [117,219]. The oxidative damage at this level leads to the inhibition of ATP synthesis and the
increased production of ROS in a vicious and detrimental cycle, contributing to cell dysfunction and
cell death [122,219,220]. Mitochondria contain other components susceptible to oxidative damage,
namely several iron-sulfur centers, proteins and unsaturated fatty acids in the inner membrane, and
mitochondrial DNA (mtDNA), all of which are important for proper mitochondrial function [122].
Considering that mtDNA encodes some of the subunits of the complexes that constitute the ETC, the
oxidative damage of mtDNA leads to the defective production of these proteins and subsequent
mitochondrial dysfunction [219].

Since neurons have limited glycolytic capacity, they are particularly dependent on
mitochondrial oxidative phosphorylation to meet their high energy requirements [220-222]. In
addition to ATP synthesis, mitochondria are involved in other crucial cellular functions such as the
synthesis of amino acids and steroids, p-oxidation of fatty acids, Ca?* homeostasis, and regulation of
apoptotic cell death [223]. Therefore, improper mitochondrial function compromises neuronal
survival and contributes to neurodegeneration [217,223].

In PD, DA oxidation is associated with a selective vulnerability of dopaminergic neurons to
oxidative stress [218]. Despite the essential role of DA in neurotransmission, DA contains a catechol
group that may participate in the generation of ROS and metal chelation [224]. Dopamine is normally
stored in monoaminergic vesicles under a low pH environment that prevents its oxidation [225].
However, DA may undergo enzymatic and non-enzymatic decomposition in the cytosol, which is
accompanied by the formation of ROS (Figure 12) [226].
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In the presence of Oz, DA generates 03~ and electron-deficient DA semiquinones and DA
quinones (Figure 12) [226,228,229]. The reaction rate of DA semiquinone formation is slow, but it is
accelerated by redox-active transition metals [213]. The spontaneous cyclization of DA quinone yields
leucoaminochrome whose further autoxidation forms aminochrome and 03~ [228]. Aminochrome
participates in redox-cycling reactions that results in the formation of 03~ and in the depletion of
cellular nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide
phosphate (NADPH) [230]. Dopamine quinone and aminochrome also form adducts with cellular
nucleophiles modifying their function [231,232]. These include DNA, biothiols (e.g.: glutathione), a-
synuclein and proteins involved in ATP synthesis (complexes L, IIl and V of the ETC), proteasomal
degradation (parkin), microtubule stabilization (a- and (3-tubulin) and axonal transport (actin) [227].
Therefore, the formation of these adducts will contribute to mitochondrial dysfunction, impairment
of the axonal transport, inhibition of the proteasomal system, disruption of cytoskeleton architecture,
and formation of a-synuclein aggregates in PD [227]. Aminochrome also polymerizes into
neuromelanin, a brain pigment that contributes to neurodegeneration by triggering
neuroinflammatory processes [208].

The oxidative deamination of DA by MAOs uses O:and generates H>0O: and ammonia as by-
products (Figure 12) [233]. Due to the increased expression with age in neuronal tissue [102,234],
MAO-B becomes the predominant isoform involved in DA metabolism [208]. Monoamine oxidase B
is mainly found in glial cells [105,235], but the H20: produced during DA deamination can permeate
cell membranes and induce toxic effects in the neighboring neurons [208]. In fact, compared with



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2024 d0i:10.20944/preprints202404.0437.v1

17

astrocytes, neurons are more vulnerable to H2O2 due to the lower content in antioxidants involved in
its detoxification (e.g.: GPx and glutathione) [235]. The H20: generated from MAO-B activity in
astrocytes is also associated with increased amyloid plaque deposition [111].

Neuroinflammation represents a set of inflammatory processes occurring in the central nervous
system that involve the action of glial cells in CNS (microglia, oligodendrocytes, astrocytes), non-glial
resident myeloid cells (macrophages and dendritic cells) and peripheral leukocytes [236,237].
Neuroinflammation plays an important role in the progression of NDs [226]. For instance, in AD,
microglia are activated by the presence of Af and co-localize with the plaques [238]. However,
instead of efficiently removing the AP deposits, microglia release pro-inflammatory mediators that
lead to neuronal damage [239]. In PD, extracellular aSYN aggregates can also interact with and
activate surrounding glial cells to trigger a deleterious pro-inflammatory response [240]. In NDs, the
expression of NADPH oxidases (NOXs) in activated microglia and reactive astrocytes is increased,
resulting in the excessive formation of 05~ [226,241]. The activation of RS-producing enzymes in
glial cells is associated with neurotoxic effects, which arise not only from the direct oxidative damage
in neurons, but also from the intracellular redox signaling that exacerbates the pro-inflammatory
response [241,242].

4.3.1.1. Targeting Oxidative Stress with Mitochondria-Targeted Antioxidants

Considering the involvement of oxidative stress in the pathophysiology of NDs, the rationale
for using exogenous antioxidants to prevent delay, or remove the oxidative damage is evident
[212,243]. In fact, several exogenous antioxidants showed promising results in animal and cellular
models [211,212]. However, the results obtained in clinical trials were inconclusive, negative, or
showed little benefit in NDs [244]. Numerous factors contribute to the discrepancy between pre-
clinical and clinical results. In addition to aspects associated with the design of clinical trials (e.g.:
posology, duration of treatment, age, and disease stage of the patients), most known dietary
antioxidants display poor bioavailability and are unable to cross the BBB, affecting their delivery into
the brain [211,212,244,245].

A common strategy used to overcome these pharmacokinetic limitations is the introduction of
minor structural modifications on the antioxidant scaffold. The resulting derivatives may improve
the targeting and drug-like properties while preserving or enhancing the antioxidant profile of the
parent compounds [246,247].

Aside from the pharmacokinetic constraints, the lack of clinical efficacy of antioxidants may also
result from the uniform distribution of antioxidants across all tissues and organs following
administration, with only a small fraction being taken up by mitochondria [244,248], the main source
and the target of ROS. Therefore, the development of antioxidants that selectively accumulate within
mitochondria and tackle oxidative damage is of particular interest [249]. Compounds lacking
mitochondriotropism but with relevant biological activities towards mitochondrial targets usually
need to be directed to mitochondria [250]. In this sense, several approaches were developed to deliver
antioxidants and other bioactive molecules to mitochondria, but one of the most widely used is their
conjugation with lipophilic cations such as triphenylphosphonium (TPP+) [249,251].

Lipophilic TPP+ cations can diffuse across phospholipid bilayers because their positive charge is
surrounded and dispersed over a large hydrophobic surface area, which decreases the activation
energy for membrane permeation [252-254]. In response to the plasma and mitochondrial membrane
potentials (A%¥,145ma and A¥mitochonaria » Te€Spectively), these compounds accumulate within the
mitochondrial matrix against the concentration gradient [252] (Figure 13A). Then, TPP* conjugates
are taken up from the intracellular space to the mitochondrial matrix in response to the A¥,,;tochondria
(-140 to -160 mV), leading to 100 to 500-fold accumulation within the mitochondrial matrix [218,254].
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cations to target bioactive molecules to mitochondria. Adapted from [253,255].

The increased accumulation of lipophilic TPP* conjugates enhances the compounds’ potency and
decreases the external dose required, limiting extramitochondrial metabolism that results in
inactivation, excretion, or toxicity [122,256]. However, the extensive accumulation of these
compounds within the mitochondrial matrix can disrupt membrane integrity and thereby
compromise cellular respiration and ATP production (281, 294).

Following oral or intravenous administration, lipophilic TPP* conjugates are rapidly taken up
by the organs most affected by mitochondrial dysfunction (e.g.: liver, heart, brain) [252,257].
Therefore, targeting antioxidants in mitochondria stands out as a promising strategy in the discovery
of new therapies for oxidative stress-related disorders.

Over the last decade, TPP+ cations have been conjugated with dietary antioxidants such as
hydroxybenzoic [258] and hydroxycinnamic acids [259]. These compounds displayed remarkable
antioxidant properties and were able to protect neuroblastoma cells against the oxidative damage
induced by 6-hydroxydopamine or H202[260]. Moreover, in studies performed in skin fibroblasts
from male sporadic PD patients (sPD), the caffeic acid-based TPP+ conjugate AntiOXCIN4 restored
mitochondrial membrane potential and mitochondrial fission, decreased autophagic flux, and
enhanced cellular responses to stress by improving the cellular redox state and decreasing ROS levels
[261]. To circumvent the drawbacks associated with the use of TPP* cation, its replacement with
nitrogen-based cationic carriers (e.g. isoquinolinium, imidazolium, picolinium) was recently
performed (Figure 13B) [262]. This chemical modification resulted in decreased cytotoxicity while
maintaining the compounds’ antioxidant properties and their ability to accumulate within
mitochondria [262].

4.3.2. Adenosine Receptors as a Target in Alzheimer’s and Parkinson’s Diseases

Adenosine is a purine nucleoside that may act as a neurotransmitter as neuromodulator in the
CNS [263]. It is involved in several physiological and pathophysiological processes in the brain,
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including motor function, sleep/wake cycle, learning and memory, pain, and astrocytic activity [264].
To perform its physiological roles, adenosine binds to four distinct G-coupled protein adenosine
receptors (ARs), designated as Ai, A2, Azs and As. Adenosine receptors (ARs) represent a group of
glycoproteins containing seven transmembrane domains and are coupled to different G proteins
[265] (Figure 14). While adenosine A1 and As receptors are coupled to inhibitory G proteins, Aza and
Az ARs are coupled to stimulatory G proteins. The A2a and Az ARs preferably interact with members
of the Gs family of G proteins, stimulating adenylyl cyclase to produce cyclic AMP (cAMP) and
leading to the activation of a series of downstream signaling pathways. In contrast, A1 and As ARs
inhibit the adenylyl cyclase activity by interaction with Gi proteins (Figure 14) [266].
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Figure 14. Schematic representation of G protein-coupled adenosine receptors.

ARs are widely distributed in the human body and participate in a broad range of physiological
and pathophysiological processes [196]. While AiRs and A2Rs can be predominantly found in specific
parts of the CNS, A2Rs and AsRs are mainly located in peripheral tissues [267] .

In the CNS, AiRs are widely distributed in neocortical and limbic systems and are linked to
cognitive functions [196,268,269]. A2aRs are highly expressed in striatal areas [196,268] and
participate in the regulation of motor behavior and the management of dopamine-mediated
responses [197]. A2aRs co-localize with dopamine D2 receptors (D2Rs) on GABAergic striatopallidal
output neurons, where they form heteromer complexes [270]. These receptors within the heteromeric
complex exert opposite effects on motor behavior, in which A2a AR agonism induces antagonistic
effects on D2Rs. For instance, stimulation of dopamine D2Rs enhances motor activity, while A2a ARs
decrease this effect by decreasing the affinity and response of D2Rs to their ligands [269,271].

Excessive A2a AR function has been linked to neuronal damage [272], and increased A2a AR
expression is a characteristic feature of PD progression [273]. The cellular mechanisms responsible
for A2a AR-mediated neurodegeneration remain elusive. However, evidence suggests that the
activation of A2a ARs leads to increased glutamate release, increased Ca? entry, and enhanced long-
term potentiation, all of which may culminate in excitotoxic damage [271]. The localization of A2a
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ARs at the basal ganglia, coupled with their pathophysiological role in PD, makes these receptors
attractive drug targets to treat this disease [271]. A2a AR antagonism decreases motor impairment by
enhancing dopamine D:R-mediated signaling. Moreover, A2a AR antagonism modulates cholinergic,
glutamatergic, and GABAergic functions in the CNS [269]. Blockade of A2a AR signaling with
selective Aza AR receptor antagonists was shown to be beneficial, not only by enhancing the
therapeutic effects of L-DOPA, but also by reducing dyskinesia from long-term L-DOPA treatment
[270].

Recent studies have also been disclosing a close association between A2a ARs and cognitive
impairment in AD. For instance, abnormally high levels of Aza AR were detected in the hippocampus
and in the cortex of AD patients [262,274] and in APP/PS1 transgenic AD mice [275]. Remarkably,
activation of A2a ARs with agonists and optogenetic agents led to severe impairments in spatial
discrimination in wild-type mice [276]. The involvement of A2a ARs in in hippocampal-dependent
spatial reference memory was also shown in A2a AR knock-out studies in an Ap1-4-based mice model
of AD [277]. The memory deficits in APP/PS1 mice were reverted by the blockade of Aza ARs with a
selective antagonist or by downregulation driven with shRNA interference [275]. Finally, recently it
was shown that the improvement of spatial memory deficits by A2a AR antagonists in APP/PS1 mice
results from the promotion of synaptic plasticity of adult-born granule cells [278]. Thus, the blockade
of A2a AR activation with selective antagonists can be of great therapeutic benefit to AD patients.

4.3.2.1. A2A Adenosine Receptor Antagonists

The knowledge acquired over the last decades concerning the involvement of adenosine on
motor functions, mainly through modulation of A2a AR, makes A2a AR antagonists promising non-
dopaminergic agents for the treatment of PD motor symptoms. Over the last decades, the
development of potent and selective ligands for ARs has been a dynamic area. Excellent reviews were
recently published on this topic [279,280]. A small number of selective A2a AR antagonists reached
advanced clinical trials for the treatment of motor symptoms in PD, namely the xanthine derivative
istradefylline (KW-6002) and the non-xanthine derivatives Tozadenant (SYN115), Preladenant, and
KW-6356 (Figure 15) [268,273].
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Figure 15. Chemical structures of selective A2a AR antagonists evaluated in clinical trials.

Istradefylline was approved for the adjunctive treatment of PD in Japan in 2013 and by the FDA
in 2019, being the first non-dopaminergic drug approved by FDA for PD in the last two decades [281].
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Preladenant and Tozadenant underwent clinical evaluation for the treatment of PD (Preladenant:
NCT00406029, NCT01227265; Tozadenant: NCT02453386, NCT03051607) [282]. Unfortunately, the
clinical evaluation for both drug candidates were discontinued due to the lack of efficacy
(Preladenant) or safety (Tozadenant) in phase 3 clinical trials [283].

KW-6356 is a new, selective, nonxanthine Aza receptor antagonist/inverse agonist. Compared to
istradefylline, KW-6356 exhibits approximately 100-times higher affinity for the human Aza receptor
and a prolonged drug residence time [284]. In a phase 2b clinical study in patients with PD, KW-6356
was safe and effective in the adjunctive treatment with L-DOPA (NCT03703570) [285]. Moreover, in
a phase 2a clinical trial, KW-6356 monotherapy was well tolerated and more effective than placebo
in patients with early, untreated PD (NCT02939391) [273].

5. Conclusions

The discovery of new drugs for NDs remains an enormous unmet medical need [286]. The
available treatments for AD and PD provide valuable symptomatic relief, but only reduce the
symptoms for a short period before the cognitive or motor functions continue to deteriorate [287].
Given the lack of therapeutic efficacy of the current treatments, the use of single-target drugs may be
insufficient to address the multiple pathological aspects of NDs [288]. Treatment of AD and PD may
thus require the manipulation of several targets to restore the physiological balance and thereby
attain significant therapeutic efficacy [289].

Traditionally, the “one-drug, one-target” paradigm is the mainstay drug discovery concept in
the pharmaceutical industry [91]. This paradigm is mainly focused in generating drugs that
selectively bind to a single biological target, avoiding potential adverse side effects associated with
mistargeting other biological entities [290]. The current therapy for AD and PD management is based
on this paradigm. However, the currently single-target drugs address the diseases’” symptomatology,
without halting or modifying the disease progression [290,291]. Therefore, drugs that can
simultaneously manipulate multiple targets may provide therapeutic benefits in AD and PD diseases
due to their multifactorial nature and complexity [292]. The limited clinical efficacy and the lack of
disease-modifying effects of the available drugs shifted the research focus from single-target agents
to multitarget-directed drugs [235,293]. The field of multitarget approach may thus provide
innovative therapeutic solutions to feed the pipeline of disease-modifying drugs for AD and PD.
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