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Abstract: (1) Background: Neurologic and musculoskeletal diseases represent a considerable portion of the 

underlying etiologies responsible for the widely prevalent symptoms of pain, weakens, numbness, and 

paresthesia. Because of the subjective and often nonspecific nature of these symptoms, different diagnostic 

modalities have been explored and utilized.; (2) Methods: Literature review; (3) Results: Nerve and muscle 

biopsy remains the gold standard for diagnosing many of the responsible neurological and musculoskeletal 

conditions. However, the need for invasive tissue sampling is diminishing as more investigations explore 

alternative diagnostic modalities. Because of this, it is important to explore the current role of neurosurgical 

intervention for nerve and muscle biopsies and its current relevance in the diagnostic landscape of neurological 

and musculoskeletal disorders. With consideration of the role of nerve and muscle biopsy, it is also important 

to explore innovations and emerging techniques for conducting these procedures. This review explores the 

indications and emerging techniques for neurological intervention for nerve and muscle biopsies; (4) 

Conclusions: The role of neurosurgical intervention for nerve and muscle biopsy remains relevant in 

diagnosing many neurological and musculoskeletal disorders. Biopsy is especially relevant as a supportive 

point of evidence for diagnosis in atypical cases. Additionally, emerging techniques have been explored to 

guide diagnostics and biopsy, conduct less invasive biopsies, and reduce risks of worsening neurologic 

function and other symptoms secondary to biopsy. 
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1. Introduction 

Pain, weakness, and sensory deficits, including numbness and paresthesia, are widely prevalent. 

Chronic pain affects 20.9% of all adults in the United States, [1] reduced muscle strength is reported 

by 18% of those 60 years and above and 53% of those 80 and above, [2] and peripheral neuropathy, a 

common cause of numbness and paresthesia, affects over 14.5 million Americans [3]. Symptoms may 

be due to a wide variety of etiologies with the broadest classification schemes dividing causes into 

central or peripheral pathologies, with further differentiation between neurologic and 

musculoskeletal disease. 

Because symptoms are relatively subjective and difficult to objectively characterize, a variety of 

diagnostic modalities are used to identify a diagnosis, including physical examination, imaging, and 

tissue sampling. While electromyography and nerve conduction studies have improved the ability to 

diagnose such conditions, muscle and nerve biopsies remain the gold standard for diagnosis in many 

neurologic and musculoskeletal conditions. However, as further studies into the molecular and 

genetic etiologies of such neurologic and musculoskeletal pathologies are performed, the need for 

invasive tissue sampling continues to diminish. We aim to discuss this controversy and highlight the 

role of neurosurgical intervention in nerve and muscle biopsies. 
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Muscle biopsies are typically performed later in the diagnostic workup, e.g., to confirm the 

presence of a muscular dystrophy or an inflammatory myositis. However, when the differential 

diagnosis is extensive, early muscle biopsy can quickly lead to a diagnosis and allow for earlier 

intervention. Muscle biopsies are done by a surgeon, commonly a neurosurgeon, in conjunction with 

a pathologist. Typically, an affected muscle is located by physical examination, although 

electrodiagnostic or magnetic resonance imaging (MRI) may also be used [4]. Muscle biopsies are 

often performed under local anesthesia. The surgeon dissects down to the muscle and identifies a 

group of muscle fibers at the belly of the muscle, after which the surgeon excises in parallel to the 

length of the muscle fiber a sample approximately 1 centimeter (cm) in length and 0.5 cm in diameter. 

Once removed, the specimen is packaged for examination by a pathologist. Muscle biopsy typically 

produces no residual deficits [4].  

Nerve biopsies are comparable in that they are typically performed later in the diagnostic 

workup and are also done by a surgeon, commonly a neurosurgeon, in conjunction with a 

pathologist. Nerve biopsies are especially useful in diagnosing inflammatory neuropathies, 

autoimmune neuropathies (e.g., nerve vasculitides, chronic inflammatory demyelinating 

polyneuropathy), and hereditary neuropathies and can alter treatment in up to 60% of cases [5]. 

Sensory nerves are the ideal targets rather than motor nerves, as nerve biopsies often result in 

temporary nerve damage and sensory deficits are tolerated better than motor weakness. As such, 

transient sensory loss, which is rarely permanent and infrequently associated with painful 

paresthesia, may occur after nerve biopsy. The sural nerve is the most common site of biopsy 

although many other nerves may also be sampled when indicated by physical examination, 

electrophysiological studies, or MRI [5]. Like muscle biopsies, nerve biopsies are commonly done 

under local anesthesia, although they require a large incision to ensure safe and adequate dissection 

from all surrounding fat and connective tissue. After careful dissection, the nerve is isolated and 

extracted before undergoing extensive preparation for pathologist examination. 

2. Nerve Biopsy Indications 

Nerve biopsy plays an important diagnostic and evaluative role in cases of clear and unclear 

pathology [6]. Nerve biopsy can also assist in attaining a definitive diagnosis in cases of vasculitis, 

neurosarcoidosis, neurolymphomatosis, amyloidosis and neuritic leprosy [7–11]. In addition, nerve 

biopsy can be instrumental in cases of rapidly progressive peripheral neuropathy or peripheral 

neuropathy of an unexplained cause [12–15]. However, the diagnostic role for nerve biopsy may 

differ from one pathology to another (Table 1) [6]. Despite its variable importance, the many 

indications and clear diagnostic role make neurosurgical intervention for nerve biopsies an important 

aspect of the clinical decision making process.  

Table 1. Conditions in which nerve biopsies are of high, medium, and low importance. 

High Medium Low 

-Vasculitic neuropathy -Amyloidosis -Chronic inflammatory demyelinating 

polyneuropathy 

-Neurolymphomatosis - Neurosarcoidosis -Paraproteinameic Neuropathy 

-Peripheral Nerve Tumors 
 

-Adult polyglucosan body disease 

-Pseudoneoplastic Peripheral 

Nerve Tumors 

-IgG4 related 

perineural disease 

-Lysosomal & Perioxisomal Storage 

Disorders 

  -Pure motor neuropathy 

-Neuritic leprosy -Paraneoplastic 

Syndromes 

-Diabetic Neuropathy 

  -Cryptogenic neuropathy 

  -Hereditary neuropathy  
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High Medium Low 

  -Other neuropathies 

Source: Adapted from references[6], [11] and [16]. 

2.1. Nerve Biopsy: High Importance 

2.1.1. Vasculitis 

Vasculitic neuropathy is a common indication for nerve biopsy with a reported sensitivity of 

54.76% and reports of a 5.1% increase in diagnostic yield when underwent with a combined muscle 

biopsy [17–19]. When underwent with a combined muscle and skin biopsy, cutaneous vasculitis was 

identified in 20% of suspected patients with vasculitic neuropathy [20]. Besides evidence of potential 

diagnostic benefits of full thickness skin biopsy, different quantification stratagies have been explored 

to increase sensitivity and specificity for diagnosing and differentiating vascultic neuropathies [20–

23]. Current diagnostic recommendations by the Peripheral Nerve Society dictate biopsy for 

definitive diagnosis of vasculitic neuropathy and non-systemic vasculitic neuropathy, with the 

exception of cases of proven systemic vasculitis or diabetic radiculoplexus neuropathy [11,24]. 

The clinical presenation of vasculitic neuropathy is described as multifocal sensorimotor or pure 

sensory, acute/subacute, painful, asymmetric neuropathy [11]. Systemic vasculitic neuropathy 

involves small arteries and large arterioles whereas non-systemic vasculitic neuropathy more 

typically involves the small arterioles, venules, and capillaries [16]. 

Diagnosis is made upon histologic confirmation of both inflammation within the vessel wall and 

vascular damage. Other histological findings including predominant axonal changes, perivascular 

inflammation, hemosiderin deposition, multifocal or asymmetric nerve fiber degeneration, 

neurovascularization, predominant axonal change or prominent axonal degeneration, and vascular 

deposition of IgM, fibrinogen, or complement can support a diagnosis of vasculitic neuropathy 

(Figure 1) [6,11,16,25]. 

 

Figure 1. A, Vasculitic neuropathy. Intense vascular and perivascular inflammation of an epineurial 

blood vessel accompanied by fibrinoid necrosis is noted. B, Leprous neuropathy. Positive Ziehl-

Neelsen staining for acid fast bacilli is seen. C, Amyloid neuropathy. Amyloid deposits evident on 

Congo red staining. D, IgM paraproteinaemic neuropathy. Widening of the myelin outer lamella 

(arrows) is a characteristic finding. E, MAG neuropat hy. Immunofluorescence demonstrates MAG 

antibodies bound to myelin. Nathani D, Spies J, Barnett MH, Pollard J, Wang MX, Sommer C, Kiernan 

MC. Nerve biopsy: Current indications and decision tools. Muscle Nerve. 2021 Aug;64(2):125-139. doi: 

10.1002/mus.27201.[6] © 2021 The Authors. Muscle & Nerve published by Wiley Periodicals LLC. 

2.1.2. Neurolymphomatosis 

Neurolymphomastosis is another neurological manifestation, but that of neoplastic nerve 

infiltration by a hematological malignancy [7]. Nerve biopsy for diagnosis of neurolymphomastosis 

does not demonstrate 100% sensitivity, but a reported sensitivity of 88% because of inconsistent 

distribution of malignant cells [26]. Biopsy is not need for diagnosis of neurolymphomastosis in cases 

of a known hematological malignancy presenting with symptoms of neurological manifestations. 

However, neuropathy experienced in cases of latent or hematological malignancies in remission may 

only be attributed to malignancy by nerve biopsy [25]. Utilizing polymerase chain reaction of biopsy 

attained lymphoid infiltrate is an additional diagnostic angle utilized to differentiate between 

inflammatory and malignant infiltrates through the assessment of clonality [27].  
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Neurolymphomastosis presents with peripheral or cranial neuropathy, plexopathy, and 

radiculopathy associated with rapidly evolving, asymmetrically distributing, severe pain [7]. Positive 

nerve biopsy will demonstrate malignant cells with non Hodgkin lymphoma representing the usual 

underlying hematological malignancy [28]. 

2.1.3. Peripheral Nerve Tumors 

Benign peripheral nerve tumors, commonly schwannomas, neurofibromas, perineurioma, and 

ganglioneuroma and malignant peripheral nerve tumors, arising denovo or from benign tumors, are 

another indication for nerve biopsy [29–32]. Presentation is that of peripheral neuropathy. 

Perineuriomas may also present clinically as a plexopathy, but typically present clinically as a 

mononeuropathy [33]. 

Diagnosis typically requires identification of characteristic histological findings of the 

underlying disease with the use of the immunohistochemical stains S100, glial fibrillary acidic protein 

(GFAP), epithelial membrane antigen (EMA), and cluster differentiation 34 (CD34) [29–32]. 

2.1.4. Pseudoneoplastic Peripheral Nerve Tumors (Pseudotumors) 

Pseudotumors are an important indication for nerve biopsy to attain a definitive diagnosis and 

differentiate the underlying pathology from a malignancy. Inflammatory pseudotunors and 

neuromuscular choristomas are specific types of pseudotunors within this rare symptomatic disease 

category [34]. 

Typical presentation is progressive, painful mononeuropathy with associated sensory and 

strength loss. Nerve biopsy of inflammatory pseudotunors typically reveal chronic inflammatory 

infiltrates, increased vascularity and lipocytes, and interstitial fibrosis [34,35]. Nerve biopsy of 

neuromuscular choristomas usually demonstrate well differentiated muscle fibers, typically skeletal 

muscle fibers, interspersed among nerve fascicles. 

2.1.5. Neuritic Leprosy 

Pure neuritic leprosy is a subtype of leprosy that represents up to 8% of all leprosy cases [9]. 

Nerve biopsy is the diagnostic gold standard, with a reported sensitivity of 33.3-75.9% of cases [36–

38]. Pure neuritic leprosy presents as an isolated peripheral neuropathy. Definitive diagnosis 

following confirmatory biopsy typically demonstrates acid fast bacilli for lepromatous leprosy and 

epithelioid caseating and noncaseating granulomas for tuberculoid leprosy. Acid fast bacilli are 

typically found within Schwan cells and foam cells (Figure 1) [9]. 

2.2. Nerve Biopsy: Medium Importance 

2.2.1. Amyloidosis 

Amyloid neuropathy is a neurological complication of amyloidosis mainly caused by the 

deposition of light chain or mutant transthyretin amyloid fibrils [39]. Nerve biopsy for amyloidosis 

has a sensitivity range from 30-100%. Sural nerve biopsy specifically demonstrates a sensitivity of 

80% in detecting mutant transthyretin amyloid fibrils [40]. Definitive diagnosis criteria of light chain 

amyloidosis consists of histopathologic findings of amyloid with supporting evidence of amyloid 

protein composition [41]. Definitive diagnosis of mutant transthyretin amyloidosis requires evidence 

of amyloid deposits from biopsy as well as a minimum of two symptoms associated with amyloidosis 

[10]. Although many other test options exist for conclusive diagnosis of amyloidosis, mainly bone 

marrow testing and abdominal fat pad biopsy because of their sensitivity, nerve biopsy can provide 

a definitive diagnosis in cases of negative findings [42,43].  

Amyloid neuropathy may present with motor symptoms but mainly presents as a sensory 

neuropathy with autonomic symptoms [44,45]. Variability in symptoms and presentation can be 

attributed to the focal nature of the disease. Because of this, serial sections are examined to establish 

the diagnosis. Expected findings are unmyelinated or small myelinated nerve fiber loss. Hematoxylin 

& Eosin or Congo red staining may reveal endo- and epineuria connective tissue deposition of 

amyloid. Endo- and epineural thickening of blood vessels may also be seen (Figure 1) [46]. 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2024                   doi:10.20944/preprints202404.0358.v1



 5 

 

2.2.2. Neurosarcoidosis 

Neurosarcoidosis is a neurological manifestation that can attribute to the neuropathy and other 

neurological symptoms experienced by up to 16% of patients diagnosed with sarcoidosis [47,48]. 

Definitive diagnosis requires nerve biopsy if clinical manifestations and imaging findings are 

suggestive of neurosarcoidosis [49]. If extraneural sarcoidosis is evident on biopsy in the absence of 

positive nerve biopsy findings, a diagnosis of probable neurosarcoidis may be made when the clinical 

presentation and imaging findings are supportive [8,48,50].  

The neurological manifestations of sarcoidosis include cranial, optic, and peripheral neuropathy, 

endocrine and hypothalamic dysfunction, seizures, meningitis, myelopathy, and myopathy 

[16,19,24,47–50]. Confirmatory nerve biopsy demonstrates non-caseating granulomas, typically 

found in the epi- and perineurium, that are independent of other etiologies such as leprosy and 

tuberculosis [49]. 

2.2.3. IgG4 Related Perineural Disease 

IgG4 related perineural disease is a rare disease caused by IgG4 positive plasma cell infiltration 

of tissue within the peripheral nervous system. Definitive diagnosis requires nerve biopsy 

confirmation of IgG4 positive plasma cell infiltrate [51]. Patients may present with multifocal 

neuropathy and reported biopsy findings have been variable [52–54]. Axonal and myelin 

degeneration, epineural infiltration of plasma cells, eosinophils, and lymphocytes, and myelinated 

nerve fiber reduction all represent a spectrum of features reported for different patient cases 

[52,53,55,56].  

2.2.4. Paraneoplastic Syndromes 

Paraneoplastic syndromes (PNS) can manifest as complex neurological syndromes that can 

affect multiple parts of the nervous system, including the CNS, neuromuscular junction (NMJ), and 

peripheral nervous system [57]. They are caused by malignancies which are often occult and thus 

found as a result of clinical symptoms attributed to the syndrome [58]. Paraneoplastic syndromes 

affect around 8% of individuals with cancer, but are most common in small-cell lung cancer where 

around 5% of patients are affected by PNS, most commonly Lambert-Eaton myasthenic syndrome. 

Clinical presentations vary with each neurologic syndrome but may include cognitive and 

personality changes, cranial nerve deficits, ataxia, paresthesia, weakness, or numbness [58]. Common 

PNS include limbic encephalitis and paraneoplastic cellular degeneration within the CNS, Lambert-

Eaton myasthenic syndrome and myasthenia gravis within the NMJ, and autonomic neuropathy and 

subacute sensory neuropathy within the peripheral nervous system [59]. The pathogenesis of these 

syndromes is poorly understood, but current research supports evidence of the cross-reactivity of 

nervous system antigens that are also ectopically produced by the tumor, producing an 

immunological response. Thus, paraneoplastic antibodies, or onconeural antibodies, can develop 

against target antigens [57]. Additionally, diagnosis is strengthened by the presence of onconeural 

antibodies in the CSF or serum, which can be highly specific for tumors that may be in earlier stages 

and not otherwise detected [58]. However, around 30% of patients with PNS may not have detectable 

antibodies in the serum or CSF.  Thus, diagnostic methods focus on imaging (CT/MRI/PET) to 

determine the source of malignancy, serologies, EEG, nerve conduction studies, electromyography, 

as well as CSF analysis for inflammation.  

PNS becomes a more “definite” or “probable” diagnosis when patients demonstrate clinical 

presentations, the presence of cancer, and positive onconeural antibodies [58]. Current diagnostic 

procedures do not often include a nerve biopsy to aid diagnosis, as most syndromes rely on nerve 

conduction or EMG when symptoms of weakness and neuropathy are involved and can be evaluated 

with less invasive techniques. However, in a case study in 2020, a sural nerve biopsy demonstrating 

lymphocytic microvasculitis (with both B and T cells) was crucial for a patient presenting with 

progressive upper and lower limb weakness. The biopsy, along with positive antibodies (anti-Hu and 

anti-CV2), led suspicion towards paraneoplastic syndrome and subsequent testing including a lymph 

node biopsy, helped diagnose small cell lung cancer confined to a solitary lymph node as the source 
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of malignancy [60]. Thus, nerve biopsies in the setting of unclear etiologies of peripheral 

neuropathies, may be beneficial in steering diagnosis of paraneoplastic syndromes with unique 

presentations and previous negative testing.  

2.3. Nerve Biopsy: Low Importance 

2.3.1. Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) 

CIDP presents with monophasic, progressive, or relapsing symmetrical sensory and motor 

deficits both proximally and distally [61,62]. Although nerve biopsies can be utilized in cases of 

patients presenting with limited features of demyelination, diagnosis of CIDP is less reliant on nerve 

biopsy because of the easy access and availability of supporting criteria from other tests. 

Investigations have demonstrated that amongst patients diagnosed with CIDP, nerve biopsy may be 

utilized as the supportive criteria in only 3% of patients [63]. The main use of nerve biopsy in the 

context of CIDP is for atypical presentations, when patients are treatment resistant, or to rule out 

other etiologies of the presenting symptoms [64]. 

2.3.2. Paraproteinemic Neuropathy 

Paraproteinemic neuropathy is a relatively large class of neuropathy causing disorders that are 

less reliant on nerve biopsy. Nerve biopsy in paraproteinemic neuropathies is mainly used to support 

a causal relationship between the presence of specific paraproteins and the clinical presentation of 

neuropathy. Typical identification of pathologic paraproteins, and their distinguishment form 

coincidental non-disease-causing paraproteins, is done through the visualization of paraprotein 

binding to nerve components using indirect immunofluorescence. In addition, high titers of IgM 

antibodies against ganglioside Q1b and myelin associated glycoprotein alleviate the need for nerve 

biopsy to determine the cause of the presenting demyelinating neuropathy [6,65]. 

Nerve biopsy can assist in specific diagnosis confirmation of cryoglobulinemic neuropathy. 

Nerve biopsy in these cases will typically reveal large fiber axonal degeneration. Concaminant 

features of demyelination, vasculopathy, and vasculitis are also common [66]. Amorphous material 

can also be visualized within vacuoles in myelin sheaths [66,67]. 

Nerve biopsy can also assist in confirming paraproteinemic neuropathy in cases where IgM 

antibodies are visualized against neural antigens including GM1, GM2, GD1a, and GD1b. Nerve 

biopsy can also be utilized to assist in confirmatory diagnosis of cases where IgG or IgA antibodies 

are present, visualization of complement binding to myelin or widely spaced myelin, or visualization 

of immunoglobulin binding to myelin (Figure 1). Specific features on nerve biopsy can be specific to 

different types of paraproteinemic neuropathy [68–77]. However, because these disorders are less 

reliant on biopsy for diagnosis, specificity is rarely utilized clinically for diagnosis and confirmation 

[6,65]. 

2.3.3. Adult Polyglucosan Body Disease 

Adult polyglucosan body disease is typically diagnosed by genetic testing followed by glycogen 

branching enzyme activity assays [78]. Nerve biopsy is only indicated if enzyme activity assay results 

are ambiguous. Reported biopsy findings included polyglucosan bodies, however these findings 

were also found in patients without the disease [6,79,80]. 

2.3.4. Lysosomal & Perioxisomal Storage Disorders 

Nerve biopsy is only indicated in the presence of atypical manifestations/presentations or if 

usual testing fails to determine a highly suspected diagnosis of neuropathy secondary to lysosomal 

and peroxisomal storage disorders [81]. Nerve biopsy may reveal Zebra or Tuff stone bodies, a result 

of intralysosomal material accumulation in Schwan cells and neurons, onion bulb structures in 

patients with Refsum’s disease, or prismatic inclusions in patients with leukodystrophies and other 

sphingolipidoses [6,81]. 

2.3.5. Pure Motor Neuropathy 
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Pure motor neuropathy can be difficult to differentiate from progressive muscular atrophy. In 

such cases, nerve biopsy can assist in diagnosis. Nerve biopsy of pure motor neuropathy has 

demonstrated 95% sensitivity when biopsy is conducted on the motor branch of the obturator nerve 

[82]. Biopsy findings suggestive of pure motor neuropathy include high regenerative activity, 

findings suggestive of demyelination and remyelination, and deposits of axonal inclusions or 

amyloid. Low regenerative activity and axonal degeneration are more consistent with a motor neuron 

disease and not a pure motor neuropathy [6,82]. 

2.3.6. Diabetic Neuropathy 

Nerve biopsy in cases of suspected diabetic neuropathy can be indicated in the presence of 

atypical manifestations/presentations or to determine the true etiology of the patient’s symptoms 

when other superimposed disorders, such as an ischemic inflammatory process, may be occurring 

[83]. Typical cases of diabetic neuropathy do not require morphological confirmation [44]. 

2.3.7. Cryptogenic Neuropathy 

Similarly, nerve biopsy in cases of cryptogenic neuropathy is not typically indicated but may be 

useful in cases of high suspicion where extensive workup is inconclusive [13,15]. Nerve biopsy 

findings are expected to yield 0-37% of useful diagnostic information [84,85]. 

2.3.8. Hereditary Neuropathy 

Owing to next generation sequencing, nerve biopsy does not play an important diagnostic role 

in patients with hereditary neuropathies. Specific select cases may benefit from nerve biopsy, but 

other diagnostic tools are sufficient in most cases [86]. 

2.3.9. Other Neuropathies 

Consistent with what has been discussed for all nerve biopsy indications of low importance, 

several other neuropathies that are not reliant on nerve biopsy for diagnosis may still benefit from 

nerve biopsy in select cases. This includes toxic neuropathies from specific medications, neuropathy 

secondary to environmental or industrial exposure, diffuse infiltrative lymphocytosis syndrome, and 

chronic idiopathic sensory axonal neuropathy [87–93]. Nerve biopsy in such cases may assist in 

diagnostic clarification, in cases of rapid progression or atypical presentations, or exploration of 

disease progression and potential treatments [94–96]. Figure 2 demonstrates a proposed decision tree 

for performing nerve biopsies and Table 2 demonstrates when biopsy is indicated for a suspected 

diagnosis. 
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Figure 2. Proposed decision tree to facilitate decision-making for nerve biopsy. EMG, 

electromyogram; NCS, nerve conduction studies. Nathani D, Spies J, Barnett MH, Pollard J, Wang 

MX, Sommer C, Kiernan MC. Nerve biopsy: Current indications and decision tools. Muscle Nerve. 

2021 Aug;64(2):125-139. doi: 10.1002/mus.27201.[6] © 2021 The Authors. Muscle & Nerve published by 

Wiley Periodicals LLC. 

Table 2. When biopsy is indicated for a suspected diagnosis. 

Suspected Diagnosis  Case where biopsy is indicated  

High Importance  

Vasculitic neuropathy Lack of evidence for extraneural vasculitis or 

progressive symptoms despite treatment  

Neurolymphomatosis Primary neurolymphomastosis or secondary 

neurolymphomastosis in cases of diagnostic 

ambiguity 

Peripheral Nerve Tumors Atypical benign tumors  

Pseudoneoplastic Peripheral Nerve Tumors Exclusion of maliganancy 

Neuritic leprosy Almost all cases for difinitve diagnosis 

Medium Importance  

Amyloidosis Other tissue biopsy not possible or demonstrate 

negative results. 

Neurosarcoidosis Negative results following extraneural biopsy or 

absence of extraneural symmptoms 

IgG4 related perineural disease Majority of patients, specifically in cases of 

atypical presentation or lack of extraneural 

evidence 

Paraneoplastic Syndromes In the setting of unclear etiologies of peripheral 

neuropathies 

Low Importance  

Chronic inflammatory demyelinating 

polyneuropathy 

Lack of response to treatment or atypical 

presentation 

Paraproteinameic Neuropathy Suspected diagnosis of vasculitic or amyloid 

neuropathy, or infiltrative malignancy 

Adult polyglucosan body disease Suspected diagnosis following inconclusive 

enzyme and genetic testing 

Lysosomal & Perioxisomal Storage Disorders Atypical presentation or suspected diagnosis 

following inconclusive testing 

Pure motor neuropathy Inability to determine etiology of neuropathy 

between motor neuron disease and motor 

neuropathy 

Diabetic Neuropathy Atypical presentation or suspected 

superimposed etiology   

Cryptogenic neuropathy Suspected diagnosis following inconclusive 

testing 

Hereditary neuropathy  Atypical presentation or suspected diagnosis 

following inconclusive testing 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 4 April 2024                   doi:10.20944/preprints202404.0358.v1



 9 

 

Suspected Diagnosis  Case where biopsy is indicated  

Other neuropathies Atypical presentation or suspected diagnosis 

following inconclusive testing 

Source: Adapted from references[6], [11] and [16]. 

3. Muscle Biopsy Indications 

Muscle biopsy is an important component in disease evaluation and diagnosis [97]. Muscle 

biopsy is specifically required to definitively diagnose hereditary disorders such as muscular and 

myotonic dystrophies, congenital myopathies, channelopathies, primary metabolic disorders, 

disorders of carbohydrate and lipid metabolism, and acquired myopathies such as inflammatory, 

toxic/drug-induced, endocrine, and systemic illness-associated myopathies [98]. Muscle biopsy also 

plays a significant role in the general evaluation of patients with neuromuscular disease, the 

progression and course of a disease, and the differentiation of neurogenic and myogenic disorders. 

Considering the many indications and its large evaluative and diagnostic role, neurosurgical 

intervention for muscle biopsies remains an important component of medical reasoning and decision 

making. 

3.1. Muscle Biopsy: High Indication 

3.1.1. Polyarteritis Nodosa (PAN) 

Polyarteritis nodosa (PAN) is a medium-sized vessel, immune complex related vasculitis that 

causes necrosis [99]. PAN can be caused by viral infections like Hepatitis B, Hepatitis C, HIV, CMV, 

and Parvovirus B19. However, majority of cases are idiopathic. This condition affects multiple 

systems in the body, with central nervous system involvement being associated with higher 

mortality. PAN diagnosis can be made following histological confirmation of muscle, skin, or nerve 

biopsy of the affected area [100].  

PAN can affect blood vessels systemically, with the potential of hemorrhage or ischemia in any 

organ because of the abundance of blood vessels throughout the body [101]. Clinically, PAN can 

manifest with systemic, cutaneous, neurological, gastrointestinal, urologic, ophthalmologic, cardiac, 

and respiratory symptoms. The most common neurological manifestations are mononeuritis 

multiplex occurring in 38-72% of cases, peripheral neuropathy occurring in 74% of cases, central 

nervous system involvement occurring in 2-28% of cases, and cranial nerve palsy in <2% of cases 

[100]. 

Combined muscle and nerve biopsies were effective in providing histologic confirmation of 

vasculitis in 83% of cases, whereas muscle biopsies alone were only effective at confirming vasculitis 

in 65% of cases. Histopathology typically demonstrates inflammatory infiltrates; lymphocytes, 

macrophages, neutrophils, and eosinophils. Granulomas and giant cells are not observed, but 

fibrinoid necrosis is typically seen in active lesions. Early in the disease course, fibrinoid necrosis will 

present with neutrophil involvement, followed by lymphocyte and macrophage involvement. In 

advanced lesions, neoangiogenesis and vascular remodeling will be seen with intimal hyperplasia 

and diffuse fibrotic changes in the vessel wall. Thrombosis can typically appear, as well as 

microaneurysms due to severe vessel wall injury [100]. 

3.1.2. Dystrophinopathy 

Dystrophinopathies are X-linked muscle diseases that result in muscle atrophy and fibrosis. The 

underlying pathophysiology of dystophinopathies involves a deficiency in the dystrophin protein 

[102]. The most common dystrophinopathies are Duchenne and Becker muscular dystrophies. 

Duchenne’s muscular dystrophy (DMD) is recognized by an absence of dystrophin and dystrophin 

glycoprotein complex. This deficiency results in membrane fragility, excessive permeability, 

improper calcium homeostasis, and oxidative damage. The combined impact of these deficiencies 

result in muscle cell necrosis [103]. Becker’s muscular dystrophy is a less severe disease, categorized 

by nonfunctional or decreased production of dystrophin. Because the underlying pathology is less 
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severe, muscular atrophy and other clinical features progress modestly [104]. Although genetic 

testing has grown in popularity for its ability to detect 95% of pathogenic variants of DMD, muscular 

biopsy remains to be a reliable diagnostic adjunct to genetic testing. A 2018 study of diagnosis of 

DMD, found that the number of muscular biopsies for DMD have remained at a stable level since 

1997. They also found that muscle biopsy can provide enhanced diagnostic capacity for patients with 

later symptom onset, comorbidities, or a pervious normal DMD genetic test [105]. Furthermore, 

muscle biopsies provide a better understanding of the disease phenotype through quantification of 

the dystrophin within the tissue. 

Duchenne and Becker muscular dystrophies present relatively similarly, mainly distinguished 

by the timing of symptom presentation. Duchenne typically presents between the ages of 1.2-8 years, 

while Becker typically presents between the ages of 5-60 years [105]. Short stature is common, but 

developmental milestones are achieved at a normal or slightly delayed pace prior to symptom onset. 

Infants commonly present with mild hypotonia and poor head control. The clinical presentation 

usually consists of muscle weakness and difficulty with ambulation. Patients will have difficulty 

moving up stairs, difficulty running, and are prone to falls. Weakness is typically more prominent in 

proximal muscles of the lower limb [103]. Enlargement of calves due to muscular atrophy and adipose 

replacement in pseudohypertrophy is seem classically in this condition.  

Confirmation of diagnosis is typically done through muscle biopsy of the quadriceps femoris 

and gastrocnemius. On muscle biopsy endomysial connective tissue proliferation, disorganized 

degeneration and regeneration of myofibers, and muscle fiber necrosis with a mononuclear infiltrate 

are expected findings. Muscle fiber necrosis will be present, involving characteristic replacement with 

adipose tissue as seen in pseudohypertrophy [103]. 

3.1.3. Trichinosis 

Trichinella are nematode parasites that infect humans most commonly from the ingestion of 

larvae in undercooked, infected meat. They can be found in pigs, boars, and horses who have been 

infected from eating rats or food containing T. spiralis, T. nativa, or T. britovi. There are an estimated 

10,000 cases around the world, but the incidence in the United States has dramatically decreased after 

the introduction of laws requiring proper cooking of hog food. Once the larvae have been ingested, 

they develop into adults, begin to mate in the intestines, then releases more larvae. Larvae will travel 

systemically and invade muscle cells causing a multitude of effects [106]. Muscle biopsy is the only 

way to prove absolute certainty of infection [107]. 

Infection with Trichinella can cause neurotrichinellosis which presents with encephalopathy 

along with neuromuscular and ocular disturbances [107]. Neurologic symptoms present in 10-20% of 

infected patients. Clinical presentation can include meningitis, encephalitis, paresis and paralysis 

[108]. Imaging studies will show nodular multifocal hypodensities in patients who are serologically 

positive [107]. 

Muscle biopsy is typically done in skeletal muscle, most commonly the diaphragm, extraocular, 

laryngeal, deltoid, gastrocnemius, and intercostal muscles (Figure 3). Histology will reveal larvae 

approximately 1mm long surrounded by intracellular membrane-bound vacuoles. These membrane-

bound vacuoles are surrounded by new blood vessels and an eosinophilic infiltrate. Infiltrates are 

most prominent around dying parasites, which result in calcification and scaring [106]. 
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Figure 3. MRI of the lower limbs in the case of a toxic myopathy. The T2 images show asymmetric 

involvement affecting only the left lower limb. Had a muscle biopsy been taken from the right 

gastrocnemius, the pathologic tissue would have been missed. Joyce NC, Oskarsson B, Jin LW. Muscle 

biopsy evaluation in neuromuscular disorders. Phys Med Rehabil Clin N Am. 2012 Aug;23(3):609-31. 

doi: 10.1016/j.pmr.2012.06.006.[4] © 2012 The Authors. Physical Medicine and Rehabilitation Clinics 

of North America by Elsevier 

3.2. Muscle Biopsy: Low Indication 

3.2.1. Chloroquine Toxicity 

Chloroquine is approved for use in the treatment of certain strains of malaria including P. 

falciparum, P. ovale, P. vivax, and P. malariae. Chloroquine works by preventing the polymerization of 

heme into hemozoin. This disruption in the metabolism of heme stops the malarial parasite from 

using hemozoin as a food source for proliferation [109]. Alternative indications for chloroquine are 

dermatomyositis, sarcoidosis, SLE, and some connective tissue diseases. Chloroquine can be used in 

these alternative diagnoses because of their modification of the immune system. Toxicity can affect 

cardiac and skeletal muscle, and muscle biopsy can be used as a diagnostic instrument to confirm the 

diagnosis [110]. 

Chloroquine toxicity can cause neuromyopathy that presents as slowly progressing, painless 

proximal weakness. As toxicity progress, patients experience muscle atrophy that is worse in the legs 

than arms. Toxicity can reduce sensation and stretch reflexes in muscles, most prominently at the 

ankles. In terms of dosing, neuromyopathy usually occurs in patients taking 500mg/d for a year or 

greater but has been documented in patients taking doses as low as 200mg/d. A study that tracked 

prevalence of myopathy in patients taking antimalarials over the course of 3 years found that the 

incidence of myopathy was 9.2% [111]. Laboratory features of chloroquine toxicity will reveal 

elevated creatine kinase (CK) levels. On nerve conduction studies, reduction of amplitude and 

reduced velocities can be observed [112]. 

Histology of a muscle biopsy will show autophagic vacuoles in 50% of skeletal and cardiac 

muscle, but type 1 fibers seem to be affected to a greater extent. The vacuoles seen will stain positive 

for acid phosphatase. When using electron microscopy, vacuoles contain concentric lamellar myeloid 

debris and curvilinear structures [110]. 

3.2.2. Amiodarone Toxicity 

Amiodarone is the most prescribed anti-arrhythmic medication in the United States [113]. It is 

indicated for the treatment of ventricular arrhythmias but is routinely used off-label to treat atrial 

fibrillation and to prevent ventricular tachyarrhythmias. Amiodarone is a class III antiarrhythmic that 

blocks potassium currents that repolarize the myocardial cell in phase 3 of the action potential. 
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Amiodarone also blocks beta 1 adrenergic receptors, calcium channels, and sodium channels. 

Therefore, it has properties of all four classes of anti-arrhythmic medications [113]. The diagnosis of 

toxicity can be confirmed by muscle biopsy. 

Amiodarone toxicity presents as a neuromyopathy with severe proximal and distal weakness. It 

also causes sensory loss and reduced stretch reflexes. Typically, the legs are more affected than the 

arms. The toxic effects are more significant in patients with hypothyroidism from amiodarone use 

and with renal insufficiency. It is important to note that the risk of myopathy is increased for patients 

who are also on a statin. Laboratory test will show an elevated CK level and nerve conduction study 

will show reduced amplitude and slowed conduction. These nerve conduction study (NCS) findings 

are especially prominent in the lower extremities.  

Muscle biopsy will reveal dispersed fibers with autophagic vacuoles. Neurogenic atrophy will 

be observed, especially in distal muscles. Electron microscopy will reveal myofibrillar 

disorganization and autophagic vacuoles that are filled with myeloid debris [111]. 

3.2.3. Pompe Disease 

Pompe disease is an inherited glycogen storage disease that causes deficiency of lysosomal acid 

alpha-glucosidase [114,115]. Deficiency of this enzyme causes glycogen to deposit inside of lysosomes 

within muscular tissue. The incidence of Pompe disease is approximately 1 in 40,000 in the US [115]. 

Although muscle biopsy is not the only way to diagnose the condition, it can be used to recognize 

certain unusual variations in the disease. Muscle biopsy may play a particular role in the diagnosis 

of underreported variants that may be resistant to enzyme replacement therapy [114]. 

Pompe disease can present early in life as the infantile phenotype or later in life as the late onset 

phenotype. The infantile phenotype presents with symptoms before the age of 1. These symptoms 

include hypotonia, muscle weakness, motor delay, cardiomegaly, hepatomegaly, and respiratory 

failure. The late onset phenotype exhibits symptoms in childhood or beyond. These include 

symptoms of proximal muscle weakness, and respiratory failure. Progression in the late onset 

phenotype is typically slower [115]. 

Muscle biopsy stained with hematoxylin and eosin will show glycogen containing vacuoles that 

are nonspecific for glycogen storage diseases. The glycogen vacuoles will be in the lysosomes of 

muscle cells and will stain positively with periodic acid-Shiff [114,116]. Lipofuscin inclusions can also 

be seen in patients with Pompe disease. These changes in muscle cells are absent in 20-30% of patients 

who have the late onset of Pompe Disease. Due to the low specificity of these findings, muscle biopsy 

is not the preferred method of diagnosis [114,115]. 

4. Emerging Biopsy Techniques 

4.1. Image-Guided Biopsies 

Using imaging modalities like computer tomography (CT), magnetic resonance neurography 

(MRN), or ultrasound (US) to guide the needle to the precise location has been shown to improve 

precision and accuracy, increase diagnostic yield, and reduce procedure time. Use of imaging also 

allows for smaller incisions, improved patient comfort, and decreased complication rates compared 

to traditional biopsy techniques. 

The use of magnetic resonant imaging to visualize neurons, also called MRN, has seen a growing 

list of techniques, indications, and diagnostic applications in the past two decades [117,118]. MRNs 

depict the entire nerve in 3 dimensions, provide excellent soft tissue contrast, and functions without 

operator skill limits. The soft tissue contrast allows for visualization of downstream muscle injury 

and high contrast resolution between surrounding fat and vascular structures, making it an excellent 

modality to guide nerve biopsy [119]. 

US excels in its provision of real-time visualization and comparison of nerves, portability, and 

low cost, while still allowing for dynamic imaging with high spatial resolution [120,121]. It 

furthermore operates without ionizing radiation and does not require contrast to operate. 

Conversely, it does come with certain limitations, chiefly the depth of range, soft tissue contrasts, and 
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a dependability on operator skillset. Despite these limitations, developments in high-resolution US 

provide valuable neuro-metrics which serve to guide diagnostics and biopsy [122]. 

While CT scans have also historically been used to visualize nerves, [123,124]  US and MRN 

have emerged as the most far-reaching modalities for peripheral nerve imaging and often provide 

complimentary information [125–127]. The decision of which modality to use for biopsy ultimately 

depends on the target nerve’s depth and accessibility, imaging availability, and the clinician’s 

preference.  

4.2. Optical Biopsy 

Optical biopsy involves the use of specialized instruments that provide real-time microscopic 

images of tissues without the need to remove and process samples in a traditional manner. 

Techniques such as optical coherence tomography (OCT), confocal laser endomicroscopy, and 

fluorescence-guided biopsy have been explored in various settings for this purpose. 

OCT uses low-coherence light to capture micrometer-resolution two- and three-dimensional 

images from within optical scattering media. Of note, this technique has been used in animal models 

to obtain high-resolution images of sciatic nerves, [128,129] to monitor microvasculature flow around 

peripheral nerves as they are electrically stimulated, [130,131] and to capture functional images of 

nerves [132]. The non-invasive nature of this technique makes biopsies of nerves possible without 

causing damage or impairing function, making studies such as those to visualize retinal nerve fibers 

in diabetic patients possible [133,134]. 

Another technique within the vein of optical biopsies is confocal microscopy. While 

outperformed by OCT in depth of visualization and general clinical utility, this technique provides 

higher quality images of superficial nerves. It’s notably been used to assess peripheral neuropathy 

in-vivo by visualizing epidermal nerves and corneal nerves [135–137]. While its application has seen 

a particular focus on small corneal nerve fibers to detect diabetic peripheral neuropathy, [135,139,140] 

it may be potentially useful in other neuropathologies, such as Parkinson’s Disease,[141] Friedreich’s 

ataxia,[142] or amyotrophic lateral sclerosis [143]. 

Fluorescence-guided biopsy, which involves the use of nerve-specific fluorescent agents, can 

enhance the accuracy of tissue sampling and resection (Figure 4). While many studies focus on the 

use of fluorescent-guided imaging in the operative setting,[144] the potential application to nerve 

biopsies is self-evident. One such technique targets Nav1.7 sodium channels, found in high density 

in peripheral nerves, with a selective fluorescent peptide. Using a surgical fluorescent microscope ex-

vivo, researchers were able to simulate a clinical scenario which identified the peripheral nerves via 

fluorescent highlights [145]. The growing success of fluorescence imaging has led many to seek out 

novel markers or strategies to visualize neurons in surgery or for biopsy [146,147]. 

a  

b   
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c  

Figure 4. a Brightfield and corresponding fluorescence images of a mouse sciatic nerve taken at day 

six post intraperitoneal injection of a fluorescently labeled anti-ganglioside antibody, GT1b-2b-550. 

Adapted from the study by Massaad et al.148 © 2015, Springer Nature. b Nerve-specific peptide FAM-

HNP401 with affinity for human nerve tissue showed equivalent nerve-specific contrast in rats when 

compared to the previous FAM-NP41 nerve-specific peptide. Adapted from the study by Hingorani 

et al.149 © 2018, Ivyspring International. c In vivo nerve specificity demonstration of a myelin protein 

zero (P0) derived peptide sequence, Cy5-P0101-125, following an intraneural injection at the site of a 

mouse sciatic nerve. Adapted from the study by Buckle et al.150 © 2021, Springer. Caption adapted 

from the study by Wang & Gibbs.151 © 2023, Elsevier. 

4.3. Minimally Invasive & Target Fasicular Biopsy 

Utilizing smaller instruments and techniques designed to reduce trauma, these biopsies aim to 

obtain tissue samples with minimal surgical intervention. Several studies have investigated how 

more superficial peroneal nerve and peroneus brevis muscle combined biopsies allow for the 

evaluation of both nerve and muscle tissues with high yield, sensitivity, and specificity for vasculitis 

neuropathies and other conditions [152,153]. The procedure's minimal invasiveness allows for 

reduced morbidity compared to traditional sural nerve biopsy, highlighting a progression towards 

less invasive biopsy methods for nerve tissues without compromising diagnostic value. 

Another approach, coined “targeted fascicular biopsy”, targets one or a few fascicles within a 

nerve, rather than taking a larger portion of the nerve. The goal of targeting smaller sensory and 

motor branches is to minimize the risk of worsening neurologic function secondary to biopsy, while 

still providing enough histopathological tissue to be diagnostic. This is accomplished by combining 

neuroimaging, clinical examination, and electrophysiological studies to identify the ideal nerve 

target, access the nerve as minimally as possible, and biopsy for pathological examination [154]. 

Selective and precise targeting allows for biopsy of a redundant or expendable motor branch rather 

than resecting a fascicle from the parent nerve. This strategy has been applied to biopsy the brachial 

plexus [155] and the sciatic nerve and its major branches [156] among many others [154,157]. 

4.4. Shear Wave Elastography (SWE) 

SWE is a diagnostic imaging modality that quantitatively assesses tissue stiffness by measuring 

the velocity of shear waves induced by an acoustic radiation force impulse. The propagation speed 

of these shear waves, which is directly proportional to tissue rigidity, provides clinicians with precise 

metrics of studied nerves [158]. SWE is gaining traction as a non-invasive technique to evaluate 

peripheral nerve integrity and pathology, potentially circumventing the need for invasive nerve 

biopsies. 

Several studies are geared towards cataloguing the elastic properties of healthy nerves for future 

reference and comparative assessment. This growing catalogue currently includes the ulnar 

nerve,[159] radial nerve,[160] and median nerve [161] among many others. Other studies, such as this 

one by Durand et al, 2021, have started comparing the elastic properties of healthy nerves against 

neuropathic nerves, in this case comparing entrapped ulnar nerves post decompression against the 

contralateral non-operative side [162]. 

Overall, SWE offers a non-invasive means to obtain quantitative data on tissue stiffness, 

potentially aiding in both diagnosis and monitoring of various neuropathies while bypassing the 

risks of traditional surgical biopsy. 
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5. Conclusions 

Neurosurgical intervention for nerve and muscle biopsies remains relevance in the current 

diagnostic landscape for many neurological and musculoskeletal disorders. Although biopsy may 

not be required for definitive diagnosis in certain conditions, the role of biopsy may still be essential 

when dealing with atypical cases and as a supportive point of evidence for diagnosis. In addition, 

several emerging techniques have been explored in the literature to guide diagnostics and biopsy, 

conduct less invasive biopsies, and reduce risks of worsening neurologic function and other 

symptoms secondary to biopsy. 
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