
Article Not peer-reviewed version

The Second-Order Features Adjoint

Sensitivity Analysis Methodology for

Response-Coupled Forward/Adjoint

Linear Systems (2nd-FASAM-L):

Mathematical Framework and Illustrative

Application to an Energy System

Dan Gabriel Cacuci *

Posted Date: 5 April 2024

doi: 10.20944/preprints202404.0394.v1

Keywords: exact computation of first- and second-order sensitivities of model responses to features of

model parameters; first- and second-level adjoint sensitivity systems; neutron slowing down and transport

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.



 

Article 

The Second-Order Features Adjoint Sensitivity 
Analysis Methodology for Response-Coupled 
Forward/Adjoint Linear Systems (2nd-FASAM-L): 
Mathematical Framework and Illustrative 
Application to an Energy System 
Dan Gabriel Cacuci 2,* 

1 University of South Carolina; cacuci@cec.sc.edu 
2* Correspondence: cacuci@cec.sc.edu 

Abstract: This work presents the mathematical framework of the Second-Order Comprehensive 
Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems 
(abbreviated as “2nd-CASAM-L”), which enables the most efficient computation of exactly obtained 
mathematical expressions of first- and second-order sensitivities of a generic system response with 
respect to functions (“features”) of model parameters. Subsequently, the first- and second-order 
sensitivities with respect to the model’s uncertain parameters, boundaries, and internal interfaces 
are obtained analytically and exactly, without needing large-scale computations. Within the 2nd-
FASAM-L methodology, the number of large-scale computations is proportional to the number of 
model features (defined as functions of model parameters), as opposed to being proportional to the 
number of model parameters, which are considerably more than the number of features, being 
incomparably more efficient and more accurate than any other methods (statistical, finite 
differences, etc.) for computing exact expressions of response sensitivities (of any order) with 
respect to the model’s features and/or primary uncertain parameters, boundaries, and internal 
interfaces. The application of the 2nd-CASAM-L methodology is illustrated using a simplified 
energy-dependent neutron transport model of fundamental significance in nuclear reactor physics. 

Keywords: exact computation of first- and second-order sensitivities of model responses to features 
of model parameters; first- and second-level adjoint sensitivity systems; neutron slowing down and 
transport. 

 

1. Introduction 

The analysis of the accuracy of results (usually called “responses”) computed by models relies 
fundamentally on the functional derivatives (usually called “sensitivities”) of the respective model 
responses with respect to the parameters in the respective computational model. Such sensitivities 
are needed for many purposes, including: (i) understanding the model by ranking the importance of 
the various parameters; (ii) performing “reduced-order modeling” by eliminating unimportant 
parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to 
model parameter uncertainties; (iv) performing “model validation,” by comparing computations to 
experiments to address the question “does the model represent reality?” (v) prioritizing 
improvements in the model; (vi) performing data assimilation and model calibration as part of 
forward “predictive modeling” to obtain best-estimate predicted results with reduced predicted 
uncertainties; (vii) performing inverse “predictive modeling”; (viii) designing and optimizing the 
system.  
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Response sensitivities are computed by using either deterministic or statistical methods. The 
simplest deterministic method for computing response sensitivities is to use finite-difference schemes 
in conjunction with re-computations using the model with “judiciously chosen” altered parameter 
values. Evidently, such methods can at best compute approximate values of a very limited number 
of sensitivities. Deterministic methods that can compute more exactly the values of first-order 
sensitivities include the “Green’s function method” [1], the “forward sensitivity analysis 
methodology” [2], and the “direct method” [3], which rely on analytical or numerical differentiation 
of the computational model under investigation to compute local response sensitivities exactly. 
However, for a computational model comprising many parameters, the conventional deterministic 
methods become impractical for computing sensitivities higher than first-order because they are 
subject to the “curse of dimensionality,” a term coined by Belmann [4] to describe phenomena in 
which the number of computations increases exponentially in the respective phase-space. In the 
particular case of sensitivity analysis using conventional deterministic methods, the number of large-
scale computations increases exponentially in the phase-space of model parameter as the order of 
sensitivities increases.  

The alternatives to “deterministic methods” are the “statistical methods”, which construct an 
approximate response distribution (often called “response surface”) in the parameters space, and 
subsequently use scatter plots, regression, rank transformation, correlations, and so-called “partial 
correlation analysis,” in order to identify approximate expectation values, variances and covariances 
for the responses. These statistical quantities are subsequently used to construct quantities that play 
the role of (approximate) first-order response sensitivities. Thus, statistical methods commence with 
“uncertainty analysis” and subsequently attempt an approximate “sensitivity analysis” of the 
approximately computed model response (called a “response surface”) in the phase-space of the 
parameters under consideration. The currently popular statistical methods for uncertainty and 
sensitivity analysis are broadly categorized as sampling-based methods [5,6], variance-based 
methods [7,8], and Bayesian methods [9]. Various variants of the statistical methods for uncertainty 
and sensitivity analysis are reviewed in the book edited by Saltarelli et al. [10]. The main advantage 
of using statistical methods for uncertainty and sensitivity analysis is that they are conceptually easy 
to implement. On the other hand, statistical methods for uncertainty and sensitivity analysis have 
three major inherent practical drawbacks, as follows: 
(i) Even first-order sensitivities cannot be computed exactly.  
(ii) Statistical methods are (also) subject to the curse of dimensionality and have not been 

developed for producing second- and higher-order sensitivities.  
(iii) Since the response sensitivities and parameter uncertainties are amalgamated, inherently and 

inseparably, within the results produced by statistical methods, improvements in parameter 
uncertainties cannot be directly propagated to improve response uncertainties; rather, the 
entire set of simulations and statistical post-processing must be repeated anew.  

(iv) A “fool-proof” statistical method for analyzing correctly models involving highly correlated 
parameters does not seem to exist currently, so that particular care must be used when 
interpreting regression results obtained using such models. 

It is known that the “adjoint method of sensitivity analysis” has been the most efficient method 
for computing exactly first-order sensitivities, since it requires a single large-scale (adjoint) 
computation for computing all of the first-order sensitivities, regardless of the number of model 
parameters. The idea underlying the computation of response sensitivities with respect to model 
parameters using adjoint operators was first used by Wigner [11] to analyze first-order perturbations 
in nuclear reactor physics and shielding models based on the linear neutron transport (or diffusion) 
equation, as subsequently described in textbooks on these subjects [12-16]. Cacuci [2] is credited (see, 
e.g., [17, 18]) for having conceived the rigorous “1st-order adjoint sensitivity analysis methodology” 
for generic large-scale nonlinear (as opposed to linearized) systems involving generic operator 
responses and having introduced these principles to the earth, atmospheric and other sciences.  

Cacuci [19, 20] has extended his 1st-order adjoint sensitivity analysis methodology to enable the 
comprehensive computation of 2nd-order sensitivities of model responses to model parameters 
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(including imprecisely known domain boundaries and interfaces) for large-scale linear and nonlinear 
systems. The 2nd-order adjoint sensitivity analysis methodology for linear systems was applied [21] 
to compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities (of 
which 241,483,276 are distinct from each other) for an OECD/NEA reactor physics benchmark [22]. 
This benchmark is modeled by the neutron transport equation involving 21,976 uncertain parameters, 
the solving of which is representative of “large-scale computations.” The neutron transport equation 
was solved using the software package PARTISN [23] in conjunction with the MENDF71X cross 
section library [24], which comprises 618-group cross sections based on ENDF/B-VII.1 nuclear data 
[25]. The spontaneous fission source was computed using the code SOURCES4C [26]. This work has 
demonstrated that, contrary to the widely held belief that second- and higher-order sensitivities are 
negligeable for reactor physics systems, many 2nd-order sensitivities of the OECD benchmark’s 
response to the benchmark’s uncertain parameters were much larger than the largest 1st-order ones. 
This finding has motivated the investigation of the largest 3rd-order sensitivities, many of which were 
found to be even larger than the 2nd-order ones. Subsequently, the mathematical framework for 
determining and computing the 4th-order sensitivities was developed, and many of these were found 
to be larger than the 3rd-order ones. This sequence of findings has motivated the development by 
Cacuci [27] of the “nth-Order Comprehensive Adjoint Sensitivity Analysis Methodology for 
Response-Coupled Forward/Adjoint Linear Systems” (abbreviated as “nth-CASAM-L”), which was 
developed specifically for linear systems because important model responses produced by such 
systems are various Lagrangian functionals which depend simultaneously on both the forward and 
adjoint state functions governing the respective linear system. Among the most important such 
responses are the Raleigh quotient for computing eigenvalues and/or separation constants when 
solving partial differential equations, and the Schwinger functional for first-order “normalization-
free” solutions [28, 29]. These functionals play a fundamental role in optimization and control 
procedures, derivation of numerical methods for solving equations (differential, integral, integro-
differential), etc.  

In parallel with developing the nth-CASAM-L, Cacuci [30] has also developed the nth-Order 
Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (nth-CASAM-N). Just like 
the nth-CASAM-L, the nth-CASAM-N is also formulated in linearly increasing higher-dimensional 
Hilbert spaces (as opposed to exponentially increasing parameter-dimensional spaces), thus 
overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems, enabling the 
most efficient computation of exactly-determined expressions of arbitrarily high-order sensitivities 
of generic nonlinear system responses with respect to model parameters, uncertain boundaries and 
internal interfaces in the model’s phase-space.  

Recently, Cacuci [31] has introduced the “Second-Order Function/Feature Adjoint Sensitivity 
Analysis Methodology for Nonlinear Systems” (2nd-FASAM-N), which enables a considerable 
reduction (by comparison to the 2nd-CASAM-N) of the number of large-scale computations needed 
to compute the second-order sensitivities of a model response with respect to the model parameters, 
thereby becoming the most efficient methodology known for computing second-order sensitivities 
exactly. Paralleling the construction of the 2nd-FASAM-N, this work introduces the “First- and 
Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-Coupled 
Adjoint/Forward Linear Systems” (1st and 2nd-FASAM-L). The mathematical methodology of the 1st-
FASAM-L is presented in Section 3, while the mathematical methodology of the 2nd-FASAM-L is 
presented in Section 4. The application of the 1st-FASAM-L and the 2nd-FASAM-L is illustrated in 
Section 5 by means of a simplified yet representative energy-dependent neutron-slowing down 
model which is fundamental importance to reactor physics and design [32-34]. The concluding 
discussion presented in Section 6 prepares the ground for the subsequent generalization of the 
present work to enable the most efficient possible computation of exact sensitivities of any 
(arbitrarily-high) order with respect to “feature functions” of model parameters and, hence, to the 
model’s parameters. 

2. Mathematical Modeling of Response-Coupled Linear Forward and Adjoint Systems 
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The generic mathematical model considered in this work is fundamentally the same as was 
considered in [27], but with the major difference that functions (‘features”) of the primary model 
parameters will be generically identified within the model. The primary model parameters will be 
denoted as 1α ,…, TPα , where the subscript “TP” indicates “Total number of Primary Parameters;” the 
qualifier “primary” indicates that these parameters do not depend on any other parameters within 
the model. These model parameters are considered to include imprecisely known geometrical 
parameters that characterize the physical system’s boundaries in the phase-space of the model’s 
independent variables. These boundaries depend on the physical system’s geometrical dimensions, 
which may be imprecisely known because of manufacturing tolerances. In practice, these primary 
model parameters are subject to uncertainties. It will be convenient to consider that these parameters 
are components of a “vector of primary parameters” denoted as ( )†

1, , TP
TPα α ∈α    , where TP

  
denotes the TP-dimensional subset of the set of real scalars. For subsequent developments, matrices 
and vectors will be denoted using capital and lower-case bold letters, respectively. The symbol “  ” 
will be used to denote “is defined as” or “is by definition equal to.” Transposition will be indicated 
by a dagger ( )†  superscript. The nominal parameter values will be denoted as †0 0 0 0

1 ,..., ,..,i TPα α α  α 

; the superscript “0” will be used throughout this work to denote “nominal” or “mean” values. 
The model is considered to comprise TI  independent variables which will be denoted as 

, 1,...,ix i TI= , and are considered to be the components of a TI -dimensional column vector denoted 

as ( )†
1, , TI

TIx x ∈x    , where the sub/superscript “TI ” denotes the “Total number of Independent 
variables.” The vector TI∈x   of independent variables is considered to be defined on a phase-space 
domain, denoted as ( )Ω α , ( ) ( ) ( ){ }; 1,...,i i ix i TIλ ωΩ −∞ ≤ ≤ ≤ ≤ ∞ =α α α , the boundaries of which 

may depend on some of the model parameters α . The lower boundary-point of an independent 
variable is denoted as ( )iλ α  (e.g., the inner radius of a sphere or cylinder, the lower range of an 
energy-variable, the initial time-value, etc.), while the corresponding upper boundary-point is 
denoted as ( )iω α  (e.g., the outer radius of a sphere or cylinder, the upper range of an energy-
variable, the final time-value, etc.). A typical example of boundary conditions that depend on 
imprecisely-known parameters that pertain to the geometry of the model and also to parameters that 
pertain to the material properties of the respective model occur when modeling particle diffusion 
within a medium, the boundaries of which are facing vacuum. For such models, the boundary 
conditions for the respective state (dependent) variables (i.e., particle flux and/or current) are 
imposed not on the physical boundary but on the “extrapolated boundary” of the respective spatial 
domain. The “extrapolated boundary” depends both on the imprecisely known physical dimensions 
of the medium’s domain/extent and also on the medium’s properties, i.e., atomic number densities 
and microscopic transport cross sections. The boundary of ( )Ω α , which will be denoted as 

( ) ( );∂Ω   λ α ω α , comprises the set of all of the endpoints ( ) ( ), , 1,..., ,i i i TIλ ω =α α of the respective 

intervals on which the components of x  are defined, i.e., 
( ) ( ) ( ) ( ){ }; , 1,...,i i i TIλ ω∂Ω ∪ =  λ α ω α α α .  

The mathematical model that underlies the numerical evaluation of a process and/or state of a 
physical system comprises equations that relate the system's independent variables and parameters 
to the system's state/dependent variables. A linear physical system can generally be modeled by a 
system of coupled operator-equations as follows:  

( ) ( ) ( ) ( ); ;= ∈Ω      L x g α φ x Q x g α , x α . (1) 

In Equation (1), the vector ( ) ( ) ( ) †
1 , , TDϕ ϕ  φ x x x 

 is a TD -dimensional column vector of 

dependent variables and where the sub/superscript “TD ” denotes the “Total (number of) Dependent 
variables.” The functions ( ) , 1,...,i i TDϕ =x , denote the system’s “dependent variables” (also called 

“state functions”). The matrix ( ) ( ); ; ,ijL  L x α x α  , 1,...,i j TD= , has dimensions TD TD× . The 
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components ( );ijL x α  are operators that act linearly on the dependent variables ( )jϕ x  and also 
depend (in general, nonlinearly) on the uncertain model parameters α . Furthermore, the vector 
( ) ( ) ( )1 , , TGg g  g α α α   is a TG -dimensional vector having components ( ) , 1,...,ig i TG=α , which 

are real-valued functions of (some of) the primary model parameters TP∈α  . The quantity TG  
denotes the total number of such functions which appear exclusively in the definition of the model’s 
underlying equations. Such functions customarily appear in models in the form of correlations that 
describe “features” of the system under consideration, such as material properties, flow regimes. etc. 
Usually, the number of functions ( )ig α  is considerably smaller than the total number of model 
parameters, i.e., TG TP . For example, the numerical model (Cacuci and Fang, 2023) of the 
OECD/NEA reactor physics benchmark (Valentine 2006) comprises 21,976 uncertain primary model 
parameters (including microscopic cross sections and isotopic number densities) but the neutron 
transport equation, which is solved to determine the neutron flux distribution within the benchmark, 
does not use these primary parameters directly but instead uses just several hundreds of “group-
averaged macroscopic cross sections” which are functions/features of the microscopic cross sections 
and isotopic number densities (which in turn are uncertain quantities that would be components of 
the vector of primary model parameters). In particular, a component ( )jg α  may simply be one of 
the primary model parameters jα , i.e., ( )j jg α≡α . 

The TD -dimensional column vector ( ) ( )†
1; ,...., TDq q  Q x g α  , having components 

( ); , 1,...,iq i TD=  x g α , denotes inhomogeneous source terms, which usually depend nonlinearly on 

the uncertain parameters α . Since the right-side of Equation (1) may contain distributions, the 
equality in this equation is considered to hold in the weak (i.e., “distributional”) sense. Similarly, all 
of the equalities that involve differential equations in this work will be considered to hold in the 
distributional sense.  

When ( );  L x g α  contains differential operators, a set of boundary and initial conditions which 

define the domain of ( );  L x g α  must also be given. Since the complete mathematical model is 

considered to be linear in ( )φ x , the boundary and/or initial conditions needed to define the domain 

of ( );  L x g α  must also be linear in ( )φ x . Such linear boundary and initial conditions are 

represented in the following operator form: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ); ; ; ; ; ; , ;= ∈∂Ω          B x g α λ α ω α φ x C x g α λ α ω α x λ α ω α  (2) 

In Equation (2), the quantity ( ) ( ) ( ); ; ;  B x g α λ α ω α  denotes a matrix of dimensions BN TD×  

having components denoted as ( ); ; 1,..., ; 1,...,ij BB i N j TD= =x α , which are operators that act linearly 
on ( )φ x  and nonlinearly on the components of ( )g α ; the quantity BN  denotes the total number of 

boundary and initial conditions. The BN -dimensional column vector ( ) ( ) ( ); ; ;  C x g α λ α ω α  

comprises components that are operators which, in general, act nonlinearly on the components of 
( )g α .  

Physical problems modeled by linear systems and/or operators are naturally defined in Hilbert 
spaces. The dependent variables ( ) , 1,...,i i TDϕ =x , for the physical system represented by Eqs. (1) 
and (2) are considered to be square-integrable functions of the independent variables and are 
considered to belong to a Hilbert space which will be denoted as ( )0 ΩH , where the subscript “zero” 
denotes “zeroth-level“ or “original.” Higher-level Hilbert spaces, which will be denoted as ( )1 ΩH  
and ( )2 ΩH , will also be used in this work. The Hilbert space ( )0 ΩH  is considered to be endowed 

with the following inner product, denoted as ( ) ( )
0

,φ x ψ x , between two elements ( ) ( )0∈ Ωφ x H  

and ( ) ( )0∈ Ωψ x H : 
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( ) ( ) ( ) ( )
( )

( )

( ) ( )
( )

( )

( )

( )

( )

( )1

1

10
11

, ... ... ... ... .
i i TI

i i TI

TI TD

j j i TI
ji

d dx dx dx
ω ω ω ω

λ λ λ λ

ϕ ψ
==

= ∑∏ ∫ ∫ ∫ ∫
α α α α

α α α α

φ x ψ x φ x ψ x x x x   (3) 

The “dot” in Equation (3) indicates the “scalar product of two vectors,” which is defined as 
follows: 

( ) ( ) ( ) ( )
1

TD

i i
i
ϕ ψ

=
∑φ x ψ x x x  . (4) 

The product-notation [ ]
( )

( )

1

i

i

TI

i
i

dx
ω

λ=
∏ ∫

α

α

 in Equation (3) denotes the respective multiple integrals.  

The linear operator ( );  L x g α  is considered to admit an adjoint operator, which will be 

denoted as ( )* ;  L x g α  and which is defined through the following relation for a vector ( ) 0∈ψ x H  

( ) ( ) ( ) ( ) ( ) ( )*

0 0
, ; ;=      ψ x L x g α φ x L x g α ψ x φ x,  (5) 

In Equation (5), the formal adjoint operator ( )* ;  L x g α  is the TD TD×  matrix comprising 

elements ( )* ;jiL   x g α  which are obtained by transposing the formal adjoints of the forward operators 

( );ijL   x g α . Hence, the system adjoint to the linear system represented by (1) and (2) can generally 

be represented as follows:  

( ) ( ) ( ) ( )* *; ; ,= ∈Ω      L x g α ψ x Q x g α , x α  (6) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )* *; ; ; ; ; ; , ;= ∈∂Ω          B x g α λ α ω α ψ x C x g α λ α ω α x λ α ω α . (7) 

When the forward operator ( );  L x g α  comprises differential operators, the operations (e.g., 

integration by parts) that implement the transition from the left-side to the right side of Equation (5) 
give rise to boundary terms which are collectively called the “bilinear concomitant.” The domain of 

( )* ;  L x g α  is determined by selecting adjoint boundary and/or initial conditions so as to ensure that 

the adjoint system is well-posed mathematically. It is also desirable that the selected adjoint boundary 
conditions should cause the bilinear concomitant to vanish when implemented in Equation (5) 
together with the forward boundary conditions given in Equation (2). The adjoint boundary 
conditions thus selected are represented in operator form by Equation (7). 

The relationship shown in Equation (5), which is the basis for defining the adjoint operator, also 
provides the following fundamental “reciprocity-like” relation between the sources of the forward 
and the adjoint equations, i.e. Eqs. (1) and (6), respectively:  

( ) ( ) ( ) ( )*

0 0
, ; ;=      ψ x Q x g α Q x g α φ x,  (8) 

The functional on the right-side of Equation (8) represents a “detector response”, i.e., a reaction-
rate between the particles and the medium represented by ( )* ;  Q x g α  which is equivalent to the 

“number of counts” of particles incident on a detector of particles that “measures” the particle flux 
( )φ x . In view of the relation provided in (8), the vector-valued source term 

( ) ( ) ( ){ }†* * *
1; ; ,...., ;TDq q          Q x g α x g α x g α  in the adjoint equation Equation (6) is usually associated 

with the “result of interest” to be measured and/or computed, which is customarily called the 
system’s “response.” In particular, if ( ) ( )* ;i dq δ= −  x g α x x  and ( )* ; 0j iq ≠ =  x g α , then 

( ) ( ) ( )*

0
; i d=  Q x g α φ x φ x, , which means that, in such a case, the right-side of Equation (8) 
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provides the value of the ith-dependent variable (particle flux, temperature, velocity, etc.) at the point 
in phase-space where the respective measurement is performed. 

The results computed using a mathematical model are customarily called “model responses” (or 
“system responses” or “objective functions” or “indices of performance”). For linear physical 
systems, the system’s response may depend not only on the model’s state-functions and on the 
system parameters but may simultaneously also depend on the adjoint state function. As has been 
discussed by Cacuci [27, 30], any response of a linear system can be formally represented (using 
expansions or interpolation, if necessary) and fundamentally analyzed in terms of the following 
generic integral representation:  

( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )1

1

1, ; ... , ; ; ; ... ,
TI

TI

TIR S dx dx
ω ω

λ λ

      ∫ ∫
α α

α α

φ x ψ x f α φ x ψ x g α h α x  (9) 

where ( ) ( ) ( ) ( ), ; ; ;S   φ x ψ x g α h α x  is a suitably differentiable nonlinear function of ( ) ( ),φ x ψ x , and 

α . The integral representation of the response provided in Equation (9) can represent “averaged” 
and/or “point-valued” quantities in the phase-space of independent variables. For example, if 

( ) ( ) ( ), ;R   φ x ψ x f α  represents the computation or the measurement (which would be a “detector-

response”) of a quantity of interest at a point dx  in the phase-space of independent variables, then 

( ) ( ) ( ) ( ), ; ; ;S   φ x ψ x g α h α x  would contain a Dirac-delta functional of the form ( )dδ −x x . 

Responses that represent “differentials/derivatives of quantities” would contain derivatives of Dirac-
delta functionals in the definition of ( ) ( ) ( ) ( ), ; ; ;S   φ x ψ x g α h α x . The vector 

( ) ( ) ( )1 , , THh h  h α α α  , having components ( ) , 1,...,ih i TH=α , which appears among the 

arguments of the function ( ) ( ) ( ) ( ), ; ; ;S   φ x ψ x g α h α x , represents functions of primary parameters 

that often appear solely in the definition of the response but do not appear in the mathematical 
definition of the model, i.e., in Eqs. (1), (2), (6) and (7). The quantity TH  denotes the total number of 
such functions which appear exclusively in the definition of the model’s response. Evidently, the 
response will depend directly and/or indirectly (through the “feature”-functions) on all of the 
primary model parameters. This fact has been indicated in Equation (9) by using the vector-valued 
function ( )f α  as an argument in the definition of the response ( ) ( ) ( ), ;R   φ x ψ x f α  to represent the 

concatenation of all of the “features” of the model and response under consideration. The vector ( )f α  
of “model features” is thus defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( )† †
1; ; ; ,..., ; 2 .TFf f TF TG TH TI+ +      f α g α h α λ α ω α α α  

 (10) 

As defined in Equation (10), the quantity TF  denotes the total number of “feature functions of 
the model’s parameters” which appear in the definition of the nonlinear model’s underlying 
equations and response. 

Solving Eqs. (1) and (2), at the nominal (or mean) values, denoted as †0 0 0 0
1 ,..., ,..,i TPα α α  α 

, of 

the model parameters, yields the nominal forward solution, which will be denoted as ( )0φ x . Solving 

Eqs. (6) and (7) at the nominal values, 0α , of the model parameters yields the nominal adjoint 
solution, which will be denoted as ( )0ψ x . The nominal value of the response, 

( ) ( ) ( )0 0 0, ;R   φ x ψ x f α , is determined by using the nominal parameter values 0α , the nominal value 

( )0φ x  of the forward state function, and the nominal value ( )0ψ x  of the adjoint state function.  

The definition provided by Equation (9) implies that the model response ( ) ( ) ( ), ;R   φ x ψ x f α  

depends on the components of the feature function ( )f α , and would therefore admit a Taylor-series 

expansion around the nominal value ( )0 0f f α , having the following form:  
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( ) ( ) ( ) ( )
0 02 2

1 1 2
1 11 1

2
0

1 1 1

1
2

...
TF TF TF

j
j j jj j j

j j
R R

R
f f f

R f f fδ δ δ
= = =

∂ ∂
=

∂ ∂ ∂

      + + +      
      

∑ ∑∑
f f

f f
ff α  (11) 

where ( ) ( )0 0 0; ; 1,...,j j j j jf f f f f j TFδ  − = α α  . The “sensitivities of the model response 

with respect to the (feature) functions” are naturally defined as being the functional derivatives of 
( )R   f α  with respect to the components (“features”) ( )jf α  of ( )f α . The notation { } 0f

  indicates 

that the quantity enclosed within the braces is to be evaluated at the nominal values ( )0 0f f α . Since 

TF TP , the computations of the functional derivatives of ( )kR   f α  with respect to the functions 

( )jf α , which appear in Equation (11), will be considerably less expensive computationally than the 
computation of the functional derivatives involved in the Taylor-series of the response with respect 
to the model parameters. The functional derivatives of the response with respect to the parameters 
can be obtained from the functional derivatives of the response with respect to the “feature” functions 

( )jf α  by simply using the chain rule, i.e.: 

( ) ( ) ( ) ( ) ( ) ( )
0 01 1

1 1

1 10 01 1 1 2 2 1
1 1

2

; ;
TF TF

i i

i ij i j j j j i j

R R
f f

f fR R
α αα α α α= =

∂ ∂∂ ∂

∂ ∂ ∂ ∂

      ∂ ∂ ∂       = =       
∂ ∂ ∂ ∂            

∑ ∑
α αα α

α αf fα α
 (12) 

and so on. The evaluation/computation of the functional derivatives ( )
1 1i jf α∂ ∂α , 

( )
1 1 2

2
i j jf α α∂ ∂ ∂α , etc., does not require computations involving the model, and is therefore 

computationally trivial by comparison to the evaluation of the functional derivatives (“sensitivities”) 
of the response with respect to either the functions (“features”) ( )jf α  or the model parameters 

, 1,...,i i TPα = . 

The range of validity of the Taylor-series shown in Equation (11) is defined by its radius of 
convergence. The accuracy −as opposed to the “validity”− of the Taylor-series in predicting the value 
of the response at an arbitrary point in the phase-space of model parameters depends on the order of 
sensitivities retained in the Taylor-expansion: the higher the respective order, the more accurate the 
respective response value predicted by the Taylor-series. In the particular cases when the response 
happens to be a polynomial function of the “feature” functions ( )jf α , the Taylor series represented 
by Equation (11) is finite and exactly represents the respective model response.  

In turn, the functions ( )if α  can also be formally expanded in a multivariate Taylor-series 

around the nominal (mean) parameter values 0α , namely:  

( ) ( ) ( ) ( )

( )

02 2

01 2 3 1 2 3

1 1 2
1 101 1

1 2 3

2
0

1 1 1

3

1 1 1

1
2

1
3!

...,

TP TP TP
i

j
j j j j j

TP TP TP
i

j j j j j

i
i i j j

j

j j j
j

f

f

f
f f α

α α

α α α

δ δα δα
α

δα δα δα

= = =

= = =

∂
=

∂ ∂

∂

∂ ∂ ∂

   ∂   + +   
∂      

  + + 
  

∑ ∑∑

∑∑∑

α

α

α

α
α

α

α
α

 (13) 

The choice of feature functions ( )if α  is not unique but can be tailored by the user to the problem 
at hand. The two most important guiding principles for constructing the feature functions ( )if α  
based on the primary parameters are as follows:  

(i) As will be shown below in Section 4 while establishing the mathematical framework 
underlying the 2nd-FASAM-L, the number of large-scale computations needed to determine 
the numerical value of the second-order sensitivities is proportional to the number of first-
order sensitivities of the model’s response with respect to the feature functions ( )if α . 
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Consequently, it is important to minimize the number of feature functions ( )if α , while 
ensuring that all of the primary model parameters are considered within the expressions 
constructed for the feature functions ( )if α . In the extreme case when some primary 
parameters, jα , cannot be grouped into the expressions of the feature functions ( )if α , each 
of the respective primary model parameters jα  becomes a feature function ( )jf α .  

(ii) The expressions of the features functions ( )if α  must be independent of the model’s state 
functions; they must be exact, closed-form, scalar-valued functions of the primary model 
parameters jα , so the exact expressions of the derivatives of ( )if α  with respect to the 
primary model parameters jα  can be obtained analytically (with “pencil and paper”) and, 
hence, inexpensively from a computational standpoint. The motivation for this requirement 
is to ensure that the numerical determination of the subsequent derivatives of the features 
functions ( )if α  with respect to the primary model parameters jα  becomes trivial 
computationally.  

The domain of validity of the Taylor-series in Equation (13) is defined by its own radius of 
convergence. Of course, in the extreme case when no feature function can be constructed, the feature 
functions will be the primary parameters themselves, in which case the nth-FASAM-L methodology 
becomes identical to the previously established nth-CASAM-L methodology [27]. 

3. The First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward and Adjoint Linear Systems (1st-FASAM-L) 

The “First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems” (1st-FASAM-L) aims at enabling the most efficient 
computation of the first-order sensitivities of a generic model response of the form ( ) ( ), ;R   φ x ψ x α  

with respect to the components of the “features” function ( )f α . In preparation for subsequent 
generalizations towards establishing the generic pattern for computing sensitivities of arbitrarily 
high-order, the function ( ) ( ) ( ) ( ) †1 2; ,  u x φ x ψ x

 will be called the “1st-level forward/adjoint function” 

and the system of equations satisfied by this function (which is obtained by concatenating the original 
forward and adjoint equations together with their respective boundary/initial conditions) will be 
called “the 1st-Level Forward/Adjoint System (1st-LFAS)” and will be re-written in the following 
concatenated matrix-form:   

( ) [ ] ( ) ( ) ( ) ( ) ( )1 1 12 2; ; 2; 2; ; ; ;F× = ∈ΩF x f u x q x f x α  (14) 

( ) ( ) ( ) ( ) ( )1 1 2; ; ; ; ;F
  = ∈∂Ω   b u x f 0 x λ α ω α  (15) 

where the following definitions were used: 

( ) [ ] ( )
( )

( ) ( ) ( ) ( ) †1 1
*

;
2 2; ; ; 2; , ;

;
 

×     
 

L x f 0
F x f u x φ x ψ x

0 L x f
   (16) 

 

( ) ( ) ( )
( )

( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

1 1 1
* * *

; ;
2; ; ; 2; 2; ; .

; ;F F

   −       −   

Q x g B x f φ x C f
q x f b u x f

Q x g B x f ψ x C f
    (17) 
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In the list of arguments of the matrix ( ) [ ]1 2 2; ;×F x f , the argument “ 2 2× ” indicates that this 
square matrix comprises four component sub-matrices, as indicated in Equation (16). Similarly, the 
argument “2” that appears in the block-vectors ( ) ( )1 2;u x , ( ) ( )1 2; ;Fq x f , and ( ) ( ) ( )1 12; 2; ;F

 
 b u x f  

indicates that each of these column block-vectors comprises two sub-vectors as components. Also, 
throughout this work, the quantity “ 0 ” will be used to denote either a vector or a matrix with zero-
valued components, depending on the context. For example, the vector “ 0 ” in Equation (15) is 
considered to have as many components as the vector ( ) ( ) ( )1 1 2; ;F

 
 b u x f . On the other hand, the 

quantity “ 0 ” which appears in Equation (16) may represent either a (sub) matrix or a vector of the 
requisite dimensions. 

The nominal (or mean) parameter values, 0α , are considered to be known, but these values will 
differ from the true values α , which are unknown, by variations ( )†

1, , TPδ δα δαα   , where 
0

i i iδα α α− . The parameter variations δα  will induce variations ( ) ( ) ( ) †
1 , , TFf fδ δ δ  f α α α 

 in 

the vector-valued function ( )f α , around the nominal value ( )0 0f f α , and will also induce 

variations ( )δφ x  and ( )δψ x , respectively, around the nominal solution ( )0 0,φ ψ  through the 

equations underlying the model. All of these variations will induce variations in the model response 
( ) ( ) ( ) ( ) ( )1 2; ; , ;R R  ≡    u x f φ x ψ x f α , in a neighborhood ( ) ( ) ( ) ( )0 0 0, ;εδ εδ εδ + + + φ x φ x ψ x ψ x f f  

around ( )0 0 0, ;φ ψ f , where ε  is a real-valued scalar.  

Formally, the first-order sensitivities of the response ( ) ( )1 2; ;R  
 u x f  with respect to the 

components of the feature function ( )f α  are provided by the first-order Gateaux (G-)variation of 

( ), ,R φ ψ f  at the phase-space point ( )0 0 0, ,φ ψ f , which is defined as follows:  

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0 0 0 0 0 0

0

1,0 1 1,0 10 0

0

, , ; , , , ;

2; 2; ; 2; ; ; 2; , ,

dR R
d

d R R
d

ε

ε

δ δ δ δ εδ εδ εδ
ε

ε εδ δ δ
ε

=

=

  + + +   

    ≡ + + ≡     

φ ψ f φ ψ f φ x φ x ψ x ψ x f f

u x v x f f u x f v x f



 (18) 

where the following definitions were used: 

( ) ( ) ( ) ( ) ( ) ( ) ( )† †1,0 10 02; , ; 2; , .δ δ     u x φ x ψ x v x φ x ψ   (19) 

In general, the G-variation ( )0 0 0, , ; , ,Rδ δ δ δφ ψ f φ ψ f  is nonlinear in the variations ( )δ f α , ( )δφ x  

and/or ( )δψ x . In such cases, the partial functional Gateaux (G-)derivatives of the response ( ), ,R φ ψ f  
with respect to the functions , ,φ ψ f  do not exist, which implies that the response sensitivities to the 
model parameters do not exist, either. Therefore, it will be henceforth assumed in this work that 

( )0 0 0, , ; , ,Rδ δ δ δφ ψ f φ ψ f  is linear in the respective variations, so the corresponding partial G-

derivatives exist and ( )0 0 0, , ; , ,Rδ δ δ δφ ψ f φ ψ f  is actually the first-order G-differential of the response. 

The usual numerical methods (e.g., Newton’s method and variants thereof) for solving the equations 
underlying the model also require the existence of the first-order G-derivatives of the original model 
equations; these will also be assumed to exist. When the 1st-order G-derivatives exists, the G-
differential ( ) ( ) ( ) ( )1,0 102; ; ; 2; ,Rδ δ 

 u x f v x f  can be written as follows:  

( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ){ }

1,0 1 10

1 1

2; ; ; 2; , 2; ; ;

2; ; ; 2; .
dir

ind

R R

R

δ δ δ δ

δ

   =   

 +  

u x f v x f u x f f

u x f v x
 (20) 
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In Equation (20), the “direct-effect” term ( ) ( ){ }1 2; ; ;
dir

Rδ δ 
 u x f f  comprises only dependencies 

on ( )δ f α  and is defined as follows: 

( ) ( ){ }
( )( )

0

1

1
;

2; ; ;
dir

R
Rδ δ δ

 ∂      ∂  α

u f
u x f f f

f
  (21) 

The following convention/definition was used in Equation (21):  

[ ] [ ] [ ] [ ] [ ] [ ]
1 1 1 1 1

TF TG TH TI TI

i i i i i
i i i i ii i i i i

f g h
f g h

δ δ δ δ δω δλ
ω λ= = = = =

∂ ∂ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂ ∂ ∂ ∂∑ ∑ ∑ ∑ ∑f
f

  (22) 

The above convention implies that:  

(a) For 1,...,j TG= : 

( )( ) ( )
( )

( )

( )

( )1

01

1

1

; , ; ;
... ... ; 1,..., ;

TI

TI

j TI i
j i

R S
f dx dx g i TG

f g

ω ω

λ λ

δ δ
∂  ∂  = 

∂ ∂  
∫ ∫
α α

α α α

u f φ ψ g h
 (1) (23) 

(b) For 1,...,j TG TG TH= + + : 

( )( ) ( )
( )

( )

( )

( )1

01

1

1

; , ; ;
... ... ; 1,..., ;

TI

TI

j TI i
j i

R S
f dx dx h i TH

f h

ω ω

λ λ

δ δ
∂  ∂  = 

∂ ∂  
∫ ∫
α α

α α α

u f φ ψ g h
  (24) 

(c) For 1,...,j TG TH TG TH TI= + + + + : 

( )( )
( )

1

01

1

1

;
... , ; ; , 1,..., ;

TI

TI

j TI i
j i

R
f dx dx S i TI

f

ω ω

λ λ

δ δω
ω

∂  ∂  = 
∂ ∂  

∫ ∫
α

u f
φ ψ g h  (25) 

(d) For 1,..., 2j TG TH TI TG TH TI= + + + + + : 

( )( )
( )

1

01

1

1

;
... , ; ; , 1,..., .

TI

TI

j TI i
j i

R
f dx dx S i TI

f

ω ω

λ λ

δ δλ
λ

∂  ∂  = 
∂ ∂  

∫ ∫
α

u f
φ ψ g h  (26) 

The notation on the left-side of Equation (22) represents the inner product between two vectors, 
but the symbol “( † )” which indicates “transposition” has been omitted in order to keep the notation 
as simple as possible. “Daggers” indicating transposition will also be omitted in other inner products, 
whenever possible, while avoiding ambiguities. 

In Equation (20), the “indirect-effect” term ( ) ( ) ( ) ( ){ }1 12; ; ; 2;
ind

Rδ  
 u x f v x  depends only on the 

variations ( ) ( ) ( ) †1 2; ,δ δ  v x φ x ψ
 in the state functions, and is defined as follows: 
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( ) ( ) ( ) ( ){ } ( )
( ) ( )

( ) ( )
( )

( )

( )

( )

( )
( )

( )

( )

( ) ( )
( )

( )

( )

( )

1

01

1 1

0 01 1

1 1 1
1 1

1 1

, ; ;
2; ; ; 2; ... 2;

2;

, ; ; , ; ;
... ... .

TI

TI

TI TI

TI TI

TI
ind

TI TI

S
R dx dx

S S
dx dx dx dx

ω ω

λ λ

ω ω ω ω

λ λ λ λ

δ

δ δ

 ∂      ∂  

   ∂ ∂   +   
∂ ∂      

∫ ∫

∫ ∫ ∫ ∫

α α

α α α

α α α α

α α α αα α

φ ψ g h
u x f v x v x

u x

φ ψ g h φ ψ g h
φ ψ

φ ψ





 (27) 

In Eqs. (21) and (27), the notation { } 0α
 has been used to indicate that the quantity within the 

brackets is to be evaluated at the nominal values of the parameters and state functions. This simplified 
notation is justified by the fact that when the parameters take on their nominal values, it implicitly 
means that the corresponding state functions also take on their corresponding nominal values. This 
simplified notation will be used throughout this work. 

The direct-effect term can be computed after having solved the forward system modeled by Eqs. 
(1) and (2), as well as the adjoint system modeled by Eqs. (6) and (7), to obtain the nominal values 

0 0,φ ψ  of the forward and adjoint dependent variables.  

On the other hand, the indirect-effect term ( ) ( ) ( ) ( ){ }1 12; ; ; 2;
ind

Rδ  
 u x f v x  defined in Equation 

(27) can be quantified only after having determined the variations ( ) ( ) ( ) †1 2; ,δ δ  v x φ x ψ
 in the 

state functions of the 1st-Level Forward/Adjoint System (1st-LFAS). The variations ( ) ( )1 2;v x  are 
obtained as the solutions of the system of equations obtained by taking the first-order G-differentials 
of the 1st-LFAS defined by Eqs. (14) and (15), which are obtained by definition as follows: 

( ) ( ) ( ) ( ) ( ) ( )1 1,0 1 10 0

0 0

2 2; ; 2; 2; 2; ; ,F
d d

d dε ε

εδ ε εδ
ε ε= =

       × + + = +          
F x f f u x v x q x f f  (28) 

( ) ( ) ( ) ( ) ( ) [ ]1 1,0 1 0

0

2; 2; 2; ; 2 .F
d

d ε

ε εδ
ε =

  + + =   
b u x v x f f 0  (29) 

Carrying out the differentiations with respect to ε  in the above equations and setting 0ε =  in 
the resulting expressions yields the following matrix-vector equations:  

( ) [ ] ( ) ( ){ } ( ) ( ) ( ){ } ( )0 0

1 1 1 1 02 2; ; 2; 2; 2; ; ; ; ;V δ × = ∈Ω α α
V x f v x q u x f f x α  (30) 

( ) ( ) ( )( ){ } ( ) ( )
0

1 1 1 0 0; ; ; ; ; ;v δ  = ∈∂Ω α
b u v f f 0 x λ α ω α  (31) 

where: 

( ) [ ] ( )
( )

( ) [ ]1 1
*

;
2 2; ; 2 2; ; ;

;
 

× = × 
 

L x f 0
V x f F x f

0 L x f
  (32) 

( ) ( )
( ) ( )
( ) ( )

( ) ( ) ( )( )
( ) ( )
( ) ( )

1 1
1 11 1 1 1 1
1 1

2 2

; ; ; ; ;
2; ; ; ; ; ; ; ;

; ; ; ; ;
V v

δ δ δ
δ δ

δ δ δ

   
          

   

q φ f f b φ φ f f
q u f f b u v f f

q ψ f f b ψ ψ f f
   (33) 

 (34) 

( )
( ) ( ) ( )

1
1

* *
1(1)

2 2 1
1

, ; ; ;
TF

j
j

j fδ δ δ
=

 ∂ − 
∂ ∑

Q L ψ x
q ψ f f f s ψ f

f
   (35) 
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( ) ( ) ( )1
1 ; ; ; ;δ δ δ δ

∂ −
+

∂
Bφ C

b φ φ f f B φ f
f

  (36) 

( ) ( )
( )* *

1 *
2 ; ; ; .δ δ δ δ

∂ −
+

∂

B ψ C
b ψ ψ f f B ψ f

f
  (37) 

In order to keep the notation as simple as possible in Eqs. (30)‒(37), the differentials with respect 
to the various components of the feature function ( )f α  have all been written in the form [ ]( )δ∂ ∂f f

, keeping in mind the convention/notation introduced in Equation (22). The system of equations 
comprising Eqs. (30) and (31) will be called the “1st-Level Variational Sensitivity System (1st-LVSS)” and 
its solution, ( ) ( )1 2;v x , will be called the “1st-level variational sensitivity function,” which is indicated by 

the superscript “(1)”. The solution, ( ) ( )1 2;v x , of the 1st-LVSS will be a function of the components of 
the vector of variations δ f . In principle, therefore, if the response sensitivities with respect to the 
components of the feature function ( )f α  are of interest, then the 1st-LVSS would need to be solved as 
many times as there are components in the variational features-function δ f . On the other hand, if 
the response sensitivities with respect to the primary parameters are of interest, then the 1st-LVSS 
would need to be solved as many times as there are primary parameters. Solving the 1st-LVSS 
involves “large-scale computations.” 

On the other hand, solving the 1st-LVSS can be avoided altogether by using the ideas underlying 
the “adjoint sensitivity analysis methodology” originally conceived by Cacuci [2] and subsequently 
generalized by Cacuci [27, 30] to enable the computation of arbitrarily high-order response 
sensitivities with respect to primary model parameters for both linear and nonlinear models. Thus, 
the need for solving repeatedly the 1st-LVSS for every variation in the components of the feature 
function (or for every variation in the model’s parameters) is eliminated by expressing the indirect-
effect term ( ) ( ) ( ) ( ){ }1 12; ; ; 2;

ind
Rδ  
 u x f v x  defined in Equation (27) in terms of the solutions of the “1st-

Level Adjoint Sensitivity System” (1st-LASS), which will be constructed by implementing the following 
sequence of steps:  

1. Introduce a Hilbert space, denoted as 1H , comprising vector-valued elements of the form 
( ) ( ) ( ) ( ) ( ) ( )

†1 1 1
1 22; , 

 χ x χ x χ x , where the components ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1 1

,1 , ,,..., ,...,i i i j i TDχ χ χ 
 χ x x x x , 

1,2i = , are square-integrable functions. Consider further that this Hilbert space is endowed with 
an inner product denoted as ( ) ( ) ( ) ( )1 1

1
2; , 2;χ x θ x  between two elements, ( ) ( )1

12; ∈χ x H , 
( ) ( )1

12; ∈θ x H , which is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 1 1 1

1 01
2; , 2; ,i i

i=
∑χ x θ x χ x θ x . (38) 

2. In the Hilbert 1H , form the inner product of Equation (30) with a yet undefined vector-valued 

function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 2 12; ,  ∈ a x a x a x H  to obtain the following relation: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }0 0

1 1 1 1 1 10

1 1
2; , 2 2; ; 2; 2; , 2; 2; ; ; .V δ  × =   α α

a x V x f v x a x q u x f f  (39) 

3. Using the definition of the adjoint operator in the Hilbert space 
1H , recast the left-side of Equation (39) as follows: 
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( ) ( ) ( ) [ ] ( ) ( ){ } ( ) ( ) ( ) [ ] ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

0 0

0

1 1 1 1 1 1

1 1

1 1 1

2; , 2 2; ; 2; 2; , 2 2; ; 2;

2; ; 2; ; ; ,P δ

× = ×

 +  

α α

α

a x V x f v x v x A x f a x

v x a x f f
 (40) 

where ( ) ( ) ( ) ( ) ( ){ } 0

1 1 12; ; 2; ; ;P δ 
  α
v x a x f f  denotes the bilinear concomitant defined on the phase-space 

boundary ( )0∈∂Ωx α , and where ( ) [ ]1 2 2; ;×A x f  is the operator formally adjoint to ( ) [ ]1 2 2; ;×V x f , 

i.e., 

( ) [ ] ( ) [ ]{ } ( )
( )

**1 1 ;
2 2; ; 2 2; ; .

;
 

× × =   
 

L x f 0
A x f V x f

0 L x f
  (41) 

4. Require the first term on right-side of Equation (40) to represent the indirect-effect term defined 
in Equation (27),by imposing the following relation: 

( ) [ ] ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 02 2; ; 2; 2; 2; ; , ;A
 × = ∈Ω A x f a x q u x f x α  (42) 

where: 

( ) ( ) ( )
( )( )

( ) ( )

( )( )
( )( )

†† 11

1 1
1 †

1

;;
2; 2; ; .

2; ;
A

SS

S

    ∂ ∂∂          ∂   ∂ ∂    

u f φu f
q u x f

u x u f ψ
   (43) 

5. Implement the boundary conditions represented by Equation (31) into Equation (40) and 
eliminate the remaining unknown boundary-values of the function ( ) ( )1 2;v x  from the expression 

of the bilinear concomitant ( ) ( ) ( ) ( ) ( ){ } 0

1 1 12; ; 2; ; ;P δ 
  α
v x a x f f  by selecting appropriate boundary 

conditions for the function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x , to ensure that Equation (42) is well-posed 

while being independent of unknown values of ( ) ( )1 2;v x  and of δ f . The boundary conditions 

thus chosen for the function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x  can be represented in operator form as 

follows: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( )
0

1 1 1 0 02; ; 2; ; , ; .A
   = ∈∂Ω   α

b u x a x f 0 x λ α ω α  (44) 

The selection of the boundary conditions for ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x  represented by Equation 

(44) eliminates the appearance of the unknown values of ( ) ( )1 2;v x  in ( ) ( ) ( ) ( ) ( ){ } 0

1 1 12; ; 2; ; ;P δ 
  α
v x a x f f  

and reduces this bilinear concomitant to a residual quantity that contains boundary terms involving 
only known values of ( ) ( )1 2;u x , ( ) ( )1 2;a x , f , and δ f . This residual quantity will be denoted as 

( ) ( ) ( ) ( ) ( ){ } 0

1 1 1ˆ 2; ; 2; ; ;P δ 
  α
u x a x f f . In general, this residual quantity does not automatically vanish, 

although it may do so occasionally.  

6. The system of equations comprising Equation (42) together with the boundary conditions 
represented Equation (44) will be called the 1st-Level Adjoint Sensitivity System (1st-LASS). The 
solution ( ) ( ) ( ) ( ) ( ) ( )

†1 1 1
1 22; , 

 a x a x a x  of the 1st-LASS will be called the 1st-level adjoint sensitivity 

function. The 1st-LASS is called “first-level” (as opposed to “first-order”) because it does not 
contain any differential or functional-derivatives, but its solution, ( ) ( )1 2;a x , will be used below 
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to compute the first-order sensitivities of the response with respect to the components of the 
feature function ( )f α .  

7. Using Equation (39) together with the forward and adjoint boundary conditions represented by 
Eqs. (31) and (44) in Equation (40) reduces the latter to the following relation: 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) [ ] ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

00

0

1 1 1 1 1 1

11

1 1 1

2; , 2; 2; ; ; 2; , 2 2; ; 2;

ˆ 2; ; 2; ; ; .

V

P

δ

δ

  = × 

 +  

αα

α

a x q u x f f v x A x f a x

u x a x f f
  (45) 

8. In view of Eqs. (27) and (42), the first term on the right-side of Equation (45) represents the 
indirect-effect term ( ) ( ) ( ){ }1 12; ; ;

ind
Rδ  
 u x f v . It therefore follows from Equation (45) that the 

indirect-effect term can be expressed in terms of the 1st-level adjoint sensitivity function 
( ) ( ) ( ) ( ) ( ) ( )

†1 1 1
1 22; , 

 a x a x a x  as follows: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ){ }

0

0

1 1 1 1 1

1

1 1 1 1 1

2; ; ; 2; 2; , 2; 2; ; ;

ˆ 2; ; 2; ; ; 2; ; 2; ; ; .

V
ind

ind

R

P R

δ δ

δ δ δ

   =   

   − ≡   

α

α

u x f v x a x q u x f f

u x a x f f u x a x f f
 (46) 

As indicated by the identity shown in Equation (46), the variations δφ  and δψ  have been 
eliminated from the original expression of the indirect-effect term, which now depends on the 1st-

level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x . Adding the expression obtained in 

Equation (46) with the expression for the direct-effect term defined in Equation (21) yields, according 
to Equation (20) the following expression for the total 1st-order sensitivity ( ){ } 0, , ; , ,Rδ δ δ δ

α
φ ψ f φ ψ f  

of the response ( ) ( ), ;R   φ x ψ x f  with respect to the components of the feature function ( )f α : 

( ){ }
( )( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ) ( ){ }

0
0

0

10 0
1

1

1 1 1

1

1 1 1 1 1 1
1

1

;
, , ; , , 2; , 2; 2; ; ;

ˆ 2; ; 2; ; ; ; 2; ; 2; ; .

V

TF

j
j

R

P R j f

δ δ δ δ δ δ

δ δ
=

 ∂   = +   ∂  

   − ≡   ∑

α α
α

α α

R u f
φ ψ f φ ψ f f a x q u x f f

f

u x a x f f u x a x f α

  (47) 

The identity which appears in Equation (47) emphasizes the fact that the variations δφ  and δψ
, which are expensive to compute, have been eliminated from the final expressions of the 1st-order 
sensitivities ( ) ( ) ( ) ( ) ( ) ( )1 1 1

1; 2; ; 2; ;R j 
 u x a x f α  of the response with respect to the components 

( )
1 1, 1,...,jf j TF=α , of the features functions. The dependence on the variations δφ  and δψ  has been 

replaced in the expression of ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1; 2; ; 2; ;R j 

 u x a x f α  by the dependence on the 1st-level 

adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x . It is very important to note that the 1st-LASS 

is independent of variations ( )δ f α  in the components of the feature function and is consequently 
also independent of any variations δα  in the primary model parameters. Hence, the 1st-LASS needs 
to be solved only once to determine the 1st-level adjoint sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x . Subsequently, the “indirect-effect term” is computed efficiently and 

exactly by simply performing the integrations required to compute the inner product over the adjoint 

function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x , as indicated on the right-side of Equation (47). Solving the 1st-

Level Adjoint Sensitivity System (1st-LASS) requires the same computational effort as solving the 
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original coupled linear system, entailing the following operations: (i) inverting (i.e., solving) the left-

side of the original adjoint equation with the source ( )( ) †
1 ;S ∂ ∂ u α φ  to obtain the 1st-level adjoint 

sensitivity function ( ) ( )1
1a x ; and (ii) inverting the left-side of the original forward equation with the 

source ( )( ) †
1 ;S ∂ ∂ u α ψ  to obtain the 1st-level adjoint sensitivity function ( ) ( )1

2a x . 

The 1st-order sensitivities ( ) ( ) ( ) ( ) ( ) ( )1 1 1
1; 2; ; 2; ;R j 

 u x a x f α , 1 1,...,j TF= , can be expressed as an 

integral over the independent variables as follows: 

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

1

1

1 1 1 1 1 1
1 1 1; 2; ; 2; ; ... ; 2; ; 2; ; .

TI

TI

TIR j dx dx S j
ω ω

λ λ

   
   ∫ ∫

α α

α α

u x a x f α u x a x f α  (48) 

In particular, if the residual bilinear concomitant is non-zero, the functions 
( ) ( ) ( ) ( ) ( ) ( )1 1 1

1; 2; ; 2; ;S j 
 u x a x f α  would contain suitably defined Dirac delta-functionals for 

expressing the respective non-zero boundary terms as volume-integrals over the phase-space of the 
independent variables. Dirac-delta functionals would also be used in the expression of 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1; 2; ; 2; ;S j 

 u x a x f α  to represent terms containing the derivatives of the boundary end-

points with respect to the model and/or response parameters.  

The response sensitivities with respect to the primary model parameters would be obtained by 
using the expression obtained in Equation (48) in conjunction with the “chain rule” of differentiation 
provided in Equation (12). 

It is important to compare the results produced by the 1st-FASAM-L (for obtaining the 
sensitivities of the model response with respect to the model’s features) with the 1st-CASAM (the 1st-
Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint 
Linear Systems) methodology, which provides the expressions of the responses sensitivities directly 
with respect to the model’s primary parameters. Recall that the 1st-CASAM-L [27] yields the following 
expression for the 1st-order sensitivities of the response with respect to the primary model 
parameters:  

( ) ( ) ( ) ( )

( )

( )

( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )
( )

( )

( ) ( )

1

1 110 0

01 1

1 1 1
1

1

1 1

1 1,

1

; 2; ; 2; ; 2; ;
...

2;..., ,... ; 2;..., ,... ;

2; ,

TI

TI

m

m

TI
j j

TITI
k k

m k k
k m k j j j

R j S
dx dx

dx S S

ω ω

λ λ

ω

λ

α α

ω λ
ω λ

α α= = ≠

      ∂ ∂      =   
∂ ∂      

 ∂ ∂    + −    ∂ ∂  

∂
+

∫ ∫

∑ ∏ ∫

α α

α α
α α

α

α α

u x a x α u x α

α α
u α u α

a x ( ) ( ) ( ) ( ) ( ) ( )

001 1

1 1 1 1 1
1

1

ˆ2; ; ; ; ; 1,..., .
j j

P j TP
α α

   ∂      − =      ∂ ∂      αα

q u x α u a α

 (49) 

The same 1st-level adjoint sensitivity function, denoted as ( ) ( )1 2;a x , appears in Equation (49) as 
well as in Equation (48). Therefore, the same number of “large-scale computations” (which are 
needed to solve the 1st-LASS to determine the 1st-level adjoint sensitivity function) is needed for 
obtaining either the response sensitivities with respect to the components, ( )jf α , 1,...,j TF= , of the 
feature function ( )f α  using the c, or for obtaining the response sensitivities directly with respect to 
the primary model parameters jα , 1,...,j TP= , by using the 1st-CASAM-L. The use of the 1st-CASAM-
L would also require performing a number of TP  integrations to compute all of the response 
sensitivities with respect to the primary parameters; in contradistinction, the use of the 1st-FASAM-L 
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would require only TF  integrations ( TF TP< ) to compute all of the response sensitivities with 
respect to the components ( )jf α  of the feature function. Since integrations using quadrature-scheme 
are significantly less expensive computationally by comparison to solving systems of equations (e.g., 
the original equations underlying the model and the 1st-LASS), the computational savings provided 
by the use of the 1st-FASAM-L is small by comparison to using the 1st-CASAM-L. However, this 
conclusion is valid only for the computation of 1st-order sensitivities. As will be shown in Section 4, 
below, the computational savings are significantly larger when computing the second-order 
sensitivities by using the 2nd-FASAM-L rather than using the 2nd-CASAM-L (or any other method). 

4. The Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward and Adjoint Linear Systems (2nd-FASAM-L) 

The “Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems“ (2nd-FASAM-L) determines the 2nd-order sensitivities 

( ) ( ) ( )
2 1

12 2; ; j jR f f ∂ ∂ ∂ u x f α  of the response with respect to the components of the “feature” function 

( )f α  by conceptually considering that the first-order sensitivities 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1 1
1; 2; ; 2; ; 2; ; jR j R f   ∂ ∂   u x a x f α u x f α , which were obtained in Equation (48), are 

“model responses.” Consequently, the 2nd-order sensitivities are obtained as the “1st-order 
sensitivities of the 1st-order sensitivities” by applying the concepts underlying 1st-FASAM to each 1st-
order sensitivity ( ) ( ) ( ) ( ) ( ) ( )1 1 1

1; 2; ; 2; ;R j 
 u x a x f α , 1 1,...,j TF= , which depends on both the vector 

( ) ( )1 2;u x , which comprises the original state variables, as well as on the 1st-level adjoint function 
( ) ( )1 2;a x .  

To establish the pattern underlying the computation of sensitivities of arbitrarily high-order, it 
is useful to introduce a systematic classification of the systems of equations that will underly the 
computation of the sensitivities of various orders. As has been shown in the Section 2.1, above, the 
1st-order response sensitivities ( ) ( ) ( ) ( ) ( ) ( )1 1 1

1; 2; ; 2; ;R j 
 u x a x f α  depend on the original state functions 

( ) ( ) ( ) ( ) †1 2; ,  u x φ x ψ x  and on the 1st-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†1 1 1

1 22; , 
 a x a x a x . 

The system of equations satisfied by these functions will be called “the 2nd-Level Forward/Adjoint 
System (2nd-LFAS)” and will be re-written in the following concatenated form:   

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 12 2 2 22 2 ; 2 ; 2 ; 2; ; ; ;F
  × = ∈Ω   F f α u x q u x f α x α  (50) 

( ) ( )( ) ( ) ( )( ) ( ) ( )
†2 2 1 122 ; ; , ; ; ;F F A = ∈∂Ω  b u f b b 0 x λ α ω α  (51) 

where the following definitions were used: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 1 1 2 1 12 2 22 2 ; , ; 2 ; 2; , 2; ;diag   ×   F f α F A u x u x a x 

 (52) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) †
2 1 1 1 122 ; 2; ; 2; ; , 2; ;F F A

    
    q u x f α q x f q u f

. (53) 

The notation used for the matrix ( ) ( )2 2 22 2 ; × F f α  indicates the following characteristics: (i) the 

superscript “2” indicates “2nd-level”; (ii) the argument “ 2 22 2× ” indicates that this square matrix 
comprises 4x4=16 component sub-matrices. Similarly, the argument “22” that appears in the block-
vectors ( ) ( )2 22 ;u x , ( ) ( ) ( ) ( )2 122 ; 2; ;F

 
 q u x f α  and ( ) ( )( )2 222 ; ;Fb u α  indicates that each of these column 

block-vectors comprises four sub-vectors as components.  
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The first-order G-differential of a first-order sensitivity ( ) ( ) ( ) ( )1 2 2
1; 2 ; ;R j 

 u x f α , 1 1,...,j TF= , is 

obtained by definition as follows:  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ){ }

0

1 2 22 2
1

1 1 1 1 1
1

0

1 2 2 1 22 2 2
1 1

; 2 ; ; 2 ; ; ;

; 2; 2; ; 2; 2; ;

; 2 ; ; 2 ; ; ; 2 ; ;
ind dir

R j

d R j
d

R j R j
ε

δ δ

δ ε εδ εδ
ε

δ δ δ

=

 
 

  + + +   

   = +   

α
u x v x f f

u x v x a x a x f f

u x v x f u x f

  (54) 

The direct-effect term ( ) ( ) ( ){ }1 2 2
1; 2 ; ;

dir
R jδ δ 

 u x f  in Equation (54) is defined as follows  

( ) ( ) ( ){ }

( )

( )

( )

( )
( ) ( ) ( ) ( )

1

2
2 02 1

1 2 2
1

1 2 2
1 1

1

; 2 ; ;

... ; 2 ; ; .
TI

TI

dir

TF

TI j
j j

R j

dx dx S j f
f

ω ω

λ λ

δ δ

δ
=

 
 

 ∂    ∂  
∑ ∫ ∫

α α

α α α

u x f

u x f α

 (55) 

and can be computed immediately. The indirect-effect term ( ) ( ) ( ) ( ) ( ){ }1 2 22 2
1; 2 ; ; 2 ; ;

ind
R jδ  

 u x v x f  

in Equation (54) depends on the 2nd-level variational sensitivity function 
( ) ( ) ( ) ( ) ( ) ( )2 1 122 ; 2; , 2;δ 

 v x v x a x
 and is defined as follows:  

( ) ( ) ( ) ( ) ( ){ } ( ) ( )( ) ( ) ( )
( )

( )

( )

( )1

1

1 2 2 2 2 22 2 2 2
1 1 1; 2 ; ; 2 ; ; ... 2 ; ; ; 2 ; ,

TI

TI

TI
ind

R j dx dx j
ω ω

λ λ

δ   
   ∫ ∫

α α

α α

u x v x f s u f v x   (56) 

where: 

( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 1 2 2 22 2 2
1 12 ; ; ; ; 2 ; ; 2 ; ; .j R j ∂ ∂ s u f u x v x f u

 (57) 

Evidently, the functions ( ) ( )1 2;v x  and ( ) ( )1 2;δa x  are needed in order to evaluate the above 
indirect-effect term. These functions are the solutions of the system of equations obtained by taking 
the first-G-differential of the 2nd-LFAS defined by Eqs. (52) and (53). Applying the definition of the 
first G-differential the 2nd-LFAS yields the following 2nd-Level Variational Sensitivity System (2nd-LVSS)” 

for the 2nd-Level variational sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 122 ; 2; , 2;δ 

 v x v x a x : 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2,0 22 2 0 2 2

0

2 1,0 12 0 0

0

2 2 ; 2 ; 2 ;

2 ; 2; 2; ; ; ;F

d
d

d
d

ε

ε

εδ ε
ε

ε εδ
ε

=

=

   × + +     

  = + + ∈Ω   

F f f u x v x

q u x v x f f x α
 (58) 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2,0 22 2 0 0 0

0

2 ; 2 ; ; ; ; .F
d

d ε

ε εδ
ε =

    + + = ∈∂Ω     
b u x v x f f 0 x λ α ω α   (2) (59) 

Carrying out the differentiation with respect to ε  in Eqs. (58) and (59), and setting 0ε =  in the 
resulting expressions yields the following 2nd-LVSS: 

( ) ( ) ( ){ } ( ) ( ) ( ){ } ( )0 0

2 2 2 22 2 2 2 2 02 2 ; ; 2 ; 2 ; 2 ; ; ; ; ;V δ  × = ∈Ω   α α
V x f v x q u x f f x α  (60) 
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( ) ( ) ( )( ){ } ( ) ( )
0

2 2 2 0 0; ; ; ; ; ;v δ  = ∈∂Ω α
b u v f f 0 x λ α ω α  (61) 

where the following definitions were used:  

( )
( ) [ ]

( ) ( )( ) ( ) [ ]

( ) ( )( )

( )( ) ( )( )

( )( ) ( )( )

1
2 2 2

2 1 1
21

1 12 2

2 1
21 1 12 2

2 2; ;
2 2 ; ; ;

2 2; ; 2 2; ;

; ;

2 2; ; ;
; ;

S S

S S

 ×
  × =   × × 
 ∂ ∂
 − −
 ∂ ∂ ∂ ∂

×  
 ∂ ∂
 − − ∂ ∂ ∂ ∂ 

V x f 0
V x f

V u f A x f

u f u f

φ φ φ ψ
V u f

u f u f

ψ φ ψ ψ



 (62) 

( ) ( ) ( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1

2 22 2

1 1 1
1

1 1 1
1 11 1 1

1 1 1 1
2 1

2; ; ;
2 ; 2 ; ; ; ;

2; ; ; ;

; ;
2; ; ; ; ;

; ;

V

V

A

A

δ
δ

δ

δ
δ

δ

  
   

       
 
  

    
 

q u f f
q u x f f

p u a f f

p u a f
p u a f f

p u a f





  (63) 

( ) ( ) ( )( )
( )( ) ( ) ( )1 12 *

11 1 1
1 1

;
; ; ; ;

S
δ δ δ

 ∂ ∂  −
∂ ∂ ∂

u f L f a
p u a f f f f

f φ f
  (64) 

( ) ( ) ( )( )
( )( ) ( ) ( )1 12

21 1 1
2 2

;
; ; ; ;

S
δ δ δ

 ∂ ∂  −
∂ ∂ ∂

u f L f a
p u a f f f f

f ψ f
  (65) 

( ) ( ) ( )( )
( ) ( ) ( )( )
( ) ( ) ( )( )

1 1 1

2 2 2

1 2 2

; ; ;
; ; ; ;

; ; ;

v

v

A

δ
δ

δ δ

 
 
  
 

b u v f f
b u v f f

b u v f f


 (66) 

The matrix ( ) ( )( )2 1
21 2 2; ;×V u f  depends only the system’s response and is responsible for coupling 

the forward and adjoint systems. Although the forward and adjoint systems are coupled, they could 
nevertheless be solved successively rather than simultaneously, because the matrix ( )2 2 22 2 ; ; × V x f  

is block-diagonal. All of the components of the matrices and vectors underlying the 2nd-LVSS are to 
be computed at nominal parameter and state function values, as indicated in Eqs. (60) and (61).  

Computing the indirect-effect term ( ) ( ) ( ) ( ) ( ){ }1 2 22 2
1; 2 ; ; 2 ; ;

ind
R jδ  

 u x v x f  by solving the 2nd-LVSS 

would require at least ( )2 1TF TF +  large-scale computations (to solve the 2nd-LVSS) for every 
component of the feature function ( )f α .  

The need for solving the 2nd-LVSS will be circumvented by deriving an alternative expression 
for the indirect-effect term ( ) ( ) ( ) ( ) ( ){ }1 2 22 2

1; 2 ; ; 2 ; ;
ind

R jδ  
 u x v x f , as defined in Equation (56), in which 

the second-level variational function ( ) ( )2 22 ;v x  will be replaced by a 2nd-level adjoint function which 

is independent of variations in the model parameter and state functions. This 2nd-level adjoint 
function will be the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS), which will be 
constructed by using the same principles as employed for deriving the 1st-LASS. The 2nd-LASS is 
constructed in a Hilbert space, denoted as 2H , which will comprise as elements block-vectors of the 
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same form as ( ) ( )2 22 ;v x , i.e., a vector in 2H  has the generic structure

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2 2 22

1 2 3 42 ; , , , 
 χ x χ x χ x χ x χ x , comprising four vector-valued components of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2 2 2

,1 , ,,..., ,..., , 1, 2,3, 4 2i i i j i TD iχ χ χ  = = χ x x x x . The inner product between two elements, 
( ) ( )2

22; ∈χ x H  and ( ) ( )2
22; ∈θ x H , of this Hilbert space, will be denoted as ( ) ( ) ( ) ( ) 2

2 2

2
2; , 2;χ x θ x  and 

is defined as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2

2
2 2 2 2

2 01
2; , 2; ,i i

i=
∑χ x θ x χ x θ x  (67) 

Note that there are 1 1,...,j TF=  distinct indirect-effect terms 
( ) ( ) ( ) ( ) ( ){ }1 2 22 2

1; 2 ; ; 2 ; ;
ind

R jδ  
 u x v x f . Each of these indirect-effect terms will serve as a “source” for a 

“2nd-Level Adjoint Sensitivity System (2nd-LASS)” that will be constructed by applying the same 
sequence of steps that were used in Section 2.1, above, to construct the 1st-LASS. This implies that a 
distinct 2nd-level adjoint sensitivity function, of the form 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2 2 22

1 1 1 2 1 3 1 4 1 22 ; ; ; , ; , ; , ;j j j j j  ∈ a x a x a x a x a x H , 1 1,...,j TF= , corresponding to each 

distinct indirect-effect term, will be needed for constructing each of the corresponding 2nd-LASS, as 
follows:  

1. For each 1 1,...,j TP= , form the inner product in the Hilbert space 2H  of Equation (60) with a yet 
undefined function ( ) ( )2 2

12 ; ;ja x  to obtain the following relation: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ } ( )

2 0

2 0

2 2 22 2 2 2
1 2

2 2 22 2 2 0
1

2

2 ; ; , 2 2 ; ; 2 ;

2 ; ; , 2 ; 2 ; ; ; ; .V

j

j δ

 × 

 = ∈Ω 

α

α

a x V x f v x

a x q u x f f x α
 (3) (68) 

2. Using the definition of the adjoint operator in the Hilbert space 2H , recast the left-side of 
Equation (68) as follows: 

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ) ( ){ }

2 0

2 0

0

2 2 22 2 2 2
1 2

2 2 22 2 2 2
1 2

2 2 22 2
1

2 ; ; , 2 2 ; ; 2 ;

2 ; , 2 2 ; ; 2 ; ;

2 ; ; 2 ; ; ; ; ,

j

j

P j δ

 × 

 = × 

 +  

α

α

α

a x V x f v x

v x A x f a x

v x a x f f

 (69) 

where ( ) ( ) ( ) ( ) ( ){ } 0

2 2 22 2
12 ; ; 2 ; ; ; ;P j δ 

  α
v x a x f f  denotes the bilinear concomitant defined on the phase-

space boundary ( )0
x∈∂Ωx α  and where ( ) ( ) *2 22 2 2 22 2 ; ; 2 2 ; ;    × ×    A x f V x f  is the operator 

formally adjoint to ( )2 2 22 2 ; ; × V x f .  

3. The first term on right-side of Equation (69) is now required to represent the indirect-effect term 
( ) ( ) ( ) ( ) ( ){ }1 2 22 2

1; 2 ; ; 2 ; ;
ind

R jδ  
 u x v x f  defined in Equation (56). This requirement is satisfied by 

recalling Equation (57) and imposing the following relation on each function ( ) ( )2 2
12 ; ;ja x , 

1 1,...,j TF= :  

( ) ( ) ( ){ } ( ) ( )( ){ }0 0

2 2 2 22 2 2 2
1 1 12 2 ; ; 2 ; ; 2 ; ; ; , 1,..., ,j j j TF × = =  α α

A x f a x s u f  (4) (70) 
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4. The definition of the vector ( ) ( )2 2
12 ; ;ja x  will now be completed by selecting boundary 

conditions which will be represented in operator form as follows:  

( ) ( ) ( ) ( ) ( ){ } ( )
0

2 2 22 2 0
1 12 ; ; 2 ; ; ; , , 1,..., .A j j TF  = ∈∂Ω =  α

b u x a x f 0 x α  (71) 

5. The boundary conditions represented by Equation (71) are selected so as to satisfy the following 
requirements: (a) these boundary conditions together with Equation (70) constitute a well posed 
problem for the functions ( ) ( )2 2

12 ; ;ja x ; (b) the implementation in Equation (69) of these 
boundary conditions together with those provided in Equation (61) eliminates all of the unknown 
values of the functions ( ) ( )2 22 ;v x  and ( ) ( )2 2

12 ; ;ja x  in the expression of the bilinear concomitant 
( ) ( ) ( ) ( ) ( ){ } 0

2 2 22 2
12 ; ; 2 ; ; ; ;P j δ 

  α
v x a x f f . This bilinear concomitant may vanish after these 

boundary conditions are implemented, but if it does not, it will be reduced to a residual quantity 
which will be denoted as ( ) ( ) ( ) ( ) ( )2 2 22 2

1
ˆ 2 ; ; 2 ; ; ; ;P j δ 

 u x a x f f  and which will comprise only 

known values of ( ) ( )2 22 ;u x , ( ) ( )2 2
12 ; ;ja x , f  and δ f . 

The system of equations represented by Equation (70) together with the boundary conditions 
represented by Equation (71) constitute the 2nd-Level Adjoint Sensitivity System (2nd-LASS). The 
solution of the 2nd-LASS, i.e., the four-component vector ( ) ( )2 2

12 ; ;ja x , 1,...,j TP , will be called the 2nd-

level adjoint sensitivity function. It is important to note that the 2nd-LASS is independent of any 
variations, δ f , in the components of the feature function and, hence, is independent of any 
parameter variations, δα , as well. 

The equations underlying the 2nd-LASS, represented by Eqs. (70), (71), together with the 
equations underlying the 2nd-LVSS, represented by Eqs. (60) and (61), are now employed in Equation 
(69) in conjunction with Equation (56) to obtain the following expression for the indirect-effect term 

( ) ( ) ( ) ( ) ( ){ }1 2 22 2
1; 2 ; ; 2 ; ;

ind
R jδ  

 u x v x f  in terms of the 2nd-level adjoint sensitivity functions 
( ) ( )2 2

12 ; ;ja x , for 1 1,...,j TP= : 

( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( ){ }

0

0

1 2 2 2 2 22 2 2 2 2
1 1

2

2 2 2 1 2 22 2
1 1

; 2 ; ; 2 ; ; 2 ; ; , 2 ; 2 ; ; ;

ˆ ; ; ; ; 2 ; ; 2 ; ; ; ; .

V
ind

ind

R j j

P R j j

δ δ

δ δ δ

   =   

   − ≡   

α

α

u x v x f a x q u x f f

u a f f u x a x f f
 (72) 

As the last equality (identity) in Equation (72) indicates, the 2nd-level variational sensitivity 
function ( ) ( )2 22 ;v x  has been eliminated from appearing in the expression of the indirect-effect term, 

having been replaced by the 2nd-level adjoint sensitivity function ( ) ( )2 2
12 ; ;ja x , for each 1 1,...,j TF= . 

Inserting the expressions that define the vector ( ) ( ) ( )2 22 22 ; 2 ; ; ;V δ 
 q u x f f  from Equation (63)‒(65) 

into Equation (72) and adding the resulting expression for the indirect-effect term to the expression 
of the direct-effect term given in Equation (54) yields the following expression for the total second-
order G-differential of the response ( ) ( ), ;R   φ x ψ x f :  

( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ){ }

0

20
2

1 2 22 2
1 1

2 2 22 2
2 1 1

1

; 2 ; ; ;2 ; ; ;

; ; 2 ; ; ;2 ; ; ,
TF

j
j

R j j

R j j j f

δ δ

δ
=

 
 

 =  ∑
α

α

u x a x f f

u x a x f
 

(
7
3
) 
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where ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 2

2 2 2 2
2 1 1; ; ; ; ; , ; j jR j j j R f f  ≡ ∂ ∂ ∂   u x a x f φ x ψ x f  denotes the 2nd-order partial 

sensitivity of the response ( ) ( ), ;R   φ x ψ x f  with respect to the components ( )
2j

f α  of the feature 

function ( )f α , evaluated at the nominal parameter values 0α , and has the following expression for 

1 2, 1,...,j j TP= : 

( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )
( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )( ) ( )

1

02 1

2 0

2 0

2

2 2 22 2
2 1 1

1 2 2
1 1

2
1 1

0

* *
2

2 1

0

12 *
12

3 1

; ; 2 ; ; ;2 ; ;

... ; 2 ; ;

; ,

; ,

;
; ,

TI

TI

TI
j

j

j

j

R j j j

dx dx S j
f

j
f

j
f

S
j

f

ω ω

λ λ

 
 

 ∂  =   ∂  

 ∂ −   +  
∂  

  ∂ −  +  
∂  

∂ ∂
+ −

∂ ∂

∫ ∫
α α

α α α

α

α

u x a x f

u x f α

Q f L f φ x
a x

Q f L f ψ x
a x

u x f L f a
a x

φ

( )

( ) ( )
( ) ( )( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2
0

2 2
0

02

1

0

1 12
22

4 1

0

2 2 2
1

;
; ,

ˆ ; ; ; .

j

j j

j

f

S
j

f f

P j
f

    
 

∂  

  ∂ ∂  + − 
∂ ∂ ∂  

 ∂  −  ∂  

α

α

α

u x f L f a
a x

ψ

u x a x f α  

(74) 

Since the 2nd-LASS is independent of variations in the components of the feature-functions (and, 
hence, variations in the model parameters), the exact computation of all of the partial second-order 
sensitivities ( ) ( ) ( ) ( ) ( ) ( ) ( )

1 2

2 2 22 2 2
2 1 1; ; 2 ; ; ;2 ; ; , ; j jR j j j R f f  ≡ ∂ ∂ ∂   u x a x f φ x ψ x f  requires at most TF  

large-scale (adjoint) computations using the 2nd-LASS. When the 2nd-LASS is solved TF -times, the 
“off-diagonal” 2nd-order mixed sensitivities 

1 2

2
j jR f f∂ ∂ ∂  will be computed twice, in two different 

ways, using two distinct 2nd-level adjoint sensitivity functions, thereby providing an independent 
intrinsic (numerical) verification that the 1st- and 2nd-order response sensitivities with respect to the 
components of the feature functions are computed accurately. In component form, the equations 
comprising the 2nd-LASS are solved, for each 1 1,...,j TF= , in the following order:  

( ) ( ) ( )
( ) ( )( )

( )

1 2
12

3 1 1
1

; ;
; ,

S j
j

∂
=

∂

u f
L f a x

a
 (75) 

( ) ( ) ( )
( ) ( )( )

( )

1 2
12*

4 1 1
2

; ;
; ,

S j
j

∂
=

∂

u f
L f a x

a
  (76) 

( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( ) ( )( )1 1 1 22 2

12 2 2*
1 1 3 1 4 1

; ; ; ;
; ; ; ,

S S S j
j j j

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂

u f u f u f
L f a x a x a x

φ φ ψ φ φ
 (77) 

( ) ( ) ( )
( )( ) ( ) ( )

( )( ) ( ) ( )
( ) ( )( )1 1 1 22 2

12 2 2
2 1 3 1 4 1

; ; ; ;
; ; ; .

S S S j
j j j

∂ ∂ ∂
= + +

∂ ∂ ∂ ∂ ∂

u f u f u f
L f a x a x a x

φ ψ ψ ψ ψ
   (78) 
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Dirac delta-functionals may need to be used in Equation (74) in order to express in integral form 
the eventual non-zero residual terms in the residual bilinear concomitant and/or the terms containing 
derivatives with respect to the lower- and upper-boundary points. Ultimately, the expression of the 
partial second-order sensitivities ( ) ( ) ( ) ( ) ( )2 2 22 2

2 1 1; ; 2 ; ; 2 ; ; ;R j j j 
 u x a x f obtained in Equation (74) is 

written in the following integral form, which mirrors Equation (48):  

( ) ( ) ( ) ( ) ( ) ( )

( )

( )

( )

( )
( ) ( ) ( ) ( ) ( ) ( )

1

1

2 2 22 2
2 1 1

2 2 22 2
1 2 1 1

; ; 2 ; ; 2 ; ; ;

... ; ; 2 ; ; 2 ; ; ; .
TI

TI

TI

R j j j

dx dx S j j j
ω ω

λ λ

 
 

 
 ∫ ∫

α α

α α

u x a x f α

u x a x f α

 (79) 

The computation of the partial second-order sensitivities ( ) ( ) ( ) ( ) ( )2 2 22 2
2 1 1; ; 2 ; ; 2 ; ; ;R j j j 

 u x a x f  

using Equation (74) requires quadratures for performing the integrations over the four components 
of the 2nd-level adjoint sensitivity function ( ) ( )2 2

12 ; ;ja x , which are obtained by solving the 2nd-LASS 

for 1 1,...,j TF= . Thus, obtaining all of the second-order sensitivities 
( ) ( ) ( ) ( ) ( )

1 2

2 2 22 2 2
2 1 1; ; 2 ; ; 2 ; ; ; j jR j j j R f f  ≡ ∂ ∂ ∂ u x a x f  with respect to the components 

1j
f  of the feature 

function ( )f α  requires performing at most TF  large-scale computations for solving the 2nd-LASS.  

By comparison, if the 2nd-CASAM-L [27] had been applied to compute the second-order 
sensitivities of the response directly with respect to the model parameters, TP  (instead of TF ) large-
scale computations for solving the corresponding 2nd-LASS would have been required, where TP  
denotes the total number of primary model parameters. Since TF TP< , fewer large-scale 
computations are needed when using the 2nd-FASAM-L rather than the 2nd-CASAM-L. Notably, the 
left-sides of the 2nd-LASS to be solved within the 2nd-FASAM-L are the same as those to be solved 
within the 2nd-CASAM-L. However, the source terms on the right-sides of these 2nd-LASS are different 
from each other: there are as many source-terms on the right-sides as there are components of the 
feature function within the 2nd-FASAM-L, and there are as many right-side sources as there are 
primary model parameters within the 2nd-CASAM-L. 

5. Illustrative High-Order Feature Adjoint Sensitivity Analysis of Energy-Dependent Particle 
Detector Response 

The application of the nth-FASAM-L methodology will be illustrated in this Section by 
considering the simplified model of the distribution in the asymptotic energy range of neutrons 
produced by a source of neutrons placed in an isotropic medium comprising a homogeneous mixture 
of “M” non-fissionable materials having constant (i.e., energy-independent) properties. For 
simplicity, but without diminishing the applicability of the nth-FASAM-L methodology, this medium 
is considered to be infinitely large. The simplified neutron transport equation that models the energy-
distributions of neutrons in such materials is called the “neutron slowing-down equation” and is 
written using the neutron lethargy (rather than the neutron energy) as the independent variable, 
which is denoted as “u” and is defined as follows: ( )0lnu E E , where E  denotes the energy-
variable and 0E  denotes the highest energy in the system. Thus, the neutron slowing-down model 
[32-34] for the energy-distribution of the neutron flux in a homogeneous mixture of non-fissionable 
materials of infinite extent takes on the following drastically simplified form of the neutron transport 
balance equation:  

( ) ( ) ( )
; 0 ;a

th
t t

d u S u
u u u

du
ϕ

ϕ
ξ ξ
Σ

+ = < ≤
Σ Σ

 (80) 
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( )0 0; 0.at uϕ = =   (81) 

The quantities which appear in Equation (80) are defined below. 

(1) The lethargy-dependent neutron flux is denoted as ( )uϕ ; thu  denotes a cut-off lethargy, usually 
taken to be the lethargy that corresponds to the thermal neutron energy (ca. 0.0024 electron-volts). 

(2) The macroscopic elastic scattering cross section for the homogeneous mixture of “M” materials 
is denoted as sΣ  and is defined as follows: 

( ) ( )

1
;

M
i i

s m s
i

N σ
=

Σ ∑  (82) 

where ( ) , 1,...,i
s i Mσ =  denotes the elastic scattering cross section of material “i”, and where the 

atomic or molecular number density of material “i” is denoted as ( ) , 1,...,i
mN i M=  and is defined as 

follows: ( )i
m i A iN N Aρ , where AN  is Avogadro’s number ( )240.602 10 /nuclei mole× , while iA  and 

iρ  denote the respective material’s mass number and density. 

(3) The average gain in lethargy of a neutron per collision is denoted as ξ  and is defined as follows 
for the homogeneous mixture: 

( ) ( )
2

1

ln 11 ; 1 ; .
1 1

M
i i i i i

i m s i i
is i i

a a A
N a

a A
ξ ξ σ ξ

=

 −
+  Σ − + 

∑     (83) 

(4) The macroscopic absorption cross section is denoted as aΣ  
and is defined as follows for the homogeneous mixture: 

( ) ( )

1
,

M
i i

a m
i

N γσ
=

Σ ∑  (84) 

where ( ) , 1,...,i i Mγσ = , denotes the microscopic radiative-capture cross section of material “i”. 

(5) The macroscopic total cross section is denoted as tΣ  and is defined as follows for the 
homogeneous mixture: 

.t a sΣ Σ + Σ  (85) 

(6) The source ( )S u  is considered to be a simplified “spontaneous fission” source stemming from 
fissionable actinides, such as 239Pu and 240Pu, emitting monoenergetic neutrons at the highest 
energy (i.e., zero lethargy). Such a source is comprised within the OECD/NEA polyethylene-
reflected plutonium (PERP) OECD/NEA reactor physics benchmark [21, 22] which can be 
modeled by the following simplified expression: 

( ) ( )
2

0 0
1

; S S S S S
k k k k k

k
S u S u S N F Wδ λ ν

=

= ∑ , (86) 

where the superscript “S” indicates “source;” the subscript index k=1 indicates material properties 
pertaining to the isotope 239Pu; the subscript index k=2 indicates material properties pertaining to the 
isotope 240Pu; S

kλ  denotes the decay constant; S
kN  denotes the atomic density of the respective 

actinide; S
kF  denotes the spontaneous fission branching ratio; S

kν  denotes the average number of 
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neutrons per spontaneous fission; S
kW  denotes a function of parameters used in a Watt’s fission 

spectrum to approximate the spontaneous fission neutron spectrum of the respective actinide. The 
detailed forms of the parameters S

kW  are unimportant for illustrating the application of the nth-
FASAM-L methodology. The nominal values for these imprecisely known parameters are available 
from a library file contained in SOURCES4C [26]. 

The response considered for the above neutron slowing-down model is the reaction rate, 
denoted as R , of neutrons of energy du u=  that would be measured by a detector characterized by 
an interaction cross section d d dN σΣ  , where dN  denotes the atomic or molecular number density 
of the detector’s material while dσ  denotes the detector’s microscopic interaction cross section. 
Mathematically, the detector’s reaction rate can be represented by the following functional of the 
neutron flux ( )uϕ :  

( ) ( ) ( )
0

; .
thu

d d d d d d dR u u u u du Nϕ ϕ δ σ= Σ = Σ − Σ =∫  (87) 

For this “source-detector” model, the following primary model parameters are subject to 
experimental uncertainties:  

(i) the atomic number densities ( )i
mN ; the microscopic radiative-capture cross section ( )i

γσ ; the 

scattering cross section ( )i
sσ , for each material “i”, 1,...,i M= , included in the homogeneous mixture;  

(ii) the source parameters S
kλ , S

kN , S
kF , S

kν , S
kW , for k=1,2;  

(iii) the atomic density dN  and the microscopic interaction cross section dσ  that characterize the 
detector’s material.  

These above primary parameters are considered to constitute the components of a “vector of 
primary model parameters” defined as follows:  

( ) ( ) ( ) ( ) ( ) ( )( )
( )

†1 1 1
1 2 1 2 1 2 1 2 1 2

†
1

, , ,..., , , , , , , , , , , , , , ,

, , ; 3 12.

M M M S S S S S S S S S S
m s m s d d

TP

N N N N F F W W N

TP M

γ γσ σ σ σ λ λ ν ν σ

α α +

α 

  

(5) (88) 

On the other hand, the structure of the computational model comprising Eqs. (80), (81) and (87) 
suggests that the components ( )if α  of the feature function ( )f α  can be defined as follows: 

( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

†
1 2 3

0
1 2 3

, , ;

; ; .a
d

t t

f f f

S
f f f

ξ ξ

  
Σ

Σ
Σ Σ

f α α α α

α α
α α α α

α α α α



  

  (89) 

Solving Eqs. (80) and (81) while using the definitions introduced in Equation (89) yields the 
following expression for the flux ( )uϕ  in terms of the components ( )if α  of the feature function ( )f α
: 

( ) ( ) ( ) ( ) ( )2 1exp ; (0) 0; 1, 0.u H u f uf H H u if uϕ = − = = >  α α  (90) 

In terms of the components ( )if α  of the feature function ( )f α , the model’s response takes on 
the following expression:  
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( ) ( ) ( ) ( )3 2 1exp .dR f f u f= −  α α α α  (91) 

As Equation (91) indicates, the model response can be considered to depend directly on 
3 12TP M +

 primary model parameters. Alternatively, the model response can be considered to 
depend directly on 3 feature functions and only indirectly (through the 3 feature functions) on the 
primary model parameters. In the former consideration/interpretation, the response sensitivities to 
the primary model parameters will be obtained by applying the nth-CASAM-L methodology. In the 
later consideration/interpretation, the response sensitivities to the primary model parameters will be 
obtained by applying the nth-FASAM-L methodology, which will involve two stages, as follows: the 
response sensitivities with respect to the feature functions will be obtained in the first stage, while 
the subsequent computation of the response sensitivities to the primary model parameters will be 
performed in the second stage, by using the response sensitivities with respect to the feature functions 
obtained in the first stage. The computational distinctions that stem from these differing 
considerations/interpretations within the nth-CASAM-L methodology versus the nth-FASAM-L 
methodology will become evident in the remainder of this Section by means of using the illustrative 
neutron slowing-down model, which is representative of the general situation for any linear system.  

According to the “reciprocity relation” for linear systems highlighted in Equation (8), the 
detector response defined in Equation (87) can be alternatively expressed in terms of the solution of 
the “adjoint slowing-down model”, i.e., the model that would be adjoint to the forward slowing-
down model represented by Eqs. (80) and (81). The “adjoint slowing-down model” is constructed in 
the Hilbert space BH  of all square-integrable functions ( ) Buϕ ∈H , ( ) Buψ ∈H  endowed with the 
following inner product, denoted as ( ) ( ),

B
u uϕ ψ : 

( ) ( ) ( ) ( )
0

, .
thu

B
u u u u duϕ ψ ϕ ψ∫  (92) 

Using the inner product ( ) ( ),
B

u uϕ ψ  defined in Equation (92), the adjoint slowing-down 

model is constructed by the usual procedure, namely: (i) construct the inner product of Equation (80) 
with a function ( ) Buψ ∈H ; (ii) integrate by parts the resulting relation so as to transfer the differential 

operation from the forward function ( )uϕ  onto the adjoint function ( )uψ ; (iii) use the initial 

condition provided in Equation (81) and eliminate the unknown function ( )thuϕ  by choosing the 

final-value condition ( ) 0thuψ = ; (iv) choose the source for the resulting adjoint slowing-down model 
so as to satisfy the reciprocity relation shown in Equation (8). The result of these operations is the 
following adjoint slowing down model for the adjoint slowing-down function ( )uψ : 

( ) ( ) ( ) ( ) ( )1 3 ,d

d u
f u f u u

du
ψ

ψ δ− + = −α α  (93) 

( ) 0, .th thu at u uψ = =  (94) 

In terms of the adjoint slowing-down function ( )uψ , the detector response takes on the 
following alternative expression:  

( ) ( ) ( )2
0

.
thu

R f u u duψ δ= ∫α  (95) 
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The correctness of the alternative expression for the detector response provided in Equation (95) 
can be readily verified by solving the adjoint slowing down equation to obtain the following closed 
form expression for the adjoint slowing-down function ( )uψ : 

( ) ( ) ( ) ( ) ( )3 1exp ,d du H u u f u u fψ = − −  α α  (96) 

and subsequently inserting the above expression into Equation (95) to obtain the same final 
result as was obtained in Equation (91) in terms of the forward slowing-down flux ( )uϕ . 

5.1. First-Order Adjoint Sensitivity Analysis: 1st-FASAM-L Versus 1st-CASAM-L 

In this Subsection, the computation of the first-order sensitivities of the response ( )R α  with 
respect to the primary model parameters will first be demonstrated by using the 1st-FASAM-L. 
Subsequently, the same first-order sensitivities will be obtained by using the 1st-CASAM-L and the 
two alternative paths will be compared to each other, showing that the same expressions are obtained 
for the respective sensitivities, as expected. Although the computational efforts are not identical, they 
are comparable in terms of efficiency, with a slight advantage for the 1st-FASAM-L methodology. 

5.1.1. Application of the 1st-FASAM-L 

The 1st-FASAM-L will be applied to the neutron slowing-down paradigm illustrative model by 
following the principles outlined in Section 3. In this case, the model response is written in terms of 
the feature functions as follows: 

( ) ( ) ( )3
0

, ,
thu

dR f u u u duϕ ϕ δ= −∫f  (97) 

where the flux ( )uϕ  is the solution of the 1st-Level Forward/Adjoint System (1st-LFAS) comprising 
Eqs. (80) and (81), where Equation (80) is written in terms of the feature functions as follows: 

( ) ( ) ( )1 2 ; 0 .th

d u
f u f u u u

du
ϕ

ϕ δ+ = < ≤  (98) 

The first-order sensitivities of the response ( ),R ϕ f  with respect to the components of the 

feature function ( )f α  are provided by the first-order Gateaux (G-)variation ( )( )10 0, ; ,R vδ ϕ δf f  of 

( ),R ϕ f , for variations ( ) ( ) ( )1v u uδϕ  and 3fδ  around the phase-space point ( )0 0,ϕ f , as shown in 

Equation (18), to obtain:  

( )( ) ( ) ( )( ) ( )

( ){ } ( )( ){ }

1 10 0 0 0
3 3

0 0

10 0 0 0
3

, ; ,

, ; , ; ,

thu

d

dir ind

dR v f f v u u du
d

R f R v

ε

δ ϕ δ εδ ϕ ε δ
ε

δ ϕ δ δ ϕ

=

   + + −  
    

+

∫f f

f f





  (99) 

where the “direct-effect” term ( ){ }0 0
3, ;

dir
R fδ ϕ δf  and, respectively, the “indirect-effect” term 

( )( ){ }10 0, ;
ind

R vδ ϕ f  are defined as follows: 

( ){ } ( ) ( ) ( )0 0 0
3 3

0

, ; ,
thu

ddir
R f f u u u duδ ϕ δ δ ϕ δ −∫f 

 (100
) 
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( )( ){ } ( ) ( ) ( )1 10 0 0
3

0

, ; .
thu

d
ind

R v f v u u u duδ ϕ δ −∫f   (101
) 

The “1st-level variational sensitivity function” ( ) ( )1v u  is obtained as the solution of the “1st-Level 
Variational Sensitivity System (1st-LVSS)” obtained by taking the first-order G-differentials of the 1st-
LFAS defined by Eqs. (98) and (81), which are derived as shown in Eqs. (28) and (29), to obtain: 

( )( ) ( ) ( )( ) ( ) ( )
10

10 0 0
1 1 2 2

0
0

,
d vd df f v u f f

d du d ε
ε

ϕ ε
εδ ϕ ε δ εδ

ε ε =
=

  +    + + + = +         

 (102
) 

( ) ( ) ( )10

0

0; 0.d u v u at u
d ε

ϕ ε
ε =

  + = =   
 (103

) 

Carrying out the differentiations with respect to ε  in the above equations and setting 0ε =  in 
the resulting expressions yields the following 1st-LVSS:  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1

10 0
1 2 1 ,

dv u
f v u f u f u

du
α δ δ δ ϕ+ = −  

(104
) 

( ) ( )1 0; 0.v u at u= =  (105
) 

For further reference, the closed-form solution of the above 1st-LVSS has the following 
expression: 

( ) ( ) ( ) ( ) ( ){ } 01 2 1 2 1exp .v u f f uf H u uf
α

δ δ= − −    (106
) 

In principle, the above expression for ( ) ( )1v u  could be used in Equation (101) to obtain the value 
if the indirect-effect term. In practice, however, the 1st-LVSS cannot be solved analytically so the 
closed form expression of ( ) ( )1v u  is not available. Consequently, rather than (numerically) solve 
repeatedly the 1st-LVSS for every possible variation induced by the primary parameters in the 
component feature functions, the alternative route to determining the expression of the indirect-effect 
term is to develop the 1st-Level Adjoint sensitivity System (1st-LASS) by following the procedure 
described in Section 3. The Hilbert space, denoted as 1H , appropriate for this illustrative model is 
the space of all square-integrable functions endowed with the following inner product, denoted as 

( ) ( ) ( ) ( )1 1

1
,u uχ θ , between two elements, ( ) ( )1

1uχ ∈H , ( ) ( )1
12;θ ∈x H , belonging to this Hilbert 

space: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 1 1

1
0

, .
thu

u u u u duχ θ χ θ∫  (107
) 

In this particular instance, the Hilbert space 1H  coincides with the original Hilbert space BH  
used for the original forward and adjoint slowing down models. More generally, similar situations 
occur when the response depends either just on the forward or just on the adjoint state function(s). 

Using Equation (107), construct in the Hilbert space 1H  the inner product of Equation (104) 

with a square-integrable function ( ) ( )1
1a u ∈H  to obtain the following relation:  
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00

1
1 1 1

1 2 1
0 0

.
th thu udv u

a u f v u du a u f u f u du
du

δ δ δ ϕ
       + = −      

        
∫ ∫

αα

 (108
) 

Using the definition of the adjoint operator in the Hilbert space 1H , which in this case amounts 
to integration by parts of the left-side of Equation (108), obtain the following relation: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
0 0

0

1 1
1 1 1 1

1 1
0 0

1 1 1 10 0 .

th thu u

th th

dv u da u
a u f v u du v u f a u du

du du

a u v u a v

         + = − +      
            

+ −

∫ ∫
α α

α

  (109
) 

Require the first term on right-side of Equation (109) to represent the indirect-effect term defined 
in Equation (101), to obtain the following relation: 

( ) ( ) ( ) ( ) ( ){ } 0

0

1
1

1 3 ; 0 .d th

da u
f a u f u u u u

du
δ

  − + = − < ≤ 
  

α
α

 (110
) 

Implement the boundary conditions represented by Equation (105) into Equation (109) and 
eliminate the unknown boundary-value ( ) ( )1

thv u  from this relation by imposing the following 
boundary condition: 

( ) ( )1 0, .th tha u at u u= =  (111
) 

The system of equations comprising Equation (110) together with the boundary condition 
represented Equation (111) is the 1st-Level Adjoint Sensitivity System (1st-LASS) and its solution ( ) ( )1a u  
is the 1st-level adjoint sensitivity function.  

Using Equation (101), together with the equations underlying the 1st-LASS and 1st-LVSS in 
Equation (108) reduces the latter to the following expression for the indirect-effect term: 

( )( ){ } ( ) ( ) ( ) ( ) ( ) ( )
0

1 10 0
2 1

0

, ; .
thu

ind
R a a u f u f u duδ ϕ δ δ δ ϕ

  = −   
  
∫

α

f  (112
) 

Adding the expression obtained in Equation (112) with the expression for the direct-effect term 
defined in Equation (100) yields the following expression for the total 1st-order variation 

( )( )10 0, ; ,R vδ ϕ δf f  of the response ( ) ( );R uϕ  f α  with respect to the components of the feature 

function ( )f α : 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( ){ }
0

0
0

1 10 0
2 1

0

1
3

0

, ; ,

, ; , .

th

th

u

u

d

R v a u f u f u du

f u u u du R a

δ ϕ δ δ δ δ ϕ

δ ϕ δ δ ϕ δ

  = −   
  

  + − ≡ 
  

∫

∫

α

α
α

f f

f f

 (113
) 

The identity which appears in Equation (113) emphasizes the fact that “1st-level variational 
sensitivity function” ( ) ( )1v u , which is expensive to compute, has been eliminated from the final 

expression of the 1st-order total variation ( )( ){ } 0

1, ; ,R aδ ϕ δ
α

f f , being replaced by the dependence on 

the 1st-level adjoint sensitivity function ( ) ( )1a u , which is independent of variations ( )δ f α  in the 
components of the feature function and is consequently also independent of any variations δα  in 
the primary model parameters. Hence, the 1st-LASS needs to be solved only once to determine the 1st-
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level adjoint sensitivity function ( ) ( )1a u , which requires the same amount of computational effort as 

solving the original forward system for the function ( )uϕ . 

The expressions of the sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

components of the feature function ( )f α  are given by the expressions that multiply the respective 

components of ( )f α  in Equation (113), namely:  

( ) ( ) ( ) ( )1

1 0

;
;

thuR
a u u du

f
ϕ

ϕ
∂

= −
∂ ∫

f  (114
) 

( ) ( ) ( ) ( )1

2 0

;
,

thuR
a u u du

f
ϕ

δ
∂

=
∂ ∫

f  (115
) 

( ) ( ) ( )
3 0

;
.

thu

d

R
u u u du

f
ϕ

ϕ δ
∂

= −
∂ ∫

f  (116
) 

The above expressions are to be evaluated at the nominal parameter values 0α  but the indication 
{ } 0α  has been omitted for simplicity. 

Solving the 1st-LASS yields the following closed-form expression for the 1st-level adjoint 
sensitivity function ( ) ( )1a u :  

( ) ( ) ( ) ( ) ( ) ( )1
3 1exp ,d da u H u u f u u f= − −  α α  (117

) 

where the Heaviside functional has the usual meaning, namely: ( ) 0d dH u u if u u− = >  and 

( ) 1d dH u u if u u− = < . 

Inserting the expression obtained in Equation (117) into Eqs. (114)‒(116) yields the following 
closed-form expressions for the sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

components of the feature function ( )f α : 

( ) ( ) ( ) ( )2 3 1
1

;
exp ;d d

R
u f f u f

f
ϕ∂

= − −  ∂
f

α α α  (118
) 

( ) ( ) ( )3 1
2

;
exp ,d

R
f u f

f
ϕ∂

= −  ∂
f

α α  (119
) 

( ) ( ) ( )2 1
3

;
exp .d

R
f u f

f
ϕ∂

= −  ∂
f

α α  (120
) 

The correctness of the expressions obtained in Eqs. (118)‒(120) can be verified by directly 
differentiating the closed-form expression given in Equation (91). 

Alternatively, the 1st-FASAM-L methodology could have been applied to the alternative 
expression, in terms of the adjoint slowing-down function, for the detector response provided in 
Equation (95). It can be verified that the final expressions for the response sensitivities with respect 
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to the feature functions ( )if α , 1,2,3i = , obtained by using Equation (95) as the starting point in 
conjunction with the adjoint slowing-down model are the same as obtained in Eqs. (118)‒(120).  

The expressions of the first-order sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

primary model parameters jα , 3 12j TP M= + , as defined in Equation (88), are obtained by using 
the expressions obtained in Eqs. (118)‒(120) in conjunction with the chain rule of differentiation of 
the compound functions ( )if α , 1,2,3i = . Note that the feature function ( ) ( )3 3 ,d df f N σα   depends 
only on the parameters that characterize the detector, so the first-order sensitivities of the response 

( ) ( );R uϕ  f α  with respect to the primary model parameters dN  and dσ  can be readily obtained by 

using Equation (120), as follows: 

( ) ( ) ( ) ( )3
2 1

3

; ;
expd d

d d

R R f
f u f

N f N
ϕ ϕ

σ
∂ ∂ ∂

= = −  ∂ ∂ ∂
f f

α α  (121
) 

( ) ( ) ( ) ( )3
2 1

3

; ;
expd d

d d

R R f
N f u f

f
ϕ ϕ
σ σ

∂ ∂ ∂
= = −  ∂ ∂ ∂

f f
α α  (122

) 

Similarly, the primary model parameters ( )1 2 1 2 1 2 1 2 1 2, , , , , , , , ,S S S S S S S S S SN N F F W Wλ λ ν ν  that 

characterize the neutron source distribution only appear through the definition of the feature 
function ( ) ( ) ( ) ( )2 0 tf S ξ Σα α α α . It therefore follows that the first-order sensitivities of the 
response ( ) ( );R uϕ  f α  with respect to these primary model parameters are obtained as follows:  

( ) ( )
( ) ( ) ( ) ( )2

3 1
2

; ;
exp , 1,2;

S S S S
k k k k

dS S
ti i

R R N F Wf f u f k
f

ϕ ϕ ν
ξλ λ

∂ ∂ ∂
= = − =  ∂ Σ∂ ∂

f f
α α

α α
  (123

) 

( ) ( )
( ) ( ) ( ) ( )2

3 1
2

; ;
exp , 1,2;

S S S S
i k k k

dS S
tk k

R R F Wf f u f k
fN N

ϕ ϕ λ ν
ξ

∂ ∂ ∂
= = − =  ∂ Σ∂ ∂

f f
α α

α α
 (124

) 

( ) ( )
( ) ( ) ( ) ( )2

3 1
2

; ;
exp , 1,2;

S S S S
i k k k

dS S
tk k

R R N Wf f u f k
fF F

ϕ ϕ λ ν
ξ

∂ ∂ ∂
= = − =  ∂ Σ∂ ∂

f f
α α

α α
  (125

) 

( ) ( )
( ) ( ) ( ) ( )2

3 1
2

; ;
exp , 1,2;

S S S S
i k k k

dS S
tk k

R R N F Wf f u f k
f

ϕ ϕ λ
ξν ν

∂ ∂ ∂
= = − =  ∂ Σ∂ ∂

f f
α α

α α
 (126

) 

( ) ( )
( ) ( ) ( ) ( )2

3 1
2

; ;
exp , 1,2.

S S S S
i k k k

dS S
tk k

R R N Ff f u f k
fW W

ϕ ϕ λ ν
ξ

∂ ∂ ∂
= = − =  ∂ Σ∂ ∂

f f
α α

α α
  (127

) 

On the other hand, the primary model parameters ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1, , ,..., , ,M M M
m s m sN Nγ γσ σ σ σ  that 

characterize the composition of the homogenized material in which the neutrons slow-down appear 
through the definitions of both feature functions ( ) ( ) ( ) ( )1 a tf ξΣ Σα α α α  and 

( ) ( ) ( ) ( )2 0 tf S ξ Σα α α α . It therefore follows that the first-order sensitivities of the response 

( ) ( );R uϕ  f α  with respect to these primary model parameters are obtained as follows:  

( )
( )

( )
( )

( )
( )

1 2
1 1

1 2

; ; ;
; 1,..., ;

i
m m m

R R Rf f i M
f fN N N

ϕ ϕ ϕ∂ ∂ ∂∂ ∂
= + =

∂ ∂∂ ∂ ∂

f f f  (128
) 
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( )
( )

( )
( )

( )
( )

1 2

1 2

; ; ;
; 1,..., ;

i i i

R R Rf f i M
f fγ γ γ

ϕ ϕ ϕ

σ σ σ

∂ ∂ ∂∂ ∂
= + =

∂ ∂∂ ∂ ∂

f f f
 (129

) 

( )
( )

( )
( )

( )
( )

1 2

1 2

; ; ;
; 1,..., ;

i i i
s s s

R R Rf f i M
f f

ϕ ϕ ϕ
σ σ σ

∂ ∂ ∂∂ ∂
= + =

∂ ∂∂ ∂ ∂

f f f  (130
) 

The explicit differentiations in Eqs. (128)‒(130) are straightforward to perform, but are too 
lengthy to be presented here and are not material to applying the principles of the 1st-FASAM-L 
methodology.  

In summary, the application of the 1st-FASAM-L to compute the first-order sensitivities of the 
response ( ) ( );R uϕ  f α  with respect to the primary model parameters jα , 1,..., 3 12j TP M= + , 

requires the following computations:  

1. One “large-scale” computation to solve the 1st-LASS to obtain the 1st-level adjoint sensitivity 
function ( ) ( )1a u . 

2. Three “quadratures”, as indicated in Eqs. (114)‒(116), involving the 1st-level adjoint sensitivity 
function ( ) ( )1a u  to obtain the three sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

components ( )if α , 1,2,3i = , of the feature function ( )f α . These computations are inexpensive. 

3. Chain-rule type differentiations using the definitions of the components ( )if α , 1,2,3i =  of the 

feature function ( )f α , and the three sensitivities obtained in Eqs. (114)‒(116). These 
computations are inexpensive. 

5.1.2. Application of the 1st-CASAM-L 

The application of the 1st-CASAM-L methodology will yield the first-order response sensitivities 
directly with respect to the primary model parameters. These sensitivities will be obtained by 
determining the first-order Gateaux (G-) variation ( )( )10 0, ; ,R vδ ϕ δα α  of the response ( ),R ϕ α  as for 

variations ( ) ( ) ( )1v u uδϕ  and δα  around the phase-space point ( )0 0,ϕ α , using the definition 

provided in Equation (87), to obtain:  

( )( ) ( ){ } ( )( ){ }
( )( ) ( )( ) ( )

0

1 10 0 0 0 0 0

10

0 0

, ; , , ; , ;

,
th

dir ind

u

d d d d d

R v R R v

d N N v u u du
d

ε

δ ϕ δ δ ϕ δ δ ϕ

εδ σ εδσ ϕ ε δ
ε

=

+

     + + + −   
      

∫
α

α α α α α



  
(131

) 

where the “direct-effect” term ( ){ }0 0, ;
dir

Rδ ϕ δα α  and, respectively, the “indirect-effect” term 

( )( ){ }10 0, ;
ind

R vδ ϕ α  are defined as follows: 

( ){ } ( ) ( ) ( ) ( )
0

0 0
3

0

, ; ,
thu

d d d d ddir
R f N N u u u duδ ϕ δ δ σ δσ ϕ δ

  + −   
  

∫
α

α    (132
) 

( )( ){ } ( ) ( ) ( )
0

1 10 0

0

, ; .
thu

d d d
ind

R v N v u u u duδ ϕ σ δ
  − 
  

∫
α

α   (133
) 
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The “1st-level variational sensitivity function” ( ) ( )1v u  is obtained as the solution of the “1st-Level 
Variational Sensitivity System (1st-LVSS)” obtained by taking the first-order G-differentials of the 1st-
LFAS defined by Eqs. (80) and (81) to obtain: 

( )( ) ( )
( ) ( )

( )( )

( )
( )

( ) ( )

10 0
10

0 0

0

0
0

0 0

0

,

a

t

t

d vd v
d du

Sdu
d

ε

ε

ϕ ε εδ
ϕ ε

ε ξ εδ εδ

εδ
δ

ε ξ εδ εδ

=

=

  + Σ +  + +  + Σ +   

 + =  
+ Σ +  

α α

α α α α

α α

α α α α

 (134
) 

 
(135

) 

Carrying out the differentiations with respect to ε  in the above equations and setting 0ε =  in 
the resulting expressions yields the following 1st-LVSS:  

( ) ( ) ( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( ) ( )

0

0

01
1 0

0 0
1

1
,

TP
a

i
i i tt

TP
a

i
i i t

dv u S
v u u

du

u

δ δα
α ξξ

ϕ δα
α ξ

=

=

Σ   ∂ + =   
∂ ΣΣ     

  Σ∂ −   
∂ Σ    

∑

∑

α

α

α α
α αα α

α
α α

 (136
) 

( ) ( )1 0; 0.v u at u= =  (137
) 

To avoid solving the above the 1st-LVSS repeatedly, for every possible variation in the primary 
parameters, the appearance of the function ( ) ( )1v u  will be eliminated for the expression of the 
indirect-effect term by replacing it with the solution of the 1st-Level Adjoint Sensitivity System (1st-
LASS) which will be constructed in the Hilbert space 1H , as before: use Equation (107) to form the 

inner product of Equation (136) with a square-integrable function ( ) ( )1
1a u ∈H  to obtain the 

following relation:  

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

0

0 0

1
1 1 0

10

1 1

10 0

.

th

th th

u TP
a

i
it i t

u uTP
a

i
i i t

dv u S
a u v u du

du

a u u du a u u du

δα
ξ α ξ

δ δα ϕ
α ξ

=

=

     Σ ∂  + =     
Σ ∂ Σ        

   Σ∂  × −    
∂ Σ      

∑∫

∑∫ ∫

α

α α

α α
α α α α

α
α α

   
(138

) 

Integration by parts of the left-side of Equation (138) yields the following relation: 

( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( ) ( ) ( ){ } ( ) ( )
( ) ( ) ( )

( ) ( )
( ) ( )

0

0

0

0

1
1 1 1 1

0

1
1 1 1 1

0

0 0 .

th

th

u
a

th th
t

u
a

t

dv u
a u v u du a u v u

du

da u
a v v u a u du

du

ξ

ξ

  Σ + =  
Σ    

  Σ − − +  
Σ    

∫

∫

α
α

α
α

α
α α

α
α α

  (139
) 

Requiring the first term on right-side of Equation (139) to represent the indirect-effect term 
defined in Equation (133) yields the following relation: 
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( ) ( ) ( )
( ) ( )

( ) ( ) ( ){ } 0

0

1
1 .a

d d d
t

da u
a u N u u

du
σ δ

ξ

 Σ − + = − 
Σ  

α
α

α
α α

 (140
) 

Eliminate the unknown boundary-value ( ) ( )1
thv u  from Equation (139) by imposing the 

following boundary condition: 

( ) ( )1 0, .th tha u at u u= =  (141
) 

The system of equations comprising Eqs. (140) and (141) is the 1st-Level Adjoint Sensitivity System 
(1st-LASS) and its solution ( ) ( )1a u  is the 1st-level adjoint sensitivity function. As already shown in the 
general 1st-FASAM methodology presented in Section 3, the 1st-LASS which arises within the 
framework of the 1st-CASAM-L is identical to the 1st-LASS that arises within the 1st-FASAM 
methodology, which is the reason underlying the use of the same notation for the 1st-level adjoint 
sensitivity function, namely ( ) ( )1a u , in both cases.  

Implementing the equations underlying the 1st-LASS and 1st-LVSS into Equation (138) and 
recalling the expression of the indirect-effect term provided in Equation (133) yields the following 
expression for the indirect-effect term: 

( )( ){ } ( )
( ) ( )

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

0

0

1 100 0

1 0

1

1 0

, ;

.

th

th

uTP

i
ind i i t

uTP
a

i
i i t

S
R a a u u du

a u u du

δ ϕ δα δ
α ξ

δα ϕ
α ξ

=

=

  ∂ =   
∂ Σ    

  Σ∂ −   
∂ Σ    

∑ ∫

∑ ∫

α

α

α
α

α α

α
α α

 (142
) 

Adding the expression obtained in Equation (142) with the expression for the direct-effect term 
defined in Equation (132) yields the following expression for the total 1st-order variation 

( )( )10 0, ; ,R vδ ϕ δf f  of the response ( ) ( );R uϕ  f α  with respect to the components of the feature 

function ( )f α : 

( )( ) ( )
( ) ( )

( ) ( ) ( )

( )
( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )( ){ }

0

0

0
0

1 100 0

1 0

1

1 0

1

0

, ; ,

, ; , .

th

th

th

uTP

i
i i t

uTP
a

i
i i t

u

d d d d d

S
R v a u u du

a u u du

N N u u u du R a

δ ϕ δ δα δ
α ξ

δα ϕ
α ξ

δ σ δσ ϕ δ δ ϕ δ

=

=

  ∂ =   
∂ Σ    

  Σ∂ −   
∂ Σ    

  + + − ≡   
  

∑ ∫

∑ ∫

∫

α

α

α
α

α
α α

α α

α
α α

α α

 (143
) 

The identity which appears in Equation (143) emphasizes the fact that “1st-level variational 
sensitivity function” ( ) ( )1v u , which is expensive to compute, has been eliminated from the final 

expression of the 1st-order total variation ( )( ){ } 0

1, ; ,R aδ ϕ δ
α

α α , being replaced by the dependence on 

the 1st-level adjoint sensitivity function ( ) ( )1a u , which is independent of any variations δα  in the 
primary model parameters. Hence, the 1st-LASS needs to be solved only once to determine the 1st-
level adjoint sensitivity function ( ) ( )1a u , which requires the same amount of computational effort as 

solving the original forward system for the function ( )uϕ . 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 5 April 2024                   doi:10.20944/preprints202404.0394.v1



 35 

 

The expressions of the first-order sensitivities of the response ( );R uϕ  α  with respect to the 

primary model parameters are the expressions that multiply the corresponding parameter variations 

iδα  in Equation (143). In particular, the (two) first-order sensitivities of the response ( );R uϕ  α  

with respect to the primary model parameters underlying the detector’s interaction cross section arise 
solely from the direct-effect term and have the following expressions:  

( ) ( ) ( ) ( )
0

;
;

thu

d d d d
d

R
u u u du u

N
ϕ

σ ϕ δ σ ϕ
∂

= − =
∂ ∫

α  (144
) 

( ) ( ) ( ) ( )
0

;
.

thu

d d d d
d

R
N u u u du N u

ϕ
ϕ δ ϕ

σ
∂

= − =
∂ ∫

α  (145
) 

The above expressions are to be evaluated at the nominal parameter values 0α  but the indication 
{ } 0α  has been omitted for simplicity. As expected, the above expressions are identical to the 
corresponding expressions obtained using the 1st-FASAM-L, as provided in Eqs. (121) and (122), 
respectively. 

The first-order sensitivities of the response ( );R uϕ  α  with respect to the primary model 

parameters underlying the spontaneous fission source arise solely from the first term on the right-
side of Equation (143) and have the following expressions in terms of the 1st-level adjoint sensitivity 
function ( ) ( )1a u : 

( )
( ) ( )

( ) ( ) ( )1

0

;
, 1, 2;

thuS S S S
k k k k

S
tk

R N F W
a u u du k

ϕ ν
δ

ξλ
∂

= =
Σ∂ ∫

α
α α

 
(146

) 

( )
( ) ( )

( ) ( ) ( )1

0

;
, 1, 2;

thuS S S S
i k k k

S
tk

R F W
a u u du k

N
ϕ λ ν

δ
ξ

∂
= =

Σ∂ ∫
f

α α
 (147

) 

( )
( ) ( )

( ) ( ) ( )1

0

;
, 1, 2;

thuS S S S
i k k k

S
tk

R N W
a u u du k

F
ϕ λ ν

δ
ξ

∂
= =

Σ∂ ∫
f

α α
 (148

) 

( )
( ) ( )

( ) ( ) ( )1

0

;
, 1, 2;

thuS S S S
i k k k

S
tk

R N F W
a u u du k

ϕ λ
δ

ξν
∂

= =
Σ∂ ∫

f
α α

 
(149

) 

( )
( ) ( )

( ) ( ) ( )1

0

;
, 1, 2.

thuS S S S
i k k k

S
tk

R N F
a u u du k

W
ϕ λ ν

δ
ξ

∂
= =

Σ∂ ∫
f

α α
 

(150
) 

As expected, the above expressions are identical to the corresponding expressions obtained 
using the 1st-FASAM-L, as provided in Eqs. (123)‒(127), respectively. 

The first-order sensitivities of the response ( );R uϕ  α  with respect to the primary model 

parameters ( ) ( ) ( ) ( ) ( ) ( )( )1 1 1, , ,..., , ,M M M
m s m sN Nγ γσ σ σ σ  that characterize the composition of the homogenized 

material in which the neutrons slow-down arise from both the first and the second terms on the right-
side of Equation (143) and have the following expressions in terms of the 1st-level adjoint sensitivity 
function ( ) ( )1a u : 
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( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 0

0

1

0

;

; 1,..., ;

th

th

u

i i
tm m

u
a

i
tm

R S
a u u du

N N

a u u du i M
N

ϕ
δ

ξ

ϕ
ξ

   ∂ ∂
=    

Σ∂ ∂      

   Σ∂
− =   

Σ∂      

∫

∫

f α
α α

α
α α

 (151
) 

( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 0

0

1

0

;

; 1,..., ;

th

th

u

i i
t

u
a

i
t

R S
a u u du

a u u du i M

γ γ

γ

ϕ
δ

ξσ σ

ϕ
ξσ

   ∂ ∂
=    

Σ∂ ∂      

   Σ∂
− =   

Σ∂      

∫

∫

f α
α α

α
α α

 (152
) 

( )
( )

( ) ( ) ( ) ( )
( )

( ) ( )

( ) ( ) ( ) ( )
( )

( ) ( )

1 0

0

1

0

;

; 1,..., .

th

th

u

i i
ts s

u
a

i
ts

R S
a u u du

a u u du i M

ϕ
δ

ξσ σ

ϕ
ξσ

   ∂ ∂
=    

Σ∂ ∂      

   Σ∂
− =   

Σ∂      

∫

∫

f α
α α

α
α α

 (153
) 

As expected, the above expressions are identical to the corresponding expressions obtained 
using the 1st-FASAM-L, as provided in Eqs. (128)‒(130), respectively. 

In summary, the application of the 1st-CASAM-L to compute the first-order sensitivities of the 
response ( ) ( );R uϕ  f α  with respect to the primary model parameters jα , 1,..., 3 12j TP M= + , 

requires the following computations:  

1. One “large-scale” computation to solve the 1st-LASS to obtain the 1st-level adjoint sensitivity 
function ( ) ( )1a u . As has been already remarked, this 1st-LASS is exactly the same as the 1st-LASS 
needed within the 1st-FASAM-L methodology for computing the first-order sensitivities of the 
response ( ) ( );R uϕ  f α  with respect to the components ( )if α , 1,2,3i = , of the feature function 

( )f α .  

2. A total of 3 12TP M +
 “quadratures” involving the 1st-level adjoint sensitivity function ( ) ( )1a u  

to obtain numerically the 3 12TP M +
 sensitivities of the response ( ) ( );R uϕ  f α  with respect 

to the primary model parameters jα , 1,..., 3 12j TP M= + . These numerical computations are 
inexpensive by comparison to solving the 1st-LASS but are more expensive than performing 
“chain-rule”-type differentiation “on paper,” as performed if applying the 1st-FASAM-L. Hence, 
the 1st-FASAM-L methodology enjoys a slight computational advantage over the 1st-CASAM-L 
methodology. 

5.2. Second-Order Adjoint Sensitivity Analysis: 2nd-FASAM-L Versus 2nd-CASAM-L 

In this Subsection, the computation of the first-order sensitivities of the response ( )R α  with 
respect to the primary model parameters will first be demonstrated by using the 2nd-FASAM-L. 
Subsequently, the same first-order sensitivities will be obtained by using the 2nd-CASAM-L and the 
two alternative paths will be compared to each other, showing that the same expressions are obtained 
for the respective sensitivities, as expected. Both the 2nd-FASAM-L and the 2nd-CASAM-L 
methodologies obtain the second-order sensitivities by considering the first-order G-differential of 
each of the first-order sensitivities. Therefore, the 2nd-FASAM-L methodology will provide significant 
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computational advantages by comparison to the 2nd-CASAM-L methodology the since it will require 
at most 3 large-scale computations, i.e., the same number of large-scale computations as the number 
of components ( )if α , 1,2,3i = , of the feature function ( )f α . In contradistinction, the 2nd-CASAM-L 
methodology will require one large-scale (adjoint) computation for each primary model parameter 

jα , 1,..., 3 12j TP M= + , amounting to a total of number of 3 12TP M +
 large-scale computations. 

5.2.1. Application of the 2nd-FASAM-L 

As has been shown in Section 4, the 2nd-FASAM-L methodology generically determines the 2nd-
order sensitivities ( ) ( ) ( )

2 1

12 2; ; j jR f f ∂ ∂ ∂ u x f α  of the response with respect to the components of the 

“feature” function ( )f α  by conceptually considering that the first-order sensitivities 
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1

1 1 1 1
1; 2; ; 2; ; 2; ; jR j R f   ∂ ∂   u x a x f α u x f α

, are “model responses.” Consequently, the 

2nd-order sensitivities are obtained as the “1st-order sensitivities of the 1st-order sensitivities” by 
applying the concepts underlying 1st-FASAM to each 1st-order sensitivity 

( ) ( ) ( ) ( ) ( ) ( )1 1 1
1; 2; ; 2; ;R j 

 u x a x f α , 1 1,...,j TF= .  

5.2.1.1. Second-Order Sensitivities Stemming From ( ) 1;R fϕ∂ ∂f  

The above principles will be applied to the first-order sensitivity 
( ) ( ) ( ) ( ) ( ) ( )1 1

11; ; ; ;R u a u R fϕ ϕ  ∂ ∂ f α f

 expressed by Equation (114) to obtain the second-order 

sensitivities of the form ( )2
1; jR f fϕ∂ ∂ ∂f , 1,2,3j = . The argument “1” in the notation 

( ) ( ) ( ) ( ) ( )1 11; ; ;R u a uϕ 
 f α  indicates that this sensitivity is with respect to the first component, namely 

( )1f α , of the feature function ( )f α , while also depending on the functions ( )uϕ  and ( ) ( )1a u . These 
functions are the solutions of the “2nd-Level Forward/Adjoint System (2nd-LFAS)” which is obtained 
by concatenating the original 1st-Level Forward/Adjoint System (1st-LFAS) with the 1st-Level Adjoint 
Sensitivity System (1st-LASS), cf. Eqs. (98), (81), (110) and (111), as reproduced below: 

( ) ( ) ( )1 2 ; 0 ;th

d u
f u f u u u

du
ϕ

ϕ δ+ = < ≤  
(154

) 

( ) ( ) ( ) ( ) ( )
1

1
1 3 ; 0 ;d th

da u
f a u f u u u u

du
δ− + = − < ≤  

(155
) 

( ) ( ) ( )10 0; 0; 0, .th that u a u at u uϕ = = = =  (156
) 

The first-order G-differential of ( ) ( ) ( ) ( ) ( )1 11; ; ;R u a uϕ 
 f α  is obtained from Equation (114), by 

definition, as follows: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }
( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

0

1 1 1 1

1 1 1

0 , 0

23
1 1 1

1 10

1; ; ; ; ; ;

;
.

th

th

u

u

j
j j

R u a u v u a u

d a u a u u v u du
d

R
v u a u a u u du f

f f

ε

δ ϕ δ δ

εδ ϕ ε
ε

ϕ
δ ϕ δ

=

=

 
 

     − + +      

  ∂  = − + ≡   ∂ ∂  

∫

∑∫

α

α

α

f f

f

   (157
) 
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Note that the first-order G-differential ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 1 11; ; ; ; ;R u a u v u a uδ ϕ δ 
  α

f α  consists 

solely of the “indirect-effect term”; there is no “direct-effect” term since there is no explicit 
dependence on variations ( )δ f α .  

The variational functions ( ) ( )1v u  and ( ) ( )1a uδ  are the solutions of the system of equations 
obtained by taking the first-G-differential of the 2nd-LFAS. Applying the definition of the first G-
differential to the equations underlying the 2nd-LFAS yields the following 2nd-Level Variational 
Sensitivity System (2nd-LVSS)” for the 2nd-level variational sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v  : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

0

1
1

1 2 1 ,
dv u

f v u f u f u
du

δ δ δ ϕ
  + = − 
  

α
α

 (158
) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

0

1

1 1
1 3 1 ; 0 ;d th

d a u
f a u f u u f a u u u

du

δ
δ δ δ δ

      − + = − − < ≤  
  

α

α

 (159
) 

( ) ( ) ( ) ( )1 10, 0; 0, .th thv u at u a u at u uδ= = = =  (160
) 

The above 2nd-LVSS would need to be solved repeatedly, for every possible variation in the 
feature functions ( )if α , 1,2,3i = . This need is circumvented by deriving an alternative expression for 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 1 11; ; ; ; ;R u a u v u a uδ ϕ δ 
  α

f α , in which the 2nd-level variational function 

( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v   is replaced by a 2nd-level adjoint sensitivity function which will be 

independent of variations in the feature functions ( )if α , 1,2,3i = . This 2nd-level adjoint sensitivity 
function will be the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS) to be constructed 
below by following the steps generally outlined in Section 5, in a Hilbert space, denoted as 2H , 

which is endowed with the following inner product, denoted as ( ) ( ) ( ) ( )2 2

2
2; , 2;u uχ θ , between two 

elements, ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2 22; ,u u uχ χ  ∈ χ  H  and ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2 22; ,u u uθ θ  ∈ θ  H : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2 2 2
1 1 2 22

0

2; , 2; .
thu

u u u u u u duχ θ χ θ + ∫χ θ 

  (161
) 

Using Equation(161) to form the inner product in the Hilbert space 2H  of the 2nd-LVSS, cf. Eqs. 

(158) and (159), with a yet undefined function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 2 22;1; 2;1; , 2;1;u a u a u  ∈ a  H  yields the 

following relation: 
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( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2 1 2 1 1

1 1 2 1
0 0

2
1 2 1

0

2 1
2 3 1

0

2;1; 2;1;

2;1;

2;1; .

th th

th

th

u u

u

u

d

dv u da u f v u du a u a u f a u du
du du

a u f u f u du

a u f u u f a u du

δ δ

δ δ δ ϕ

δ δ δ

   + + − +      

= −  

 + − − 

∫ ∫

∫

∫

  
(162

) 

The above relation holds for the nominal parameter values, but the notation { } 0α  has been 
omitted, for simplicity.  

Using the definition of the adjoint operator in the Hilbert space 2H , which amounts to 
integration by parts, recast the left-side of Equation (162) into the form below: 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

1
2 1 2 1 1

1 1 2 1
0 0

2 2
1 2 1 21 2

1 1 1 2
0 0

2 1 2 1 2 1
1 1 2

2;1; 2;1;

2;1; 2;1;
2;1; 2;1;

2;1; 2;1;0 0 2;1;

th th

th th

u u

u u

th th th t

dv u da u f v u du a u a u f a u du
du du

da u da u
v u f a u du a u f a u du

du du

a u v u a v a u a u

δ δ

δ

δ

   + + − +      
   

= − + + +   
      

+ − −

∫ ∫

∫ ∫

( ) ( ) ( ) ( ) ( )2 1
2 2;1;0 0 .h a aδ+

 
(163

) 

The first two terms on right-side of Equation (163) are now required to represent the G-

differential ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 1 11; ; ; ; ;R u a u v u a uδ ϕ δ 
  α

f α  defined in Equation (157), which yields the 

following relations:  

( ) ( )
( ) ( )

( ) ( )
( )

2 1
11

2
1 2

2;1;0
.

0 2;1;

a ud du f a u
d du f ua u ϕ

   − + − 
  =      + −    

  (164
) 

The definition of the vector ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;1; 2;1; , 2;1;u a u a u 
 a   will now be completed by 

selecting boundary conditions so as to eliminate the unknown values ( ) ( )1
thv u  and ( ) ( )1 0aδ  in 

Equation (163). This is accomplished by imposing the following boundary conditions: 

( ) ( ) ( ) ( )2 2
1 22;1; 0; 2;1;0 0.tha u a= =  (165

) 

The system of equations represented by Eqs. (164) and (165) constitute the 2nd-Level Adjoint 
Sensitivity System (2nd-LASS) for the 2nd-level adjoint sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;1; 2;1; , 2;1;u a u a u 
 a  . It is important to note that the 2nd-LASS is independent of any 

variations, δ f , in the components of the feature function and, hence, is independent of any parameter 
variations, δα , as well. 

The equations underlying the 2nd-LASS, together with the equations underlying the 2nd-LVSS, 
are now employed in Equation(162), in conjunction with Equation (163), to obtain the following 

expression for the G-differential ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 1 11; ; ; ; ;R u a u v u a uδ ϕ δ 
  α

f α  in terms of the 2nd-

level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;1; 2;1; , 2;1;u a u a u 
 a  : 
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( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( ){ }

0

0

1 1 1 1 2
2 1

0

2 2
1 1 3 2

0 0

23
2 1

1 2
1 10

1 1 2

1; ; ; ; ; 2;1;

2;1; 2;1;

;
2;1;

1; ; ; 2;1; ; .

th

th th

th

u

u u

d

u

j
j j

R u a u v u a u f a u u du

f a u u du f a u u u du

R
f a u a u du f

f f

R u a u u

δ ϕ δ δ δ

δ ϕ δ δ

ϕ
δ δ

δ ϕ

=

  = 

− + −

∂
− ≡

∂ ∂

 ≡  

∫

∫ ∫

∑∫

α

α

f α

f

a f α

 (166
) 

As the last equality (identity) in Equation (166) indicates, the 2nd-level variational sensitivity 

function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v   has been eliminated from the final expression of the G-

differential ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 1 11; ; ; ; ;R u a u v u a uδ ϕ δ 
  α

f α , having been replaced by the 2nd-level 

adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;1; 2;1; , 2;1;u a u a u 
 a  . Identifying in Equation (166) the 

expressions that multiply the variations ifδ , 1,2,3i = , yields the following expressions for the 
second-order sensitivities of the response ( ) ( );R uϕ  f α  with respect to the components of the 

feature function ( )f α : 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2

2 2 1
1 2

1 1 0 0

;
2;1; 2;1; ;

th thu uR
a u u du a u a u du

f f
ϕ

ϕ
∂

= − −
∂ ∂ ∫ ∫

f  (167
) 

( ) ( ) ( ) ( )
2

2
1

2 1 0

;
2;1; ;

thuR
a u u du

f f
ϕ

δ
∂

=
∂ ∂ ∫

f  (168
) 

( ) ( ) ( ) ( )
2

2
2

3 1 0

;
2;1; .

thu

d

R
a u u u du

f f
ϕ

δ
∂

= −
∂ ∂ ∫

f  (169
) 

The 2nd-LASS can be solved to obtain the following closed-form expressions for the components 

of the 2nd-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;1; 2;1; , 2;1;u a u a u 
 a  ; 

( ) ( ) ( )( ) ( ) ( ) ( )2
1 3 12;1; exp ,d d da u f u u H u u u u f= − − − −  α α  (170) 

( ) ( ) ( ) ( )2
2 2 12;1; exp ,a u uf uf= − −  α α  (171) 

Inserting the expressions obtained in Eqs. (170) and (171) into Eqs. (167)‒(169) and performing 
the respective integrations yields the following expressions for the respective second-order 
sensitivities: 

( ) ( ) ( ) ( ) ( )
2

2
2 3 1

1 1

;
exp ;d d

R
u f f u f

f f
ϕ∂

= −  ∂ ∂
f

α α α   (172
) 

( ) ( ) ( )
2

3 1
2 1

;
exp ;d d

R
u f u f

f f
ϕ∂

= − −  ∂ ∂
f

α α  (173
) 

( ) ( ) ( )
2

2 1
3 1

;
exp ;d d

R
u f u f

f f
ϕ∂

= − −  ∂ ∂
f

α α  (174
) 
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The correctness of the expressions obtained in Eqs. (172)‒(174) can be verified by directly 
differentiating the closed-form expressions provided in Eqs. (118)‒(120). 

5.2.1.2. Second-Order Sensitivities Stemming From ( ) 2;R fϕ∂ ∂f  

Applying the procedure used in the previous Subsection to the first-order sensitivity 
( ) ( ) ( ) ( ) ( )1 1

22; ; ;R a u R fϕ  ∂ ∂ f α f

 expressed by Equation (115) will provide the second-order 

sensitivities of the form ( )2
2; jR f fϕ∂ ∂ ∂f , 1,2,3j = . The argument “2” in the notation 

( ) ( ) ( ) ( )1 12; ;R a u 
 f α  indicates that this sensitivity is with respect to the second component, namely 

( )2f α , of the feature function ( )f α . Remarkably, this sensitivity does not depend on the forward 

function ( )uϕ  but only depends on the 1st-level adjoint sensitivity function ( ) ( )1a u . As previously 
discussed, these functions are the solutions of the “2nd-Level Forward/Adjoint System (2nd-LFAS).”  

The first-order G-differential of ( ) ( ) ( ) ( )1 12; ;R a u 
 f α  is obtained by applying its definition to 

Equation (115), as follows: 

( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( )
0

0

23
1 1 1 1

1 20

;
2; ; ; .

thu

j
j j

R
R a u a u a u u du f

f f
ϕ

δ δ δ δ δ
=

  ∂   = ≡   ∂ ∂  
∑∫α

α

f
f α  (6) (175

) 

As indicated in Equation (175), the first-order G-differential ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 12; ; ;R a u a uδ δ 
  α

f α  

consists solely of the indirect-effect term which depends on the 1st-level variational function ( ) ( )1a uδ

. As before, the need for computing this variational function is circumvented by constructing a 2nd-
Level Adjoint Sensitivity System (2nd-LASS) for a 2nd-level adjoint sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;2; 2;2; , 2;2;u a u a u 
 a  , by implementing the same steps as outlined above for 

obtaining the 2nd-order sensitivities that stem from the first-order sensitivity ( ) 2;R fϕ∂ ∂f , namely 
Eqs. (162)‒(165). These steps will not be repeated here in detail; they lead to the following 2nd-LASS 

for 2nd-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;2; 2;2; , 2;2;u a u a u 
 a  :   

( ) ( )
( ) ( ) ( )

2
11

2
1 2

2;2; 00
.

0 2;2;

a ud du f
ud du f a u δ

 − +   
  =    +    

 (176
) 

( ) ( ) ( ) ( )2 2
1 22;2; 0; 2;2;0 0.tha u a= =  (177

) 

Solving the 2nd-LASS defined by Eqs. (176) and (177) yields the following closed-form 
expressions for the components of the 2nd-level adjoint sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;2; 2;2; , 2;2;u a u a u 
 a  : 

( ) ( ) ( ) ( ) ( ) ( )2 2
1 2 12;2; 0; 2;2; expa u a u H u uf= = −  α .  (178

) 

The alternative expression of the G-differential ( ) ( ) ( ) ( ) ( ) ( ){ } 0

1 1 22; ; 2;2; ;R a u uδ δ 
  α

a f α  in terms of 

the 2nd-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;2; 2;2; , 2;2;u a u a u 
 a   has the following 

form (which is obtained by implementing the same steps as those leading to Equation (166), above):  
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( ) ( ) ( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

0

1 1 2 2
3 2

0

23
2 1

1 2
1 20

2; ; 2;2; ; 2;2;

;
2;2; .

th

th

u

d

u

j
j j

R a u u f a u u u du

R
f a u a u du f

f f

δ δ δ δ

ϕ
δ δ

=

  = − 

∂
− ≡

∂ ∂

∫

∑∫

α
a f α

f
 (179

) 

Identifying in Equation (179) the expressions that multiply the variations ifδ , 1,2,3i = , yields 
the following second-order sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

components of the feature function ( )f α : 

( ) ( ) ( ) ( ) ( )
2

2 1
2

1 2 0

;
2;2; ;

thuR
a u a u du

f f
ϕ∂

= −
∂ ∂ ∫

f  (180
) 

( )2

2 2

;
0;

R
f f
ϕ∂

=
∂ ∂

f  (181
) 

( ) ( ) ( ) ( )
2

2
2

3 2 0

;
2;2; .

thu

d

R
a u u u du

f f
ϕ

δ
∂

= −
∂ ∂ ∫

f  (182
) 

Inserting the expression obtained for ( ) ( )2
2 2;2;a u  in Equation (178) into Eqs. (180) and (182), and 

performing the respective integrations yields the following expressions for the respective second-
order sensitivities: 

( ) ( ) ( )
2

3 1
1 2

;
exp ;d d

R
u f u f

f f
ϕ∂

= − −  ∂ ∂
f

α α  (183
) 

( ) ( )
2

1
3 2

;
exp ;d

R
u f

f f
ϕ∂

= −  ∂ ∂
f

α  (184
) 

The correctness of the expressions obtained in Eqs. (183) and (184) can be verified by directly 
differentiating accordingly the closed-form expressions given in Eqs. (118)‒(120). 

5.2.1.3. Second-Order Sensitivities Stemming From ( ) 3;R fϕ∂ ∂f  

Applying the above principles to the first-order sensitivity 
( ) ( ) ( ) ( ) ( ) ( )1 1

33; ; ; ;R u a u R fϕ ϕ  ∂ ∂ f α f

 obtained in Equation (116) will provide the second-order 

sensitivities of the form ( )2
3; jR f fϕ∂ ∂ ∂f , 1,2,3j = . The argument “3” in the notation 

( ) ( ) ( ) ( ) ( )1 13; ; ;R u a uϕ 
 f α  indicates that this sensitivity is with respect to the third component, 

namely ( )3f α , of the feature function ( )f α . Notably, this sensitivity depends on the forward function 

( )uϕ  but does not depend on the 1st-level adjoint sensitivity function ( ) ( )1a u .  

The first-order G-differential of ( ) ( ) ( ) ( ) ( )1 13; ; ;R u a uϕ 
 f α  is obtained, by definition, as follows: 

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( ) ( )
0

0

23
1 1 1

1 30

;
3; ; ; ; .

thu

d j
j j

R
R u v u v u u u du f

f f
ϕ

δ ϕ δ δ δ
=

  ∂   = − ≡   ∂ ∂  
∑∫α

α

f
f f  (185

) 
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Note that the first-order G-differential ( ) ( ) ( ) ( ){ } 0

1 13; ; ; ;R u v uδ ϕ δ 
  α

f f  consists solely of the 

indirect-effect term. As before, the need for computing the variational function ( ) ( )1v u  is 
circumvented by constructing a 2nd-Level Adjoint Sensitivity System (2nd-LASS) for a 2nd-level adjoint 

sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;3; 2;3; , 2;3;u a u a u 
 a  , by implementing the same steps were used 

for obtaining the previous 2nd-order sensitivities. These steps lead to the following 2nd-LASS for 2nd-

level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;3; 2;3; , 2;3;u a u a u 
 a  :   

( ) ( )
( ) ( )

( )2
11

2
1 2

2;3;0
.

0 02;3;
da ud du f u u

d du f a u
δ − + −  

  =    +    
 (186

) 

( ) ( ) ( ) ( )2 2
1 22;2; 0; 2;2;0 0.tha u a= =  (187

) 

Solving the 2nd-LASS defined by Eqs. (186) and (187) yields the following closed-form 
expressions for the components of the 2nd-level adjoint sensitivity function 

( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;3; 2;3; , 2;3;u a u a u 
 a  : 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2
1 1 22;3; exp ; 2;3; 0d da u H u u u u f a u= − − =  α . (188

) 

In terms of the 2nd-level adjoint sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 2 2

1 22;3; 2;3; , 2;3;u a u a u 
 a   the 

alternative expression of the G-differential ( ) ( ) ( ) ( ){ } 0

1 23; ; 2;3; ; ;R u uδ ϕ δ 
  α

a f f  has the following form 

(which is obtained by implementing the same steps as those leading to Equation (166), above):  

( ) ( ) ( ) ( ){ } ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

1 2 2
2 1

0

23
2

1 1
1 30

3; ; 2;3; ; ; 2;3;

;
2;3; .

th

th

u

u

j
j j

R u u f a u u du

R
f a u u du f

f f

δ ϕ δ δ δ

ϕ
δ ϕ δ

=

  = 

∂
− ≡

∂ ∂

∫

∑∫

α
a f f

f
 (189

) 

Identifying in Equation (189) the expressions that multiply the variations ifδ , 1,2,3i = , yields 
the following second-order sensitivities of the response ( ) ( );R uϕ  f α  with respect to the 

components of the feature function ( )f α : 

( ) ( ) ( ) ( )
2

2
1

1 3 0

;
2;3; ;

thuR
a u u du

f f
ϕ

ϕ
∂

= −
∂ ∂ ∫

f   (190
) 

( ) ( ) ( ) ( )
2

2
1

2 3 0

;
2;3; ;

thuR
a u u du

f f
ϕ

δ
∂

=
∂ ∂ ∫

f  (191
) 

( )2

3 3

;
0.

R
f f
ϕ∂

=
∂ ∂

f  (192
) 

Inserting the expression obtained for ( ) ( )2
1 2;3;a u  in Equation (188) into Eqs. (190) and (191), and 

performing the respective integrations yields the following expressions for the respective second-
order sensitivities: 
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( ) ( ) ( )
2

2 1
1 3

;
expd d

R
u f u f

f f
ϕ∂

= − −  ∂ ∂
f

α α ; (193
) 

( ) ( )
2

1
2 3

;
exp d

R
u f

f f
ϕ∂

= −  ∂ ∂
f

α  (194
) 

The correctness of the expressions obtained in Eqs. (193) and (194) can be verified by directly 
differentiating the closed-form expressions given in Eqs. (118)‒(120). 

Summarizing the results obtained in Subsection 5.2.1 leads to the following conclusions:  

1. The second-order sensitivities ( )2 ; i jR f fϕ∂ ∂ ∂f , , 1, 2,3i j = , of the model response with respect to 

the three features components ( )if α , 1,2,3i = , of the feature function ( )f α  are obtained by 
performing 3 “large-scale” computations to solve the 3 corresponding 2nd-LASS which all have 
the same left-side but have differing sources on their right-sides. The source-term for each of 
these 2nd-LASS corresponds to one of the 3 first-order sensitivities. Thus, computing the second-
order sensitivities ( )2 ; i jR f fϕ∂ ∂ ∂f  requires as many “large-scale” computations as there are 
non-zero first-order sensitivities, i.e., at most as many “large-scale” computations as there are 
components ( )if α , 1,2,3i = , of the feature function ( )f α .  

2. The mixed second-order sensitivities ( )2 ; i jR f fϕ∂ ∂ ∂f , 1,2,3i j≠ = , are computed twice, 
involving distinct 2nd-level adjoint sensitivity functions. Therefore, the symmetry property 

( ) ( )2 2; ;i j j iR f f R f fϕ ϕ∂ ∂ ∂ = ∂ ∂ ∂f f  provides an intrinsic mechanism for verifying the accuracy of 
the computations of the respective 2nd-level adjoint sensitivity functions. 

3. The unmixed second order sensitivities ( )2 ; i iR f fϕ∂ ∂ ∂f 1,2,3i = , are computed just once. 

5.2.2. Application of the 2nd-CASAM-L 

The principles underlying the application of the 2nd-CASAM-L methodology are the same as 
those underlying the 2nd-FASAM-L methodology: both methodologies obtain the second-order 
sensitivities by considering the first-order G-differential of each of the first-order sensitivities. As has 
been shown in the foregoing, the 2nd-FASAM-L methodology requires at most 3 large-scale 
computations (i.e., the same number of large-scale computations as the number of components if , 

1,2,3i = , of the feature function f ) for solving the three 2nd-Level Adjoint Sensitivity Systems that 
arise by considering the three first-order sensitivities of the detector response with respect to the three 
components of the feature function ( )f α . In contradistinction, the 2nd-CASAM-L methodology 

requires one large-scale (adjoint) computation for each primary model parameter jα , 

1,..., 3 12j TP M= + , amounting to a total of number of 3 12TP M +
 large-scale computations. The 

specific computations are described below.  

5.2.2.1. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to 
the Medium’s Material Properties 

The expressions of the first-order sensitivities of the detector response with respect to the 
material properties (i.e., microscopic cross sections and atomic number densities) of the medium in 
which the neutrons are slowing-down (i.e., losing energy or, equivalently, gaining lethargy) are 
provided in Eqs. (151)‒(153). These expressions have the following generic form:  
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( )
( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 1

0 0

;
; 1,..., ; 1, 2,3,

th thu u
i i

j ji
j

R
g a u u du h a u u du i M j

a
ϕ

δ ϕ
∂

= − = =
∂ ∫ ∫

f
α α  (195

) 

where ( ) ( )
1

i i
ma N , ( ) ( )

2
i ia γσ , ( ) ( )

3
i i

sa σ , and  

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

0
1 1; ;i i a

i i
t tm m

S
g h

N Nξ ξ
   Σ∂ ∂
   

Σ Σ∂ ∂      

α α
α α

α α α α
   (196

) 

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

0
2 2; ;i i a

i i
t t

S
g h

γ γξ ξσ σ

   Σ∂ ∂
   

Σ Σ∂ ∂      

α α
α α

α α α α
   (197

) 

( ) ( ) ( )
( )

( ) ( )
( ) ( ) ( )

( )
( ) ( )

0
3 3; .i i a

i i
t ts s

S
g h

ξ ξσ σ

   Σ∂ ∂
   

Σ Σ∂ ∂      

α α
α α

α α α α
   (198

) 

The second-order sensitivities stemming from the first-order sensitivities represented by 
Equation (195) are obtained from the first G-differential of this equation, which has the following 
expression, by definition, for each 1,..., ; 1, 2,3i M j= = : 

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

00

0

00

1 0

, 00

1 10

0 , 0

1 0

, 00

1 1 10

;
th

th

th

u
i i

j j

u
i

j

u
i

j

i
j

dR a a u u du g
d

dg a u a u u du
d

da u u du h
d

dh a u a u u v u
d

ε

ε

ε

δ ϕ δ εδ
ε

εδ δ
ε

ϕ εδ
ε

εδ ϕ ε
ε

=

=

=

       ∂ ∂ +         

   + +    

     − +       

   − + +   

∫

∫

∫

αα

α

αα

f α α

α

α α

α



( ) ( ){ } ( ) ( ){ } ( )
( )

0

0

0 , 0

2

1

;
; ; ,

thu

TP
i i

j j nidir ind n n j

du

R
R a R a

a

ε

ϕ
δ ϕ δ ϕ δα

α

=

=

  
 
  

 ∂    = ∂ ∂ + ∂ ∂ =      ∂ ∂  

∫

∑

α

α

f
f f

  (199
) 

where: 

( ) ( ){ } ( ) ( ) ( )
( ) ( )

( ) ( ) ( )
( ) ( )

0 0

0 0

1

10

1

10

;

,

th

th

iu TP
ji

j n
dir n n

iu TP
j

n
n n

g
R a a u u du

h
a u u du

δ ϕ δ δα
α

ϕ δα
α

=

=

   ∂    ∂ ∂      ∂      

   ∂   −   
∂      

∑∫

∑∫

α α

α α

α
f

α



  
(200

) 

( ) ( ){ } ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

0

0

10

0

1 1 10

0

;

.

th

th

u
i i

j j
ind

u
i

j

R a g a u u du

h a u v u u a u du

δ ϕ δ δ

ϕ δ

   ∂ ∂      

   − +    

∫

∫

α

α

f α

α



 (201
) 

The direct-effect term can be computed immediately, since all quantities are known. The 
indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain the 2nd-level 
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variational sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v  . As has been repeatedly discussed in the 

foregoing, solving the 2nd-LVSS is expensive computationally, so this variational function is replaced 
in the expression of the indirect-effect term by a 2nd-level adjoint sensitivity function, by following 
the same steps as outlined in Section 5.2.1. Since there are 3M  first-order sensitivities of the form 

( ) ( ); i
jR aϕ∂ ∂f , 1,..., ; 1, 2,3,i M j= = there will be 3M  distinct 2nd-level adjoint sensitivity functions, 

one corresponding to each first-order sensitivity. These 3M  distinct 2nd-level adjoint sensitivity 
functions will be the solutions of the corresponding 3M  distinct 2nd-Level Adjoint Sensitivity 
Systems (2nd-LASS). Each of these 3M  2nd-LASS will have a distinct source-term on the right-side 
(each distinct source stemming from the corresponding first-order sensitivities of the form 

( ) ( ); i
jR aϕ∂ ∂f ), but all of these 3M  2nd-LASS will have the same left-sides, which will have the same 

form as the left-side of the 2nd-LASS needed previously, in Subsection 5.2.1 for the computations of 
the 2nd-order sensitivities of the response with respect to the components of the feature functions, cf. 
Equation (164), (176), and (186). Since the left-sides of these 2nd-LASS represent the (differential) 
operators that need to be inverted, the actual inversion of these operators needs to be performed once 
only, and the inverted operator should be stored; subsequently, the inverted operator can be used 
3M  times, operating on 3M  distinct source terms, to compute the respective 3M  distinct 2nd-level 
adjoint sensitivity functions.  

5.2.2.2. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the 
Source Properties 

The expressions of the first-order sensitivities of the detector response with respect to the 
parameters that characterize the source which emits the neutrons into the medium are provided in 
Eqs. (146)‒(150). These expressions have the following generic form:  

( )
( )

( ) ( ) ( ) ( ) ( )1

0

;
; 1,...,5; 1, 2,

thu
i

ki
k

R
a u u du i k

b
ϕ

ω δ
∂

= = =
∂ ∫

f
α  (202

) 

where:  

( ) ( ) ( ) ( ) ( )
1 1; ; 1, 2;

S S S S
S k k k k

k k k
t

N F W
b k

ν
λ ω

ξ
=

Σ
α

α α
 

 (203
) 

( ) ( ) ( ) ( ) ( )
2 2; ; 1, 2;

S S S S
S i k k k

k k k
t

F W
b N k

λ ν
ω

ξ
=

Σ
α

α α
 

 (204
) 

( ) ( ) ( ) ( ) ( )
3 3; ; 1, 2;

S S S S
S i k k k

k k k
t

N W
b F k

λ ν
ω

ξ
=

Σ
α

α α
   (205

) 

( ) ( ) ( ) ( ) ( )
4 4; ; 1, 2;

S S S S
S i k k k

k k k
t

N F W
b k

λ
ν ω

ξ
=

Σ
α

α α
 

 (206
) 

( ) ( ) ( ) ( ) ( )
5 5; ; 1, 2.

S S S S
S i k k k

k k k
t

N F
b k

λ ν
ν ω

ξ
=

Σ
α

α α
 

 (207
) 

The second-order sensitivities stemming from the first-order sensitivities represented by 
Equation (202) are obtained from the first G-differential of this relation, which has the following 
expression, by definition, for each 1,...,5i = ; 1,2k = : 
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( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ){ } ( ) ( ){ } ( )
( )

00

0

0

1 0

, 00

1 10

0 , 0

2

1

;

;
; ; ,

th

th

u
i i

k k

u
i

k

TP
i i

k k nidir ind n n k

dR b a u u du
d

d a u a u u du
d

R
R b R b

b

ε

ε

δ ϕ δ ω εδ
ε

ω εδ δ
ε

ϕ
δ ϕ δ ϕ δα

α

=

=

=

       ∂ ∂ +         

   + +    

 ∂    == ∂ ∂ + ∂ ∂ =      ∂ ∂  

∫

∫

∑

αα

α

α

f α α

α

f
f f



  (208
) 

where: 

( ) ( ){ } ( ) ( ) ( )
( ) ( )

0 0

1
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   ∂ ∂      
∫

α

f α  (210
) 

The direct-effect term can be computed immediately, since all quantities are known. The 
indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain the 2nd-level 

variational sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v  , but this path is expensive 

computationally, so this variational function is replaced in the expression of the indirect-effect term 
by a 2nd-level adjoint sensitivity function, by following the same steps as outlined in Section 5.2.1. 
Since there are 10 first-order sensitivities of the form ( ) ( ); i

kR bϕ∂ ∂f , 1,...,5i = ; 1,2k = , there will be 10 
distinct 2nd-level adjoint sensitivity functions, one corresponding to each first-order sensitivity. Thus, 
there will be 10 distinct 2nd-Level Adjoint Sensitivity Systems (2nd-LASS) to be solved, each having a 
distinct source-term on the right-side, but all of them having the same left-sides as the left-side of the 
2nd-LASS needed previously, in Subsection 5.2.1 for the computations of the 2nd-order sensitivities of 
the response with respect to the components of the feature functions, namely Eqs. (164), (176), and 
(186).  

5.2.2.3. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the 
Detector Properties 

The expressions of the first-order sensitivities of the detector response with respect to the 
detector’s material properties (i.e., microscopic cross section and atomic number density) are 
provided in Eqs. (144) and (145). These expressions have the following generic form:  

( )
( )

( ) ( ) ( ) ( )
0

;
; 1, 2,

thu
i

di

R
c u u u du i

ϕ
ϕ δ

ζ
∂

= − =
∂ ∫

f
α  (211

) 

where:  

( ) ( ) ( ) ( ) ( ) ( )1 2 1 2; ; ; .d d d dN c c Nζ ζ σ σ= = = =α α  (212
) 

The second-order sensitivities stemming from the first-order sensitivities represented by 
Equation (211) are obtained by determining the first G-differential of this relation, which has the 
following expression, by definition, for each 1,2i = : 
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∫

α

f α  (215
) 

The direct-effect term can be computed immediately, since all quantities are known. The 
indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain the 2nd-level 

variational sensitivity function ( ) ( ) ( ) ( ) ( ) ( )
†2 1 12; ,u v u a uδ 

 v  , but this path is expensive 

computationally. As before, this variational function is replaced in the expression of the indirect-
effect term by a 2nd-level adjoint sensitivity function, by following the same steps as outlined in 
Section 5.2.1. Since there are 2 first-order sensitivities of the form ( ) ( ); iR ϕ ζ∂ ∂f , 1,2i = , there will 
be 2 distinct 2nd-level adjoint sensitivity functions, one corresponding to each first-order sensitivity. 
As before, the two 2nd-LASS to be solved have distinct source-terms on their right-sides, but both 
have the same left-sides as the left-side of the 2nd-LASS needed previously, as in Eqs. (164), (176), and 
(186).  

In summary, the results discussed in Subsection 5.2.2 indicate that computing the 2nd-order 
sensitivities of the model response directly with respect to the 3 12TP M +

 primary model 
parameters, jα , by applying the 2nd-CASAM-L methodology requires one large-scale (adjoint) 

computation for each primary model parameter jα , amounting to a total of number of 3 12TP M +
 

large-scale computations for solving the respective 2nd-LASS. All of these 2nd-LASS have the same 
left-side (which is also the same as needed for computing the 2nd-order sensitivities of the response 
with respect to the feature functions by applying the 2nd-FASAM-L) but have differing sources on 

their right-sides. The unmixed second order sensitivities ( )2 ; i iR ϕ α α∂ ∂ ∂f 1,..., 3 12i TP M= + , are 

computed just once. The mixed second order sensitivities ( )2 ; i jR ϕ α α∂ ∂ ∂f , i j≠ , are computed 
twice, involving distinct 2nd-level adjoint sensitivity functions. Therefore, the symmetry property 

( ) ( )2 2; ;i j j iR Rϕ α α ϕ α α∂ ∂ ∂ = ∂ ∂ ∂f f  provides an intrinsic mechanism for verifying the accuracy of 
the computations of the respective 2nd-level adjoint sensitivity functions.  

6. Concluding Discussion 

This work has presented the mathematical framework of the “2nd-Order Feature Adjoint 
Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (2nd-
FASAM-L)” along with an illustrative application to a paradigm model of energy slowing-down of 
neutrons in an infinitely large homogeneous mixture of materials, as found in many energy-related 
systems. It has been shown that the 2nd-FASAM-L is the most efficient methodology for computing 
exactly the first- and second-order sensitivities of model responses with respect to the features 
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(functions) of model parameters and, subsequently, to the primary model parameters themselves. 
This efficiency stems from the maximal reduction of the number of adjoint computations (which are 
“large-scale” computations) which are needed for obtaining these sensitivities. In the extreme case 
when the model presents no features (functions) of the primary model parameters, the 2nd-FASAM-
L reduces to the 2nd-CASAM-L (“2nd-Order Comprehensive Adjoint Sensitivity Analysis 
Methodology for Response-Coupled Forward/Adjoint Linear Systems) developed by Cacuci [27]. 
Comparing the mathematical framework of the 2nd-FASAM-L methodology to the framework of the 
2nd-CASAM-L methodology indicates the following commonalities and distinctions:  

1. The components ( ) , 1,...,if i TF=α , of the “feature function” ( ) ( ) ( ) †
1 ,..., TFf f  f α α α

 play 

within the 2nd-FASAM-L the same role as played by the components , 1,...,j j TPα = , of the 

“vector of primary model parameters” ( )†
1, , TPα αα  

 within the framework of the 2nd-
CASAM-L. Notably, the total number of model parameters is always larger (usually by wide 
margin) than the total number of components of the feature function ( )f α , i.e., TP TF .  

2. The 1st-FASAM-L and the 1st-CASAM-L methodologies require a single large-scale “adjoint” 
computations for solving the 1st-LASS (1st-Level Adjoint Sensitivity System), so they are similarly 
efficient for computing the exact expressions of the first-order sensitivities of a model response to 
the model’s uncertain parameters, boundaries, and internal interfaces, with a slight 
computational advantage towards the 1st-FASAM-L, which requires only TP  quadratures, as 
opposd to TF  quadratures required by the 1st-CASAM-L methodology. 

3. For computing the exact expressions of the second-order response sensitivities with respect to 
the primary model’s parameters, the 2nd-FASAM-L methodology requires as many large-scale 
“adjoint” computations as there are “feature functions of parameters” ( ) , 1,...,if i TF=α , for 
solving the left-side of the 2nd-LASS with TF  distinct sources on its right-side. By comparison, 
the 2nd-CASAM-L methodology requires TP  large-scale computations for solving the same left-
side of the 2nd-LASS but with TP  distinct sources. Since TF TP , the 2nd-FASAM-L 
methodology is considerably more efficient than the 2nd-CASAM-L methodology for computing 
the exact expressions of the second-order sensitivities of a model response to the model’s 
uncertain parameters, boundaries, and internal interfaces. 

4. Both the 2nd-FASAM-L and the 2nd-CASAM-L methodologies are formulated in linearly 
increasing higher-dimensional Hilbert spaces −as opposed to exponentially increasing 
parameter-dimensional spaces− thus overcoming the curse of dimensionality in sensitivity 
analysis of nonlinear systems. Both the 2nd-FASAM-L and the 2nd-CASAM-L methodologies are 
incomparably more efficient and more accurate than any other methods (statistical, finite 
differences, etc.) for computing exact expressions of response sensitivities (of any order) with 
respect to the model’s uncertain parameters, boundaries, and internal interfaces. 

Ongoing work aims at generalizing the 2nd-FASAM-L methodology to enable the exact and most 
efficient computation of response sensitivities of arbitrarily-high (nth-) order with respect to features 
(functions) of model parameters, thus becoming the companion for ‒and most efficient alternative 
to‒ the nth-CASAM-L methodology [27], whenever the model comprises features (functions) of model 
parameters.  
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