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Abstract: This work presents the mathematical framework of the Second-Order Comprehensive
Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems
(abbreviated as “2r-CASAM-L"), which enables the most efficient computation of exactly obtained
mathematical expressions of first- and second-order sensitivities of a generic system response with
respect to functions (“features”) of model parameters. Subsequently, the first- and second-order
sensitivities with respect to the model’s uncertain parameters, boundaries, and internal interfaces
are obtained analytically and exactly, without needing large-scale computations. Within the 2nd-
FASAM-L methodology, the number of large-scale computations is proportional to the number of
model features (defined as functions of model parameters), as opposed to being proportional to the
number of model parameters, which are considerably more than the number of features, being
incomparably more efficient and more accurate than any other methods (statistical, finite
differences, etc.) for computing exact expressions of response sensitivities (of any order) with
respect to the model’s features and/or primary uncertain parameters, boundaries, and internal
interfaces. The application of the 2nd-CASAM-L methodology is illustrated using a simplified
energy-dependent neutron transport model of fundamental significance in nuclear reactor physics.

Keywords: exact computation of first- and second-order sensitivities of model responses to features
of model parameters; first- and second-level adjoint sensitivity systems; neutron slowing down and
transport.

1. Introduction

The analysis of the accuracy of results (usually called “responses”) computed by models relies
fundamentally on the functional derivatives (usually called “sensitivities”) of the respective model
responses with respect to the parameters in the respective computational model. Such sensitivities
are needed for many purposes, including: (i) understanding the model by ranking the importance of
the various parameters; (ii) performing “reduced-order modeling” by eliminating unimportant
parameters and/or processes; (iii) quantifying the uncertainties induced in a model response due to
model parameter uncertainties; (iv) performing “model validation,” by comparing computations to
experiments to address the question “does the model represent reality?” (v) prioritizing
improvements in the model; (vi) performing data assimilation and model calibration as part of
forward “predictive modeling” to obtain best-estimate predicted results with reduced predicted
uncertainties; (vii) performing inverse “predictive modeling”; (viii) designing and optimizing the
system.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Response sensitivities are computed by using either deterministic or statistical methods. The
simplest deterministic method for computing response sensitivities is to use finite-difference schemes
in conjunction with re-computations using the model with “judiciously chosen” altered parameter
values. Evidently, such methods can at best compute approximate values of a very limited number
of sensitivities. Deterministic methods that can compute more exactly the values of first-order
sensitivities include the “Green’s function method” [1], the “forward sensitivity analysis
methodology” [2], and the “direct method” [3], which rely on analytical or numerical differentiation
of the computational model under investigation to compute local response sensitivities exactly.
However, for a computational model comprising many parameters, the conventional deterministic
methods become impractical for computing sensitivities higher than first-order because they are
subject to the “curse of dimensionality,” a term coined by Belmann [4] to describe phenomena in
which the number of computations increases exponentially in the respective phase-space. In the
particular case of sensitivity analysis using conventional deterministic methods, the number of large-
scale computations increases exponentially in the phase-space of model parameter as the order of
sensitivities increases.

The alternatives to “deterministic methods” are the “statistical methods”, which construct an
approximate response distribution (often called “response surface”) in the parameters space, and
subsequently use scatter plots, regression, rank transformation, correlations, and so-called “partial
correlation analysis,” in order to identify approximate expectation values, variances and covariances
for the responses. These statistical quantities are subsequently used to construct quantities that play
the role of (approximate) first-order response sensitivities. Thus, statistical methods commence with
“uncertainty analysis” and subsequently attempt an approximate “sensitivity analysis” of the
approximately computed model response (called a “response surface”) in the phase-space of the
parameters under consideration. The currently popular statistical methods for uncertainty and
sensitivity analysis are broadly categorized as sampling-based methods [5,6], variance-based
methods [7,8], and Bayesian methods [9]. Various variants of the statistical methods for uncertainty
and sensitivity analysis are reviewed in the book edited by Saltarelli et al. [10]. The main advantage
of using statistical methods for uncertainty and sensitivity analysis is that they are conceptually easy
to implement. On the other hand, statistical methods for uncertainty and sensitivity analysis have
three major inherent practical drawbacks, as follows:

(1) Even first-order sensitivities cannot be computed exactly.

(ii) Statistical methods are (also) subject to the curse of dimensionality and have not been
developed for producing second- and higher-order sensitivities.

(iii) Since the response sensitivities and parameter uncertainties are amalgamated, inherently and

inseparably, within the results produced by statistical methods, improvements in parameter
uncertainties cannot be directly propagated to improve response uncertainties; rather, the
entire set of simulations and statistical post-processing must be repeated anew.

(iv) A “fool-proof” statistical method for analyzing correctly models involving highly correlated
parameters does not seem to exist currently, so that particular care must be used when
interpreting regression results obtained using such models.

It is known that the “adjoint method of sensitivity analysis” has been the most efficient method
for computing exactly first-order sensitivities, since it requires a single large-scale (adjoint)
computation for computing all of the first-order sensitivities, regardless of the number of model
parameters. The idea underlying the computation of response sensitivities with respect to model
parameters using adjoint operators was first used by Wigner [11] to analyze first-order perturbations
in nuclear reactor physics and shielding models based on the linear neutron transport (or diffusion)
equation, as subsequently described in textbooks on these subjects [12-16]. Cacuci [2] is credited (see,
e.g., [17, 18]) for having conceived the rigorous “Ist-order adjoint sensitivity analysis methodology”
for generic large-scale nonlinear (as opposed to linearized) systems involving generic operator
responses and having introduced these principles to the earth, atmospheric and other sciences.

Cacuci [19, 20] has extended his 1st-order adjoint sensitivity analysis methodology to enable the
comprehensive computation of 2nd-order sensitivities of model responses to model parameters
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(including imprecisely known domain boundaries and interfaces) for large-scale linear and nonlinear
systems. The 2rd-order adjoint sensitivity analysis methodology for linear systems was applied [21]
to compute exactly the 21,976 first-order sensitivities and 482,944,576 second-order sensitivities (of
which 241,483,276 are distinct from each other) for an OECD/NEA reactor physics benchmark [22].
This benchmark is modeled by the neutron transport equation involving 21,976 uncertain parameters,
the solving of which is representative of “large-scale computations.” The neutron transport equation
was solved using the software package PARTISN [23] in conjunction with the MENDF71X cross
section library [24], which comprises 618-group cross sections based on ENDEF/B-VIL.1 nuclear data
[25]. The spontaneous fission source was computed using the code SOURCES4C [26]. This work has
demonstrated that, contrary to the widely held belief that second- and higher-order sensitivities are
negligeable for reactor physics systems, many 2rd-order sensitivities of the OECD benchmark’s
response to the benchmark’s uncertain parameters were much larger than the largest 1s--order ones.
This finding has motivated the investigation of the largest 3rd-order sensitivities, many of which were
found to be even larger than the 2rd-order ones. Subsequently, the mathematical framework for
determining and computing the 4t-order sensitivities was developed, and many of these were found
to be larger than the 3rd-order ones. This sequence of findings has motivated the development by
Cacuci [27] of the “n™-Order Comprehensive Adjoint Sensitivity Analysis Methodology for
Response-Coupled Forward/Adjoint Linear Systems” (abbreviated as “nt"-CASAM-L"), which was
developed specifically for linear systems because important model responses produced by such
systems are various Lagrangian functionals which depend simultaneously on both the forward and
adjoint state functions governing the respective linear system. Among the most important such
responses are the Raleigh quotient for computing eigenvalues and/or separation constants when
solving partial differential equations, and the Schwinger functional for first-order “normalization-
free” solutions [28, 29]. These functionals play a fundamental role in optimization and control
procedures, derivation of numerical methods for solving equations (differential, integral, integro-
differential), etc.

In parallel with developing the nt"-CASAM-L, Cacuci [30] has also developed the n#-Order
Comprehensive Adjoint Sensitivity Analysis Methodology for Nonlinear Systems (n"-CASAM-N). Just like
the n-CASAM-L, the n"-CASAM-N is also formulated in linearly increasing higher-dimensional
Hilbert spaces (as opposed to exponentially increasing parameter-dimensional spaces), thus
overcoming the curse of dimensionality in sensitivity analysis of nonlinear systems, enabling the
most efficient computation of exactly-determined expressions of arbitrarily high-order sensitivities
of generic nonlinear system responses with respect to model parameters, uncertain boundaries and
internal interfaces in the model’s phase-space.

Recently, Cacuci [31] has introduced the “Second-Order Function/Feature Adjoint Sensitivity
Analysis Methodology for Nonlinear Systems” (2"-FASAM-N), which enables a considerable
reduction (by comparison to the 2-CASAM-N) of the number of large-scale computations needed
to compute the second-order sensitivities of a model response with respect to the model parameters,
thereby becoming the most efficient methodology known for computing second-order sensitivities
exactly. Paralleling the construction of the 2d-FASAM-N, this work introduces the “First- and
Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-Coupled
Adjoint/Forward Linear Systems” (1st and 2"-FASAM-L). The mathematical methodology of the 1s-
FASAM-L is presented in Section 3, while the mathematical methodology of the 2rd-FASAM-L is
presented in Section 4. The application of the 1s-FASAM-L and the 2d-FASAM-L is illustrated in
Section 5 by means of a simplified yet representative energy-dependent neutron-slowing down
model which is fundamental importance to reactor physics and design [32-34]. The concluding
discussion presented in Section 6 prepares the ground for the subsequent generalization of the
present work to enable the most efficient possible computation of exact sensitivities of any
(arbitrarily-high) order with respect to “feature functions” of model parameters and, hence, to the
model’s parameters.

2. Mathematical Modeling of Response-Coupled Linear Forward and Adjoint Systems
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The generic mathematical model considered in this work is fundamentally the same as was
considered in [27], but with the major difference that functions (‘features”) of the primary model
parameters will be generically identified within the model. The primary model parameters will be
denoted as ¢,..., a;,, where the subscript “TP” indicates “Total number of Primary Parameters;” the

qualifier “primary” indicates that these parameters do not depend on any other parameters within
the model. These model parameters are considered to include imprecisely known geometrical
parameters that characterize the physical system’s boundaries in the phase-space of the model’s
independent variables. These boundaries depend on the physical system’s geometrical dimensions,
which may be imprecisely known because of manufacturing tolerances. In practice, these primary
model parameters are subject to uncertainties. It will be convenient to consider that these parameters

. t
are components of a “vector of primary parameters” denoted as a 2(a,,...,a;,) €R"™, where R"

denotes the TP-dimensional subset of the set of real scalars. For subsequent developments, matrices
and vectors will be denoted using capital and lower-case bold letters, respectively. The symbol “ £ ”

will be used to denote “is defined as” or “is by definition equal to.” Transposition will be indicated

by a dagger (1) superscript. The nominal parameter values will be denoted as a” £ [alo yerer O ey gy ]T

; the superscript “0” will be used throughout this work to denote “nominal” or “mean” values.
The model is considered to comprise 7/ independent variables which will be denoted as
x,,i=1,...,7T, and are considered to be the components of a 7/ -dimensional column vector denoted

as X2 (x,...,x, )T eR", where the sub/superscript “TI” denotes the “Total number of Independent

variables.” The vector x e R” of independent variables is considered to be defined on a phase-space

domain, denoted as Q(a), Q(a)2{-0< (a)<x, <o (a)<ow;i=1,..,TI}, the boundaries of which

may depend on some of the model parameters a. The lower boundary-point of an independent
variable is denoted as 4 (a) (e.g., the inner radius of a sphere or cylinder, the lower range of an

energy-variable, the initial time-value, etc.), while the corresponding upper boundary-point is
denoted as w,(a) (e.g., the outer radius of a sphere or cylinder, the upper range of an energy-

variable, the final time-value, etc.). A typical example of boundary conditions that depend on
imprecisely-known parameters that pertain to the geometry of the model and also to parameters that
pertain to the material properties of the respective model occur when modeling particle diffusion
within a medium, the boundaries of which are facing vacuum. For such models, the boundary
conditions for the respective state (dependent) variables (i.e., particle flux and/or current) are
imposed not on the physical boundary but on the “extrapolated boundary” of the respective spatial
domain. The “extrapolated boundary” depends both on the imprecisely known physical dimensions
of the medium’s domain/extent and also on the medium’s properties, i.e., atomic number densities
and microscopic transport cross sections. The boundary of Q(a), which will be denoted as

0Q[1(a);0(a)], comprises the set of all of the endpoints 4 (a), @, (@), i =1,...,7/, of the respective
intervals on which the components of X are defined, ie.,
GQ[k(u);m(a)] £ {ll. (a)va,(a),i= 1,...,TI} )

The mathematical model that underlies the numerical evaluation of a process and/or state of a
physical system comprises equations that relate the system's independent variables and parameters

to the system's state/dependent variables. A linear physical system can generally be modeled by a
system of coupled operator-equations as follows:

Lxg(a)]o(x)=Q[xg(a)], xeQ(a). (1)

In Equation (1), the vector (p(x)é[(/)1 (x)seees0mp (x)]T is a TD -dimensional column vector of

dependent variables and where the sub/superscript “ 7D ” denotes the “Total (number of) Dependent
variables.” The functions ¢, (x), i =1,..,7D, denote the system’s “dependent variables” (also called

“state functions”). The matrix L(x;a)= ':Lij (x;0) J, i,j=L..,TD , has dimensions TDxTD . The
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components L, (x;a) are operators that act linearly on the dependent variables ¢, (x) and also
depend (in general, nonlinearly) on the uncertain model parameters a. Furthermore, the vector
g(a)2[g (a).....g,; (a)] is a TG -dimensional vector having components g, (), i =1,...,7G , which
are real-valued functions of (some of) the primary model parameters o € R” . The quantity 7G
denotes the total number of such functions which appear exclusively in the definition of the model’s
underlying equations. Such functions customarily appear in models in the form of correlations that

describe “features” of the system under consideration, such as material properties, flow regimes. etc.
Usually, the number of functions g, (a) is considerably smaller than the total number of model

parameters, i.e, 7G < TP . For example, the numerical model (Cacuci and Fang, 2023) of the
OECD/NEA reactor physics benchmark (Valentine 2006) comprises 21,976 uncertain primary model
parameters (including microscopic cross sections and isotopic number densities) but the neutron
transport equation, which is solved to determine the neutron flux distribution within the benchmark,
does not use these primary parameters directly but instead uses just several hundreds of “group-
averaged macroscopic cross sections” which are functions/features of the microscopic cross sections
and isotopic number densities (which in turn are uncertain quantities that would be components of
the vector of primary model parameters). In particular, a component g, (a) may simply be one of

the primary model parameters a,ie, g; (a) =a;.
The 7D -dimensional column vector Q[x;g(a)} 2 (g )T , having components
q, [x; g (a)}, i=1,...,TD, denotes inhomogeneous source terms, which usually depend nonlinearly on

the uncertain parameters a. Since the right-side of Equation (1) may contain distributions, the
equality in this equation is considered to hold in the weak (i.e., “distributional”) sense. Similarly, all
of the equalities that involve differential equations in this work will be considered to hold in the
distributional sense.

When L [X; g (a)] contains differential operators, a set of boundary and initial conditions which
define the domain of L[x;g(a)} must also be given. Since the complete mathematical model is
considered to be linear in q)(x) , the boundary and/or initial conditions needed to define the domain
of L[x;g(a)] must also be linear in ¢(x) . Such linear boundary and initial conditions are

represented in the following operator form:
B[ x;g(a); M(a);0(a)]|¢(x)=C[x;g(a); (a);0(a)], xcdQ[1(a);0(a)] )
In Equation (2), the quantity B[ x;g(a); A(a);0(a)] denotes a matrix of dimensions N, xTD
having components denoted as B, (x;a); i =1,...,N,; j =1,...,TD, which are operators that act linearly
on ¢(x) and nonlinearly on the components of g(a); the quantity N, denotes the total number of

boundary and initial conditions. The N, -dimensional column vector C[x;g(a); l(u);m(u)}

comprises components that are operators which, in general, act nonlinearly on the components of

g(a).

Physical problems modeled by linear systems and/or operators are naturally defined in Hilbert
spaces. The dependent variables ¢, (x), i =1,..,7D, for the physical system represented by Egs. (1)

and (2) are considered to be square-integrable functions of the independent variables and are
considered to belong to a Hilbert space which will be denoted as H (), where the subscript “zero”

denotes “zeroth-level” or “original.” Higher-level Hilbert spaces, which will be denoted as H , (Q2)

and H ,(Q), will also be used in this work. The Hilbert space H ,(Q) is considered to be endowed
with the following inner product, denoted as <(p(x),\|1(x)>0 , between two elements ¢(x)eH ,(Q)
and y(x)eH  (Q):
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6
. TI w;(a) D o(a) ofe) o)
<(p(x),\|l(x)>0 211 I (x)ow (x)dx= I J (X)y, (x)dx, ...dx,..dx,. (3)
i=l 3 (a) J=1 l,(u) A(a) g ()
The “dot” in Equation (3) indicates the “scalar product of two vectors,” which is defined as
follows:
Zco, v, “
7 @(e)
The product-notation | | J [ ]dx, in Equation (3) denotes the respective multiple integrals.
=l 2(a)

The linear operator L[x;g(a)] is considered to admit an adjoint operator, which will be

denoted as L’ [x; g (a)] and which is defined through the following relation for a vector y(x)eH

(w(x). L[xe(@)] 0(x)), = (U [xe(e)] w(x)0(x), ©)
In Equation (5), the formal adjoint operator L’ [x; g (a)] is the TDxTD matrix comprising
elements L, [x; g (a)} which are obtained by transposing the formal adjoints of the forward operators

L, [x;g(a)] . Hence, the system adjoint to the linear system represented by (1) and (2) can generally

be represented as follows:
Llxg(a)]v(x)=Q [xg(a)] , xeQ(a), (6)

B’ I:x;g(a); X(a);u)(a)] y(x)=C [x;g(a); k(a);m(a)}, Xe 6Q[k(a);m(a)]. @)

When the forward operator L[x;g(a)} comprises differential operators, the operations (e.g.,
integration by parts) that implement the transition from the left-side to the right side of Equation (5)
give rise to boundary terms which are collectively called the “bilinear concomitant.” The domain of
L [x; g (u)] is determined by selecting adjoint boundary and/or initial conditions so as to ensure that
the adjoint system is well-posed mathematically. It is also desirable that the selected adjoint boundary
conditions should cause the bilinear concomitant to vanish when implemented in Equation (5)
together with the forward boundary conditions given in Equation (2). The adjoint boundary
conditions thus selected are represented in operator form by Equation (7).

The relationship shown in Equation (5), which is the basis for defining the adjoint operator, also
provides the following fundamental “reciprocity-like” relation between the sources of the forward
and the adjoint equations, i.e. Eqs. (1) and (6), respectively:

(w(x).@[xg(a)]), = (Q [x8(e)].0(x)), ®)
The functional on the right-side of Equation (8) represents a “detector response”, i.e., a reaction-

rate between the particles and the medium represented by Q° [x;g(a)] which is equivalent to the

“number of counts” of particles incident on a detector of particles that “measures” the particle flux
¢(x) . In view of the relation provided in (8), the vector-valued source term

Q [x; g(a)] e {qf [x; g (a)] s @rp [x; g (m)]}T in the adjoint equation Equation (6) is usually associated

with the “result of interest” to be measured and/or computed, which is customarily called the
system’s “response.” In particular, if g¢/[xg(a)]=5(x-x,) and ¢, [xg(a)]=0 , then

<Q* [x;g(a)},(p(x»o =¢,(x,), which means that, in such a case, the right-side of Equation (8)
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provides the value of the i-dependent variable (particle flux, temperature, velocity, etc.) at the point
in phase-space where the respective measurement is performed.

The results computed using a mathematical model are customarily called “model responses” (or
“system responses” or “objective functions” or “indices of performance”). For linear physical
systems, the system’s response may depend not only on the model’s state-functions and on the
system parameters but may simultaneously also depend on the adjoint state function. As has been
discussed by Cacuci [27, 30], any response of a linear system can be formally represented (using
expansions or interpolation, if necessary) and fundamentally analyzed in terms of the following
generic integral representation:

o(a) o (a)

R[q)(x),\y(x);f(ot)}é I J SI:(P(X);\I’(X);g(a);h(a);X]dxl"'deI’ )

A(a)  Ag ()

where S [(p (x),y(x);g(a);h(a); x] is a suitably differentiable nonlinear function of ¢(x),y(x), and

o. The integral representation of the response provided in Equation (9) can represent “averaged”
and/or “point-valued” quantities in the phase-space of independent variables. For example, if

R[(p(x),\y(x);f (aﬂ represents the computation or the measurement (which would be a “detector-
response”) of a quantity of interest at a point x, in the phase-space of independent variables, then
S[(p(x),w(x);g(u);h(a);x] would contain a Dirac-delta functional of the form &§(x-x,) .
Responses that represent “differentials/derivatives of quantities” would contain derivatives of Dirac-
delta functionals in the definition of S[(p(x),m(x);g(u);h(u);x} . The vector
h(a)2[h(a).....h,, (a)] , having components # (a),i=1,...7H , which appears among the
arguments of the function S| ¢(x),y(x);g(a);h(a);x], represents functions of primary parameters

that often appear solely in the definition of the response but do not appear in the mathematical
definition of the model, i.e., in Egs. (1), (2), (6) and (7). The quantity TH denotes the total number of
such functions which appear exclusively in the definition of the model’s response. Evidently, the
response will depend directly and/or indirectly (through the “feature”-functions) on all of the
primary model parameters. This fact has been indicated in Equation (9) by using the vector-valued

function f(a) as an argument in the definition of the response R[@(x),y(x):f(a)] to represent the
concatenation of all of the “features” of the model and response under consideration. The vector f(a)

of “model features” is thus defined as follows:
f(a)2 [g(ﬂz);h((xz);)»(oz);(x)(oz)}T 20 1(a)s frr (az)]+ ; TF = TG +TH +2TI. (10)

As defined in Equation (10), the quantity 7F denotes the total number of “feature functions of
the model’s parameters” which appear in the definition of the nonlinear model’s underlying

equations and response.

Solving Egs. (1) and (2), at the nominal (or mean) values, denoted as a° = [af peer O s O ]T , of

the model parameters, yields the nominal forward solution, which will be denoted as ¢’ (x). Solving

Egs. (6) and (7) at the nominal values, @, of the model parameters yields the nominal adjoint
solution, which will be denoted as w°(x) . The nominal value of the response,

R [(p0 (x), v’ (x):f (a° )J , is determined by using the nominal parameter values o', the nominal value
¢’ (x) of the forward state function, and the nominal value y’(x) of the adjoint state function.

The definition provided by Equation (9) implies that the model response R| ¢ (x),y(x):f(a)]
depends on the components of the feature function f(a), and would therefore admit a Taylor-series

expansion around the nominal value f’ 2 (ao ) , having the following form:
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a f TF  TF a f
RLE()]=R()+ 1{ I;f( )} Z,Z{afRaf)} OI0 Tt =

where 57, é[fj (a)—fjo]; 17 éfj(uo); j=1..,TF . The “sensitivities of the model response
with respect to the (feature) functions” are naturally defined as being the functional derivatives of
R[f(a)] with respect to the components (“features”) f,(a) of f(a). The notation {-}. indicates
that the quantity enclosed within the braces is to be evaluated at the nominal values f° = f (ao) . Since
TF < TP, the computations of the functional derivatives of R, [f (a)} with respect to the functions

/; (@), which appear in Equation (11), will be considerably less expensive computationally than the

computation of the functional derivatives involved in the Taylor-series of the response with respect
to the model parameters. The functional derivatives of the response with respect to the parameters
can be obtained from the functional derivatives of the response with respect to the “feature” functions
/; (@) by simply using the chain rule, i.e.:

oR(a)| &fer(f),(a)| | °R(a)| o Z|or(f)d,(a)]
{6(1].[ }_Z‘{ o, oa, |, |0a,a, |, da, 2 o, oa; | (12)

|

and so on. The evaluation/computation of the functional derivatives af. o /6a. ,
82 /80: da, , etc, does not require computations involving the model, and is therefore
computatlonally trivial by comparison to the evaluation of the functional derivatives (“sensitivities”)
of the response with respect to either the functions (“features”) f,(a) or the model parameters
a, i=1,.,TP

The range of validity of the Taylor-series shown in Equation (11) is defined by its radius of
convergence. The accuracy —as opposed to the “validity”- of the Taylor-series in predicting the value
of the response at an arbitrary point in the phase-space of model parameters depends on the order of
sensitivities retained in the Taylor-expansion: the higher the respective order, the more accurate the
respective response value predicted by the Taylor-series. In the particular cases when the response
happens to be a polynomial function of the “feature” functions f, (@), the Taylor series represented

by Equation (11) is finite and exactly represents the respective model response.

In turn, the functions f;(a) can also be formally expanded in a multivariate Taylor-series

. 0
around the nominal (mean) parameter values 0, namely:

f,.((l)zf,.(ao)+i{aj;"7(u)} ii{a f((l)}ué'aj]&l’/z

il i 1 0a,, 0
(13)

P TP TP a f ( (l)
+— oa. da. oa, +...,
Z}Z{;{@a oa, Oa; |, " T

The choice of feature functions f;(a) is not unique but can be tailored by the user to the problem
at hand. The two most important guiding principles for constructing the feature functions f; ()

based on the primary parameters are as follows:

(1) As will be shown below in Section 4 while establishing the mathematical framework
underlying the 2nd-FASAM-L, the number of large-scale computations needed to determine
the numerical value of the second-order sensitivities is proportional to the number of first-
order sensitivities of the model’s response with respect to the feature functions f;(a).
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Consequently, it is important to minimize the number of feature functions f;(a), while

ensuring that all of the primary model parameters are considered within the expressions
constructed for the feature functions f;(a). In the extreme case when some primary

parameters, «,, cannot be grouped into the expressions of the feature functions f,(a), each

of the respective primary model parameters «; becomes a feature function f, (a).

(ii) The expressions of the features functions f,(«) must be independent of the model’s state

functions; they must be exact, closed-form, scalar-valued functions of the primary model
parameters «,, so the exact expressions of the derivatives of f,(a) with respect to the

primary model parameters «; can be obtained analytically (with “pencil and paper”) and,

hence, inexpensively from a computational standpoint. The motivation for this requirement
is to ensure that the numerical determination of the subsequent derivatives of the features
functions f; (@) with respect to the primary model parameters «; becomes trivial

computationally.

The domain of validity of the Taylor-series in Equation (13) is defined by its own radius of
convergence. Of course, in the extreme case when no feature function can be constructed, the feature
functions will be the primary parameters themselves, in which case the nt"-FASAM-L methodology
becomes identical to the previously established nt"-CASAM-L methodology [27].

3. The First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward and Adjoint Linear Systems (1s-FASAM-L)

The “First-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems” (1-FASAM-L) aims at enabling the most efficient
computation of the first-order sensitivities of a generic model response of the form R [(p (x),w(x); a}
with respect to the components of the “features” function f(a). In preparation for subsequent
generalizations towards establishing the generic pattern for computing sensitivities of arbitrarily
high-order, the function u") (2;x)2[¢(x),y(x)] will be called the “I-level forward/adjoint function”

and the system of equations satisfied by this function (which is obtained by concatenating the original
forward and adjoint equations together with their respective boundary/initial conditions) will be
called “the 1s-Level Forward/Adjoint System (1-LFAS)” and will be re-written in the following
concatenated matrix-form:

FY [2x2;x;f]u(l) (2;X) :qspl) (2; x;f); X e Q(a); (14)

b0 [u(l) (z;x);fJ =0; xedQ[r(a);0(a)]; (15)

where the following definitions were used:

F(l)[zxz;x;f]é(l‘(z;f) L*(())(;f)} u(l)(z;x)é[(p(x),\y(x)T; (16)

qg)(z;x;f)é(g((’:;gg))]; by [Z;u(l)(Z;x);fJé[B?(Xff)(P(X)_C(? j (17)
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In the list of arguments of the matrix F 1) [2x2;x;f], the argument “2x2” indicates that this
square matrix comprises four component sub-matrices, as indicated in Equation (16). Similarly, the
argument “2” that appears in the block-vectors u(l)(Z;x) , q(;)(2;x;f ), and b [Z;u(l)(z;x);fJ

indicates that each of these column block-vectors comprises two sub-vectors as components. Also,
throughout this work, the quantity “0” will be used to denote either a vector or a matrix with zero-
valued components, depending on the context. For example, the vector “0” in Equation (15) is

considered to have as many components as the vector b!) [u(l) (2:x);f J . On the other hand, the

quantity “0” which appears in Equation (16) may represent either a (sub) matrix or a vector of the
requisite dimensions.

The nominal (or mean) parameter values, o', are considered to be known, but these values will

differ from the true values @, which are unknown, by variations 5aé(é‘al,...,6arp )+ , where
Sa, £ a,—a/. The parameter variations da will induce variations 5f (a) 2[5, (a),....0 f;, (oz)JT in
the vector-valued function f(a), around the nominal value f°=f (ao) , and will also induce
variations 5¢(x) and Swy(x), respectively, around the nominal solution ((po,\yo) through the
equations underlying the model. All of these variations will induce variations in the model response
R[u(l) (2;x);f} = R[(p(x),\u(x);f(a)] , in a neighborhood [q)0 (x)+&5(x),y" (x)+edy(x);f° +g5f}

around ((po,\yo;f 0) , where ¢ is a real-valued scalar.

Formally, the first-order sensitivities of the response R[u(l)(2;x);f J with respect to the
components of the feature function f(a) are provided by the first-order Gateaux (G-)variation of

R(@,y.f) at the phase-space point ((po,\u“,f 0 ) , which is defined as follows:

5R((p°,\|l°,f0;5(p,5w,5f) 2 {diR[q)O (x)+e69(x), v’ (x)+edy(x);f" + géf}}
& =0
(18)
= {%R[u(l’o) (2:x)+ ev (2;x);f° + 851‘}}5_0 =0R |:u(1’0) (Z;X);fo;v(l) (2;X),§f}

where the following definitions were used:
u(2;x) 2 [q)0 (x),y’ (X):|T ; v (2;x) 2 [&p(x),é\yT . (19)

In general, the G-variation SR (q)“,\yo,f 0:89,0y,5f ) is nonlinear in the variations 5f(a), 5¢(x)
and/or Sy (x).Insuch cases, the partial functional Gateaux (G-)derivatives of the response R(¢,y,f)
with respect to the functions @,y,f do not exist, which implies that the response sensitivities to the
model parameters do not exist, either. Therefore, it will be henceforth assumed in this work that
OR ((po,\yo,f ’:59,0y,0f ) is linear in the respective variations, so the corresponding partial G-
derivatives exist and 6R ((p° 0 10 50,0y, 6f ) is actually the first-order G-differential of the response.

The usual numerical methods (e.g., Newton’s method and variants thereof) for solving the equations
underlying the model also require the existence of the first-order G-derivatives of the original model
equations; these will also be assumed to exist. When the 1s-order G-derivatives exists, the G-

differential SR [u("o) (2:x):£%5 v (2; x),éf] can be written as follows:

OR [u(l’o) (Z;X);fo;v(l) (2;x),5f] = {5R [u(l) (2; x);f; 51'}}

+ {é'R [u(l) (2;x);f; v (2; x)]}

dir

(20)

ind
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In Equation (20), the “direct-effect” term {5R [u(l) (2:x);f;0f }} comprises only dependencies

dir

on &f (a) and is defined as follows:

0.
[oR[w" (2x)sts51 ]} 2 WM 1)

dir

o

The following convention/definition was used in Equation (21):

ﬂé’féiﬂé‘fi fa[ ]5 +z []5h+n g, +Z s, (22)

6f izlaﬁ zlai zlai l

The above convention implies that:

(a) For j=1,.,TG:

oR(u":f a(e) o
( )5f j [ aS(‘P—"’g’)dxl...dxn Sg;i=1,.,TG; (1) (23)
9, AW e 08 o

(b) For j=TG+1,..,TG+TH :

Oh

oR(u";f 2@ (@) 55 (@i h
( )5f_Auu)mJ(a) ((P\|:g )

dxl...dxr,} Shyi=1,...TH; (24)

(c) For j=TG+TH +1,..,TG+TH +TI :

6R(u(l);f)
—=0f; d d ow,, i=1,.,TI;
aj«] f; aa)l ;[ xl J‘ xT] q’ ‘I’ g9 ) . a), ) 1 9eeey b (25)

(d) For j=TG+TH +TI +1,...TG+TH +2T1 :

oR(u";

) a @ @ry
— 5 dx,...| dx,S(o,v;g:h oA, i=1,..,TI. 26
0fj f {8@ I Xy I X1 (‘P‘I’g )} ;s 1 (26)

i A Ay

(10

The notation on the left-side of Equation (22) represents the inner product between two vectors,
but the symbol “(1)” which indicates “transposition” has been omitted in order to keep the notation

as simple as possible. “Daggers” indicating transposition will also be omitted in other inner products,
whenever possible, while avoiding ambiguities.

In Equation (20), the “indirect-effect” term {5R [u(l) (2;x);f vV (2,x)}} depends only on the
ind

variations v (2x)= [5q)(x),5\|1]T in the state functions, and is defined as follows:
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; 1 L0 e as (ewsgh)
{5R [u( ) (2;x);f;v( ) (2,X):|} E j dx,... j dx,, (I)—V( ) (2;x)
e e 00T (2x) “ 27)
 (a) op (@) oS -o-h o (a) op (a) oS ‘o-h
{ Fag. | dxnw&p} { [ | i Slovign) g |
Aa) an(a) ¢ I EYCY R ) v o
In Egs. (21) and (27), the notation { }u0 has been used to indicate that the quantity within the
brackets is to be evaluated at the nominal values of the parameters and state functions. This simplified
notation is justified by the fact that when the parameters take on their nominal values, it implicitly
means that the corresponding state functions also take on their corresponding nominal values. This
simplified notation will be used throughout this work.
The direct-effect term can be computed after having solved the forward system modeled by Egs.
(1) and (2), as well as the adjoint system modeled by Egs. (6) and (7), to obtain the nominal values
¢°,y’ of the forward and adjoint dependent variables.
On the other hand, the indirect-effect term {é‘R[ N(2x): 859" (2 x)}} defined in Equation
(27) can be quantified only after having determined the variations v() 2;x) 2 [§(p X é‘\yT in the
state functions of the Is-Level Forward/Adjoint System (1s-LFAS). The variations v ® (2;x) are
obtained as the solutions of the system of equations obtained by taking the first-order G-differentials
of the 1s-LFAS defined by Egs. (14) and (15), which are obtained by definition as follows:
{iF(l) [2 x2:x; 0 + 5§f:| [u("o) (2:x)+ vl (2 x)}} = {iq(;) [2; x;f0+ €5f]} , (28)
de £=0 de £=0
d [ (10) 0 _
—b.| 2;u (2 x)+gv (2 x) + eof 0[2]. (29)
dg =0
Carrying out the differentiations with respect to ¢ in the above equations and setting £ =0 in
the resulting expressions yields the following matrix-vector equations:
{V(l) [2><2;x;f]v(l) (2;x)} = {q 1) [2 u (2 ;x);f;5f:|} s Xe Q(ao); (30)
{b(l)( )£ 51')} =0; xeaﬂ[k(ao);m(ao)}; (31)
where:
L(x;f) 0
vOaxxf]a] =F" [2x2;x;f];
R B LR EL e &)
O (o f: D (o Sof-
@\ (w:f;0f)) by (w; Sw;f; )
(34)

0 L'y
q(zl)(\ll,f;5f)éT(]5f ZS (jiwf)s (35)
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) a o(Be-C)
by (93 59:1;51) £ Bg + ———0f; (36)
o(By-C
bgl)(w;éw;f;ﬁf)é3*5w+ ( ‘lalf )6f. (37)

In order to keep the notation as simple as possible in Egs. (30)—(37), the differentials with respect
to the various components of the feature function f(a) have all been written in the form (8[ ] / of ) of

, keeping in mind the convention/notation introduced in Equation (22). The system of equations
comprising Eqgs. (30) and (31) will be called the “Is-Level Variational Sensitivity System (1s-LVSS)” and

its solution, v (2;x), will be called the “Is-level variational sensitivity function,” which is indicated by

the superscript “(1)”. The solution, v (2;x), of the 1s-LVSS will be a function of the components of

the vector of variations of . In principle, therefore, if the response sensitivities with respect to the
components of the feature function f(a) are of interest, then the 1-LVSS would need to be solved as

many times as there are components in the variational features-function &f . On the other hand, if
the response sensitivities with respect to the primary parameters are of interest, then the 1-LVSS
would need to be solved as many times as there are primary parameters. Solving the 15-LVSS
involves “large-scale computations.”

On the other hand, solving the 1s-LVSS can be avoided altogether by using the ideas underlying
the “adjoint sensitivity analysis methodology” originally conceived by Cacuci [2] and subsequently
generalized by Cacuci [27, 30] to enable the computation of arbitrarily high-order response
sensitivities with respect to primary model parameters for both linear and nonlinear models. Thus,
the need for solving repeatedly the 1s-LVSS for every variation in the components of the feature
function (or for every variation in the model’s parameters) is eliminated by expressing the indirect-

effect term {5R [u(l) (2:x):65v" (2 x)}} defined in Equation (27) in terms of the solutions of the “Is*-
ind

Level Adjoint Sensitivity System” (1s-LASS), which will be constructed by implementing the following
sequence of steps:

1. Introduce a Hilbert space, denoted as H , comprising vector-valued elements of the form
T

W (2x)2 [x(ll) (x),x (x)]T , where the components y(x)2 [;(l.(,ll) (X) s 2 (%) seees 2 (X):| ,
i =1,2, are square-integrable functions. Consider further that this Hilbert space is endowed with

an inner product denoted as <)((1)(2;3&),9(1)(2;)()>1 between two elements, )((1)(2;3()6H1 ,

o (2;x)eH |, which is defined as follows:
(1) (1) s (1) (1)
<x (2x).0 (2;X)>1 = §__] <x,- (x).6; (X)>0 : (38)

2. In the Hilbert H |, form the inner product of Equation (30) with a yet undefined vector-valued

function a"” (2;x) 2 [af‘) (x),a! (x)}T e H , to obtain the following relation:

{<a(1) (Z;X),V(l) [2x2;x;f0]v(l) (2;x)>1} L= {<a(1) (Z;X),qg) |:2;ll(|) (2;x);f;5f] >1}

o

(39)

(10

3. Using the definition of the adjoint operator in the Hilbert space
H |, recast the left-side of Equation (39) as follows:
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{<a(1) (2;X),V(1) [2>< 2; x;f] v (2;X)>1}a0 = {<V(l) (2;x),A(1) [2 X 2;x;f]a(1) (2;x) >1}

+{P(l) |:v(1) (2; x);a(l) (2; x);f;5f:|} >

HO

(10

where {P(l) [v(l) (2;x);a" (2;x);;5f }} . denotes the bilinear concomitant defined on the phase-space

boundary x e 60((10), and where A" [2x2;x;f] is the operator formally adjoint to v [2x2;x:f],

i.e.,

4.

AW [2x2;x;f] a {V(l) [ZXZ;X;f]}* :[L" ((’)‘;f) L(g;f)]'

Require the first term on right-side of Equation (40) to represent the indirect-effect term defined
in Equation (27),by imposing the following relation:

AY [2><2;x;f]a(]) (2;x)=4") [Z;u(l) (2;x);f}, Xe Q(ao);

where:
0.5\ as(u":f) /o '
q(j)[Z;u(l)(Z;x);f]é —6S((1)u ’ ) e [ ( )/ (Pl
ou'’ (2;x) [aS(u(l);f)/an
5. Implement the boundary conditions represented by Equation (31) into Equation (40) and

eliminate the remaining unknown boundary-values of the function v (2;x) from the expression
of the bilinear concomitant {P(l) [v(') (2;x);a" (2;x);£;5f J}uo by selecting appropriate boundary
conditions for the function a (2;x) 2 [af') (x),a (x)]T , to ensure that Equation (42) is well-posed
while being independent of unknown values of v (2;x) and of 6f . The boundary conditions

.
thus chosen for the function a' (2;x) 2 [aﬁ') (x),a! (x)} can be represented in operator form as
follows:

{b(A}) [ u) (2;x);a(l) (2 x);f]}

=0, xe 6Q[l(u°);w(a°)].

o

The selection of the boundary conditions for a' (2;x)2 [aﬂl) (x),a} (x)]T represented by Equation

(44) eliminates the appearance of the unknown values of v (2;x) in {P(]) [v(]) (2;x);a(]) (2;x);f;5f}}

110

and reduces this bilinear concomitant to a residual quantity that contains boundary terms involving

only known values of u(l)(2;x) , a(l)(2;x), f, and of . This residual quantity will be denoted as

{13(1)[“(1) (2;x);a(l) (2;x);f ;of J} ,-In general, this residual quantity does not automatically vanish,

although it may do so occasionally.

6.

The system of equations comprising Equation (42) together with the boundary conditions
represented Equation (44) will be called the 1s-Level Adjoint Semsitivity System (1st-LASS). The

solution a" (2;x)2 [agl) (x),a) (X)JT of the 1s-LASS will be called the 1s-level adjoint sensitivity
function. The 1s-LASS is called “first-level” (as opposed to “first-order”) because it does not
contain any differential or functional-derivatives, but its solution, al! (2;x), will be used below

(40)

(41)

(42)

(43)

(44)
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to compute the first-order sensitivities of the response with respect to the components of the
feature function f(a).

7. Using Equation (39) together with the forward and adjoint boundary conditions represented by
Egs. (31) and (44) in Equation (40) reduces the latter to the following relation:

{<a(])(Z;X),qg)[Z;u(])(Z;x);f;é'fJ >1} D ={<V(])(2;X),A(])[2x2;x;f]a(l)(2;x) >1} )

N {}3(1) |: u) (2; x);a(l) (2;x);f;5f:|}

0
o

8. In view of Egs. (27) and (42), the first term on the right-side of Equation (45) represents the
indirect-effect term {5R[u(l)(2;x);f v J} . It therefore follows from Equation (45) that the

ind
indirect-effect term can be expressed in terms of the 1s-level adjoint sensitivity function

al(2;x) 2 [agl) (x).a) (x)}T as follows:

(oR[u" (2:x)s:v" (%) ]| = {<a<l> (2:x).q' [ 20 (2:x):F: 5t | >]}

ind

—{13(1) [ u” (2;x);a" (2;x);f;5f]}a° = {5R [u(l) (2;x);a" (2;x);f;§f]}

CLO

ind

As indicated by the identity shown in Equation (46), the variations 6¢ and oy have been
eliminated from the original expression of the indirect-effect term, which now depends on the 1-
level adjoint sensitivity function a(l)(z;x)é[a({')(x),ag) (x)}T . Adding the expression obtained in
Equation (46) with the expression for the direct-effect term defined in Equation (21) yields, according
to Equation (20) the following expression for the total 1%*-order sensitivity {5R((p,\|l,f ;00,0y, of )}uo

of the response R[ @ (x),y(x):f | with respect to the components of the feature function f(a):

6R(u(');f>

{§R((p,\|1,f;(5([),5\|1,5f)}m0 = pn

of +{<a(')(Z;X),q(,,')[2;u(l)(2;x);f;5f] >1} u

o

a()

TF

—{ﬁ(l)[u(')(2;x);a(l)(2;x);f;5fJ} ) EZ{R(I) [jl;u(l)(2;x);a(l)(2;x);f(a)]5fj]} ‘

)
¢ Ji=l ¢

The identity which appears in Equation (47) emphasizes the fact that the variations 6¢ and vy
, which are expensive to compute, have been eliminated from the final expressions of the 1st-order
sensitivities R" [ jisu® (2;x);a(l) (2:x):f (a)] of the response with respect to the components
fjl (a), J =L,...,TF , of the features functions. The dependence on the variations 09 and 6y hasbeen
replaced in the expression of R") [ ju (25x);a" (2;x)3f (a)] by the dependence on the 1s-level

:
adjoint sensitivity function a® (2;x) 2 [agl) (x),a) (x):| . It is very important to note that the 1+-LASS
is independent of variations &f (a) in the components of the feature function and is consequently

also independent of any variations de in the primary model parameters. Hence, the 1s-LASS needs
to be solved only once to determine the 1stlevel adjoint sensitivity function

a (2;x)2 [af') (x),a! (x)]T . Subsequently, the “indirect-effect term” is computed efficiently and
exactly by simply performing the integrations required to compute the inner product over the adjoint
function a (2;x) 2 [afl) (x),a! (X):|T , as indicated on the right-side of Equation (47). Solving the 1s-

Level Adjoint Sensitivity System (13-LASS) requires the same computational effort as solving the

do0i:10.20944/preprints202404.0394.v1

(45)

(46)

(47)
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original coupled linear system, entailing the following operations: (i) inverting (i.e., solving) the left-
side of the original adjoint equation with the source [aS(u(‘);a> / aq)T to obtain the 1s-level adjoint

sensitivity function afl) (x); and (ii) inverting the left-side of the original forward equation with the

‘
source [85 (u(l);u) / a\yJ to obtain the 1st-level adjoint sensitivity function a(zl) (x).

The 1st-order sensitivities R" [jl;u(l) (2;x);a" (2;x);f(a)}, Jj, =1,...,TF, can be expressed as an

integral over the independent variables as follows:

@ (a) g (a)
R(l)[jl;u(l)(2;x);a(l)(2;x);f(a)}é J dx,... .[ dan(l)[jl;u(l)(2;x);a(l)(2;x);f(a)}. (48)
(@) A1 (@)

In particular, if the residual bilinear concomitant is non-zero, the functions
s [ ju(25x);a" (2;x)5f (a)} would contain suitably defined Dirac delta-functionals for

expressing the respective non-zero boundary terms as volume-integrals over the phase-space of the
independent variables. Dirac-delta functionals would also be used in the expression of

s [ jisu® (2;x);a(1) (2:x):f (a)} to represent terms containing the derivatives of the boundary end-

points with respect to the model and/or response parameters.

The response sensitivities with respect to the primary model parameters would be obtained by
using the expression obtained in Equation (48) in conjunction with the “chain rule” of differentiation
provided in Equation (12).

It is important to compare the results produced by the 1-FASAM-L (for obtaining the
sensitivities of the model response with respect to the model’s features) with the 1-CASAM (the 1+-
Order Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint
Linear Systems) methodology, which provides the expressions of the responses sensitivities directly
with respect to the model’s primary parameters. Recall that the 1s-CASAM-L [27] yields the following
expression for the 1s-order sensitivities of the response with respect to the primary model
parameters:

OR [jl cul) (2 x);a(l) (Z;X);a] (o) o (@) 6S[u(1) (2;X)’QJ
= J. dx,. I dx,,
oa, P EIC AT oa, P
T TI @, (a) ow ((l) o1 ((l)
+ dx S|u (2.0, )0 |—Z_slu (2.4, )0 | =L (49)
;m:—ll,qu:j{lmj(‘u) m |: ( k ) :' aajl |: ( k ) :| aajl o

N

M (2%}~ o Tu (2: x): 10 BTy 50 L TP
+{<a (’X)’aa.q [u (,X),a]>l}ao {(M [u ;a ,aJ s =L,

The same 1s-level adjoint sensitivity function, denoted as a) (2;x), appears in Equation (49) as
well as in Equation (48). Therefore, the same number of “large-scale computations” (which are
needed to solve the 1-LASS to determine the 1st-level adjoint sensitivity function) is needed for
obtaining either the response sensitivities with respect to the components, S (a) , j=L..,TF , of the
feature function f(a) using the ¢, or for obtaining the response sensitivities directly with respect to
the primary model parameters a;, Jj=1,..,TP, by using the 1s-CASAM-L. The use of the 1s-CASAM-

L would also require performing a number of TP integrations to compute all of the response
sensitivities with respect to the primary parameters; in contradistinction, the use of the 1*-FASAM-L
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would require only TF integrations (7F <TP) to compute all of the response sensitivities with
respect to the components 1, (a) of the feature function. Since integrations using quadrature-scheme

are significantly less expensive computationally by comparison to solving systems of equations (e.g.,
the original equations underlying the model and the 1s-LASS), the computational savings provided
by the use of the 1s-FASAM-L is small by comparison to using the 1-CASAM-L. However, this
conclusion is valid only for the computation of 1st-order sensitivities. As will be shown in Section 4,
below, the computational savings are significantly larger when computing the second-order
sensitivities by using the 2d-FASAM-L rather than using the 2"-CASAM-L (or any other method).

4. The Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward and Adjoint Linear Systems (2"-FASAM-L)

The “Second-Order Function/Feature Adjoint Sensitivity Analysis Methodology for Response-
Coupled Forward/Adjoint Linear Systems” (2"d-FASAM-L) determines the 2d-order sensitivities

O°R [u(l) (2:x);f (a)} / of,,of, of the response with respect to the components of the “feature” function
f(a) by conceptually considering that the first-order sensitivities
RV [ Ju(25x);a" (2;x);f (a)} [ '(2;x) J /af which were obtained in Equation (48), are

“model responses.” Consequently, the 2rd-order sensitivities are obtained as the “Ist-order
sensitivities of the 1st-order sensitivities” by applying the concepts underlying 1s-FASAM to each 1s-

order sensitivity R(])[jl;u(‘)(Z;X);a(])(2;x);f(u)] , ji =L..,TF , which depends on both the vector

u” (2;x), which comprises the original state variables, as well as on the 1s-level adjoint function
® (2;x).

To establish the pattern underlying the computation of sensitivities of arbitrarily high-order, it
is useful to introduce a systematic classification of the systems of equations that will underly the
computation of the sensitivities of various orders. As has been shown in the Section 2.1, above, the

Isorder response sensitivities R" [ jiu® (2 x);a(]) (2:x);f (a)] depend on the original state functions

x)2[o(x), v x):| and on the 1s-level adjoint sensitivity function a’) (2;x) 2 [ M (x),a? (x)}T .

The system of equations satisfied by these functions will be called “the 2"-Level Forward/Adjoint
System (2"-LFAS)” and will be re-written in the following concatenated form:

@) [22 x 22;f(u)Ju(2) (22;x) =q [22;u(1) (2;x);f(a)}; xeQ(a); (50)

b (27;u®:£) 2 (b b')) =0; xcQ[r(0);0(a)]; (51)

where the following definitions were used:
@) [22 x2%:f ] dzag( O A 1)) (22;x) e [u(l) (2;x),a(1) (2;)()}+ ; (52)

D250 (2:x):f (@) ] 2] @ (2:7).q) [2;u“);fﬂT : (53)

The notation used for the matrix F*) [22 x2%:f (a)] indicates the following characteristics: (i) the

superscript “2” indicates “2nd-level”; (ii) the argument “ 2% x2*” indicates that this square matrix
comprises 4x4=16 component sub-matrices. Similarly, the argument “2?” that appears in the block-

vectors u?(2%:x), q?[22u” (2;x):f(a)| and b? (22:u?;a) indicates that each of these column
qF b ] b F 9 ’

block-vectors comprises four sub-vectors as components.
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The first-order G-differential of a first-order sensitivity R" [ ji;u® (22;x);f (a)} , j=L..,TF,is

obtained by definition as follows:

{5R(1) [j,;u(z) (22;x);v(2) (22;x);f;5f]} )

{ié'R(l) [jl;u(l) (2; x) s (2; x);a(l) (Z;X) +eoal (2; x);f + gé'f]} (54)

de =0
= {5R(1) [jl;u(z) (22;x);v(2) (22;x);f:|}md + {5R(l) [jl;u(z) (ZZ;X);5f:|}

11>

dir

The direct-effect term {SR"| j;u® (22;x);5f in Equation (54) is defined as follows
J _inEq

ir

{5R(1) [jl;u(z) (22;x);6f]}
a@ o)

7=l B Ay(a) Ay (@) 0

a

dir

(35)

and can be computed immediately. The indirect-effect term {5R(1) [ jiu® (22 ; x) ;v ( 27 x);f J}

ind
in Equation (54) depends on the 2nd-level wvariational = sensitivity  function
v (22;x) e [v(l) (2;x),5a(1) (2;X):| and is defined as follows:

{5R(1) |:jl;u(2) (22;)(); v (Zz;x);f}}. ] e %j‘u) dxl...wn.lgu)dxn |:S(2) (22;jl;u(2);f)ov(2) (22;X):|, (56)

4 (a) A71(@)

where:

s? (22;j1;u(2);f) 2 5RY [jl;u(z) (Zz;x);v(z) (ZZ;X);f]/Gu(Z) ) (57)

Evidently, the functions V(')(Z;x) and 5a(1)(2;x) are needed in order to evaluate the above

indirect-effect term. These functions are the solutions of the system of equations obtained by taking
the first-G-differential of the 2n-LFAS defined by Egs. (52) and (53). Applying the definition of the
first G-differential the 2nd-LFAS yields the following 2¢-Level Variational Sensitivity System (2m4-LVSS)”

for the 2n-Level variational sensitivity function v (22;x) E [v(l) (2; x),é‘a(l) (2;14{)}T :

{diF@) [22x2%1" + &5 |[u®”(2%x)+ &v"?) (22;x)]}
¢ &=0

(58)
= iqf) [22;u(1‘°) (2;x)+gv(l) (2;x);f° + eof J} ; X€ Q(ao);

=0

{%b(ﬁ) [u(m) (22;x) +ev? (Zz;x);f0 + 551'}}60 =0;x¢ GQ[X(GO);(D((IO )J ) (59)

Carrying out the differentiation with respect to ¢ in Egs. (58) and (59), and setting & =0 in the
resulting expressions yields the following 2rd-LVSS:

{V(Z) [22 ><22;x;f] v (22;x)} = {qg,z) [22;u(2) (22;x);f;6fJ} iXe Q(ao); (60)

o a
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{b(vz) (u(z);v(z) ;f;5f)} , =0, xedQ [k(ao);m(ao )], (61)
where the following definitions were used:
VO [2x2;x;f] 0
(2) 2 2. o — .
v [2 x2 ’X’fJ V;f)(2><2;u(l);f) A(')[2x2;x;f] ’
_azs(u(l);f) _azs(u(l);f) )
v (2 X 2;u(1);f) 2 poe poy :
62S(u(]);f) azS(u(l);f)
- oyo - oyoy
(1) 2; (]);f;é'f
q(Vz) |:22;u(2) (2Z;x);f;§f:|é qy |: u :| :
p(A') [Z;u(l);aﬁl);f;é'fJ
pgl) (u(l);agl);é‘f) (63)
p(;) [2;u(l);a§]);f;5fJ 2 ;
p(zl) (u(l);a?);é'f)
o*s(usf)  o[L(f)al"]
pl’ (usal's1:01) 2 e O a " ©
. )
p(l) (u(l);a(zl);f,é‘f) A azS(u ! ’f) s 8|:L (f)a(zl :| . (65)
ofoy of
b(l) (1); (1);f;§f
bs’z) (u(z);v(z) ;f;é‘f) a v (ll v ) .

sb') (u?;v:£:5¢) ;

The matrix V. (2 x2;ul);f ) depends only the system’s response and is responsible for coupling
the forward and adjoint systems. Although the forward and adjoint systems are coupled, they could
nevertheless be solved successively rather than simultaneously, because the matrix v® [22 x2%:x:f ]

is block-diagonal. All of the components of the matrices and vectors underlying the 2n-LVSS are to
be computed at nominal parameter and state function values, as indicated in Egs. (60) and (61).

Computing the indirect-effect term {§R(l) [ jiu® (22 ; x); v (22 ; x);f J} by solving the 2nd-LVSS
ind
would require at least 27F (7F +1) large-scale computations (to solve the 2r-LVSS) for every

component of the feature function f(a).

The need for solving the 2nd-LVSS will be circumvented by deriving an alternative expression
for the indirect-effect term {5R(‘) [ jiu® (22 ; x) v? (22 ; x);f J} , as defined in Equation (56), in which

ind
the second-level variational function v'* (22;x) will be replaced by a 2rd-level adjoint function which
is independent of variations in the model parameter and state functions. This 2rd-level adjoint
function will be the solution of a 2rd-Level Adjoint Sensitivity System (2r4-LASS), which will be
constructed by using the same principles as employed for deriving the 15-LASS. The 2nd-LASS is
constructed in a Hilbert space, denoted as H ,, which will comprise as elements block-vectors of the
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same form as v (22;x) , 1ie, a wvector in H, has the generic structure
27 (2%:x) 2 [ @ (x), 12 (%), 1 (x), 7y (1»;)}T , comprising four vector-valued components of the form
% (x)= [ ;(i(f) (x),ees ;(l.(j)( Yoo ;(,(ZT)D( )J , i=1,2,3,4=2%. The inner product between two elements,
x? (2;x)eH , and o? (2;x) e H ,, of this Hilbert space, will be denoted as <x(2) (2;x),0(2) (2;3&)>22 and

is defined as follows:

2

2°

(1 (207 (220)), 2 22 (). 07 (), )
Note that there are Ji=L.,TF distinct indirect-effect terms
{5R(') [ jiu® (22;x);v(2) (22;x);f ]} . Each of these indirect-effect terms will serve as a “source” for a
ind
“2nd-Level Adjoint Sensitivity System (2rd-LASS)” that will be constructed by applying the same

sequence of steps that were used in Section 2.1, above, to construct the 1s-LASS. This implies that a
distinct 2rd-level adjoint sensitivity function, of the form

a® (2% j;:x) 2 [ ' (isx ),a(zz)(jl;x),a(f)(jl;x),aff)(jl;x)T eH,, j=1..TF, corresponding to each
distinct indirect-effect term, will be needed for constructing each of the corresponding 2"-LASS, as

follows:

1. Foreach j, =1,...,TP, form the inner product in the Hilbert space H , of Equation (60) with a yet

undefined function a®? (22; jl;x) to obtain the following relation:

{< (2)(22,j1, ),V(z) [22x22;x;fJ v(z)(Zz;x)>22} \
:{<a(2)(22;]'1;,‘)’(1(;)[22;“(2)(zz;x);f;é‘fJ >22} b XGQ(UO)-

o

(©) (68)

2. Using the definition of the adjoint operator in the Hilbert space H ,, recast the left-side of
Equation (68) as follows:

{<a<z><2z;,~_x>,v<2> it (),

{ @ 22 )[22><22;x;f]a(2)(22;j1;x) >22} ) (69)
{ ) ()(2 ,j,;x);f;é'f}}o,
where {P(z) [v(z) (Zz;x);a(z) (22; jl;x);f ;of J} , denotes the bilinear concomitant defined on the phase-
space boundary xedQ, (ao) and where A®? [22 x 22;x;f] 2 [V(Z) [22 x 22;x;fﬂ* is the operator
formally adjoint to V) [22 x 22;x;fJ )

3. The first term on right-side of Equation (69) is now required to represent the indirect-effect term
{5R(1) [ jiu® (Zz;x);v(z) (22;x);f ]} defined in Equation (56). This requirement is satisfied by
ind

recalling Equation (57) and imposing the following relation on each function a(z)(Zz; jl;x) ,
Ji=L..,TF:

{A(z) [22 x22;x;f]a(2) (22;j1;x)}m0 = {s(z) (22;j1;u(2);f)}m0 , i =L..,TF, (4) (70)
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4. The definition of the vector a(z)(Zz; jl;x) will now be completed by selecting boundary

conditions which will be represented in operator form as follows:

{b(j) [u(z)(22;););21(2)(22;j1;x);f]}an =0, xeé’Q(uO), j, =1,...,TF. (71)

5. The boundary conditions represented by Equation (71) are selected so as to satisfy the following
requirements: (a) these boundary conditions together with Equation (70) constitute a well posed

problem for the functions a? (22; jl;x) ; (b) the implementation in Equation (69) of these
boundary conditions together with those provided in Equation (61) eliminates all of the unknown
values of the functions v? (22;x) and a® (22 ; jl;x) in the expression of the bilinear concomitant

{P<2)[v“)(zz;x);a(”(zz; jl;x);f;c')‘fJ}0 . This bilinear concomitant may vanish after these

boundary conditions are implemented, but if it does not, it will be reduced to a residual quantity
which will be denoted as P? [u(z) (22 ; x) ;:a? (22 e x);f ;of ] and which will comprise only

known values of u(z)(Zz;x), a(z)(22;jl;x), f and of .

The system of equations represented by Equation (70) together with the boundary conditions
represented by Equation (71) constitute the 2-Level Adjoint Sensitivity System (2r4-LASS). The
solution of the 2n4-LASS, i.e., the four-component vector a? ( 2% i x) , Jise-s TP, will be called the 274-
level adjoint sensitivity function. It is important to note that the 2nd-LASS is independent of any

variations, of , in the components of the feature function and, hence, is independent of any
parameter variations, oa, as well.

The equations underlying the 2n-LASS, represented by Egs. (70), (71), together with the
equations underlying the 2nd-LVSS, represented by Egs. (60) and (61), are now employed in Equation

69) in conjunction with Equation (56) to obtain the following expression for the indirect-effect term
) q g exp
{5R(') [ jl;u(z)(22;x);v(2)(22;x);f]} in terms of the 2nd-level adjoint sensitivity functions
ind

a? (22;j1;x), for j, =1,...,TP:

{5R(1) |:jl;u(2) (zz;x);v(z) (22;x);f:|}md :{<a(2) (22;j1;x),q5/2) |:22;u(2) (22;X);f;5fj| >2} \

_{ﬁ(z) [u(z);a(z);f;5f:|} - {5R(1) [119“(2) (22;)();3(2) (22;j1;X);f;§f:|} (72)

o’ ind
As the last equality (identity) in Equation (72) indicates, the 2rd-level variational sensitivity

function v (22;x) has been eliminated from appearing in the expression of the indirect-effect term,

having been replaced by the 2rd-level adjoint sensitivity function a® (22; jl;x) ,foreach j =1,...,TF.

Inserting the expressions that define the vector q'”’ [22;u(2) (22 ; x);f ;of J from Equation (63)—(65)

into Equation (72) and adding the resulting expression for the indirect-effect term to the expression
of the direct-effect term given in Equation (54) yields the following expression for the total second-
order G-differential of the response R [q) (x),w(x);f ] :

0

{5R(1) [jl;u(z) (ZZ;X);a(z) (jl;22;x);f;5f]}

TF
- z{R(z) [jz;jl;u(”(22;x);a(2)(j1;22;x);f]} 51,

J2=1

~ W g
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where B[/ j;u® (x);a (jisx);f | = °R[o(x), w(x):£]/of,&f, denotes the 2w-order partial
sensitivity of the response R[¢(x),y(x):f| with respect to the components f, (&) of the feature

function f(a), evaluated at the nominal parameter values o', and has the following expression for
JioJ, =L, TP:

5 W o (a) .
- {6_ I dx,... I dx,, SV |:j1;u(2) (22;x);f(a)]
]sz 2 (a) Ay (@) o’
{< o 6[Q<f)—L(f>q>(x>]>
a,” (%),
o,
J2 0) g0
o Q- (N)v(x)]
+4(ay (Ji;x), o
h 0J g4 (74)
82S(u(1) (x);f) 6[L* (f)aglq
+ agZ) (]1 5 X) s -
7,2 7 |
62S(u(l) (x);f) 6[L (f)a(zﬂ
+ aE‘Z) (Jl 5 )’ -
o, 0w &,
0) 40
O pO @ (x):2®
_{EP [u (x);a (]I,X),f((l):| u
Since the 27-LASS is independent of variations in the components of the feature-functions (and,
hence, variations in the model parameters), the exact computation of all of the partial second-order
sensitivities r(® |:j2;j1;“(2) (22;X);a(2) (j1;22;x);fJ = 62R[(P(X),\|I(X);f]/5f,, o, requires at most 7F
large-scale (adjoint) computations using the 2n4-LASS. When the 27-LASS is solved TF -times, the
“off-diagonal” 2rd-order mixed sensitivities 62R/8fj1 df,, will be computed twice, in two different
ways, using two distinct 2nd-level adjoint sensitivity functions, thereby providing an independent
intrinsic (numerical) verification that the 1st- and 2nd-order response sensitivities with respect to the
components of the feature functions are computed accurately. In component form, the equations
comprising the 2n¢-LASS are solved, for each j; =1,....,TF, in the following order:
as" (j1 ;u(z);f)
L(f)agz) (jl,X)=T, (75)
1
a5 (j;u®:f)
* 2) (. I ’
L (f)a;” (ji;x) oal , (76)
o*S(u;f o*S(u";f as" (j;u;f
L (f)afz)(h,x = ( )a(;) Jix)+ ( )agz)(jl;x)+ ( : ), (77)
0909 oW op
*S(u":f *S(u":f as" (i u:f
L(f)a(zz)(jl,x = ( )33)(jl;x + ( )ag)(jl;x)+ ( : ) (78)
0poy Oyoy oy



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2024 d0i:10.20944/preprints202404.0394.v1

23

Dirac delta-functionals may need to be used in Equation (74) in order to express in integral form
the eventual non-zero residual terms in the residual bilinear concomitant and/or the terms containing
derivatives with respect to the lower- and upper-boundary points. Ultimately, the expression of the

partial second-order sensitivities R(z)[ o jl;u(z)(zz;x);a(z)(f; jl;x);f ] obtained in Equation (74) is

written in the following integral form, which mirrors Equation (48):

RO o3 jisu® (2%3x):2 (2% 5 %) 8 (@)

X o (@) o (@) , ) ) (79)
2 I dx, ... I dx,, S' )[jz;jl;u( )(22;x);a( )(22;j1;x);f(a)}
A (a) gy (@)

The computation of the partial second-order sensitivities RY [ Jas jl;u(z) (Zz;x);a(z) (22; jl;x>;f ]
using Equation (74) requires quadratures for performing the integrations over the four components

of the 2rd-level adjoint sensitivity function a®” (22 s X) , which are obtained by solving the 2nd-LASS
for 5 =L..,TF . Thus, obtaining all of the second-order sensitivities
R? [jz;j] cu? (22;x);a(2) (22;jl;x);fJ = 62R/6fjI of, with respect to the components f, of the feature

function f(a) requires performing at most 7F large-scale computations for solving the 2n4-LASS.

By comparison, if the 2rd-CASAM-L [27] had been applied to compute the second-order
sensitivities of the response directly with respect to the model parameters, 7P (instead of TF' ) large-
scale computations for solving the corresponding 2"-LASS would have been required, where TP
denotes the total number of primary model parameters. Since TF <TP , fewer large-scale
computations are needed when using the 2nd-FASAM-L rather than the 2d-CASAM-L. Notably, the
left-sides of the 2n-LASS to be solved within the 2nd-FASAM-L are the same as those to be solved
within the 2nd-CASAM-L. However, the source terms on the right-sides of these 24-LASS are different
from each other: there are as many source-terms on the right-sides as there are components of the
feature function within the 2d-FASAM-L, and there are as many right-side sources as there are
primary model parameters within the 2"d-CASAM-L.

5. Illustrative High-Order Feature Adjoint Sensitivity Analysis of Energy-Dependent Particle
Detector Response

The application of the n™-FASAM-L methodology will be illustrated in this Section by
considering the simplified model of the distribution in the asymptotic energy range of neutrons
produced by a source of neutrons placed in an isotropic medium comprising a homogeneous mixture
of “M” non-fissionable materials having constant (i.e.,, energy-independent) properties. For
simplicity, but without diminishing the applicability of the nt*-FASAM-L methodology, this medium
is considered to be infinitely large. The simplified neutron transport equation that models the energy-
distributions of neutrons in such materials is called the “neutron slowing-down equation” and is
written using the neutron lethargy (rather than the neutron energy) as the independent variable,
which is denoted as “u” and is defined as follows: u £In(E,/E), where E denotes the energy-
variable and E, denotes the highest energy in the system. Thus, the neutron slowing-down model
[32-34] for the energy-distribution of the neutron flux in a homogeneous mixture of non-fissionable

materials of infinite extent takes on the following drastically simplified form of the neutron transport
balance equation:

d p) S
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¢(0)=0; ar u=0. (81)

The quantities which appear in Equation (80) are defined below.

(1) The lethargy-dependent neutron flux is denoted as ¢(u); u, denotes a cut-off lethargy, usually
taken to be the lethargy that corresponds to the thermal neutron energy (ca. 0.0024 electron-volts).

(2) The macroscopic elastic scattering cross section for the homogeneous mixture of “M” materials
is denoted as X, and is defined as follows:

M N .
T, 23 NVol; (82)

Where O (7) “y

s 0

i=1..M denotes the elastic scattering cross section of material “i”, and where the
atomic or molecular number density of material “i” is denoted as N, f,f), i=1,..M and is defined as
follows: NV 2 p N, /A4, , where N, is Avogadro’s number (0.602><1024 nuclei / mole), while 4, and

p, denote the respective material’s mass number and density.

(3) The average gain in lethargy of a neutron per collision is denoted as £ and is defined as follows
for the homogeneous mixture:

2
e NG alna A -1
2NN, g a1 S g A D ) 83
Feodanel g1t m a2 S (83)
4) The macroscopic absorption cross section is denoted as X
P P a
and is defined as follows for the homogeneous mixture:

M
P NINOG
Z, 23N, o, (84)

i=1

where O'il), i=1,..,M, denotes the microscopic radiative-capture cross section of material

/lill.
(5) The macroscopic total cross section is denoted as X, and is defined as follows for the
homogeneous mixture:

z:t é za + ZA\" (85)

(6) The source S(u) is considered to be a simplified “spontaneous fission” source stemming from

fissionable actinides, such as 2°Pu and °Pu, emitting monoenergetic neutrons at the highest
energy (i.e., zero lethargy). Such a source is comprised within the OECD/NEA polyethylene-
reflected plutonium (PERP) OECD/NEA reactor physics benchmark [21, 22] which can be
modeled by the following simplified expression:

2
S(u)=8,6(u); Sy 2D AN FvViw?, (86)
k=1

where the superscript “S” indicates “source;” the subscript index k=1 indicates material properties
pertaining to the isotope 2°Pu; the subscript index k=2 indicates material properties pertaining to the
isotope 20Pu; 47 denotes the decay constant; N denotes the atomic density of the respective

actinide; F;° denotes the spontaneous fission branching ratio; v; denotes the average number of
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neutrons per spontaneous fission; W, denotes a function of parameters used in a Watt’s fission

spectrum to approximate the spontaneous fission neutron spectrum of the respective actinide. The
detailed forms of the parameters W° are unimportant for illustrating the application of the nt-

FASAM-L methodology. The nominal values for these imprecisely known parameters are available
from a library file contained in SOURCES4C [26].

The response considered for the above neutron slowing-down model is the reaction rate,
denoted as R, of neutrons of energy u =u, that would be measured by a detector characterized by

an interaction cross section ¥, £ N,o,, where N, denotes the atomic or molecular number density
of the detector’s material while o, denotes the detector’s microscopic interaction cross section.

Mathematically, the detector’s reaction rate can be represented by the following functional of the
neutron flux ¢(u):

R:ngo(ud)zzdJ.(o(u)é'(u—ud)du; X, =N,0,. (87)
0
For this “source-detector” model, the following primary model parameters are subject to
experimental uncertainties:

(i) the atomic number densities N

m ;

the microscopic radiative-capture cross section a ); the

scattering cross section o

s

) for each material “i”, i = L,...,M , included in the homogeneous mixture;
(ii) the source parameters 4’ , N, , F;’, vi, W?, for k=1,2;

(iif) the atomic density N, and the microscopic interaction cross section o, that characterize the

detector’s material.

These above primary parameters are considered to constitute the components of a “vector of
primary model parameters” defined as follows:

R S SV S S A Al AR AR AR AR

)T
) (88)
é(al,...,a”,)' ; TP=3M +12.

On the other hand, the structure of the computational model comprising Egs. (80), (81) and (87)
suggests that the components f; (a) of the feature function f(a) can be defined as follows:

f(a)2 [/ (0). £, (). £y (0)] ;

. 2 (a) _ Sy(e) R (89)
a ). 2 : 2y (a).
MO F s @ M s @ AT
Solving Egs. (80) and (81) while using the definitions introduced in Equation (89) yields the
following expression for the flux ¢(u) in terms of the components f;(a) of the feature function f(a)
o(u)=H(u)f, (oz)exp[—uf1 (a)}; H©0)=0; H(u)=1, if u>0. (90)

In terms of the components f;(a) of the feature function f(a), the model’s response takes on

the following expression:
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R(a)=f,(a)f, (a)exp| —u, /, (a)]. (91)

As Equation (91) indicates, the model response can be considered to depend directly on
TP 2 3M +12 primary model parameters. Alternatively, the model response can be considered to
depend directly on 3 feature functions and only indirectly (through the 3 feature functions) on the
primary model parameters. In the former consideration/interpretation, the response sensitivities to
the primary model parameters will be obtained by applying the n-CASAM-L methodology. In the
later consideration/interpretation, the response sensitivities to the primary model parameters will be
obtained by applying the n"-FASAM-L methodology, which will involve two stages, as follows: the
response sensitivities with respect to the feature functions will be obtained in the first stage, while
the subsequent computation of the response sensitivities to the primary model parameters will be
performed in the second stage, by using the response sensitivities with respect to the feature functions
obtained in the first stage. The computational distinctions that stem from these differing
considerations/interpretations within the n®™-CASAM-L methodology versus the n"™-FASAM-L
methodology will become evident in the remainder of this Section by means of using the illustrative
neutron slowing-down model, which is representative of the general situation for any linear system.

According to the “reciprocity relation” for linear systems highlighted in Equation (8), the
detector response defined in Equation (87) can be alternatively expressed in terms of the solution of
the “adjoint slowing-down model”, i.e., the model that would be adjoint to the forward slowing-
down model represented by Egs. (80) and (81). The “adjoint slowing-down model” is constructed in

the Hilbert space H 3 of all square-integrable functions (p(u) eH,, (//(u)e H , endowed with the
following inner product, denoted as (p(u).y (u)), :

B

Hip

(o(u).w (u)), 2 [ @(u)w (u)du. (92)

0
Using the inner product (¢(u).y (u)), defined in Equation (92), the adjoint slowing-down

model is constructed by the usual procedure, namely: (i) construct the inner product of Equation (80)
with a function v ()€ H ;; (ii) integrate by parts the resulting relation so as to transfer the differential

operation from the forward function (o(u) onto the adjoint function ¥ (u); (iii) use the initial
condition provided in Equation (81) and eliminate the unknown function (p(u,h) by choosing the

final-value condition ¥ (u,,, ) =0 (iv) choose the source for the resulting adjoint slowing-down model
so as to satisfy the reciprocity relation shown in Equation (8). The result of these operations is the
following adjoint slowing down model for the adjoint slowing-down function ¥ (u) :

dy (u)
du

+ (o) (u)=f(a)d(u-u,), (93)

l//(uth) =0, atu=u,. 94)

In terms of the adjoint slowing-down function ¥ (u) , the detector response takes on the

following alternative expression:

gy

R=f,(a) [y (u)5(u)du. (95)

0
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The correctness of the alternative expression for the detector response provided in Equation (95)
can be readily verified by solving the adjoint slowing down equation to obtain the following closed

form expression for the adjoint slowing-down function ¥ (u) :

w(u)=H(u,—u)f,(a)exp[ (u—u,) £, (a) ] , (96)

and subsequently inserting the above expression into Equation (95) to obtain the same final

result as was obtained in Equation (91) in terms of the forward slowing-down flux (o(u) .

5.1. First-Order Adjoint Sensitivity Analysis: 1-FASAM-L Versus 1#-CASAM-L

In this Subsection, the computation of the first-order sensitivities of the response R(a) with

respect to the primary model parameters will first be demonstrated by using the 1s-FASAM-L.
Subsequently, the same first-order sensitivities will be obtained by using the 1s-CASAM-L and the
two alternative paths will be compared to each other, showing that the same expressions are obtained
for the respective sensitivities, as expected. Although the computational efforts are not identical, they
are comparable in terms of efficiency, with a slight advantage for the 1s-FASAM-L methodology.

5.1.1. Application of the 1s=FASAM-L

The 1-FASAM-L will be applied to the neutron slowing-down paradigm illustrative model by
following the principles outlined in Section 3. In this case, the model response is written in terms of
the feature functions as follows:

Uy

R(go,f)zjgj‘(p(u)é(u—ud)du, (97)

where the flux @(u) is the solution of the 1+-Level Forward/Adjoint System (15-LFAS) comprising

Egs. (80) and (81), where Equation (80) is written in terms of the feature functions as follows:

dolv)

" +fo(u)=£,6(u); 0<u<u,. (98)

The first-order sensitivities of the response R(¢,f) with respect to the components of the

feature function f ((l) are provided by the first-order Gateaux (G-)variation 5R((p°,f°;v<‘>,5f) of

R(g.f), for variations v (1) 2 5p(u) and O f; around the phase-space point (¢°.£°), as shown in
Equation (18), to obtain:

5R((p°,f°;v(l),5f)é{ {fs +&0 f, j(gp +gv(')) (u— ud)du}}

0 (99)
£15R(¢" 151, )} {5R(¢) £, )}
where the “direct-effect” term {5 R ((po £05 7, )} , and, respectively, the “indirect-effect” term
{5R((o°,f O;v(l) )}M are defined as follows:
{5R(¢)°,f0;5f3)}diré(dﬁ)uf(po(u)é(u—ud)du, (10(;
0
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>

{é‘R((po,fO;v(l))} f;)jv(l)(u)é‘(u—ud)du. (101
ind 0 )
The “1st-level variational sensitivity function” W (u) is obtained as the solution of the “1s-Level

Variational Sensitivity System (1s--LVSS)” obtained by taking the first-order G-differentials of the 1s-
LFAS defined by Egs. (98) and (81), which are derived as shown in Egs. (28) and (29), to obtain:

41 d(e"+e d (ro 1
%{¥ (£ +e5,) (0" +ev ))] =5(”){$(f2 ”5’3)}50’ | )

{i[¢°(u)+gv<l>(u)]} ~0; atu=0. (103

de

Carrying out the differentiations with respect to ¢ in the above equations and setting ¢ =0 in
the resulting expressions yields the following 1s-LVSS:

AV (u (104
) (@) ) =(02)5(0)~(51)6 w), )
W (u) =0; atu=0. (105)
For further reference, the closed-form solution of the above 1s-LVSS has the following
expression:
1
n ()= {[(3£) (@ )ur 1 (W) exp(-wr)., ue
In principle, the above expression for W (#) could be used in Equation (101) to obtain the value
if the indirect-effect term. In practice, however, the 1s-LVSS cannot be solved analytically so the
closed form expression of W (u) is not available. Consequently, rather than (numerically) solve
repeatedly the 1s-LVSS for every possible variation induced by the primary parameters in the
component feature functions, the alternative route to determining the expression of the indirect-effect
term is to develop the 1+-Level Adjoint sensitivity System (1s:-LASS) by following the procedure
described in Section 3. The Hilbert space, denoted as H,, appropriate for this illustrative model is
the space of all square-integrable functions endowed with the following inner product, denoted as
<Z(1) (u)ﬁ(l) (U)>1 , between two elements, 7" (u)eH , 9(1)(2;X)€ H,, belonging to this Hilbert
space:
(#0007 2[00 o

In this particular instance, the Hilbert space H | coincides with the original Hilbert space H,

used for the original forward and adjoint slowing down models. More generally, similar situations
occur when the response depends either just on the forward or just on the adjoint state function(s).

Using Equation (107), construct in the Hilbert space H | the inner product of Equation (104)

with a square-integrable function a' ( )eH | to obtain the following relation:
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0 o0 0

{"f o (u>[%+m <u>}du} A st~ npoa (108

Using the definition of the adjoint operator in the Hilbert space H |, which in this case amounts
to integration by parts of the left-side of Equation (108), obtain the following relation:

" Nors Uy 2V (1
{Ia(l) (u)[d du( )+flv(1) (u)]du} | :{J‘v(l)(u)[_dd—u()+fla(l) (u)]du} 0 (109

0 0

)
+{a" (u, )" (1) =" (0)") (0)}ao .
Require the first term on right-side of Equation (109) to represent the indirect-effect term defined
in Equation (101), to obtain the following relation:
da" (u 110
{—#+fla(l)(u)}o={f3§(u—ud)}a0; O<u<u,. ( :
Implement the boundary conditions represented by Equation (105) into Equation (109) and
eliminate the unknown boundary-value W (u,) from this relation by imposing the following
boundary condition:
a" (u,)=0, atu=u,. (111)

The system of equations comprising Equation (110) together with the boundary condition
represented Equation (111) is the Is--Level Adjoint Sensitivity System (1s-LASS) and its solution a" (u)

is the Ist-level adjoint sensitivity function.
Using Equation (101), together with the equations underlying the 1s-LASS and 1#-LVSS in
Equation (108) reduces the latter to the following expression for the indirect-effect term:

{§R((007f0;a(1) )}ind - {L;if a(l) (u)[(ﬁj[z)ﬁ(u)—(5ﬁ)¢)(u):|du } 0 ) (112

Adding the expression obtained in Equation (112) with the expression for the direct-effect term
defined in Equation (100) yields the following expression for the total 1s-order variation
5R(¢)O’f°;v(l)’5f) of the response R[(p(u);f (a)] with respect to the components of the feature

function f (a) :

g,

5R(¢°,f°;v“>,5f) = {j a" (u)[(5/’2)5(u)—(5ﬁ)¢(u)]du}

“ (113
+{(5ﬂ)uf¢(u)5(u—ud)du} ={oR(p.£:a",51)}| . :

The identity which appears in Equation (113) emphasizes the fact that “Is-level variational

sensitivity function” W (u), which is expensive to compute, has been eliminated from the final
expression of the Ist-order total variation {5R((o,f ;" ot )} ,» being replaced by the dependence on

the 1st-level adjoint sensitivity function a" (u), which is independent of variations 5f(a) in the

components of the feature function and is consequently also independent of any variations Sa in
the primary model parameters. Hence, the 15-LASS needs to be solved only once to determine the 1
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level adjoint sensitivity function a? (1), which requires the same amount of computational effort as

solving the original forward system for the function (p(u) .

The expressions of the sensitivities of the response R[¢(u):f(a)] with respect to the
components of the feature function f((l) are given by the expressions that multiply the respective

components of f(a) in Equation (113), namely:

R " 00 (Vo ()l (114
M:"m a(])(u)ﬁ(u)du (115
o, 0 ’ )
8R(¢J, “ ; u u Vdu. (116
J'(P( a)d )

The above expressions are to be evaluated at the nominal parameter values «° but the indication

{ }m0 has been omitted for simplicity.

Solving the 1#-LASS yields the following closed-form expression for the 1s-level adjoint

sensitivity function a" (u):

117
a(l)(u)zH(ud—u)]@(a)exp[(u—ud)fl(u)], ( :
where the Heaviside functional has the usual meaning, namely: H (ud —u) =0 if u>u, and
H(u,—u)=1if u<u,.

Inserting the expression obtained in Equation (117) into Eqs. (114)-(116) yields the following
closed-form expressions for the sensitivities of the response R[¢(u):f(a)] with respect to the
components of the feature function f(a):

OR(¢p;f 118
M:—udfz(a)ﬁ(a)exp[—udfl (a)]; (

o, )

OR(¢:f) _ (119

7, —f3(a)exp[ u, f; (a)] , )

OR(p;f) (120

7 a)exp| -u, f;(a)]. )

The correctness of the expressions obtained in Eqs. (118)-(120) can be verified by directly
differentiating the closed-form expression given in Equation (91).

Alternatively, the 1s-FASAM-L methodology could have been applied to the alternative
expression, in terms of the adjoint slowing-down function, for the detector response provided in
Equation (95). It can be verified that the final expressions for the response sensitivities with respect
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to the feature functions fi(a), i=1,2,3, obtained by using Equation (95) as the starting point in

conjunction with the adjoint slowing-down model are the same as obtained in Egs. (118)—(120).

The expressions of the first-order sensitivities of the response R[ ¢(u);f(a)] with respect to the

primary model parameters @,, j=TP23M +12, as defined in Equation (88), are obtained by using
the expressions obtained in Egs. (118)-(120) in conjunction with the chain rule of differentiation of
the compound functions f; (a), i=1,2,3. Note that the feature function f, (a) 2/ (N d,crd) depends
only on the parameters that characterize the detector, so the first-order sensitivities of the response
R[ @ (u);f (a) | with respect to the primary model parameters N, and 0, canbe readily obtained by

using Equation (120), as follows:

OR(¢p;f) OR(¢:f) 0 121
(0:0)_3RO) 3 _ )] (
ON, of, ON, )
OR(¢p;f) OR(¢;f) 0 122
( ) — ( ) 1{3 =N ﬂ CXp[ ”df ((l :| (
ao_d 8f‘3 a d )
Similarly, the primary model parameters (A4°, 4, N . N;.F°.F’ v’ v W’ w}) that
characterize the neutron source distribution only appear through the definition of the feature
function f2 / 5 . It therefore follows that the first-order sensitivities of the
response R[(o(u ;f(a )] w1th respect to these primary model parameters are obtained as follows:
OR(p;f)  OR(p:f) of, NiFSviw, (123
== == — ) k = 15 2;
o Frag ey~ @l 0] )
OR(p;f)  OR(¢:f) & AEV) 124
(s ): ( ) fzs__ kf3 exp[ udf ):|,k=1,2; (
oN; of, oN; &(a)Z,(a) )
OR(p;f) OR(¢:f) & AENZVE 12
(s ): ( ) JFZS_ kf;((l exp[ ”df )],k=1,2; ( 5
OF, ¥, o E(@)(a) )
OR(p:f) OR(pif) of, A’N;F'wW 126
(s ): ( ) fz i k f3 exp[ “df )],k=1,2; (
ov; of, ovi &(a)z(a) )
OR(p;f)  OR(¢:f) o AN Fivy 127
( 4 ): ( ) f‘25:_ Kk kﬂ(a)exp[—udfl(u)],kzl,l (
oW, of, ow’ &(a)z,(a) )
On the other hand, the primary model parameters ( N,(,,l),af),ofl),..., NLM),o-ﬁM),o-fM)) that
characterize the composition of the homogenized material in which the neutrons slow-down appear
through the definitions of both feature functions f1 @) éZ u / 5_ a 2 a and
/ f . It therefore follows that the first-order sensitivities of the response
R[(p (u):f ()] w1th respect to these primary model parameters are obtained as follows:
OR(¢p;f) OR(p;f OR (o f
(ef) _oR(pst) o OR(ef) o ., (128

aNy o aND 8, aN’ )
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R(esf) _oR(p:f) o, OR(pf) o, .\ . (129
aO';l) af] aO'il) 5f2 809 > R )
OR(p:f) _OR(p:f) of; +6R(¢J;f) % iy (130
ao_gt) af; ao_gt) 6]‘2 605‘) s LEREE) 5 )

The explicit differentiations in Eqs. (128)—(130) are straightforward to perform, but are too
lengthy to be presented here and are not material to applying the principles of the 1s-FASAM-L
methodology.

In summary, the application of the 1s-FASAM-L to compute the first-order sensitivities of the
response R[ ¢(u);f(a)] with respect to the primary model parameters @, j=1..,TP23M +12,
requires the following computations:

1. One “large-scale” computation to solve the 15-LASS to obtain the 1s-level adjoint sensitivity
function a" (u).

2. Three “quadratures”, as indicated in Egs. (114)—(116), involving the 1st-level adjoint sensitivity
function 4" (u) to obtain the three sensitivities of the response R [@(u):f ()] withrespect to the
components f; (a), i=1,2,3, of the feature function f ((l) . These computations are inexpensive.

3. Chain-rule type differentiations using the definitions of the components f, ((1), i=1,2,3 of the
feature function f(a) , and the three sensitivities obtained in Eqgs. (114)-(116). These
computations are inexpensive.

5.1.2. Application of the 1s-CASAM-L

The application of the 1s-CASAM-L methodology will yield the first-order response sensitivities
directly with respect to the primary model parameters. These sensitivities will be obtained by
determining the first-order Gateaux (G-) variation 5R((p°,a°;v<'),5a) of the response R((p,a) as for
variations v (1) 2 8p(u) and Sa around the phase-space point (¢°.a’), using the definition
provided in Equation (87), to obtain:

0 0. (1) A 0 0. 0 0. (1)
é'R((o N Y ,5«1)—{5R(¢ ,0 ,5&)}db‘+{5R((o N Y )}ind
. (131
e Hdil:(Nd +&5N,)(o, +¢do,) j (gpo +5v(l))5(u —ud)du}} } , )
¢ 0
=0 ) o0
where the “direct-effect” term {51{((/,0,‘10;5(1)} ~ and, respectively, the “indirect-effect” term
{5R(g0°,u0;v(l) )} are defined as follows:
ind
0 0. 2 (132
{oR(0",0%:61,)|  2:[(6N,)o, +(60,)N, ] [ o(u)5(u=u,)du ; )
0 o

{5R(¢O,u0;v(l) )} ) = {NdO'dTv(]) (u)5(u—ud)du} ) (133

! 0
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The “1s-level variational sensitivity function” v («) is obtained as the solution of the “1s-Level

Variational Sensitivity System (15-LVSS)” obtained by taking the first-order G-differentials of the 1s-
LFAS defined by Egs. (80) and (81) to obtain:

di d((00+5v(1))+ _ Oza(ao +g50;) ((p°+8v(l))
g du f(a +g§a)2t (a +£5a)

oo (134

:§(u){i_ So(a0+55a) } ’ )

de &(a’ +£50)%, (o + £5a)

(135

Carrying out the differentiations with respect to ¢ in the above equations and setting ¢ =0 in
the resulting expressions yields the following 1:--LVSS:

R 0 () = s 30| _Sol®) a}

e o | T, 36
¢ o[ s )

{ (0250 {5 (o) (J‘S }

e (u) =0; atu=0. (157

To avoid solving the above the 1-LVSS repeatedly, for every possible variation in the primary
parameters, the appearance of the function W (u) will be eliminated for the expression of the
indirect-effect term by replacing it with the solution of the 1st-Level Adjoint Sensitivity System (1s-
LASS) which will be constructed in the Hilbert space H |, as before: use Equation (107) to form the
inner product of Equation (136) with a square-integrable function a ( JeH | to obtain the

following relation:

"‘”a(l) y dv(])(u)+ Zu((l) S0 ”:l u} :{Tpi So(a) o
{-([ ( )[ du E(a), (a) (u) |d ) ;aa{f(a)i,(a)}éi (138

4y 17 a uy )
x _[ a (u)5(u)du} 0 —{Zi{%}&% _[ a" (”)(/’(”)du} -

el

Integration by parts of the left-side of Equation (138) yields the following relation:

o0 (4 o
{J.a(l)(u){d ‘du( )+ 2, (a) )v(l)(u)}du} ={a(‘)(u,h)v(‘)(“m)}u

0 5,‘_((1)2, (e ¢ (139

Uy d O] > )
jv(l) (u) _& (u)—i- = “(u) a (u) du ¢ .
o |9 du £(0)Z, (a) B
Requiring the first term on right-side of Equation (139) to represent the indirect-effect term
defined in Equation (133) yields the following relation:
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_aia(l)(u)Jr z, (o) amu} (N o5 (140
{ du  E(a)Z,(a) ()uo Voo (=)} -

Eliminate the unknown boundary-value v (u,) from Equation (139) by imposing the

following boundary condition:

a" (u,)=0, atu=u,. (141
The system of equations comprising Eqs. (140) and (141) is the 1s*-Level Adjoint Sensitivity System

(1:-LASS) and its solution a"! (u) is the Is-level adjoint sensitivity function. As already shown in the

general 1-FASAM methodology presented in Section 3, the 1s-LASS which arises within the

framework of the 1#-CASAM-L is identical to the 1s-LASS that arises within the 1-FASAM
methodology, which is the reason underlying the use of the same notation for the 1st-level adjoint

sensitivity function, namely a (u), in both cases.

Implementing the equations underlying the 1-LASS and 1#-LVSS into Equation (138) and
recalling the expression of the indirect-effect term provided in Equation (133) yields the following
expression for the indirect-effect term:

i=1

0 0. ) _ ) 9 | Si(e) 0
{5R(¢J 0 ,a())}ind —{Za—%l:m}ﬁai'([a()(u)é(u)du}ao

(142

_ TPi—Za(a) aumal u u)au )
{;aa[aa)zxa)}é Ja et }

Adding the expression obtained in Equation (142) with the expression for the direct-effect term
defined in Equation (132) yields the following expression for the total 1st-order variation
s R( JRPLINCE 5f) of the response R[¢)(u);f (a)] with respect to the components of the feature

function f ((1) :

5R(¢0,(l0;v(1),5a) = {ii{L;)} Eaiuj.h a" (u)S(u)du}

BISKANRAC N auma1 u)o(u)du e
{Za[ s(am(u)}s"j O (w)p(u)d } )

Uy

+{[(5Nd)0'd +(§ad)Nd]I¢(u)§(u—ud)du} 0 E{(’)‘R(gp,a;a(l),éa)}uo.

0

The identity which appears in Equation (143) emphasizes the fact that “1s-level variational

sensitivity function” W (u), which is expensive to compute, has been eliminated from the final
expression of the 1st-order total variation {5R ((p,a; a('),5a)} , » being replaced by the dependence on

the 1s-level adjoint sensitivity function a" (1), which is independent of any variations Sa in the
primary model parameters. Hence, the 1s-LASS needs to be solved only once to determine the 1s-

level adjoint sensitivity function a® (u), which requires the same amount of computational effort as

solving the original forward system for the function ¢(u).
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The expressions of the first-order sensitivities of the response R[ ¢(u);a | with respect to the
primary model parameters are the expressions that multiply the corresponding parameter variations
50@ in Equation (143). In particular, the (two) first-order sensitivities of the response R[(p(u);a]

with respect to the primary model parameters underlying the detector’s interaction cross section arise
solely from the direct-effect term and have the following expressions:

Ripa) o . »
oN, _Gd£¢(”)§(” u, )du=o0,0(u,); )
%:Nduj.h¢(u)5(u—ud)du:ngp(ud). (145)

The above expressions are to be evaluated at the nominal parameter values «° but the indication
{}ao has been omitted for simplicity. As expected, the above expressions are identical to the

corresponding expressions obtained using the 1#-FASAM-L, as provided in Egs. (121) and (122),
respectively.

The first-order sensitivities of the response R[¢(u);a] with respect to the primary model

parameters underlying the spontaneous fission source arise solely from the first term on the right-
side of Equation (143) and have the following expressions in terms of the 1s-level adjoint sensitivity

function a" (u):

OR(p;a)  NIEVIWS™ »
oa Ek(ugzk((:) j“(l)(”)f?(u)du, k=12 ( )
k t 0
. S S S117S U
6R(¢;f) — é F}( VkVVk J‘a(l) (u)ﬁ(u)du , k :1’2; (147
Ny E(wz ()1 )
OR(p:f) _ ANV o (148
== =1,2;
R Fasi (@ Ol kL )
R f ‘S S S1r7S U
’ ((p; ): AN Ia(l)(u)§(u)du L k=12 (149
o E(@)r(a)] )
R(o:f SATS S8
15) (¢; ): ﬁ_v, NkF;c Vi J'a(l)(u)é‘(u)du , k=1,2, (150
@) (o)) )

As expected, the above expressions are identical to the corresponding expressions obtained
using the 1s-FASAM-L, as provided in Egs. (123)—(127), respectively.

The first-order sensitivities of the response R[¢(u);a| with respect to the primary model

parameters ( Nﬁ,",aﬁ‘),af”,..., anMLo-;M),O-lSM)) that characterize the composition of the homogenized
material in which the neutrons slow-down arise from both the first and the second terms on the right-
side of Equation (143) and have the following expressions in terms of the 1+-level adjoint sensitivity

function a" (u):
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0 ao'.gi) E(G)Et (u)

As expected, the above expressions are identical to the corresponding expressions obtained
using the 1s-FASAM-L, as provided in Eqgs. (128)—(130), respectively.

—{Ta(l)(u)(ﬂ(u)du} 0 { A0 } =1, M.

In summary, the application of the 1-CASAM-L to compute the first-order sensitivities of the
response R[ ¢(u);f(a)] with respect to the primary model parameters ¢, j=1..,TP23M +12,

requires the following computations:

1. One “large-scale” computation to solve the 1-LASS to obtain the 1s-level adjoint sensitivity
function 4" (u). As has been already remarked, this 1s-LASS is exactly the same as the 1s-LASS
needed within the 1-FASAM-L methodology for computing the first-order sensitivities of the
response R[ ¢(u);f(a)] with respect to the components f; ((l), i=1,2,3, of the feature function

f(a).

2. Atotal of 7P 23\ +12 “quadratures” involving the 1t-level adjoint sensitivity function a" (u)

to obtain numerically the 77 £ 317 +12 sensitivities of the response R[ o(u);f (a)] with respect

to the primary model parameters @;, j=1,..,TP23M +12. These numerical computations are
inexpensive by comparison to solving the 15-LASS but are more expensive than performing
“chain-rule”-type differentiation “on paper,” as performed if applying the 1s-FASAM-L. Hence,
the 1s-FASAM-L methodology enjoys a slight computational advantage over the 1s-CASAM-L
methodology.

5.2. Second-Order Adjoint Sensitivity Analysis: 2"-FASAM-L Versus 2"-CASAM-L

In this Subsection, the computation of the first-order sensitivities of the response R(a) with

respect to the primary model parameters will first be demonstrated by using the 2rd-FASAM-L.
Subsequently, the same first-order sensitivities will be obtained by using the 274-CASAM-L and the
two alternative paths will be compared to each other, showing that the same expressions are obtained
for the respective sensitivities, as expected. Both the 2rd-FASAM-L and the 27-CASAM-L
methodologies obtain the second-order sensitivities by considering the first-order G-differential of
each of the first-order sensitivities. Therefore, the 2"&-FASAM-L methodology will provide significant

do0i:10.20944/preprints202404.0394.v1
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computational advantages by comparison to the 2nd-CASAM-L methodology the since it will require
at most 3 large-scale computations, i.e., the same number of large-scale computations as the number

of components f; ((l), i=1,2,3, of the feature function f((l) . In contradistinction, the 2r-CASAM-L
methodology will require one large-scale (adjoint) computation for each primary model parameter

a, j=L..TP £3M +12, amounting to a total of number of 7P 2 307 +12 large-scale computations.

5.2.1. Application of the 2nd-FASAM-L

As has been shown in Section 4, the 2"-FASAM-L methodology generically determines the 2nd-
order sensitivities 52Rr [u(‘) (2 X);f(a)J /8fj o, of the response with respect to the components of the
“feature” function f(@) by conceptually considering that the first-order sensitivities
R [jl u (2;x);a" (Z;X);f(a):l 2 5R [u(l) (2; X);f(a)]/afjl , are “model responses.” Consequently, the
2rd-order sensitivities are obtained as the “1st-order sensitivities of the 1st-order sensitivities” by
applying the concepts underlying 1-FASAM to each  1Ist-order sensitivity
RO |:j1;u(l) (2:x);a" (2;x);f(a):|, h= L,..,TF .

5.2.1.1. Second-Order Sensitivities Stemming From R (¢;f) / of,

The above  principles will be applied to the first-order sensitivity
R [1; p(u);a™ (u)sf (u,)] 2 0R(p;f) /afl expressed by Equation (114) to obtain the second-order
sensitivities of the form 0°R ((p;f) / o9 , j=123 . The argument “1” in the notation
RO [l; o(u);a (M);f(q):| indicates that this sensitivity is with respect to the first component, namely

A (a) , of the feature function f ((l) , while also depending on the functions ¢J(u) and a" (u). These

functions are the solutions of the “2rd-Level Forward/Adjoint System (2"4-LFAS)” which is obtained
by concatenating the original 1s-Level Forward/Adjoint System (1st-LFAS) with the 1s-Level Adjoint
Sensitivity System (1s--LASS), cf. Egs. (98), (81), (110) and (111), as reproduced below:

400) g e o<u,
u

da"
B ad (”)+f1a(1)(u):f35(u—ud); O<u<u,;
u

0(0)=0;at u=0; a"(u,)=0, atu=u,.
The first-order G-differential of g® [1;¢,(u);a(1>(u); f(a)] is obtained from Equation (114), by
definition, as follows:

{§R(l) [l;(o(u);a(l) (u);v(') (u);&a(l) (u);f;éf]}

ClO

S AR o

0

:—{l;ij [v(l)(u)a(l) (u)+5a(1)(u)¢)(u):|du}uo Ei%(é‘f] )
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Note that the first-order G-differential {5R(1) [l;(p(u);a(l) (u);v(l) (u);é'a(l)(u);f(a)]} \ consists

solely of the “indirect-effect term”; there is no “direct-effect” term since there is no explicit
dependence on variations Jf ().

The variational functions v () and 8a" () are the solutions of the system of equations

obtained by taking the first-G-differential of the 2d-LFAS. Applying the definition of the first G-
differential to the equations underlying the 2d-LFAS yields the following 2rd-Level Variational
Sensitivity =~ System  (20d-LVSS)”  for the 2nd-level variational sensitivity function

v (2;u) a [v(l) (u),5a(1) (”)T:

(2200, ) (1ot )0t )

du )
d| 5a" (u)_ 1
59
.t Lo i[5 ()]} ={(6£)8(u—u,)~(34)a" ()} 0<u<u,: (

du « )

W (u)=0, ar u=0; sa" (u,)=0, atu=u,. (16(;
The above 2r-LVSS would need to be solved repeatedly, for every possible variation in the
feature functions f,(a), i =1,2,3. This need is circumvented by deriving an alternative expression for
{§R(l) [l;go(u);a(l) (u);v(l) (u);é‘a(l) (u);f(a)}} . in which the 2rd-level variational function

t
V(z)(2;u)é[v(l)(u),5a(l)(u)} is replaced by a 2nd-level adjoint sensitivity function which will be
independent of variations in the feature functions f; ((l), i=1,2,3. This 2nd-level adjoint sensitivity
function will be the solution of a 2nd-Level Adjoint Sensitivity System (2nd-LASS) to be constructed
below by following the steps generally outlined in Section 5, in a Hilbert space, denoted as H,,
which is endowed with the following inner product, denoted as <X(2) (2;u ),9(2) (2;u)>2, between two
i A f
elements, %" (2u) 2 [;(1(2) (u),;(f) (u)} eH, and 0" (2u)= [91(2) (u),@z(z) (u)] eH,:
alf 161
<x(2) (2;u),0” (2;u)>2 £ I[;(](z) (u) 07 (u)+ 27 (u) 6 (u)} du. ( )
0

Using Equation(161) to form the inner product in the Hilbert space H , of the 2n4-LVSS, cf. Egs.
A f .
(158) and (159), with a yet undefined function a®” (2;1;u) 2 [afz) (23Lu),a” (2;1;14)} eH , yields the

following relation:



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2024 d0i:10.20944/preprints202404.0394.v1

39
T ! (u) T d ;0 0)
Jal (2 Lu)| ——2+ " (u) du+J‘a2 (2;l;u)[——5a (u)+ f,0a (u)}du
0 du o du
j (2Lu)[(5£,)8(u)- (1) e (u)]du (162)

+J.a2 2;Lu [ 5}‘3)5(u—ud)—(5f])a(')(u)]du.

The above relation holds for the nominal parameter values, but the notation { }“0 has been

omitted, for simplicity.

Using the definition of the adjoint operator in the Hilbert space H ,, which amounts to

integration by parts, recast the left-side of Equation (162) into the form below:

gy (1)
J.al(z)(2;1;u){dvd—u(u)+fl ( }duﬁtj @ (2 l;u){—j—u5a(l)(14)+f15a(1)(”)}d“
(163

y da? (2:1 da” (2;1;

- W [ day” (3Lu) | flafz)(2;l;u)1du+I5a(1)(u)[M+fla£2)(2;l;”)}d” )
0 0

(2

du du
D (210, )W ()~ a? (231,007 (0)—al (2315, ) 5@ (u,, )+l (231;,0) 54" (0).
The first two terms on right-side of Equation (163) are now required to represent the G-
differential {(S‘R(l) [l;gp(u);a(l) (u);v(l) (u);é'a(l) (u);f(a)}} , defined in Equation (157), which yields the

following relations:

(—d/dwfl 0 J al” (L)) _(~a" (u) (164
0 dfdu+ f; )| a (2;1;u) —o(u) )
N t
The definition of the vector a(z)(2;l;u)=[al(z)(2;1;u),a£2)(2;1;u)] will now be completed by
selecting boundary conditions so as to eliminate the unknown values v (u,) and §a" (0) in
Equation (163). This is accomplished by imposing the following boundary conditions:
a? (23Lu,)=0; i) (2;1,0)=0. (165

>%th
The system of equations represented by Egs. (164) and (165) constitute the 2nd-Level Adjoint
Sensitivity ~ System  (2d-LASS)  for  the 2nd-level adjoint  sensitivity  function
+
a? (2;1;u) = [al(z) (2; l;u),agz) (2;1;u)] . It is important to note that the 2nd-LASS is independent of any
variations, Jf , in the components of the feature function and, hence, is independent of any parameter

variations, da., as well.

The equations underlying the 2nd-LASS, together with the equations underlying the 2nd-LVSS,
are now employed in Equation(162), in conjunction with Equation (163), to obtain the following

expression for the G-differential {é‘R(l) [l;go(u);a(l) (u);v(l) (u);b‘a(l) (u);f(a)}} , in terms of the 2nd-

level adjoint sensitivity function al (2 I; u) [ 1(2) (2;1;u),ag2) (2;1;u)]T:
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(6R" [1ip(u)ia (0):v!) (w):5a ()it (@)} =(87) | o (2:1) ()l
—(5f1)ufafz)(2;1;u)¢(u)du+(5ﬂ)Taf)(ll;uﬁ(u—%)du (166
20 )
al? u 1) u= 2 R gp,

E{aR [1;¢(u);a (u);a® (Z;I;u);f(a)]}uo
As the last equality (identity) in Equation (166) indicates, the 2nd-level variational sensitivity

function v! (2 u) [ (1)(1,5),541(1)(1,5)}T has been eliminated from the final expression of the G-
differential {5R(l) [l;(p(u);a(l)(u);v(l)(u);(ia(]) (u);f((l)}} , » having been replaced by the 2nd-level
adjoint sensitivity function a” (1) 2| a” (21;u),af” (2;l;u)]T. Identifying in Equation (166) the

expressions that multiply the variations 0f;, i=1,2,3, yields the following expressions for the
second-order sensitivities of the response R|:¢(u);f(a)] with respect to the components of the

feature function f (a) :

IR(pf) "t e ) (167
———=—| a7 (2 Lu)p(u)du—| a;” (2;u)a"’ (u)du;
S -l (it () [ o) (210" (1) )
aR (Pa ) J‘ )(21M)5 ) (168
a9 9 )
62 e (169
a, 2 Lu)o(u—u,)du.
The 2nd-LASS can be solved to obtain the following closed-form expressions for the components
i itivi ion a? (2:1:0)2[ @ (2:1:0).a? (2:1:0) |
of the 2nd-level adjoint sensitivity function a"” (2;1;u) = [al (25Lu),a; (2,1,u)} ;
a? (23Lu) =~ £, () (u, —u) H (u, —u)exp[ (u—u,) f; ()], (170)
a5 (2:1500) = —uf; (@)exp[-uf ()] 71
Inserting the expressions obtained in Egs. (170) and (171) into Egs. (167)—(169) and performing
the respective integrations yields the following expressions for the respective second-order
sensitivities:
O’R(p;f 172
ER ) £ A @ (@] 07
O’R(p;f 173
( )_ dfs expl: ”df :| (
% )
O’R(g;f) (174
————==—u, f,(a)exp| —u, f, (a) |;



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2024 d0i:10.20944/preprints202404.0394.v1

41

The correctness of the expressions obtained in Egs. (172)—(174) can be verified by directly
differentiating the closed-form expressions provided in Egs. (118)—(120).

5.2.1.2. Second-Order Sensitivities Stemming From 0R(¢;f) / of,

Applying the procedure used in the previous Subsection to the first-order sensitivity
R(‘)[z;a(‘) (u);f(a)]éaR((p;f)/afz expressed by Equation (115) will provide the second-order

sensitivities of the form 62R(go;f ) / o0 , j=1,2,3 . The argument “2” in the notation
RY [z;a(‘) (u);f(a)] indicates that this sensitivity is with respect to the second component, namely
5 (a) , of the feature function f ((l) . Remarkably, this sensitivity does not depend on the forward

function ¢(u) but only depends on the 1s-level adjoint sensitivity function a"’(«). As previously
discussed, these functions are the solutions of the “2nd-Level Forward/Adjoint System (27d-LFAS).”

The first-order G-differential of g® [z;a(‘> (u);f(a):| is obtained by applying its definition to
Equation (115), as follows:

ZGZR(w;f)(gff).(@ 175

{5R(1) [2;a(1) (u);(;a(l)(u);f(aﬂ}ao :{I Sa (u)5(u)a’uh0 j31 o o,

As indicated in Equation (175), the first-order G-differential {5R(1) [Z;a(l) (u);5a(l)(u);f (a)}} .

consists solely of the indirect-effect term which depends on the 1s-level variational function sa" (u)

. As before, the need for computing this variational function is circumvented by constructing a 2nd-
Level Adjoint Sensitivity System (27-LASS) for a 2rd-level adjoint sensitivity function

A f .
a? (22;u) = [al(z) (2; 2;u),a§2) (2;2;u)} , by implementing the same steps as outlined above for
obtaining the 2nd-order sensitivities that stem from the first-order sensitivity 6R(g0;f ) / of, , namely
Egs. (162)—(165). These steps will not be repeated here in detail; they lead to the following 2nd-LASS
f
for 2nd-level adjoint sensitivity function a? (2;2;u) = [afz) (2;2;u),a§2) (Z;Z;M)} :

[—0l/du+fl 0 j al? (2;2;u) _[ 0 J (176
a? (2;2;u,) = 0; a?(2;2;0) =0. (17z
Solving the 2nd-LASS defined by Eqs. (176) and (177) yields the following closed-form
expressions  for the components of the 2nd-level adjoint sensitivity function
at? (22;u) 2 [al(z) (2;2;u),a§2) (2;2;u)}T :
al(z) (2;2;u) =0; a§2> (2:2;u) = H(u)expl:—ufl (a)] . (178)

The alternative expression of the G-differential {5R(l) [2;41(1) (u);a(z) (2;2;u);0f (a)}} , in terms of

.
the 2nd-level adjoint sensitivity function a(z)(2;2;u)é[afz)(2;2;u),a£2)(2;2;u)} has the following

form (which is obtained by implementing the same steps as those leading to Equation (166), above):
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{5R(') [2;a(1) (u);a(z) (2;2;u);§f(a)]} (61, Ja () (22;u) 6 (u—uy )du
0 (179
Uy, 3 a R ;
Iaz (225u)a duzz (o )(5fj) )
0 =
Identifying in Equation (179) the expressions that multiply the variations 0 f;, i =1,2,3, yields
the following second-order sensitivities of the response R[¢(u):f(a)] with respect to the
components of the feature function f (a) :
2R . f Uy,
—6 ((p’ ) :—J‘aéz)(Z;Z;u)a(l)(u)du ; (180
oo 0 )
O*R(¢p;f) o (181
99, ’ )
ZR . f Uy,
M: agz)(2;2;u)5(u—ud)du. (182
x99 )
Inserting the expression obtained for agz) (2; Z;u) in Equation (178) into Eqs. (180) and (182), and
performing the respective integrations yields the following expressions for the respective second-
order sensitivities:
o’R ((o; f ) (183
——=- a - a)l;
o ”df3( )exp[ ”dfl( )] )
O’R(p;f) (184
————==exp| —u, f,(a)|;

The correctness of the expressions obtained in Egs. (183) and (184) can be verified by directly
differentiating accordingly the closed-form expressions given in Egs. (118)—(120).

5.2.1.3. Second-Order Sensitivities Stemming From 8R((0;f ) / o,
Applying the above principles to the first-order sensitivity
RW [3;¢;(u);a(‘) (u);f(a):| 28R ((D;f)/af3 obtained in Equation (116) will provide the second-order

sensitivities of the form 62R((o;f )/af/af3 , j=1,2,3 . The argument “3” in the notation
R |:3;¢(u);a(l)(u);f(a):| indicates that this sensitivity is with respect to the third component,

namely f, (a), of the feature function f ((l) . Notably, this sensitivity depends on the forward function

¢ (u) but does not depend on the 1st-level adjoint sensitivity function a" (u).

The first-order G-differential of g® [3; o(u);a (u);f(a)] is obtained, by definition, as follows:

(R0 (30 ()" (u)itsot ]| = {! o ()8 (u—u, )du}lo =3 azaf(aﬁ )(5 1) (185
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Note that the first-order G-differential {5R(l) [3;(p(u);v(l) (u);f;5f :|}u0 consists solely of the
indirect-effect term. As before, the need for computing the variational function W (u) is
circumvented by constructing a 2nd-Level Adjoint Sensitivity System (2n-LASS) for a 2nd-level adjoint
sensitivity function a @ (2 3; u) [ 1(2) (2;3;u),a§2) (2;3;u)}T , by implementing the same steps were used
for obtaining the previous 2nd-order sensitivities. These steps lead to the following 2nd-LASS for 2nd-

level adjoint sensitivity function al (2 3; u) [ 1(2) (2; 3;u),a§2) (2;3;M)T:

[—d/du+j,' 0 ](4”(2&@}2(5(“—% )]. (186

a® (2:2u,)=0; ai(2;2;0)=0. (1SZ
Solving the 27d-LASS defined by Eqgs. (186) and (187) yields the following closed-form
expressions for the components of the 2rd-level adjoint sensitivity function
i
O (23;u) 2 [al(z) (2;3;u),a” (2;3;u)] :
() (2:3:1) = Ca®(2:3:0) = (188
a;” (2;3;u) = H (u, —u)exp[(u—ud)f1 (a)], a,” (2;3;u)=0. )
+
In terms of the 2nd-level adjoint sensitivity function al (2 3; u) [ 1(2)(2;3;u),a£2)(2;3;u)} the
alternative expression of the G-differential {5R(l) [3; go(u);a(z) (2;35u);f;f ]} . has the following form
(which is obtained by implementing the same steps as those leading to Equation (166), above):
{5R(1) [3;(/)(14);21(2) (2;3;u);f;5f}} ) =(61,) I a (2;35u) S (u)du
¢ (189
gy 3 0? R (/), ) )
—(0 f (23 u) = f )
Identifying in Equation (189) the expressions that multiply the variations 0 f;, i =1,2,3, yields
the following second-order sensitivities of the response R[¢(u);f(a)] with respect to the
components of the feature function f(a):
O’R(psf)
—((0, ):— al(z)(2;3;u)go(u)du; (190
9hafs 0 )
O’R(p:f)
TR T 0 (2350 ) ast
9 )
O*R(p;f) o (192
oo, ’ )

Inserting the expression obtained for a” (2;3;u) in Equation (188) into Egs. (190) and (191), and

performing the respective integrations yields the following expressions for the respective second-
order sensitivities:
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o . 193
%:—udﬁ(a)exp[—udﬁ(“)} | )
M:exp[—u fi(w)] ")
0f, aJ1 )

The correctness of the expressions obtained in Egs. (193) and (194) can be verified by directly
differentiating the closed-form expressions given in Egs. (118)—(120).

Summarizing the results obtained in Subsection 5.2.1 leads to the following conclusions:

1. The second-order sensitivities 0°R (o:f ) / af.9f; , i,j=1,2,3, of the model response with respect to

the three features components f;(a), i=1,2,3, of the feature function f(a) are obtained by

performing 3 “large-scale” computations to solve the 3 corresponding 2r4-LASS which all have
the same left-side but have differing sources on their right-sides. The source-term for each of
these 2nd-LASS corresponds to one of the 3 first-order sensitivities. Thus, computing the second-

order sensitivities GZR((D;f)/ df,0f,; requires as many “large-scale” computations as there are
non-zero first-order sensitivities, i.e., at most as many “large-scale” computations as there are
components f; ((l), i=1,2,3, of the feature function f ((l) .

2. The mixed second-order sensitivities 52R((p;f )/Ofl@fj , i#j=12,3, are computed twice,
involving distinct 2nd-level adjoint sensitivity functions. Therefore, the symmetry property
O’R(p;f) / of,of, =0'R(p;f )/ df,0f, provides an intrinsic mechanism for verifying the accuracy of

the computations of the respective 2nd-level adjoint sensitivity functions.
3. The unmixed second order sensitivities 82R(¢);f )/ of.0f, i=1,2,3, are computed just once.

5.2.2. Application of the 2rd-CASAM-L

The principles underlying the application of the 2-CASAM-L methodology are the same as
those underlying the 2"-FASAM-L methodology: both methodologies obtain the second-order
sensitivities by considering the first-order G-differential of each of the first-order sensitivities. As has
been shown in the foregoing, the 2r-FASAM-L methodology requires at most 3 large-scale
computations (i.e., the same number of large-scale computations as the number of components f;,
i=1,2,3, of the feature function f) for solving the three 2d-Level Adjoint Sensitivity Systems that
arise by considering the three first-order sensitivities of the detector response with respect to the three

components of the feature function f(a) . In contradistinction, the 2"d-CASAM-L methodology

requires one large-scale (adjoint) computation for each primary model parameter ¢@; ,

j=1,.,TP23M +12, amounting to a total of number of 7P £ 377 +12 large-scale computations. The
specific computations are described below.

5.2.2.1. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to
the Medium’s Material Properties

The expressions of the first-order sensitivities of the detector response with respect to the
material properties (i.e., microscopic cross sections and atomic number densities) of the medium in
which the neutrons are slowing-down (i.e., losing energy or, equivalently, gaining lethargy) are
provided in Egs. (151)—(153). These expressions have the following generic form:



8R((p;f) 0 “

Oa 5_1 o

where a/’ 2 NV g0 2 o-ii) , a

m /7

The second-order sensitivities stemming from the first-order sensitivities represented by
Equation (195) are obtained from the first G-differential of this equation, which has the following

Uy,

expression, by definition, for each ;=1,..,M;/j =1,2,3:

where:

{5[aR(¢;f)/aa§f>]} é{gﬁ")(a(’)“f(sa@(u)d(u)du}
—{hj(.i)(ao)u.f[a(l)(u)v(l)(u)+¢7(u)§a(l) (u)]du} .

The direct-effect term can be computed immediately, since all quantities are known. The
indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain the 2nd-level

ind
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i
variational sensitivity function v'*' (2;u)2 [v(l) (u),5a" (u)} . As has been repeatedly discussed in the

foregoing, solving the 2nd-LVSS is expensive computationally, so this variational function is replaced
in the expression of the indirect-effect term by a 2nd-level adjoint sensitivity function, by following
the same steps as outlined in Section 5.2.1. Since there are 3M first-order sensitivities of the form
oR(¢:f) / aa‘(/.") , i=1,...M;j=1,23,there will be 3M distinct 2nd-level adjoint sensitivity functions,
one corresponding to each first-order sensitivity. These 3 distinct 2nd-level adjoint sensitivity
functions will be the solutions of the corresponding 3M distinct 2nd-Level Adjoint Sensitivity
Systems (2nd-LASS). Each of these 3M 2nd-LASS will have a distinct source-term on the right-side
(each distinct source stemming from the corresponding first-order sensitivities of the form

OR (¢;f ) / 6a£.i) ), but all of these 3M 2rd-LASS will have the same left-sides, which will have the same

form as the left-side of the 2nd-LASS needed previously, in Subsection 5.2.1 for the computations of
the 2rd-order sensitivities of the response with respect to the components of the feature functions, cf.
Equation (164), (176), and (186). Since the left-sides of these 2n-LASS represent the (differential)
operators that need to be inverted, the actual inversion of these operators needs to be performed once
only, and the inverted operator should be stored; subsequently, the inverted operator can be used
3M times, operating on 3M distinct source terms, to compute the respective 3M distinct 2d-level
adjoint sensitivity functions.

5.2.2.2. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the
Source Properties

The expressions of the first-order sensitivities of the detector response with respect to the
parameters that characterize the source which emits the neutrons into the medium are provided in
Egs. (146)—(150). These expressions have the following generic form:

%zwy)(a)lza(l) ()8 (u)dus i=1,...5 k=12, (202)
where:
b £ A7 wf)(“)é—]g’ig;i‘s (W(:; k=12 (20?;
VS of () 22N ke s
B 2vls o (a)é—ﬂg(]z k;';(pz; D k=12 (206)
b0 205 o ()2 N (207

S(@)z (o) )

The second-order sensitivities stemming from the first-order sensitivities represented by
Equation (202) are obtained from the first G-differential of this relation, which has the following
expression, by definition, for each i=1,...,5; k=1,2:

k
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dir
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in 0

The direct-effect term can be computed immediately, since all quantities are known. The
indirect-effect term can be computed, in principle, after solving the 2nd-LVSS to obtain the 2nd-level

variational sensitivity function v (2u)2 [v(') (u),5a" (u)} , but this path is expensive
computationally, so this variational function is replaced in the expression of the indirect-effect term
by a 2rd-level adjoint sensitivity function, by following the same steps as outlined in Section 5.2.1.

Since there are 10 first-order sensitivities of the form 8R((o;f )/ 8b,(f) ,i=1,.,5; k=1,2, there will be 10

distinct 2nd-level adjoint sensitivity functions, one corresponding to each first-order sensitivity. Thus,
there will be 10 distinct 2nd-Level Adjoint Sensitivity Systems (2r4-LASS) to be solved, each having a
distinct source-term on the right-side, but all of them having the same left-sides as the left-side of the
2nd-L ASS needed previously, in Subsection 5.2.1 for the computations of the 2nd-order sensitivities of
the response with respect to the components of the feature functions, namely Eqs. (164), (176), and
(186).

5.2.2.3. Second-Order Sensitivities Stemming from the First-Order Sensitivities with Respect to the
Detector Properties

The expressions of the first-order sensitivities of the detector response with respect to the
detector’s material properties (i.e,, microscopic cross section and atomic number density) are
provided in Egs. (144) and (145). These expressions have the following generic form:

OR(PE) _ o)) | . 211
a(af)):C()(“)!‘/’(“)ﬂu—ud)du;z=1,2, ( )
where:

@12

(W=N,;¢P=0,; c(l)(u)zad; c(z)(u):Nd.

The second-order sensitivities stemming from the first-order sensitivities represented by
Equation (211) are obtained by determining the first G-differential of this relation, which has the
following expression, by definition, for each i =1,2:



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 5 April 2024

48

5or (i) /oc] 2 {j ¢(u)5(u—ud)du} | {dig[c(i) (a +g§a)]}

o

+{c(i) (ao)%uf [(po (u)+en" (u)}é(u —u, )du}

(10,520

={s[er(e:0)/2c" ]} +{s[er(e:1)/0c" ]| = f{w&zn} ,

i 4| da,0¢"

where:

torenec], 2| fotro-wm] E[EE)
dir 0 P oa, y "

{5[6R((p;f)/6§(‘)]} 2 {c(i) (u")j W ()6 (u—u,)du } :

ind
in 0

The direct-effect term can be computed immediately, since all quantities are known. The
indirect-effect term can be computed, in principle, after solving the 2r4-LVSS to obtain the 2nd-level

variational sensitivity ~function v (2u) = |:V(]) (u),é'a(l) (u)]r , but this path is expensive
computationally. As before, this variational function is replaced in the expression of the indirect-
effect term by a 2rd-level adjoint sensitivity function, by following the same steps as outlined in
Section 5.2.1. Since there are 2 first-order sensitivities of the form R (¢;f) / ac, i=1,2, there will
be 2 distinct 2nd-level adjoint sensitivity functions, one corresponding to each first-order sensitivity.
As before, the two 2n-LASS to be solved have distinct source-terms on their right-sides, but both

have the same left-sides as the left-side of the 2"d-LASS needed previously, as in Egs. (164), (176), and
(186).

In summary, the results discussed in Subsection 5.2.2 indicate that computing the 2nd-order
sensitivities of the model response directly with respect to the 7P 23A +12 primary model

parameters, @;, by applying the 2rd-CASAM-L methodology requires one large-scale (adjoint)

computation for each primary model parameter @;, amounting to a total of number of 7P 237 +12

large-scale computations for solving the respective 2n-LASS. All of these 2nd-LASS have the same
left-side (which is also the same as needed for computing the 2d-order sensitivities of the response
with respect to the feature functions by applying the 2d-FASAM-L) but have differing sources on

their right-sides. The unmixed second order sensitivities 0°R(¢;f) / dada, i=1,.,TP 23M +12, are

computed just once. The mixed second order sensitivities 62R((p;f )/8051.805‘/. , i = j, are computed
twice, involving distinct 2nd-level adjoint sensitivity functions. Therefore, the symmetry property
’R(p;f) / da,0a; = O’R(p;f )/ 0a;,0a; provides an intrinsic mechanism for verifying the accuracy of

the computations of the respective 2nd-level adjoint sensitivity functions.

6. Concluding Discussion

This work has presented the mathematical framework of the “2rd-Order Feature Adjoint
Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint Linear Systems (2nd-
FASAM-L)” along with an illustrative application to a paradigm model of energy slowing-down of
neutrons in an infinitely large homogeneous mixture of materials, as found in many energy-related
systems. It has been shown that the 2nd-FASAM-L is the most efficient methodology for computing
exactly the first- and second-order sensitivities of model responses with respect to the features
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(functions) of model parameters and, subsequently, to the primary model parameters themselves.
This efficiency stems from the maximal reduction of the number of adjoint computations (which are
“large-scale” computations) which are needed for obtaining these sensitivities. In the extreme case
when the model presents no features (functions) of the primary model parameters, the 2r-FASAM-
L reduces to the 27d-CASAM-L (“20-Order Comprehensive Adjoint Sensitivity Analysis
Methodology for Response-Coupled Forward/Adjoint Linear Systems) developed by Cacuci [27].
Comparing the mathematical framework of the 2nd-FASAM-L methodology to the framework of the
2rd-CASAM-L methodology indicates the following commonalities and distinctions:

1. The components f,.((l),izl,...,TF , of the “feature function” f(a)é[fl (@) for (a)]* play
within the 2n-FASAM-L the same role as played by the components ¢;, j =1,.., TP, of the

“vector of primary model parameters” a2 (a,,...,,,)" within the framework of the 2nd-
CASAM-L. Notably, the total number of model parameters is always larger (usually by wide
margin) than the total number of components of the feature function f((l) ,ie, TP>TF .

2. The 1-FASAM-L and the 1-CASAM-L methodologies require a single large-scale “adjoint”
computations for solving the 1s-LASS (1st-Level Adjoint Sensitivity System), so they are similarly
efficient for computing the exact expressions of the first-order sensitivities of a model response to
the model’s uncertain parameters, boundaries, and internal interfaces, with a slight
computational advantage towards the 1#-FASAM-L, which requires only 7P quadratures, as
opposd to TF quadratures required by the 1s-CASAM-L methodology.

3. For computing the exact expressions of the second-order response sensitivities with respect to
the primary model’s parameters, the 2n-FASAM-L methodology requires as many large-scale
“adjoint” computations as there are “feature functions of parameters” f; ((1), i=1..TF , for
solving the left-side of the 2nd-LASS with TF distinct sources on its right-side. By comparison,
the 2rd-CASAM-L methodology requires TP large-scale computations for solving the same left-
side of the 2n-LASS but with 7P distinct sources. Since TF < TP , the 2nd-FASAM-L
methodology is considerably more efficient than the 2"-CASAM-L methodology for computing
the exact expressions of the second-order sensitivities of a model response to the model’s
uncertain parameters, boundaries, and internal interfaces.

4. Both the 2r-FASAM-L and the 27-CASAM-L methodologies are formulated in linearly
increasing higher-dimensional Hilbert spaces —as opposed to exponentially increasing
parameter-dimensional spaces— thus overcoming the curse of dimensionality in sensitivity
analysis of nonlinear systems. Both the 2"d-FASAM-L and the 2r-CASAM-L methodologies are
incomparably more efficient and more accurate than any other methods (statistical, finite
differences, etc.) for computing exact expressions of response sensitivities (of any order) with
respect to the model’s uncertain parameters, boundaries, and internal interfaces.

Ongoing work aims at generalizing the 2nd-FASAM-L methodology to enable the exact and most
efficient computation of response sensitivities of arbitrarily-high (nt-) order with respect to features
(functions) of model parameters, thus becoming the companion for —and most efficient alternative
to— the n"-CASAM-L methodology [27], whenever the model comprises features (functions) of model
parameters.
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