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Abstract: Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent
conditions, each significantly contributing to the global burden of morbidity and mortality. CVD
and CKD share a great number of common risk factor, such as hypertension, diabetes, obesity, and
smoking among others. Their relationship extends beyond these factors, encompassing intricate
interplay between the two systems. Within this complex network of pathophysiological processes,
vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological
pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a
close connection between these two prevalent conditions and vitamin D, a crucial hormone
traditionally recognized for its role in bone health. This article aims to provide an extensive review
of vitamin D's multifaceted and expanding actions concerning its involvement in CKD and CVD.

Keywords: vitamin D; calcitriol; calcidiol; kidney disease; cardiovascular disease; hypertension;
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1. Introduction

Chronic kidney disease (CKD) is a widespread health condition, commonly occurring and
associated with a significant burden and significant morbidity. Globally, it has been documented
with 697.5 million cases, representing a prevalence of 9.1%. CKD contributes to 35.8 million
Disability-Adjusted Life Years (DALYs) and 1.2 million deaths in 2017[1]. Despite being a preventable
and treatable condition, CKD is affecting an increasing proportion of the general population. Its
prevalence has increased by 29.3%, and the all-age mortality rate has risen by 41.5% between 1990
and 2017. This trend aligns with recent projections, foreseeing CKD to emerge as the fifth leading
global cause of mortality by 2024[2].

On the other hand, cardiovascular disease (CVD), despite a continuous expansion of biomedical
knowledge and a constant effort in prevention and treatment, remains the primary cause of mortality
and morbidity in western countries [3].

CVD and CKD share many common risk factors, such as diabetes, hypertension, smoke, and
obesity[4-6], and even some protective factors[7]. However, their relation is not limited to a number
of common pre-existing predisposing conditions, but is rooted in a more complex and interlinked
mutual cross-talk[8].

Individuals with chronic kidney disease often experience an increased risk of cardiovascular
issues, such as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death[9,10].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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While the occurrence and prevalence of cardiovascular events are already notably higher in those
with early CKD stages (stages 1-3) compared to the general population, patients in advanced CKD
stages (stages 4-5) face a significantly elevated risk. In this high-risk population, cardiovascular
complications, rather than end-stage kidney disease (CKD stage 5), stand out as the primary cause of
mortality[11]. Traditional cardiovascular determinant present in CKD are not able to justify this
excess risk in CKD, which appears to be an independent CVD risk factor itself[12]. Some evidences
suggest that, among the main alterations caused by CKD, accelerated atherosclerotic degeneration
and the development of vascular calcification are linked to worse prognosis[13,14]. This could
possibly provide an explanatory mechanism for increased CVD damage in CKD patients[15,16].

In this context, Vitamin D naturally emerges as a key factor in promoting both
calcium/phosphorus metabolism imbalance, and thus CKD-related vascular calcification, and
atherosclerosis, with a great impact on cardiovascular health[17,18]. In this review, the main roles of
Vitamin D in kidney and cardiovascular disease will be described.

2. What is Vitamin D?

Vitamin D is a secosteroid, a steroid hormone obtained through dietary intake and by
endogenous synthesis requiring exposure to sunlight. Essential vitamins are defined as substances
that a living organism cannot produce adequately on its own and must acquire them exclusively from
its diet; for this reason, Vitamin D it is not a true “vitamin”. There are six distinct steroid hormones
referred to as vitamin D, each with different levels of activity. These include the endogenous
precursor cholecalciferol (D3), derived from cholesterol; its partially active hydroxylated derivative,
calcidiol (25(OH)D3), synthesized by the liver; and its active dihydroxy-form, calcitriol
(1,25(OH)2D3), hydroxylated in the kidneys[19,20]. Additionally, there is a plant-derived form
known as ergocalciferol (D2), characterized by a worse pharmacokinetic profile, less biological
activity and lower stability than its animal derived analogues[21,22]. Calcitriol’s most known effect
is enhancing the absorption of calcium in the intestines and controlling phosphate levels. Vitamin D
nuclear receptors (VDRs) are also present in a plethora of tissues, such as breast, brain, breast,
lymphocyte and other immune cells, and prostate[23]; thus, it is unsurprising that vitamin D has
various pleiotropic effects that are currently still under investigation, such as immune modulation,
the onset of cancer, and insulin regulation[24,25]; many other cardiovascular regulatory functions
will be described in greater detail in dedicated sections of this article.

The binding of calcitriol with VDR causes a conformational change in the receptor, leading to its
heterodimerization with the retinoic acid X-receptor (RXR) (Figure 1). Additionally, VDR can form
heterodimers with other members of the steroid receptor gene family[26]. The transactivation of VDR
results in the expression or repression of numerous genes, with estimates suggesting that calcitriol
influences over 200 genes directly or indirectly, impacting a diverse array of physiological
processes[27]. Notably, VDR-DNA binding aids in targeting genes that may undergo further
modification by calcitriol. However, it's important to note that in many instances, changes in gene
expression are not directly mediated by VDR but involve various co-regulatory elements[28]. These
complexes typically include a VDR regulatory component and exhibit significant enzymatic
activity[26].
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Figure 1. The complex formed by 1,25(OH)2D3-VDR2 dimerizes with the retinoid X receptor (RXR)
and relocates to the nucleus. There, it binds to vitamin D response elements (VDRE) present in the
promoter region of target genes. 25(OH)D sourced from the bloodstream may undergo local
conversion into 1,25(OH) D within cells that express la-hydroxylase. Adapted from Latic[29].

2.1. Vitamin D Deficiency

Vitamin D normal levels are not unanimously established, although many authors recognize
that calcidiol serum levels <30ng/mL can be described as “Vitamin D deficiency”[30,31]; levels below
10-12ng/mL, associated with rickets and ostemalacia, are considered severe deficiency[32,33].
Furthermore, the clinical guidelines established by the Endocrine Society Task Force on Vitamin D
have set a deficiency cutoff level for vitamin D at 50 nmol/L[30]. It must be noted that, while calcitriol
is acknowledged as the active form of vitamin D, its serum levels are not regularly monitored. This
is due to its short half-life, susceptibility to exogenous administration, and, most importantly, absence
of a standardized assay. Consequently, calcidiol is the predominant biomarker utilized in both
clinical and research settings[34]; however, calcidiol and calcitriol deficiency could impact mineral
metabolism in different ways[35].

Recent data suggest that low vitamin D levels are common worldwide, varying across different
ages and ethnicities, with a prevalence of 24% in the US and 40% in Europe, and over 20% in India
and Pakistan[36,37]. In some groups of individuals it can be even more common, such as in subjects
with celiac disease or in obese and sedentary subjects [38,39]; in CKD patients, Vitamin D deficiency
prevalence can rise up to 85-99%[40,41].

There are some limitations that must be taken into account when pondering these information,
hence the great disagreement in a generally acceptable definition of “normal values” of Vitamin D
and its deficiency[42]:

¢ No consensus on a standardized laboratory assay[43—45];

e  Great variability in Vitamin D levels among different populations and ethnicities, both due to
genetic and geographical factors[46—49];

e Not clear whether the total or the free (unbound to carrier proteins) Vitamin D should be
measured[50,51].

3. Vitamin D in the Context of CKD

Chronic kidney disease is one of the main causes of Vitamin D deficiency, and the progressive
decline of renal function is associated with its worsening[52,53].
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Vitamin D role in kidney health is complex. Its deficiency is both a consequence of kidney
disease and a prognostic factor for progression of kidney damage and is linked to graft survival in
kidney transplant recipients. Vitamin D is also an extremely important therapeutic target, as its
analogues have a role in the treatment of mineral and bone alterations, proteinuria, and in the
reduction of kidney inflammation and fibrosis.

Due to various factors, individuals with CKD frequently encounter deficiencies in both calcidiol
and calcitriol (Figure 2). CKD hampers the activity of la-hydroxylase CYP27B1, the enzyme
responsible for hydroxylation of calcidiol into calcitriol[54,55]. Additionally, this deficiency may arise
from impaired skin synthesis or prescribed dietary restrictions, limiting the availability of precursors
cholecalciferol and ergocalciferol, and from CKD-related proteinuria and uremia which contribute to
the depletion of vitamin D binding proteins and 1,25-dihydroxyvitamin D[54].

Poor skin
synthesis

Loss of VDBP
for proteinuria

Cholecalciferol

Ergocalciferol

Dietary
restrictions

Figure 2. Mechanisms underlying vitamin D deficiency in CKD. VDBP: vitamin D binding protein.
Adapted from Brandenburg[56].

3.1. Vitamin D in Mineral and Bone Disease

Vitamin D is a key component of calcium/phosphate homeostasis and bone metabolism: in
healthy subjects, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF23) and Vitamin D act
as deeply interlinked regulators of this delicate and complex physiological mechanism [57,58]. The
disruptions in mineral metabolism caused by CKD, rising PTH, and lower Vitamin D levels are
presently recognized as integral components of the chronic kidney disease-mineral and bone
disorder (CKD-MBD) definition[59].

Vitamin D exerts its effect on calcium homeostasis forming a complex with VDR and RXR,
binding to the vitamin D response element to regulate the transcription of various genes, including
epithelial calcium channels and calcium-binding proteins[60-62]. Subsequently, calcitriol deficiency
will result in reduced calcium absorption from the intestine; to counteract this effect and avoid
hypocalcemia, PTH activate osteoclasts thus reabsorbing calcium from the bone. In CKD, various
mechanisms contribute to the overproduction of PTH, a condition known as secondary
hyperparathyroidism (sHPT), a disease totally different from disorders in the parathyroid glands
(primary HPT)[56,57].

The clinical implications of CKD-MBD involve parathyroid gland hyperplasia, bone
abnormalities, and vascular calcification; as CKD progresses, the parathyroid glands undergo
nodular hyperplasia due to persistent overstimulation by hypocalcemia and hyperphosphoremia
[57,61,63,64]. The reduced sensitivity to vitamin D and calcium signals, attributed to the loss of
respective receptors, further complicates the situation, leading to parathyroidectomy in the most
severe cases[59,61,65].

Bone abnormalities, encompassing different patterns under the term renal osteodystrophy, lead
to ostheoporosis and an increasing risk of fracture, worsening together with the decline in renal
function[66]

The disturbance in mineral homeostasis within CKD-MBD, through the elevated serum
phosphate levels leading to deposit of calcium phosphate salts in the arteries walls, heightens the risk
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of vascular calcification, thereby increasing susceptibility to cardiovascular diseases[65,67,68].
Managing mineral imbalances like hyperphosphatemia and SHPT is still regarded as one of the
prevailing approaches for addressing vascular calcification in CKD. This involves the use of
phosphate binders in hyperphosphatemic patients at all stages of CKD, along with implementing
dietary phosphate restrictions and utilizing calcimimetics[69]. Vitamin D compounds continue to be
one of the primary choice for preventing and treating SHPT in CKD[59].

3.2. Vitamin D as RAAS Inhibitor

The role of Vitamin D in renin-angiontensin-aldosterone system (RAAS) inhibition is nowadays
undisputed[70,71]. In experimental models of chronic kidney disease, paricalcitol, a synthetic
analogue of vitamin D, diminishes the renal expression of renin, the (pro)renin receptor,
angiotensinogen, and the type 1 angiotensin receptor. Furthermore, Vitamin D hinders the activity
of tumor necrosis factor o converting enzyme (TACE), which controls the shedding of angiotensin-
converting enzyme 2 (ACE2), a crucial enzyme responsible for metabolizing angiotensin II in the
proximal tubule (Figure 3)[71,72].

Several pioneering studies have found a negative correlation between the concentration of
plasma 1,25(OH)2D3 and blood pressure, as well as plasma renin activity, in both normotensive men
and individuals with essential hypertension[73-75]. It has been documented that supplementation
with vitamin D3 reduces blood pressure in individuals with essential hypertension (19, 20).
Treatment with 1,25(OH)2D3 also leads to a reduction in blood pressure, plasma renin activity, and
angiotensin II levels in patients with hyperparathyroidism[76,77]. Furthermore, exposure to
ultraviolet light, necessary for vitamin D biosynthesis, is inversely related to increases in blood
pressure and the prevalence of hypertension in the general population, demonstrating blood
pressure-lowering effects[78,79]

Angiotensin Il

Figure 3. Schematic representation of Vitamin D inhibition of RAAS. ACE, angiotensin converting
enzyme; AT1, angiotensin receptor type 1; PRR, prorenin receptor; TACE, tumor necrosis factor o
converting enzyme.

3.3. Vitamin D and Proteinuria

Proteinuria is one of the main predictors of chronic kidney disease progression and stands out
as a potent and autonomous predictor of adverse outcomes in cardiovascular health. Importantly,
these associations are significant regardless of the glomerular filtration rate level. Moreover, these
connections hold true across populations with varying degrees of risk for kidney disease progression
and cardiovascular disease development. The association between proteinuria and CVD persist even
at proteinuria levels below existing thresholds for microalbuminuria [80,81]. Being recognized as the
main therapeutic target in management of CKD, it is not surprising that international guidelines
recommend every possible effort to reduce it to the lowest achievable level[82].
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Effective therapies that can reduce proteinuria include inhibitors of RAAS, such as angiotensin
receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEi)[83,84]. However,
their effect is often suboptimal, and possible persisting residual proteinuria is still an important
predictor of renal impairment. Since the acknowledgement of potential serious adverse effects of
“dual blockade” of RAAS, combined with the lack of evidence of a reduction in mortality and
improvement of kidney function of this therapeutic regimen, there has been a need for drugs capable
of limiting residual proteinuria[85-87].

Several studies reported Vitamin D role in various groups of proteinuric patients: the exact
mechanism are still not fully understood, but appears to be due to a inhibition of RAAS, as described
earlier in this paper[88], and to a direct effect on podocytes. As they express both VDR and 1- a-
hydroxylase, podocytes can produce calcitriol and respond to autocrine or endocrine calcitriol. In
cultured podocytes, calcitriol triggers a dose-dependent activation the transcription of the nephrin
gene[89,90]. Nephrin serves both structural and signaling functions, working in conjunction with
other slit diaphragm components to create a permeable molecular sieve. This sieve primarily
accounts for the retention of proteins[91,92].

Vitamin D analogues, such as paricalcitol, have shown a potential in treating residual
proteinuria in various subset of patients, including kidney transplant recipients[93-96]. Despite an
increasing number of randomized controlled trial and observational studies, however, the quality of
evidence and the strength of the recommendation are not yet able to suggest a routinary use of
paricalcitol for the sole aim of reducing proteinuria, but further research is encouraged.

3.4. Anti-Inflammatory Effects

VDRs play a significant role in overseeing processes like inflammation, epithelial-to-
mesenchymal transition, and podocyte integrity[97].

Both vitamin D and VDR influence the apoptosis of cultured mouse podocytes and modulate
transforming growth factor 3 (TGFf3) through the nuclear factor kB (NF-B) pathway; VDR-mediated
sequestration of NF-kB signaling also gives Vitamin D potent antiproliferative, prodifferentiative,
and immunomodulating activities, thus dampening kidney inflammation[97,98].

Vitamin D also hinders NF«B transactivation by modulating the advanced glycation end-
products and their receptor (AGE-RAGE system), a mechanism underlying the progression of
various kidney diseases, including diabetic nephropathy, hypertensive nephropathy, obesity-related
glomerulopathy, lupus nephritis, amyloidosis, autosomal dominant polycystic kidney disease, and
septic acute kidney injury[99-101]. It also promotes the production of IL-10 while reducing the
production of TNF-o, IL-12, IL-6, and IFN-c, resulting in an antinflammatory cytokine profile[102].
Other research suggest that dendritic cells are the primary target of the immunosuppressive activity
induced by Vitamin D. This is because it hinders the differentiation, maturation, and survival of these
cells, ultimately resulting in compromised activation of alloreactive T-cells[103]. Moreover, many of
the cells engaged in both innate (monocytes, dendritic cells) and adaptive (T-cells, B-cells) immune
responses express both CYP27B1 and VDR. This suggests their ability to both synthesize calcitriol
from calcidiol and respond to its effects through autocrine and paracrine pathways.

More recently, several studies have shown a great potential of vitamin D immunomodulatory
activities in various non-renal immune diseases, such as vitiligo and multiple sclerosis[104-106].

The immunomodulatory effect of Vitamin D, and especially its action on T-cells, with the shift
toward a less inflammatory and a more tolerogenic phenotype, could be responsible for its potential
counteraction of chronic allograft dysfunction, thus enhancing graft survival[107-111]. Despite these
considerations, data on the clinical effectiveness of Vitamin D supplementation for prolonging graft
survival are controversial; furthermore, many of the available evidences come from observational
studies rather than randomized controlled trials[40,112-115].

The antinflammatory and antiproliferative role of Vitamin D has also important effects on
atherosclerosis, as will be better described further in this paper.
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4. Interplay between Vitamin D and Cardiovascular Disease

Cardiovascular disease stands as the predominant cause of global mortality and morbidity. Its
multifaceted etiology involves an array of risk factors, categorized into modifiable biochemical or
physiological characteristics—such as elevated blood pressure, increased plasma total cholesterol,
hyperglycemia, obesity, or thrombogenic factors—and nonmodifiable personal characteristics,
including age, sex, or a family history of coronary heart disease (CHD) or other atherosclerotic
vascular diseases at an early age[116,117].

Significant strides in scientific research have expanded our understanding of cardiovascular
disease, uncovering novel therapeutic targets. Among these emerging targets, vitamin D has
garnered attention for its potential role in the pathogenesis of various cardiovascular disease[24].
Figure 3 provides a schematic summary of various roles of Vitamin D in the genesis of CVD.

ROLE OF VITAMIN D IN
CARDIOVASCULAR SYSTEM

INIBITION OF Hypertrophic response
INFIAMMATORY which leads cardiac @
CYTOKINE RELEASE decompensation

Activation of VDRs leads to

CHECKING an inflammatory state
facilitating fibrosis and
HYPERTROPHY abnormal cardiac
remodelling

Unregulated RAAS
—[ INACTIVATION OF RAAS ]— activation which leads salt 4°
and water retention

Increased level of PTH

resulting in LV hypertrophy
and an impairment of PTH REGULATION
systolic function

o

Decrease of calcium level
reduces contractility of i
miocardial cells resulting in Ca2+ REGULATION

systolic dysfunction

Figure 3. Schematic representation of main Vitamin D roles in CVD. RAAS, renin-angiotensin-
aldosterone system; HF, heart failure; PTH, parathyroid hormone.

4.1. Hypertension

Untreated high blood pressure (hypertension) poses a significant risk for cardiovascular diseases
like coronary artery disease, myocardial infarction, or stroke[118,119]. Research findings indicate that
a lack of vitamin D exacerbates the progression of hypertension (HT); thus, Vitamin D deficiency
emerges as an autonomous risk factor for elevated blood pressure and plays a role in fostering
cardiovascular mortality[119-121]

Several mechanisms can explain Vitamin D role in hypertension.

As previously stated, Vitamin D exerts a regulatory activity in RAAS. These effects
unsurprisingly show a consequence in the development of hypertension, as confirmed in many
studies both on animal and human [122,123]. Vitamin D can reduce sympathetic activity directly
related to high plasma levels of renin, which influences vascular tone through an increase in
intraglomerular pressure[124].

Beyond that, Vitamin D is involved in calcium homeostasis by increasing renal reabsorption,
increasing calcium release from bone by osteoclasts, and stimulating the production of calcium
transporters[125]

In addition, Vitamin D acts at the level of peripheral vascular resistance tone by regulating the
influx of calcium and thus acting on increased or decreased peripheral vascular resistance; in fact,
VDR is also expressed on vascular smooth muscle cells, and directly influences muscle
relaxation[125,126].

Vitamin D also appears to have a direct effect on vascular stiffness. Endothelial cells and vascular
smooth muscle cells (VSMCs) express la-hydrolase, thus gaining the ability to convert calcidiol to
calcitriol[127]. Research indicates that inflammatory molecules like TNF-a and lipopolysaccharide
activate this enzyme in Human Umbilical Vein Endothelial Cells (HUVECs)[128]. Furthermore, the
addition of calcidiol and calcitriol externally attracts monocytes and increases their binding to
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HUVECs[128]. Macrophage vitamin D activation is less tightly regulated than in the kidney, and, in
atherosclerotic lesions, these macrophages penetrate the arterial wall, allowing the activated vitamin
to directly influence VSMC[129]s. This can enhance the response to vasopressors, promote
calcification, and induce cell dedifferentiation and oxidative stress[130-133].

Despite these proven effects, Vitamin D supplementation has shown negligible effects in the
treatment of hypertension in some recent clinical trials, although some studies are more encouraging.
It is possible that our understanding of Vitamin D effects on blood pressure regulation is still too poor
to give us the ability to use it effectively in clinical context[134].

4.2. Vitamin D Deficiency in Atherosclerosis

Atherosclerosis overwhelmingly stands as the predominant underlying factor for coronary
artery disease, carotid artery disease, and peripheral arterial disease. This is a pathological condition
characterized by changes in the wall of the arteries, which lose their elasticity due to the accumulation
of calcium, cholesterol, inflammatory cells, and fibrotic material.

Among the many cardiovascular risk factors, an elevated plasma cholesterol level is probably
unique in being sufficient to drive the development of atherosclerosis, even in the absence of other
known risk factors[135-137].

Other risk factors involved in the atherosclerotic process include hypertension, male sex,
diabetes mellitus, elevated homocysteine levels, and obesity. These factors contribute to accelerating
the process of atherosclerosis triggered by lipoproteins[138].

Among these “classic”, well-established risk factors, several studies have shown possible
involvement of Vitamin D in the pathogenesis of atherosclerosis.

Vitamin exerts a direct effect on the cardiovascular system, since VDRs have been found in
endothelial cells, vascular smooth muscle cells, endothelial cells, circulating monocytes,
macrophages, dendritic cells, activated T lymphocytes, and platelets[139].

Within endothelial cells, vitamin D governs the synthesis of nitric oxide (NO) by modulating the
activity of endothelial NO synthase (eNOS). Under pathogenic conditions, oxidative stress caused by
excessive production of reactive oxygen species (ROS) facilitates NO degradation and suppresses NO
synthesis resulting in reduced NO bioavailability. Nevertheless, Vitamin D opposes the function of
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the producer of ROS, and enhances
antioxidant capability by boosting the activity of antioxidant enzymes like superoxide
dismutase[140]. 1,25(OH)2D3 has been shown to inhibit the proliferative effects of epidermal growth
factor and endothelin on vascular smooth cells (VSMCs), the latter through decreasing the activity of
cyclin-dependent kinase 2, which actually regulates the cell cycle machinery[141]. The effects of
1a,25(0OH)2D3 on VSMC migration appear to be divergent. At high doses, calcitriol can induce
migration of VSMCs. However, at physiological doses, 25(OH)D and calcitriol inhibit the migration
and proliferation of VSMCs by reducing vitamin D-binding protein activity, an effect mediated by
attenuation of extracellular signal-regulated kinase 1/2 phosphorylation[142]). The decrease in the
formation of atherosclerotic lesions resulted from the inhibition of immune responses, wherein at
least two types of cells play a crucial role in the effects of vitamin D3 (specifically, CD4+CD25+
Forkhead box protein [Foxp] 3+ regulatory T cells [Tregs] and dendritic cells [DCs])[143].
Additionally, there exists a potential role for vitamin D in the process of vascular calcification.[144].
1,25-vitamin D showed a significant association with vascular calcification and, quite unexpectedly,
it was a negative correlation, revealing that higher serum levels of 1,25-vitamin D were associated
with less vascular calcification. Vitamin D, in addition to being involved in calcium deposition in the
axillary skeleton, could in fact also regulate calcium deposition in the vascular wall[144].

4.4. The Role of Vitamin D in Heart Failure

Heart failure (HF) is a pathological state characterized by the heart's inability to meet the
metabolic demands of the body. The prevalence of HF varies significantly, ranging from 1% to 12%,
as documented in comprehensive reports from the United States and Europe[145]. At the core of HF
pathology lies the breakdown of compensatory mechanisms designed to ensure sufficient nutrient
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delivery to tissues. These mechanisms encompass the neurohormonal system, renin-angiotensin
system, aldosterone, parietal remodeling, and chronic inflammation[146].

Patients with HF exhibiting low vitamin D levels tend to experience unfavorable outcomes,
aligning with established clinical correlations and biomarkers[147]. In the context of HF affecting
myocardial cells, the surplus of ionized calcium (Ca2) detrimentally impacts the contraction and
relaxation of the heart[148]. Conversely, vitamin D deficiency may perturb the activities of Ca2 in
cardiac cells, contributing to fibrosis, intra-organizational inflammation, and cardiomyocyte
hypertrophy[149,150]. Additionally, diminished vitamin D levels can induce inflammation, activate
the renin-angiotensin system, and lead to endothelial dysfunction[151].

Several epidemiological and observational studies confirmed a higher risk of cardiovascular
events and related mortality in patients with Vitamin D deficiency[152,153]; furthermore, this
category of individuals shows significantly higher LV wall thickness, diameter and LV mass, and
impaired myocardial performance index in comparison to the rest of the population[154,155].

While observational and epidemiological data, together with pathophysiological studies,
suggest that vitamin D supplementation may ameliorate ventricular remodeling in HF patients, the
clarity of this relationship remains elusive[156].

Evidences from many interventional studies, such as RECORD, EVITA, ViDA, VINDICATE and
the most recent VITAL, have shown little or no benefit from Vitamin D supplementation in reducing
adverse cardiovascular events or CVD-related mortality[157-161].

4.4. Atrial Fibrillation

Atrial fibrillation (AF), the most prevalent sustained arrhythmia, is linked to substantial
morbidity, diminished functional status, compromised quality of life, and heightened mortality, with
an adjusted rate of 4.72% per year. A significant proportion of deaths, approximately 46%, are
attributed to cardiological causes, encompassing sudden cardiac death, heart failure, and myocardial
infarction. In contrast, a minority are associated with nonhemorrhagic strokes (5.7%) or hemorrhagic
events (5.6%)[162].

The established risk factors for AF include advanced age, male sex, hypertension, alcohol
consumption, and valvular disease, with emerging factors such as hypertrophic cardiomyopathy,
obstructive sleep apnea syndrome (OSAS), coronary artery disease, and chronic kidney disease
gaining recognition[163,164]. The role of vitamin D in the pathogenesis of atrial fibrillation remains
contentious, with divergent findings in the literature. Some studies indicate a positive correlation
between hypovitaminosis D and atrial fibrillation, while others do not establish a clear link[165,166].
A plausible correlation may lie in vitamin D's interference with reactive oxygen species (ROS)
production in the atrium, contributing to the arrhythmic substrate of atrial fibrillation. Additionally,
vitamin D has been observed to negatively modulate the renin-angiotensin-aldosterone system,
thereby mitigating atrial remodeling, a phenomenon commonly observed in atrial fibrillation[167].

5. Conclusions

Over decades, since the discovery of its deficiency disease by Casimir Funk[168], vitamin D has
captured the attention of scientist from all around the world. This led to the acknowledgement of its
various pleiotropic effects, ranging from anti-infective effects, reduction of metabolic complications,
to cancer prevention, and, as extensively described, in kidney and cardiovascular health. However,
recent findings from randomized clinical trials and meta-analyses have tempered the enthusiasm
surrounding the purported "pleiotropic" effects of vitamin D[169]. This is because there is a lack of
clear evidence demonstrating the beneficial effects of vitamin D supplementation across various
clinical scenarios[122,170-175]. On the other hand, inappropriate vitamin D supplementation can
lead to serious, although rare, health issues mainly linked to hypercalcemia[176-178].

In conclusion, while the pleiotropic effects of vitamin D on kidney and cardiovascular health
have been extensively explored, it is essential to acknowledge that conclusive evidence regarding its
clinical efficacy is still lacking. Despite numerous studies, the intricate interplay between vitamin D
and these health outcomes requires many more years of intensive research for a comprehensive
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understanding. The journey towards unraveling the true impact of vitamin D on kidney and
cardiovascular health remains a complex and evolving path, emphasizing the need for continued
scientific exploration in this field.
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