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Abstract: Chronic kidney disease (CKD) and cardiovascular disease (CVD) are highly prevalent 
conditions, each significantly contributing to the global burden of morbidity and mortality. CVD 
and CKD share a great number of common risk factor, such as hypertension, diabetes, obesity, and 
smoking among others. Their relationship extends beyond these factors, encompassing intricate 
interplay between the two systems. Within this complex network of pathophysiological processes, 
vitamin D has emerged as a potential linchpin, exerting influence over diverse physiological 
pathways implicated in both CKD and CVD. In recent years, scientific exploration has unveiled a 
close connection between these two prevalent conditions and vitamin D, a crucial hormone 
traditionally recognized for its role in bone health. This article aims to provide an extensive review 
of vitamin D's multifaceted and expanding actions concerning its involvement in CKD and CVD. 

Keywords: vitamin D; calcitriol; calcidiol; kidney disease; cardiovascular disease; hypertension; 
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1. Introduction 

Chronic kidney disease (CKD) is a widespread health condition, commonly occurring and 
associated with a significant burden and significant morbidity. Globally, it has been documented 
with 697.5 million cases, representing a prevalence of 9.1%. CKD contributes to 35.8 million 
Disability-Adjusted Life Years (DALYs) and 1.2 million deaths in 2017[1]. Despite being a preventable 
and treatable condition, CKD is affecting an increasing proportion of the general population. Its 
prevalence has increased by 29.3%, and the all-age mortality rate has risen by 41.5% between 1990 
and 2017. This trend aligns with recent projections, foreseeing CKD to emerge as the fifth leading 
global cause of mortality by 2024[2]. 

On the other hand, cardiovascular disease (CVD), despite a continuous expansion of biomedical 
knowledge and a constant effort in prevention and treatment, remains the primary cause of mortality 
and morbidity in western countries [3]. 

CVD and CKD share many common risk factors, such as diabetes, hypertension, smoke, and 
obesity[4–6], and even some protective factors[7]. However, their relation is not limited to a number 
of common pre-existing predisposing conditions, but is rooted in a more complex and interlinked 
mutual cross-talk[8]. 

Individuals with chronic kidney disease often experience an increased risk of cardiovascular 
issues, such as coronary artery disease, heart failure, arrhythmias, and sudden cardiac death[9,10]. 
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While the occurrence and prevalence of cardiovascular events are already notably higher in those 
with early CKD stages (stages 1-3) compared to the general population, patients in advanced CKD 
stages (stages 4-5) face a significantly elevated risk. In this high-risk population, cardiovascular 
complications, rather than end-stage kidney disease (CKD stage 5), stand out as the primary cause of 
mortality[11]. Traditional cardiovascular determinant present in CKD are not able to justify this 
excess risk in CKD, which appears to be an independent CVD risk factor itself[12]. Some evidences 
suggest that, among the main alterations caused by CKD, accelerated atherosclerotic degeneration 
and the development of vascular calcification are linked to worse prognosis[13,14]. This could 
possibly provide an explanatory mechanism for increased CVD damage in CKD patients[15,16]. 

In this context, Vitamin D naturally emerges as a key factor in promoting both 
calcium/phosphorus metabolism imbalance, and thus CKD-related vascular calcification, and 
atherosclerosis, with a great impact on cardiovascular health[17,18]. In this review, the main roles of 
Vitamin D in kidney and cardiovascular disease will be described. 

2. What is Vitamin D? 

Vitamin D is a secosteroid, a steroid hormone obtained through dietary intake and by 
endogenous synthesis requiring exposure to sunlight. Essential vitamins are defined as substances 
that a living organism cannot produce adequately on its own and must acquire them exclusively from 
its diet; for this reason, Vitamin D it is not a true “vitamin”. There are six distinct steroid hormones 
referred to as vitamin D, each with different levels of activity. These include the endogenous 
precursor cholecalciferol (D3), derived from cholesterol; its partially active hydroxylated derivative, 
calcidiol (25(OH)D3), synthesized by the liver; and its active dihydroxy-form, calcitriol 
(1,25(OH)2D3), hydroxylated in the kidneys[19,20]. Additionally, there is a plant-derived form 
known as ergocalciferol (D2), characterized by a worse pharmacokinetic profile, less biological 
activity and lower stability than its animal derived analogues[21,22]. Calcitriol’s most known effect 
is enhancing the absorption of calcium in the intestines and controlling phosphate levels. Vitamin D 
nuclear receptors (VDRs) are also present in a plethora of tissues, such as breast, brain, breast, 
lymphocyte and other immune cells, and prostate[23]; thus, it is unsurprising that vitamin D has 
various pleiotropic effects that are currently still under investigation, such as immune modulation, 
the onset of cancer, and insulin regulation[24,25]; many other cardiovascular regulatory functions 
will be described in greater detail in dedicated sections of this article. 

The binding of calcitriol with VDR causes a conformational change in the receptor, leading to its 
heterodimerization with the retinoic acid X-receptor (RXR) (Figure 1). Additionally, VDR can form 
heterodimers with other members of the steroid receptor gene family[26]. The transactivation of VDR 
results in the expression or repression of numerous genes, with estimates suggesting that calcitriol 
influences over 200 genes directly or indirectly, impacting a diverse array of physiological 
processes[27]. Notably, VDR-DNA binding aids in targeting genes that may undergo further 
modification by calcitriol. However, it's important to note that in many instances, changes in gene 
expression are not directly mediated by VDR but involve various co-regulatory elements[28]. These 
complexes typically include a VDR regulatory component and exhibit significant enzymatic 
activity[26]. 
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Figure 1. The complex formed by 1,25(OH)2D3–VDR2 dimerizes with the retinoid X receptor (RXR) 
and relocates to the nucleus. There, it binds to vitamin D response elements (VDRE) present in the 
promoter region of target genes. 25(OH)D sourced from the bloodstream may undergo local 
conversion into 1,25(OH) D within cells that express 1α-hydroxylase. Adapted from Latic[29]. 

2.1. Vitamin D Deficiency 

Vitamin D normal levels are not unanimously established, although many authors recognize 
that calcidiol serum levels <30ng/mL can be described as “Vitamin D deficiency”[30,31]; levels below 
10-12ng/mL, associated with rickets and ostemalacia, are considered severe deficiency[32,33]. 
Furthermore, the clinical guidelines established by the Endocrine Society Task Force on Vitamin D 
have set a deficiency cutoff level for vitamin D at 50 nmol/L[30]. It must be noted that, while calcitriol 
is acknowledged as the active form of vitamin D, its serum levels are not regularly monitored. This 
is due to its short half-life, susceptibility to exogenous administration, and, most importantly, absence 
of a standardized assay. Consequently, calcidiol is the predominant biomarker utilized in both 
clinical and research settings[34]; however, calcidiol and calcitriol deficiency could impact mineral 
metabolism in different ways[35]. 

Recent data suggest that low vitamin D levels are common worldwide, varying across different 
ages and ethnicities, with a prevalence of 24% in the US and 40% in Europe, and over 20% in India 
and Pakistan[36,37]. In some groups of individuals it can be even more common, such as in subjects 
with celiac disease or in obese and sedentary subjects [38,39]; in CKD patients, Vitamin D deficiency 
prevalence can rise up to 85-99%[40,41]. 

There are some limitations that must be taken into account when pondering these information, 
hence the great disagreement in a generally acceptable definition of “normal values” of Vitamin D 
and its deficiency[42]: 
• No consensus on a standardized laboratory assay[43–45]; 
• Great variability in Vitamin D levels among different populations and ethnicities, both due to 

genetic and geographical factors[46–49]; 
• Not clear whether the total or the free (unbound to carrier proteins) Vitamin D should be 

measured[50,51]. 

3. Vitamin D in the Context of CKD 

Chronic kidney disease is one of the main causes of Vitamin D deficiency, and the progressive 
decline of renal function is associated with its worsening[52,53]. 
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Vitamin D role in kidney health is complex. Its deficiency is both a consequence of kidney 
disease and a prognostic factor for progression of kidney damage and is linked to graft survival in 
kidney transplant recipients. Vitamin D is also an extremely important therapeutic target, as its 
analogues have a role in the treatment of mineral and bone alterations, proteinuria, and in the 
reduction of kidney inflammation and fibrosis. 

Due to various factors, individuals with CKD frequently encounter deficiencies in both calcidiol 
and calcitriol (Figure 2). CKD hampers the activity of 1α-hydroxylase CYP27B1, the enzyme 
responsible for hydroxylation of calcidiol into calcitriol[54,55]. Additionally, this deficiency may arise 
from impaired skin synthesis or prescribed dietary restrictions, limiting the availability of precursors 
cholecalciferol and ergocalciferol, and from CKD-related proteinuria and uremia which contribute to 
the depletion of vitamin D binding proteins and 1,25-dihydroxyvitamin D[54]. 

 

Figure 2. Mechanisms underlying vitamin D deficiency in CKD. VDBP: vitamin D binding protein. 
Adapted from Brandenburg[56]. 

3.1. Vitamin D in Mineral and Bone Disease 

Vitamin D is a key component of calcium/phosphate homeostasis and bone metabolism: in 
healthy subjects, parathyroid hormone (PTH), fibroblast growth factor-23 (FGF23) and Vitamin D act 
as deeply interlinked regulators of this delicate and complex physiological mechanism [57,58]. The 
disruptions in mineral metabolism caused by CKD, rising PTH, and lower Vitamin D levels are 
presently recognized as integral components of the chronic kidney disease–mineral and bone 
disorder (CKD-MBD) definition[59]. 

Vitamin D exerts its effect on calcium homeostasis forming a complex with VDR and RXR, 
binding to the vitamin D response element to regulate the transcription of various genes, including 
epithelial calcium channels and calcium-binding proteins[60–62]. Subsequently, calcitriol deficiency 
will result in reduced calcium absorption from the intestine; to counteract this effect and avoid 
hypocalcemia, PTH activate osteoclasts thus reabsorbing calcium from the bone. In CKD, various 
mechanisms contribute to the overproduction of PTH, a condition known as secondary 
hyperparathyroidism (sHPT), a disease totally different from disorders in the parathyroid glands 
(primary HPT)[56,57]. 

The clinical implications of CKD-MBD involve parathyroid gland hyperplasia, bone 
abnormalities, and vascular calcification; as CKD progresses, the parathyroid glands undergo 
nodular hyperplasia due to persistent overstimulation by hypocalcemia and hyperphosphoremia 
[57,61,63,64]. The reduced sensitivity to vitamin D and calcium signals, attributed to the loss of 
respective receptors, further complicates the situation, leading to parathyroidectomy in the most 
severe cases[59,61,65]. 

Bone abnormalities, encompassing different patterns under the term renal osteodystrophy, lead 
to ostheoporosis and an increasing risk of fracture, worsening together with the decline in renal 
function[66] 

The disturbance in mineral homeostasis within CKD-MBD, through the elevated serum 
phosphate levels leading to deposit of calcium phosphate salts in the arteries walls, heightens the risk 
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of vascular calcification, thereby increasing susceptibility to cardiovascular diseases[65,67,68]. 
Managing mineral imbalances like hyperphosphatemia and SHPT is still regarded as one of the 
prevailing approaches for addressing vascular calcification in CKD. This involves the use of 
phosphate binders in hyperphosphatemic patients at all stages of CKD, along with implementing 
dietary phosphate restrictions and utilizing calcimimetics[69]. Vitamin D compounds continue to be 
one of the primary choice for preventing and treating SHPT in CKD[59]. 

3.2. Vitamin D as RAAS Inhibitor 

The role of Vitamin D in renin-angiontensin-aldosterone system (RAAS) inhibition is nowadays 
undisputed[70,71]. In experimental models of chronic kidney disease, paricalcitol, a synthetic 
analogue of vitamin D, diminishes the renal expression of renin, the (pro)renin receptor, 
angiotensinogen, and the type 1 angiotensin receptor. Furthermore, Vitamin D hinders the activity 
of tumor necrosis factor α converting enzyme (TACE), which controls the shedding of angiotensin-
converting enzyme 2 (ACE2), a crucial enzyme responsible for metabolizing angiotensin II in the 
proximal tubule (Figure 3)[71,72]. 

Several pioneering studies have found a negative correlation between the concentration of 
plasma 1,25(OH)2D3 and blood pressure, as well as plasma renin activity, in both normotensive men 
and individuals with essential hypertension[73–75]. It has been documented that supplementation 
with vitamin D3 reduces blood pressure in individuals with essential hypertension (19, 20). 
Treatment with 1,25(OH)2D3 also leads to a reduction in blood pressure, plasma renin activity, and 
angiotensin II levels in patients with hyperparathyroidism[76,77]. Furthermore, exposure to 
ultraviolet light, necessary for vitamin D biosynthesis, is inversely related to increases in blood 
pressure and the prevalence of hypertension in the general population, demonstrating blood 
pressure-lowering effects[78,79]  

 

Figure 3. Schematic representation of Vitamin D inhibition of RAAS. ACE, angiotensin converting 
enzyme; AT1, angiotensin receptor type 1; PRR, prorenin receptor; TACE, tumor necrosis factor α 
converting enzyme. 

3.3. Vitamin D and Proteinuria 

Proteinuria is one of the main predictors of chronic kidney disease progression and stands out 
as a potent and autonomous predictor of adverse outcomes in cardiovascular health. Importantly, 
these associations are significant regardless of the glomerular filtration rate level. Moreover, these 
connections hold true across populations with varying degrees of risk for kidney disease progression 
and cardiovascular disease development. The association between proteinuria and CVD persist even 
at proteinuria levels below existing thresholds for microalbuminuria [80,81]. Being recognized as the 
main therapeutic target in management of CKD, it is not surprising that international guidelines 
recommend every possible effort to reduce it to the lowest achievable level[82]. 
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Effective therapies that can reduce proteinuria include inhibitors of RAAS, such as angiotensin 
receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEi)[83,84]. However, 
their effect is often suboptimal, and possible persisting residual proteinuria is still an important 
predictor of renal impairment. Since the acknowledgement of potential serious adverse effects of 
“dual blockade” of RAAS, combined with the lack of evidence of a reduction in mortality and 
improvement of kidney function of this therapeutic regimen, there has been a need for drugs capable 
of limiting residual proteinuria[85–87]. 

Several studies reported Vitamin D role in various groups of proteinuric patients: the exact 
mechanism are still not fully understood, but appears to be due to a inhibition of RAAS, as described 
earlier in this paper[88], and to a direct effect on podocytes. As they express both VDR and 1- α-
hydroxylase, podocytes can produce calcitriol and respond to autocrine or endocrine calcitriol. In 
cultured podocytes, calcitriol triggers a dose-dependent activation the transcription of the nephrin 
gene[89,90]. Nephrin serves both structural and signaling functions, working in conjunction with 
other slit diaphragm components to create a permeable molecular sieve. This sieve primarily 
accounts for the retention of proteins[91,92]. 

Vitamin D analogues, such as paricalcitol, have shown a potential in treating residual 
proteinuria in various subset of patients, including kidney transplant recipients[93–96]. Despite an 
increasing number of randomized controlled trial and observational studies, however, the quality of 
evidence and the strength of the recommendation are not yet able to suggest a routinary use of 
paricalcitol for the sole aim of reducing proteinuria, but further research is encouraged. 

3.4. Anti-Inflammatory Effects 

VDRs play a significant role in overseeing processes like inflammation, epithelial-to-
mesenchymal transition, and podocyte integrity[97]. 

Both vitamin D and VDR influence the apoptosis of cultured mouse podocytes and modulate 
transforming growth factor β (TGFβ) through the nuclear factor κB (NF-κB) pathway; VDR-mediated 
sequestration of NF-κB signaling also gives Vitamin D potent antiproliferative, prodifferentiative, 
and immunomodulating activities, thus dampening kidney inflammation[97,98]. 

Vitamin D also hinders NFκB transactivation by modulating the advanced glycation end-
products and their receptor (AGE-RAGE system), a mechanism underlying the progression of 
various kidney diseases, including diabetic nephropathy, hypertensive nephropathy, obesity-related 
glomerulopathy, lupus nephritis, amyloidosis, autosomal dominant polycystic kidney disease, and 
septic acute kidney injury[99–101]. It also promotes the production of IL-10 while reducing the 
production of TNF-α, IL-12, IL-6, and IFN-c, resulting in an antinflammatory cytokine profile[102]. 
Other research suggest that dendritic cells are the primary target of the immunosuppressive activity 
induced by Vitamin D. This is because it hinders the differentiation, maturation, and survival of these 
cells, ultimately resulting in compromised activation of alloreactive T-cells[103]. Moreover, many of 
the cells engaged in both innate (monocytes, dendritic cells) and adaptive (T-cells, B-cells) immune 
responses express both CYP27B1 and VDR. This suggests their ability to both synthesize calcitriol 
from calcidiol and respond to its effects through autocrine and paracrine pathways. 

More recently, several studies have shown a great potential of vitamin D immunomodulatory 
activities in various non-renal immune diseases, such as vitiligo and multiple sclerosis[104–106]. 

The immunomodulatory effect of Vitamin D, and especially its action on T-cells, with the shift 
toward a less inflammatory and a more tolerogenic phenotype, could be responsible for its potential 
counteraction of chronic allograft dysfunction, thus enhancing graft survival[107–111]. Despite these 
considerations, data on the clinical effectiveness of Vitamin D supplementation for prolonging graft 
survival are controversial; furthermore, many of the available evidences come from observational 
studies rather than randomized controlled trials[40,112–115]. 

The antinflammatory and antiproliferative role of Vitamin D has also important effects on 
atherosclerosis, as will be better described further in this paper. 
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4. Interplay between Vitamin D and Cardiovascular Disease 

Cardiovascular disease stands as the predominant cause of global mortality and morbidity. Its 
multifaceted etiology involves an array of risk factors, categorized into modifiable biochemical or 
physiological characteristics—such as elevated blood pressure, increased plasma total cholesterol, 
hyperglycemia, obesity, or thrombogenic factors—and nonmodifiable personal characteristics, 
including age, sex, or a family history of coronary heart disease (CHD) or other atherosclerotic 
vascular diseases at an early age[116,117]. 

Significant strides in scientific research have expanded our understanding of cardiovascular 
disease, uncovering novel therapeutic targets. Among these emerging targets, vitamin D has 
garnered attention for its potential role in the pathogenesis of various cardiovascular disease[24]. 
Figure 3 provides a schematic summary of various roles of Vitamin D in the genesis of CVD. 

 

Figure 3. Schematic representation of main Vitamin D roles in CVD. RAAS, renin-angiotensin-
aldosterone system; HF, heart failure; PTH, parathyroid hormone. 

4.1. Hypertension 

Untreated high blood pressure (hypertension) poses a significant risk for cardiovascular diseases 
like coronary artery disease, myocardial infarction, or stroke[118,119]. Research findings indicate that 
a lack of vitamin D exacerbates the progression of hypertension (HT); thus, Vitamin D deficiency 
emerges as an autonomous risk factor for elevated blood pressure and plays a role in fostering 
cardiovascular mortality[119–121] 

Several mechanisms can explain Vitamin D role in hypertension. 
As previously stated, Vitamin D exerts a regulatory activity in RAAS. These effects 

unsurprisingly show a consequence in the development of hypertension, as confirmed in many 
studies both on animal and human [122,123]. Vitamin D can reduce sympathetic activity directly 
related to high plasma levels of renin, which influences vascular tone through an increase in 
intraglomerular pressure[124].  

Beyond that, Vitamin D is involved in calcium homeostasis by increasing renal reabsorption, 
increasing calcium release from bone by osteoclasts, and stimulating the production of calcium 
transporters[125]  

In addition, Vitamin D acts at the level of peripheral vascular resistance tone by regulating the 
influx of calcium and thus acting on increased or decreased peripheral vascular resistance; in fact, 
VDR is also expressed on vascular smooth muscle cells, and directly influences muscle 
relaxation[125,126]. 

Vitamin D also appears to have a direct effect on vascular stiffness. Endothelial cells and vascular 
smooth muscle cells (VSMCs) express 1α-hydrolase, thus gaining the ability to convert calcidiol to 
calcitriol[127]. Research indicates that inflammatory molecules like TNF-α and lipopolysaccharide 
activate this enzyme in Human Umbilical Vein Endothelial Cells (HUVECs)[128]. Furthermore, the 
addition of calcidiol and calcitriol externally attracts monocytes and increases their binding to 
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HUVECs[128]. Macrophage vitamin D activation is less tightly regulated than in the kidney, and, in 
atherosclerotic lesions, these macrophages penetrate the arterial wall, allowing the activated vitamin 
to directly influence VSMC[129]s. This can enhance the response to vasopressors, promote 
calcification, and induce cell dedifferentiation and oxidative stress[130–133]. 

Despite these proven effects, Vitamin D supplementation has shown negligible effects in the 
treatment of hypertension in some recent clinical trials, although some studies are more encouraging. 
It is possible that our understanding of Vitamin D effects on blood pressure regulation is still too poor 
to give us the ability to use it effectively in clinical context[134]. 

4.2. Vitamin D Deficiency in Atherosclerosis 

Atherosclerosis overwhelmingly stands as the predominant underlying factor for coronary 
artery disease, carotid artery disease, and peripheral arterial disease. This is a pathological condition 
characterized by changes in the wall of the arteries, which lose their elasticity due to the accumulation 
of calcium, cholesterol, inflammatory cells, and fibrotic material.  

Among the many cardiovascular risk factors, an elevated plasma cholesterol level is probably 
unique in being sufficient to drive the development of atherosclerosis, even in the absence of other 
known risk factors[135–137].  

Other risk factors involved in the atherosclerotic process include hypertension, male sex, 
diabetes mellitus, elevated homocysteine levels, and obesity. These factors contribute to accelerating 
the process of atherosclerosis triggered by lipoproteins[138].  

Among these “classic”, well-established risk factors, several studies have shown possible 
involvement of Vitamin D in the pathogenesis of atherosclerosis.  

Vitamin exerts a direct effect on the cardiovascular system, since VDRs have been found in 
endothelial cells, vascular smooth muscle cells, endothelial cells, circulating monocytes, 
macrophages, dendritic cells, activated T lymphocytes, and platelets[139]. 

Within endothelial cells, vitamin D governs the synthesis of nitric oxide (NO) by modulating the 
activity of endothelial NO synthase (eNOS). Under pathogenic conditions, oxidative stress caused by 
excessive production of reactive oxygen species (ROS) facilitates NO degradation and suppresses NO 
synthesis resulting in reduced NO bioavailability. Nevertheless, Vitamin D opposes the function of 
nicotinamide adenine dinucleotide phosphate (NADPH) oxidase, the producer of ROS, and enhances 
antioxidant capability by boosting the activity of antioxidant enzymes like superoxide 
dismutase[140]. 1,25(OH)2D3 has been shown to inhibit the proliferative effects of epidermal growth 
factor and endothelin on vascular smooth cells (VSMCs), the latter through decreasing the activity of 
cyclin-dependent kinase 2, which actually regulates the cell cycle machinery[141]. The effects of 
1a,25(OH)2D3 on VSMC migration appear to be divergent. At high doses, calcitriol can induce 
migration of VSMCs. However, at physiological doses, 25(OH)D and calcitriol inhibit the migration 
and proliferation of VSMCs by reducing vitamin D-binding protein activity, an effect mediated by 
attenuation of extracellular signal-regulated kinase 1/2 phosphorylation[142]). The decrease in the 
formation of atherosclerotic lesions resulted from the inhibition of immune responses, wherein at 
least two types of cells play a crucial role in the effects of vitamin D3 (specifically, CD4+CD25+ 
Forkhead box protein [Foxp] 3+ regulatory T cells [Tregs] and dendritic cells [DCs])[143]. 
Additionally, there exists a potential role for vitamin D in the process of vascular calcification.[144]. 
1,25-vitamin D showed a significant association with vascular calcification and, quite unexpectedly, 
it was a negative correlation, revealing that higher serum levels of 1,25-vitamin D were associated 
with less vascular calcification. Vitamin D, in addition to being involved in calcium deposition in the 
axillary skeleton, could in fact also regulate calcium deposition in the vascular wall[144]. 

4.4. The Role of Vitamin D in Heart Failure 

Heart failure (HF) is a pathological state characterized by the heart's inability to meet the 
metabolic demands of the body. The prevalence of HF varies significantly, ranging from 1% to 12%, 
as documented in comprehensive reports from the United States and Europe[145]. At the core of HF 
pathology lies the breakdown of compensatory mechanisms designed to ensure sufficient nutrient 
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delivery to tissues. These mechanisms encompass the neurohormonal system, renin-angiotensin 
system, aldosterone, parietal remodeling, and chronic inflammation[146]. 

Patients with HF exhibiting low vitamin D levels tend to experience unfavorable outcomes, 
aligning with established clinical correlations and biomarkers[147]. In the context of HF affecting 
myocardial cells, the surplus of ionized calcium (Ca2) detrimentally impacts the contraction and 
relaxation of the heart[148]. Conversely, vitamin D deficiency may perturb the activities of Ca2 in 
cardiac cells, contributing to fibrosis, intra-organizational inflammation, and cardiomyocyte 
hypertrophy[149,150]. Additionally, diminished vitamin D levels can induce inflammation, activate 
the renin-angiotensin system, and lead to endothelial dysfunction[151]. 

Several epidemiological and observational studies confirmed a higher risk of cardiovascular 
events and related mortality in patients with Vitamin D deficiency[152,153]; furthermore, this 
category of individuals shows significantly higher LV wall thickness, diameter and LV mass, and 
impaired myocardial performance index in comparison to the rest of the population[154,155].  

While observational and epidemiological data, together with pathophysiological studies, 
suggest that vitamin D supplementation may ameliorate ventricular remodeling in HF patients, the 
clarity of this relationship remains elusive[156]. 

Evidences from many interventional studies, such as RECORD, EVITA, ViDA, VINDICATE and 
the most recent VITAL, have shown little or no benefit from Vitamin D supplementation in reducing 
adverse cardiovascular events or CVD-related mortality[157–161]. 

4.4. Atrial Fibrillation 

Atrial fibrillation (AF), the most prevalent sustained arrhythmia, is linked to substantial 
morbidity, diminished functional status, compromised quality of life, and heightened mortality, with 
an adjusted rate of 4.72% per year. A significant proportion of deaths, approximately 46%, are 
attributed to cardiological causes, encompassing sudden cardiac death, heart failure, and myocardial 
infarction. In contrast, a minority are associated with nonhemorrhagic strokes (5.7%) or hemorrhagic 
events (5.6%)[162]. 

The established risk factors for AF include advanced age, male sex, hypertension, alcohol 
consumption, and valvular disease, with emerging factors such as hypertrophic cardiomyopathy, 
obstructive sleep apnea syndrome (OSAS), coronary artery disease, and chronic kidney disease 
gaining recognition[163,164]. The role of vitamin D in the pathogenesis of atrial fibrillation remains 
contentious, with divergent findings in the literature. Some studies indicate a positive correlation 
between hypovitaminosis D and atrial fibrillation, while others do not establish a clear link[165,166]. 
A plausible correlation may lie in vitamin D's interference with reactive oxygen species (ROS) 
production in the atrium, contributing to the arrhythmic substrate of atrial fibrillation. Additionally, 
vitamin D has been observed to negatively modulate the renin-angiotensin-aldosterone system, 
thereby mitigating atrial remodeling, a phenomenon commonly observed in atrial fibrillation[167]. 

5. Conclusions 

Over decades, since the discovery of its deficiency disease by Casimir Funk[168], vitamin D has 
captured the attention of scientist from all around the world. This led to the acknowledgement of its 
various pleiotropic effects, ranging from anti-infective effects, reduction of metabolic complications, 
to cancer prevention, and, as extensively described, in kidney and cardiovascular health. However, 
recent findings from randomized clinical trials and meta-analyses have tempered the enthusiasm 
surrounding the purported "pleiotropic" effects of vitamin D[169]. This is because there is a lack of 
clear evidence demonstrating the beneficial effects of vitamin D supplementation across various 
clinical scenarios[122,170–175]. On the other hand, inappropriate vitamin D supplementation can 
lead to serious, although rare, health issues mainly linked to hypercalcemia[176–178]. 

In conclusion, while the pleiotropic effects of vitamin D on kidney and cardiovascular health 
have been extensively explored, it is essential to acknowledge that conclusive evidence regarding its 
clinical efficacy is still lacking. Despite numerous studies, the intricate interplay between vitamin D 
and these health outcomes requires many more years of intensive research for a comprehensive 
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understanding. The journey towards unraveling the true impact of vitamin D on kidney and 
cardiovascular health remains a complex and evolving path, emphasizing the need for continued 
scientific exploration in this field. 
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