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Abstract: This review focuses on the emerging evidence for the association between estimated
cardiorespiratory fitness (eCRF) and metabolic risk factors. Given the challenges associated with
directly measuring cardiorespiratory fitness (CRF) in large populations, eCRF presents a practical
alternative for predicting metabolic health risks. A literature search identified six relevant cohort
studies from 2021 to 2024 that investigated the association of eCRF with hypertension,
hyperglycemia, dyslipidemia, and obesity. The review findings highlight a consistent inverse
relationship between higher eCRF and lower incidence of metabolic risks in line with CRF cohort
studies. This review highlights the importance of low eCRF as a primordial indicator for metabolic
risks and underscores the need for broader application. Future research directions should include
exploring eCRF's predictive accuracy across diverse populations and health outcomes and testing
its real-world applicability in healthcare and public health settings.
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1. Introduction

According to the recent Global Burden of Disease Study, noncommunicable diseases (NCDs) are
the primary cause of death, accounting for 74% of all annual mortality [1]. Most of these deaths
happen prematurely, before the age of 70. Cardiovascular diseases are the leading cause of mortality
related to NCDs, resulting in the loss of 17.9 million lives annually. They are followed by cancer, type
2 diabetes (DM), and kidney disease, predominantly caused by DM [1]. Modifiable health behaviors,
such as tobacco use, physical inactivity, and poor diet, significantly contribute to an increase in
modifiable metabolic risk factors, including hypertension, hyperglycemia, dyslipidemia, and obesity
[2]. The interplay of these risk factors increases the risk of NCD morbidity and mortality. With rising
global NCD incidence rates, implementing nuanced approaches targeting metabolic risk factors may
help with NCD prevention.

Cardiorespiratory Fitness and Metabolic Health

Vast evidence indicates that low cardiorespiratory fitness is a better prognostic marker of the
incidence of morbidity and mortality than inactivity, sedentarism, smoking, overweight, high
cholesterol, and high blood pressure [3-7]. Objectively measured cardiorespiratory fitness (CRF) is
more comprehensive than traditional risk factors, and according to the American Heart Association,
"CREF is directly related to the integrated function of numerous systems, and it is thus considered a
reflection of fotal body health" [6]. CRF reflects the ability of an individual's cardiovascular and
respiratory systems to supply oxygen to muscles during aerobic activities, serving as an indicator of
mitochondrial function and efficiency. It is directly affected by physical activity, smoking, sedentary
behavior, body weight, genetics, age, health status, and biological sex [4,8-10]. The gold standard to
objectively measure CRF is a laboratory-conducted cardiopulmonary exercise test (CPET) measuring
peak oxygen consumption expressed as relative VO: peak in mL O:/kg per minute. A highly
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correlated (r = 0.96) alternative, maximal graded exercise testing (GXT), is often used in clinical
settings for diagnostic purposes [11]. A GXT estimates VO: peak and is expressed as a peak metabolic
equivalent (MET), where 1 MET is equivalent to a resting value of 3.5 mL Oz/kg per minute. [4,6]. In
a large meta-analysis of 102980 healthy adults from baseline, Kodama et al. found that low peak CRF
of < 8 METS is a risk factor for all-cause mortality, coronary heart, and vascular disease [12]. They
also established age and sex-specific low CRF thresholds per decade(e.g., <9 METS for men and <7
METS for women at age 40, reducing to <8 and <6 METS at age 50, and further to <7 and <5 METS by
age 60). In epidemiological investigations, researchers typically categorize low CRF by age and sex
into the lowest decile, quartile, or tertile. Notably, America and Japan have established reference
standards that specify age and sex-specific categories for low CRF [13,14].

Recent meta-analyses highlight the importance of objectively measuring CRF to independently
predict NCDs related to poor metabolic health in healthy adults from baseline. The persistent finding
is the independent inverse association between CRF and NCDs amongst covariates. Low CRF is
associated with a higher incidence of developing cardiovascular disease relative risk (95%CI) 1.56
(1.39-1.75), higher CRF has an inverse association with lower DM incidence, Hazard Ratio (HR) (95%
CI) is 0.62 (0.49-0.77), and chronic kidney disease (CKD) incidence 0.58 (0.46-0.73)[12,15,16].
Longitudinal studies collectively show a robust inverse relationship between low CRF and all-cause
mortality relative risk (95% CI) 1.70 (1.51 to 1.92), further emphasizing its significance for a healthier
and longer lifespan [12]. Despite strong evidence supporting its inclusion, economic and logistical
challenges limit the adoption of CRF for routine use in health care and public health.

Using CRF as a prognostic indicator supports a systems-based approach to primordial and
primary prevention of metabolic health risks. An adapted version of a conceptual framework
presented by Perumal et al. and Zeiher et al. of the determinants of CRF helps illustrate the
interconnectedness of physical, social, behavioral, and biological determinants influencing CREF,
metabolic health, and NCDs (Figure 1) [17,18]. The framework is based on social-ecological theory
and underscores the need for including individual, community, and public health initiatives to
improve CRF and reduce metabolic risk factors that lead to NCDs [19,20].
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Figure 1. Conceptual framework of the determinants of CRF (adapted from Zeiher et al. [20]).
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Limitations of Measured CRF in Healthcare and Public Health

CPET and GXT are the most precise methods for objectively measuring CRF to predict health
outcomes. However, their practical application faces challenges that hinder its widespread use. These
challenges include clinical guidelines, high costs, time requirements, and the necessity for specialized
staff and equipment. Such obstacles make routine CRF assessment impractical in healthcare and
community settings [21]. These limitations are also apparent when conducting epidemiological
investigations on metabolic health outcomes. About eleven unique cohorts, such as the Aerobic
Center Longitudinal Study (ACLS), are available for longitudinal analyses, containing healthy adults
and measuring CRF at baseline [22].

In response to these limitations, there has been a growing emphasis on developing non-exercise
estimate equations for CRF (eCRF). These equations use readily available data, such as self-reported
physical activity levels, weight, and age, often found in electronic health records or collected through
population health surveys. Recent reviews by Ross et al. and Wang et al. of eCRF equations have
shown that these models yield moderate (R?> = .60) to high correlations (R?> = .80) with directly
measured CRF among generally healthy adults [6,21]. Artero et al. conducted a pioneering study in
2014 on the predictability of eCRF concerning all-cause mortality and heart disease among Caucasian
Americans, finding that low eCRF predicts health outcomes as effectively as low CRF [23]. However,
most equations were developed using samples of Caucasian populations, potentially limiting their
applicability across different ethnicities. The 2019 overview by Wang et al. identified that no eCRF
studies had been conducted on metabolic health outcomes [21]. Since then, there has been a gradual
rise in cohort studies utilizing eCRF to assess the incidence of metabolic health risks.

Given the recent increase in studies since Wang et al.'s 2019 review, the aim of this review is two-
fold. First, synthesize the existing longitudinal research on the association between eCRF and
metabolic risk factors in adult populations. Second, identify and discuss gaps in the current literature,
highlighting areas for future research and practice.

2. Literature Search

This review was conducted in PubMed, Scopus, and Web of Science. The search focused on
cohort studies that utilized non-exercise prediction models to estimate CRF and examined the
longitudinal relationships between eCRF and metabolic risk factors, including hypertension,
hyperglycemia, dyslipidemia, and obesity. Keywords used in the search encompassed combinations
of "estimated cardiorespiratory fitness," "non-exercise prediction models," "metabolic health risks,"
and specific conditions such as "hypertension,” "hyperglycemia," "dyslipidemia," and "obesity." Six
studies were identified for review and published from 2021 until 2024. Table 1 provides a summary

"non

of the literature search.

Table 1. A summary table of included cohort studies.

FlrSYteI::;lfwr' Mean Follow-Up Location l\:ein eCRE
. L. Years from Cohort and Sample Sex 8 Metabolic Risk Outcomes
Publication . . (#SD)  model
Baseline (xSD) Size

Incidence of SBP >140/ DBP
290 mm Hg, Incidence of DM

Framingham . fasting glucose level of 126
Lee et al., 2021 15 Offspring Study America o 66.2 (86)

2962 Jackson  mg/dL or higher, nonfasting
(FOS) glucose level of 200 mg/dL or
higher, or the use of

hypoglycemic medications.

Incidence of resting SBP
Aerobics Center >130/DBP >80 mm Hg or self-

Patel et al., 2022 5 Longitudinal America M&F 4280.0 Jackson reported, physician-diagnosed
Study (ACLS) hypertension.

5513
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Incidence of SBP >140/ DBP
>90 mm Hg, serum total
cholesterol 2240 mg/dL, and
38.5 fasting blood glucose
M&F  (12.1)  Jackson >126mg/dL. Atherogenic
dyslipidemia was defined as
triglycerides>150 mg/dL and
HDL-C <40 mg/dL in men and
<50 mg/dL in women.

Cabanas-
Sanchez et al., 5.7 (44) Taiwan MJ Taiwan
2022 Cohort (TMJC) 200039

Incidence of DM was defined
as fasting plasma glucose 7.0
. mmol/L or current treatment
Zhao et al. Rural Chinese China with anti-diabetes medication
! 6.01(Median) Cohort Study M&F 51.0 (8.5) Jackson .
2022 (RCCS) 11825 or a self-reported history of
DM, gestational diabetes
mellitus, or diabetes due to
other causes.

Incidence of prediabetes
(impaired fasting glucose) or
DM as fasting plasma glucose

concentrations of 100 to 125
Sloan et al., 4.87 (4.58) o America 43.0 (8.9) and 2126 mg/dL, respectively.
2023 Longitudinal 8602 M&F Sloan Those who self-reported DM

or hypoglycemic medication

during a follow-up were also
classified as having abnormal

glucose.
China Health and Change in resting SBP, DBP,
Reti hi .6(9.4 fasti iglycerides, high-
Liuetal,2024 4 (Median) etu.*eme.nt China Me&F 58.6 (9.4) Jackson astlng trlg ycerld.es, ig

Longitudinal 4862 density lipoprotein, total

Study (CHARLS) cholesterol

Aerobics Center

Study (ACLS)

3. eCRF and the Incidence of Metabolic Risks

Hypertension

According to the WHO, elevated blood pressure is the primary metabolic risk factor responsible
for the highest number of deaths worldwide, accounting for 19% of global mortality [24]. Since 2020,
four epidemiological eCRF studies have examined the association of eCRF with the incidence of
hypertension [25-28]. Cabanas-Sanchez et al. conducted a large cohort study to examine the long-
term relationship (5.7 + 4.4 years) between eCRF and key metabolic risk factors for adult
cardiovascular disease. The study encompassed 200 039 healthy adults (38.5+12.1 years) (50%
women) from the Taiwan MJ Cohort (TMJC). The ACLS Jackson eCRF equations were used [9]. The
sex-specific Jackson equations include age, body mass index, waist circumference, physical activity
index, resting heart rate, and smoking as parameters to calculate eCRF (S1). From baseline, per 1-
MET increase in eCRF was inversely associated with hypertension in middle-aged men and women,
respectively (Hazard ratio, HR = 0.76, 95% CI, 0.75-0.78 & HR= 0.74, 95% CI, 0.72-0.76)[25]. A sub-
analysis also found that minor improvements in eCRF overtime were associated with slightly lower
incident rates.

In line with the findings of Cabanas-Sanchez et al., Patel et al. specifically investigated the
association between eCRF and hypertension incidence within healthy middle-aged adults (42.8+9.0
years) Caucasian population (N=5513, 20.1% women) from the ACLS cohort [26]. The average follow-
up time was five years from baseline. Using the Jackson eCRF equation, the results support the
inverse association observed by Cabanas-Sanchez et al. Men in the highest eCRF tertile had an HR
=0.74 (95% CI, 0.68-0.81) compared to those in the lowest tertile. Likewise, the risk reduction for high
eCRF was greater for women, HR = 0.64 (95% CI, 0.51-0.81). In addition, a dose-response relationship
was found in the cohort. Overall, every 1-MET eCRF increment corresponded to an HR = 0.90 (95%
CI, 0.87-0.93) decrease in the incidence of hypertension in the overall cohort [26]. Furthermore, when
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each parameter of the eCRF equation was also considered, higher fit, non-smoking, and active
individuals had the lowest risk.

Lee et al. investigated the association between eCRF in healthy older adults (61.5 +9.2 years) and
the incidence of cardiometabolic outcomes, including hypertension, across a 15-year follow-up
period. The Framingham Offspring (FOS) cohort of 2,962 Caucasian participants (52.7% women) was
used [27]. Unique to the study was the association of midlife eCRF with hypertension incidence,
which was analyzed using three different methods. First was a single examination of eCRF during
the final follow-up period. Second, eCRF trajectories were determined by examining the initial and
final periods. Third, risk was determined based on mean eCRF between examination periods. Low
eCRF was defined as the lowest tertile reference or trajectory group. When comparing low eCRF with
high single examination eCRF, there was a lower risk of developing hypertension, HR =0.63 (95% CI,
0.46-0.85). Additionally, high eCRF trajectories and high mean eCRF were associated with a lower
risk of hypertension HR = 0.54 (95% CI, 0.34-0.87) and HR = 0.48 (95% CI, 0.34-0.68), respectively [27].

Rather than focusing on incidence, Liu et al. conducted a 4-year investigation utilizing data from
the China Health and Retirement Longitudinal Study (CHARLS) to examine eCRF and its impact on
change in an array of metabolic risk factors, including blood pressure. The population included 4862
(52.6% female) older Chinese adults aged 58.6 (9.4) [28]. Their results indicate that in the total
population, those with higher baseline eCRF tend to have better arterial pressure, characterized by
lower SBP and DBP per year. Those with higher baseline eCRF had significantly (p <0.0001 ) lower
SBP (B, 95%CI; -0.39, -0.52--0.25) and lower DBP (3, 95%ClI; -0.19, -0.28--0.10) per year [28]. The annual
change in eCFR per year was similar for DBP but not SBP.

These four studies provide longitudinal evidence for the independent inverse relationship
between eCRF and hypertension and elevated blood pressure. Higher eCRF was consistently
associated with lower hypertension incidence across different populations, age groups, and time
frames. The TMJC used the lowest quintile to define low eCRF, while the ACLS and FOS cohorts used
the lowest tertile. The findings also suggest a dose-response relationship; for every 1-MET increase
in eCRF, adults had a 10~25% decrease in risk. While none of the investigations were able to cross-
validate eCRF with CRF, the overall findings align with a recent systematic review and meta-analysis
on the association of measured CRF and the risk of hypertension, where 1-MET increments in CRF
corresponded to an 8% decrease in hypertension in adults [29].

A fundamental similarity across the investigations was that the ACLS Jackson equations were
used to determine eCRF. Notably, one of the limitations of the Lee et al. investigation was that self-
report physical activity data necessary for the Jackson eCRF calculations were unavailable for some
of the examination years. Although the equation was initially validated in a large Caucasian
population with mortality as the outcome, the overall findings suggest that low eCRF in generally
healthy adults at baseline may serve as a predictor of the onset of hypertension later in life.

Hyperglycemia

The global diabetes prevalence rose from 108 million in 1980 to 537 million in 2021. Projections
indicate that this figure will increase to 643 million by 2030 and 783 million by 2045. DM has a
substantial impact on global mortality and morbidity, resulting in approximately 6.7 million deaths
in 2021, and it increases the likelihood of severe complications such as blindness, kidney failure, heart
attacks, stroke, and amputation [30]. The International Diabetes Federation highlights the importance
of prevention and early detection in addressing the worldwide spread of DM [31]. Blood tests such
as impaired glucose tolerance and fasting glycemia can identify prediabetes and aid in the primary
prevention of DM [32]. Recent meta-analyses show that early identification of those with combined
low CRF and normal blood glucose may show early signs of insulin resistance and provide
prevention opportunities [15,22,33]. From the findings of the meta-analyses, researchers estimated
that a 1-MET improvement in CRF leads to clinically significant (5-10%) decreases in the risk of
developing DM, impacting public health [15,22,33]

Five cohort studies have explored the relationship between eCRF and hyperglycemia, mainly on
the development of DM. As previously described, Lee et al. and Cabanas-Sanchez et al. investigated
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eCRF and cardiometabolic risks. Lee et al. derived HRs for the onset of DM using three distinct
analyses within the FOS cohort. Their findings indicated a significant inverse relationship between
eCRF and DM risk; the highest tertile of eCRF was linked to a reduced risk of developing DM (HR =
0.38, 95% CI, 0.23-0.62), with similar protective effects observed across high eCRF trajectories HR =
0.27 (95% CI, 0.15-0.48) and mean eCRF, HR = 0.31 (95% ClI, 0.18-0.54) [27]. Cabanas-Sanchez et al.
also found evidence that eCRF can predict the incidence of DM in the TMJC. Two separate analyses
investigated the incidence of DM from baseline eCRF, and the other analysis investigated the impact
of changes in eCRF over time. Overall, for every 1- MET increase in eCRF, there were corresponding
reductions in risk in early middle-aged men and women, respectively. From baseline, men had an
HR=0.67 (95% CI, 0.66-0.69), and women had an HR = 0.64 (95% CI, 0.61-0.66) [25]. When considering
changes in eCFR over time, men's HR = 0.75 (95% CI, 0.69-0.81) and women's HR = 0.64 (0.57-0.72).

While the TMJC primarily comprised early middle-aged adults of Chinese ethnicity with a
higher socioeconomic status, Zhao et al. conducted a comparable study involving 11,825 late middle-
aged (51 £8.5y) adults (52% women) from the Rural Chinese Cohort Study (RCCS) of Chinese
ethnicity. The average of a six-year follow-up from baseline was used to determine the association of
eCRF with the incidence of DM in men and women. Men in the highest eCRF quartile had an HR =
0.37 (0.22-0.62) compared to the lowest. For every 1-MET increase, there was an HR = 0.69 (0.62-0.78)
[34]. Women in the highest eCRF quartile had an HR of 0.56 (0.36-0.88) compared to the lowest. For
every 1-MET increase, there was an HR = 0.71 (0.62-0.88). For the total adult population, for every 1-
MET increase, there was an HR = 0.89 (0.84-0.95). The four-year CHARLS results supported these
inverse associations in the oldest Chinese populations studied. Using the Jackson eCRF as the
exposure variable, findings indicate that in the total population, older adults with higher baseline
eCRF tend to have significantly (p < 0.0001 ) lower (3, 95%CI; -0.037, -0.05--0.03) fasting blood
glucose per year [28]. This association was consistent with changes in eCRF over time and in men
and women, respectively.

Though the ACLS Jackson eCRF type equations are advantageous, integrating them with
electronic health records might encounter challenges related to accessibility, primarily because the
entry of self-reported physical activity levels is not universally standard in healthcare settings [35].
To overcome this potential barrier, Sloan et al. developed nuanced eCRF equations designed
primarily for electronic health records without using physical activity status as an equation
parameter [36]. The sex-specific equations were initially validated from the original ACLS cohort (N
= 42676) and compared to measured CRF for accuracy (S1). The ACLS Sloan equations incorporate
universal parameters that can be derived from electronic health records, including resting heart rate,
height, weight, blood pressure, and smoking status. To test the predictability of eCRF with a health
outcome, Sloan et al. investigated the incidence of abnormal blood glucose (prediabetes/DM) in
8602 healthy adults from baseline (17.8% women) with a mean age of 43.03 (+8.94) using the ACLS
cohort with an average of 5 years follow up [37]. Separate analyses were conducted for eCRF and
CRF to determine the respective incidence of abnormal blood glucose. A significant inverse
relationship was found for both fitness measures. Specifically, for every 1-MET increment, HRs for
eCRF and CRF were determined to be 0.96, eCRF (95% CI: 0.93-0.99), and CRF (95% CI: 0.94-0.98),
respectively.

Overall, these studies suggest that higher eCRF is independently and inversely associated with
the development of hyperglycemia. Evidence from various cohorts, including the ACLS, FOS, TMJC,
RCCS, and CHARLS, consistently supports this relationship across different populations and age
segments. TMJC and RCCS, both six-year cohort studies focusing on Chinese adults, which employed
the ACLS Jackson eCRF, demonstrated similar findings. This protective effect was observed
regardless of variations in age, health behaviors, socioeconomic status, and environmental
conditions. The types of covariates were generally similar across cohorts. Some of the cohorts did not
account for prediabetes at baseline, which is a confounder for the increased risk of DM. Though only
the Sloan et al. study cross-validated eCRF with CREF, the overall findings from the eCRF studies are
generally aligned with CRF meta-analyses [15,22,33]. Notably, from the collective CRF meta-analyses,



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2024 do0i:10.20944/preprints202404.0172.v1

7

women accounted for only ~16% of the general population. This underrepresentation of women is
inherent in CRF cohort studies due to the lack of CPET and GXT testing data [37,38].

Dyslipidemia

Dyslipidemia includes elevated cholesterol, low-density lipid cholesterol, triglycerides, or
reduced high-density lipid cholesterol [25]. Heredity and unhealthy lifestyle health behaviors
increase the chance of developing dyslipidemia, which increases the risk for cardiovascular disease.
Hypercholesterolemia (elevated low density-lipids), a leading form of dyslipidemia, has escalated as
a risk factor for death globally, moving from the 15th position in 1990 to the 8th by 2019, indicating a
growing burden of cardiovascular disease risk [39]. Atherogenic dyslipidemia, marked by high
triglyceride and low high-density lipid-cholesterol levels, is especially common in individuals with
DM or metabolic syndrome, exacerbating cardiovascular risks [25].

A dearth of research has been conducted on the association between eCRF and dyslipidemia
incidence. From the CHARLS cohort, Liu et al. investigated the annual changes in dyslipidemia with
eCREF[28]. Their results indicate that older Chinese adults with higher baseline eCRF tend to have
better lipid profiles over time. Those with higher baseline eCRF had a significant (p <0.0001) decrease
in triglycerides per year of ({3, 95%CI; -0.032 mmol-L, -0.04 to -0.03). This effect was observed in males
and females. Significant (p < 0.0001) positive changes per year in high-density lipoprotein also
occurred (3, 95%CI; 0.005 mmol-L, 0.002 to 0.007). Increases were more significant in males than
females.

The findings from the TMJC provided outcomes on hypercholesterolemia and atherogenic
dyslipidemia [25]. Separate analyses investigated the incidence of each outcome from baseline eCRF,
and the other analyses investigated the impact of changes in eCRF per 1 -MET increase over time.
From baseline, men had a reduced HR = 0.95 (95% CI, 0.93-0.96), and women had an HR = 0.98 (95%
CI, 0.96-1.01) for hypercholesterolemia. When considering changes over time, the findings were
similar. For atherogenic dyslipidemia, from baseline, men had an HR = 0.82 (95% ClI, 0.80-0.83), and
women had an HR = 0.80 (95% CI, 0.78-0.83). When considering per 1-MET changes in eCFR over
time, the findings were again similar to those of the baseline analyses.

Collectively, these two investigations in middle-aged and older adults of Chinese ethnicity
provide evidence that higher eCFR predicts dyslipidemia. Again, the ACLS Jackson equation was
successfully used. The comparability of investigations regarding measured CRF and dyslipidemia is
limited. In an ACLS cohort of healthy men (11418) at baseline, higher CRF was inversely associated
with low-density lipid cholesterol and positively associated with HDL. When age was factored in,
trajectories revealed that higher CRF in young to middle-aged men delayed abnormal low-density
lipid cholesterol by 15 years [40]. Breneman et al. also conducted a study using the ACLS cohort of
9,651 patients (15% female). They found that higher baseline CRF and maintaining fitness (~9 years)
were associated with a lower likelihood of atherogenic dyslipidemia [41].

Obesity

The World Health Organization released a 2022 report that obesity rates have doubled since 1990
to 12.2% in men and 15.7% in women, and globally 1 billion people have obesity. Globally, obesity is
responsible for ~5 million deaths annually and is defined as having a BMI > 30 [42]. From a metabolic
risk standpoint, a more critical measure of obesity and NCD risk is central fatness, typically measured
by waist circumference with differing cut points set according to biological sex and ethnicity [43]. The
health consequences of obesity include increased incidence of NCDs and premature mortality.
Notably, Areto et al. found that eCRF and CRF were superior predictors of all-cause mortality, CVD
mortality, and CVD morbidity compared to BMI or waist circumference in the ACLS cohort [23].
Concomitantly, a recent CHARLS cohort investigation showed clear dose-response relationships
with progressively higher eCRF, predicting a lower incidence of CVD, heart disease, and stroke [44].

No studies to date have investigated the longitudinal relationship of eCRF with the onset of
obesity, and very few CRF studies have investigated this relationship. Ortega et al. conducted two
retrospective cohort analyses and found that low CREF is associated with a significantly increased risk
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of abdominal obesity and BMI > 30 after two years in Spanish adults [45,46]. The limited literature
may be partly due to the limited number of cohorts that have measured CRF to conduct this
longitudinal analysis. Therefore, eCRF studies using large electronic health records or population
data sets may provide a method for further investigation.

4. Discussion

Studies on eCRF and metabolic health risks are scarce. To date, six cohort investigations have
been published, providing evidence for the incidence of hypertension, hyperglycemia, and
dyslipidemia. No studies have been conducted on eCRF and the incidence of obesity. This review
provides emerging evidence for using eCRF as a prognostic indicator for metabolic health risk.
Significant inverse and dose-response associations were repeatedly demonstrated between higher
eCRF and lower risk of high blood pressure, blood sugar, and abnormal lipids. These findings are
aligned with previous studies using measured CRF. Most CRF cohort studies have been limited to
primarily male Caucasian populations [12,15]. However, the increased use of eCRF in population
health data sets has begun to expand the evidence on age groups, females, ethnicities, and
socioeconomic status.

The limitations identified across some of the eCRF cohort studies in this review include concerns
about low sample size, measurement accuracy, confounders, covariates, and generalizability of
findings. In 2019 Wang et al. provided a scoping review of more than twenty eCRF equations [21]. At
the time, five health eCRF outcome studies focused on mortality as the primary outcome. Since then,
the literature has expanded to include metabolic health risk outcomes, as discussed in this review.
The ACLS Jackson equation was most commonly used to calculate eCRF in five investigations [9].
The Jackson equation uses self-reported physical activity as one of the equation parameters, initially
validated using the ACLS physical activity index [47]. Only the investigation by Patel et al. used the
ACLS-validated scale [26]. The FOS, TMJC, RCCS, and CHARLS studies used unvalidated
domestically designed questionnaires and adapted the parameter into the equation. This adaption
method likely resulted in misclassification of eCRF levels in some participants, thereby reducing the
accuracy and reliability of findings. It is also important to point out that the self-reported physical
activity status is prone to bias, leading to misclassification.

Other commonly cited issues are the homogeneous populations studied, often with high
socioeconomic status or specific ethnic backgrounds, limiting the external validity of the results. The
Wang et al. review also recommended choosing equations that share the same ethnicity and age
group. While there are validated eCRF equations for people of Chinese ethnicity, the CHARLS, TM]C,
and RCCS used the Caucasian-validated Jackson equation with promising findings aligned with CRF
meta-analyses. Notably, most of the participants in the meta-analyses are Caucasian males [22,33].

Another caution when applying eCRF equations is using redundant covariates or confounders
in multivariate analyses. For example, when BMI is a parameter in an eCRF equation and is used
again as a covariate during analysis, it could lead to multicollinearity. Multicollinearity occurs when
two or more predictor variables in a regression model are highly correlated, meaning that one can be
linearly predicted from the others with a substantial degree of accuracy [48]. This redundancy may
inflate the variance of the coefficient estimates and the standard errors, making statistical tests less
reliable, the model's predictions less precise, and leading to wider confidence intervals. Potential
solutions include conducting variance inflation factor (VIF) analysis or transforming a continuous
variable by categorizing the covariate or confounder (e.g., 1= BMI <30, 2= BMI > 30) [49]. More
recently, the advancement of causal inference through causal machine learning may offer a solution
for more accurately accounting for covariates and confounders. Unlike associative studies that
incorporate confounding variables to enhance the accuracy of outcome predictions, causal machine-
learning models meticulously seek to isolate and exclude the influence of these variables to assess the
impact of the exposure variable directly [50]. Furthermore, machine learning methods may be more
beneficial when using large real-world data such as electronic health records.

With the current dearth of literature, there are ample opportunities for further study regarding
eCRF, metabolic risks, NCDs, and a broad range of health outcomes. Potential areas for future
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research may include focusing on larger multiethnic cohorts and young adults and comparing other
eCRF equations for their predictive capability. Also, more evidence across diverse ethnicities and
women is needed. One drawback is that a limited number of population health data sets or electronic
health records contain CRF or all the parameters (e.g., Jackson) needed to calculate eCRF [36].
Different eCRF equations may need to be applied to access more extensive, heterogeneous cohorts
over longer durations. As discussed by Wang et al., eCRF models that do not use self-reported
physical activity as a parameter may be applied more broadly (e.g., electronic health records) [21,36].

From a metabolic health outcomes perspective, there are various potential cohort studies to
consider. eCRF prediction of prehypertension, prediabetes, and borderline dyslipidemia would be
helpful to inform primordial prevention initiatives. Studies focused on the incidence of obesity,
metabolic syndrome, and NCDs would add significant value to the growing eCRF prediction
literature. Prevalence studies for understanding the fitness level of a particular community, region,
or company can help map the magnitude and distribution of low fitness and assist with public health
planning. Lastly, conducting experimental intervention studies using change in eCRF would provide
more evidence for the tool's validity.

A growing and essential area of eCRF research and primary care is net reclassification
improvement (NRI) for risk estimation. NRI is a statistical approach that assesses the extent to which
incorporating a new biomarker such as eCRF improves the classification accuracy of individuals into
more appropriate risk categories [5]. For example, physicians often use the Framingham Risk Score
to make patient clinical decisions. To improve the accuracy of the 10-year CHD risk score, Gander et
al. applied the Jackson eCRF [51]. The study showed that adding the eCRF improves the overall
accuracy of the Framingham Risk Score in Caucasian men for heart disease risk. Similar findings were
also found in a nationally representative sample of Koreans and a southern Chinese population for
CVD mortality and morbidity, respectively [52,53]. There are numerous other risk prediction tools
(e.g., DM, CKD, dementia) where adding eCRF may add predictive value.

Future Directions

CREF has been stipulated as a vital sign by the American Heart Association, and eCRF has been
proposed to be used regularly in primary care settings to identify patients with low fitness and
provide brief counseling [6,54]. However, a recent meta-analysis and systematic review concluded
that the effectiveness of this individualistic approach might not, on its own, improve physical activity,
a key determinant of fitness, to sustain beyond 6 to 12 months [55,56]. In agreement with this
observation, the International Society for Physical Activity and Health states, "Searching for a single
solution to increasing physical activity may have hampered progress in this field by encouraging
focus on simple, often short-term, individual-level health outcomes, rather than complex, multiple,
upstream, population-level actions and outcomes [57]." Brief counseling may be more effective when
meshed with the determinants of eCRF in an individual's environment. This method is in line with
the conceptual framework of the determinants of CRF (Figure 1) and stems from social ecological
theory [18]. Consequently, research has to be done on using this framework with eCRF.

Given the growing sophistication of technology, eCRF has the potential to be utilized as a
population health vital sign to help prevent metabolic health risks. Electronic health records can auto-
populate eCRF for rapid access and review [37]. Integrating geographic information systems with
EHR-derived eCRF data can enhance the early identification and mapping of metabolic risk factors
[58]. This integration allows public health officials to visually pinpoint areas of low fitness, referred
to as hot spots, and further leverage eCRF parameters to segment and target specific populations,
such as unfit middle-aged male smokers. Machine learning and artificial intelligence can further
augment this process, enabling sophisticated, actionable analyses to guide targeted interventions,
potentially maximizing the impact of individual, community, and public health initiatives [59].

The use of eCRF in healthcare and public health settings aligns with the International Society for
Physical Activity and Health's Eight Investments That Work for Physical Activity [57]. Both
initiatives focus on accessibility to diverse physical activity, exercise, and sports opportunities,
facilitating the implementation of strategies like active travel and urban design. Effective
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collaboration between healthcare systems and public health is crucial for navigating the complex
social ecology of communities. Such partnerships are instrumental in planning and deploying a
systems-based approach to reduce metabolic risks.

5. Conclusions

This review underscores the emerging evidence of eCRF as a primordial indicator of metabolic
health risks. The current literature affirms a consistent inverse association between higher eCRF and
reduced metabolic risks, highlighting eCRF's predictive ability to be concomitant with CRF. Future
research should aim to explore eCRF's predictive accuracy across a broader spectrum of populations
and outcomes and evaluate its real-world utility in healthcare and public health settings.
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