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Abstract: In the dynamic landscape of sustainable computing, use of edge devices is paramount for 

reducing the need for large‐scale centralized data centers. By processing data locally, edge devices 

minimize the energy‐intensive computing in data centers, improving the overall performance, cost‐

effectiveness  whereas  reducing  the  environmental  impact.  Edge  devices  may  constitute  edge 

clusters composed of resource frugal Single Board Computers (SBC) such as Raspberry Pi etc. The 

small form‐factor and energy efficiency of these computers makes them ideal for processing large 

data on the edge. Despite their potential, traditional Hadoop configurations struggle to optimize 

performance  in  heterogeneous  SBC  clusters  due  to  disparities  in  computing  resources. 

Consequently,  we  propose  modifications  to  the  Yet  Another  Resource  Negotiator  (YARN) 

scheduling mechanism to address these challenges. Our proposed changes include the introduction 

of a Frugality Index and an adaptiveConfig policy. The Frugality Index categorizes SBC nodes based 

on  their  capabilities,  enabling  intelligent  resource  allocation.  The  adaptiveConfig  policy 

dynamically adjusts resource allocation in response to workload and cluster conditions, enhancing 

system efficiency. Additionally, we  introduce a  fetch_threshold  for reduce tasks  to  improve task 

prioritization based on locality and data processing efficiency. We evaluate our approach using a 

13‐node  SBC  cluster  and  conduct  experiments  with  CPU‐intensive  and  IO‐intensive  Hadoop 

benchmarks. The results demonstrate significant performance improvements compared to native 

YARN settings, with execution times 4.7 times faster than the worst_native and 1.9 times faster than 

the  best_native  scenarios.  Furthermore,  the  proposed  adaptiveConfig  policy  implementing  the 

frugality index and a fetch_threshold outperforms the native YARN by 5.86 times and 1.79 times in 

Terasort and wordcount executions respectively. Our findings underscore the effectiveness of our 

approach in managing the heterogeneous nature of SBC clusters and optimizing performance across 

various hardware configurations. The adaptive policies prove well‐suited to the frugal SBC‐cluster 

context,  yielding  enhanced  outcomes  and  paving  the way  for  sustainable  big  data  processing 

initiatives. 
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1. Introduction 

In the realm of sustainability and environmental conservation, the utilization of low‐cost single 

board computers (SBCs) in edge devices stands out as a beacon of innovation and efficiency. These 

compact computing devices offer a myriad of benefits that extend beyond conventional computing 

paradigms. From reducing energy consumption to enabling localized processing, the integration of 

SBCs in edge devices holds significant promise for mitigating environmental impact while fostering 

sustainable technological advancements [1]. Unlike traditional computing setups that often require 

substantial power consumption, SBCs are designed to operate efficiently with minimal energy usage. 

This  inherent  characteristic makes  them  ideal  candidates  for  powering  edge  devices, which  are 

frequently deployed  in  remote  or  off‐grid  locations where  energy  resources may  be  limited. By 
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minimizing energy consumption, SBC‐based edge devices contribute to overall energy conservation 

efforts,  thereby  reducing carbon emissions and  lessening  the strain on  the environment  [2]. Edge 

clusters,  comprised  of  diverse  SBCs with  varying  processing  capabilities, memory,  and  power 

requirements,  present  a  unique  opportunity  to  leverage  distributed  computing  resources  in 

environmentally conscious ways.   

The compact form factor of SBCs enables the development of small‐scale, localized computing 

solutions  tailored  to  specific  environmental  challenges.  These  edge  devices  can  be  strategically 

deployed in various settings, ranging from agricultural fields to urban infrastructure, to collect and 

analyze  data  in  real‐time.  By  processing  data  at  the  edge,  without  the  need  for  continuous 

connectivity  to  centralized  servers,  SBC‐based  devices  minimize  latency  and  bandwidth 

requirements while enhancing overall system responsiveness. V. Thesma et. al., in [3] developed a 

low‐cost distributed computing pipeline for cotton plant phenotyping using Raspberry Pi, Hadoop, 

and deep  learning. They  compare  the performance of  the Raspberry Pi based Hadoop  cluster  in 

various  configurations  for  high‐throughput  cotton  phenotyping  in  field‐based  agriculture. 

Veerachamy  in  [4]  present  agricultural  irrigation  recommendation  and  alert  system  using 

optimization and machine learning in Hadoop for sustainable agriculture. They use machine learning 

algorithms to forecast alerts based on various parameters such as air pressure, water level, humidity 

etc. Setiyawan  in  [5] developed a  Internet of Things  (IoT)‐Based Wireless Engine Diagnostic Tool 

prototype using a Raspberry Pi. This plug‐and‐play  tool  is used  for engine diagnostics  in vehicle 

repairs shops. In [6], researchers developed an Intelligent Personal Assistant System Based on IoT for 

People with Disabilities. The proposed system utilizes Raspberry Pi as a control device for processing 

natural  language  input. Netinant et. al.  in  [7] developed an IoT‐Driven Smart Home Security and 

Automation framework with Voice Commands. The proposed framework ensures the incorporation 

of components, including Raspberry Pi, relays, motion sensors, etc. Authors in [8] analyze the impact 

of  Lightweight Mutual Authentication  for Healthcare  IoT.  The  proposed  technique  significantly 

improves the disadvantages of IoT devices that lack computing power.   

Over the past decade, Apache Hadoop has become a leading framework for big data processing 

[9]. Hadoop, a robust framework designed for distributed storage and processing of vast datasets, 

serves as a cornerstone in fostering sustainability initiatives across diverse domains. Its distributed 

computing model enhances energy efficiency by enabling parallel processing of data across multiple 

nodes within a cluster. Lately, researchers in [9–14] have directed their attention towards achieving 

energy‐efficient remote data processing through the utilization of clusters comprised of single‐board 

computers (SBCs) like Raspberry Pi, coupled with the Hadoop framework for handling large‐scale 

data processing tasks in various context including agriculture, smart cities, smart homes, healthcare 

etc. Qureshi et. al. in [11] developed a heterogenous cluster of 20 SBCs including Raspberry Pis and 

Ordoid Xu‐4  for data  analytics using Hadoop. They  conduct various  experiments  to analyze  the 

performance and energy efficiency of the cluster for workloads of various sizes. They observed that 

the performance of Raspberry Pi based cluster was inferior to Ordoid Xu‐4 machines due to the frugal 

nature  of  the  devices.  Lee  in  [12]  present  an  in‐depth  investigation  into Hadoop  performance, 

focusing specifically on  the  latest generation Raspberry Pi cluster, built with RPi model 4B. They 

conduct a thorough examination of Apache Hadoop benchmarks and note that the cluster composed 

of 5 latest model SBC can successfully process workload of a few tera‐bytes. Neto et.al in [13] analyze 

the  performance  of Raspberry  Pi  based  cluster  using  various  benchmark  including  Terasort  and 

DFSIO. They note that clusters formed by Raspberry Pi have proved to be a viable and economical 

solution for carrying out tasks involving the use of Big Data. Nugroho et. al. in [14] also design a 

parallel  computing  framework using  raspberry Pi  clusters  for  IoT  services and  applications. The 

proposed framework uses Hadoop HDFS for data storage and processing. 

Based on  the preceding studies,  it  is evident  that employing SBC‐based clusters  for big data 

processing  with  Hadoop  offers  viable  and  sustainable  solutions  for  diverse  applications.  The 

presence of heterogeneous SBC clusters within the Hadoop framework introduces fresh challenges 

stemming from disparities in computing resources across individual nodes. Native Hadoop fails to 

adequately  address  the  diversity  among  cluster  nodes,  leading  to  notable  discrepancies  in 
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performance or, more critically, recurrent node  failures within heterogeneous SBC‐based Hadoop 

clusters. At its core, Yet Another Resource Negotiator    (YARN) serves as a resource management 

and  job  scheduling  framework  in  Apache  Hadoop,  facilitating  the  efficient  allocation  of 

computational resources across a cluster. However,  traditional approaches to YARN optimization 

may  not  fully  account  for  the  characteristics  of  frugal  heterogeneous  edge  clusters, where  SBCs 

operate under constraints of computational power, memory, and network connectivity. Thus, there 

is a pressing need to explore novel strategies and techniques tailored to the specific challenges and 

opportunities presented by SBC‐based edge computing environments. 

In this study, we propose modifications to the YARN scheduling mechanism aimed at enhancing 

system efficiency in SBC‐based clusters. These changes involve the introduction of a Frugality‐Index 

and an  adaptiveConfig policy. The Frugality‐Index  serves as a pivotal metric  for  categorizing SBC 

nodes according to their capabilities, incorporating factors such as CPU speed and memory size. This 

index facilitates intelligent resource allocation, ensuring tasks are assigned to nodes best equipped to 

handle  them. Additionally,  the adaptiveConfig policy enhances the YARN schedulerʹs flexibility by 

dynamically adjusting resource allocation in response to workload and cluster conditions. This real‐

time optimization enables SBC‐based clusters to adapt to evolving workloads while maintaining high 

performance levels. Furthermore, the introduction of a fetch_threshold for reduce tasks enhances task 

prioritization and overall data processing efficiency.   

We construct a SBC cluster composed of 13 SBC devices and conduct various experiments to test 

the proposed  scheduling mechanism using CPU‐intensive and  IO‐intensive Hadoop benchmarks 

against  native  YARN  settings.  The  proposed  settings  demonstrate  significant  performance 

improvements, executing 4.7 times faster than the worst_native and 1.9 times faster than the best_native 

scenarios.  In  terms  of  Terasort  execution,  Scenario3  outperforms  Scenario1  by  5.86  times  and 

Scenario2 by 1.79  times. Additionally,  setting  the  fetch_threshold  to 0.05 achieves 1.23  times  faster 

runtimes for configurations leveraging higher level of parallelism. Our findings indicate the efficacy 

of our approach in managing the heterogeneous cluster nature and performing well across standard 

CPU‐Intensive and IO‐Intensive Hadoop benchmark applications. Additionally, we ascertain that the 

adaptive policies are well‐matched to  the  frugal SBC‐cluster context, yielding enhanced outcomes 

across  various  hardware  configurations,  including  newer  high‐performance  models  and  older, 

slower SBCs. 

The rest of the paper is organized as follows. Section 2 presents relevant work and background. 

Section 3 details the re‐designed architecture of the YARN based on the proposed policy framework. 

Section 4 presents extensive performance evaluation of the SBC cluster followed by discussion and 

future directions in section 5. Section 6 concludes this work.   

2. Background 

In this section we present SBC properties; Apache Hadoop YARN components and architecture; 

and the motivation to design scheduling policies in YARN for frugal SBC based clusters. 

2.1. Single Board Computers 

SBCs are compact computing devices built on a single circuit board, encompassing all essential 

components such as CPU, memory, storage, and input/output interfaces. These boards offer a range 

of advantages, particularly  in  terms of small  form  factor while being power and energy‐efficient. 

Their  compact  design  makes  them  suitable  for  applications  where  space  is  limited,  and  their 

integrated  components  contribute  to  lower power  consumption  compared  to  traditional desktop 

computers. Additionally, many SBCs are designed to operate efficiently on minimal power, making 

them ideal for battery‐powered devices and scenarios where energy efficiency is paramount.    SBCs 

also come with certain limitations.   

While they offer sufficient processing power for many tasks, their performance may be limited 

compared to desktop computers, particularly for demanding computational tasks such as big data 

applications. Despite these limitations, SBCs remain popular and versatile computing platforms used 

in various  applications. Examples of well‐known SBCs  include  the Raspberry Pi  (RPi), Arduino, 
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NVIDIA  Jetson Nano, Odroid  XU4,  and  BeagleBone  Black.  Each  of  these  devices  offers  unique 

features and specifications, catering to a diverse range of use cases, while embodying the principles 

of compactness, efficiency, and affordability that define the SBC ecosystem. 

Table 1 provides a summary of SBCs used in this study. Raspberry Pi computers are by far the 

most popular SBC and are widely used in industrial, healthcare, robotics and IoT applications. First 

released in 2012, are cost‐effective, energy efficient and are widely accessible and have been used in 

various studies. A major drawback with earlier generation RPi was the computational capacity as 

highlighted in our earlier work in [11]. With newer models 3B+, 4B and 5th generation, the use of 

improved  on‐board  processors  has  significantly  improved  the  performance  of  individual  SBCs. 

Additionally, the increased upgraded RAM module using LPDDR4X RAM available on RPI 4B and 

5  is  a  useful  upgrade.  Gigabit  Ethernet  and  HDMI  come  standard  with  these  SBCs  for  faster 

connectivity and A/V display. We also use Odriod XU‐4  1SBCs that use Samsung Exynos Octa core 

ARM processor with a 2GHz quad‐core Cortex‐A15 and 1.3 GHz quad‐core Cortex‐A7 processor. The 

Xu‐4 has 2 GB DDR3 RAM, gigabit ethernet and a standard HDMI port. The Pine64 RockportPro64 
2is another SBC used in this work. It’s powered by a Rockchip RK3399 Hexa‐Core (dual ARM Cortex 

A72  and  quad  ARM  Cortex  A53)  64‐Bit  Processor  with  MALI  T‐860  Quad‐Core  GPU.  The 

ROCKPro64 is equipped with 4GB LPDDR4 system memory and 128Mb SPI boot Flash. All of these 

SBCs  support microSD  Cards  for  storage with  varying  sizes  including  64GB. Odroid  Xu4  and 

Rockpro64 also support the faster eMMC modules. 

Table 1. Specifications of various SBC used in this work. 

  Raspberry Pi 5  Pine64 Rockpro64  Raspberry Pi 3B+  Odriod XU‐4 

Processor  2.4 GHz quad‐core 64‐

bit ARM Cortex A76 

1.8GHz Hexa Rockchip 

RK3399 ARM Cortex 

A72 and 1.4 GHz Quad 

Cortex‐A53 

1.4GHz 64‐bit quad‐core 

ARM Cortex‐A53 

Exynos5 Octa ARM 

Cortex‐A15 Quad 2Ghz 

and Cortex‐A7 Quad 

1.3GHz 

Memory  8GB 

LPDDR4X‐SDRAM 

4GB 

LPDDR4‐SDRAM 

1GB 

LPDDR3‐SDRAM 

2GB 

DDR3 

Ethernet  Gigabit Ethernet  Gigabit Ethernet  300Mbit/s  Gigabit Ethernet 

GPU  VideoCore VII 

800MHz 

Mali‐T860 GPU 

700MHz 

VideoCore IV 

400MHz 

Mali‐T628 MP6 

600 MHz 

A/V  HDMI  HDMI  HDMI 1.3  HDMI 

Price (USD)  80  79.99  35  53 

Release  2023  2018  2018  2016 

Power  1.3 W idle; 

8.6 W max 

3.1 W idle; 

10.9 W max 

1.9 W idle; 

5.1 W max 

2.1 W idle; 

6.4 W max 

2.2. Apache Hadoop YARN 

The Hadoop ecosystem encompasses a suite of open‐source projects and tools revolving around 

the core Hadoop framework. Hadoop, a distributed computing framework, facilitates the storage and 

processing of vast datasets across clusters of commodity hardware. Central to this ecosystem is the 

Hadoop MapReduce providing a programming model for distributed data processing, while YARN 

manages  resource  allocation. Hadoop  YARN  scheduling  is  a  critical  component  of  the Hadoop 

ecosystem, tasked with efficiently managing resources across the cluster.   

In Hadoop,  the NameNode  serves  as  the  central  component  of  the Hadoop Distributed  File 

System (HDFS), managing metadata about the file system namespace and block locations. It directs 

client read and write requests and oversees the storage of data across the clusterʹs worker nodes called 

DataNodes. The Resource Manager (RM), running on the master node, manages resource allocation and 

job  scheduling  and monitors  their  execution. Together,  the NameNode  and RM  facilitate  efficient 

distributed storage and processing. A DataNode is a worker node responsible for storing data blocks 

 
1
 
Odroid Xu‐4 https://www.odroid.co.uk/hardkernel‐odroid‐xu4/odroid‐xu4   

2  Pine 64 RockPro64 https://pine64.com/product/rockpro64‐4gb‐single‐board‐computer/   
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and ensuring data replication and availability. It communicates with the NameNode to report block 

information and handles read and write requests. Conversely, the Node Manager (NM) is a per‐node 

agent managing resources and executing tasks on worker nodes. It reports available resources to the 

RM,  launches and monitors containers, and ensures the proper execution of tasks. The Application 

Master  (AM)  manages  the  execution  of  individual  applications  within  the  cluster,  negotiating 

resources from the RM, coordinating task execution, and monitoring progress. 

A container, represents a unit of resource allocation. When a client submits a MapReduce job to 

the Hadoop cluster, the RM receives the request and designates a worker node to host the AM in a 

container for the job. The NM on the worker node is notified of the job which coordinates with the 

AM  to  request  the  required number of containers. The NM allocates  resources  to  containers and 

launches  the required number of containers on  the worker node. These containers host  the actual 

MapReduce  tasks  or  application  code.  In  case  containers  fail, YARN provides  fault  tolerance by 

swiftly  detecting  node  failures  through NM, which  report  to  the  RM  through  periodic  heatbeat 

messages. Tasks affected by node failures are rescheduled on available nodes, and containersʹ states 

are recovered to ensure uninterrupted progress. Figure 1 shows the various components of the YARN 

architecture  and  the  service  flow. The RM  employs  its  scheduler  to  allocate  resources  based  on 

availability  and  predefined  policies.  YARN  supports  various  scheduling  policies  such  as  FIFO, 

Capacity, and Fair schedulers, each with distinct resource allocation and job prioritization methods. 

it  dynamically manages  the  allocation  of  containers  based  on  the  available  resources  and  the 

requirements of applications running on the cluster. 

 

Figure 1. Hadoop YARN architecture and service flow. 

In this work we propose changes to the YARN architecture so that it is able to discern frugal SBC 

based nodes in the cluster. The proposed changes are designed to improve the resource scheduling 

policies focusing on optimal placement of resources in the cluster. In order to evaluate the proposed 

approach, we  implement a SBC based cluster consisting of  four types of SBC devices. Our results 

demonstrate that the proposed approach effectively adapts to the heterogeneous nature of the cluster 

and  perform well  for  standard  CPU‐Intensive  and  IO‐Intensive Hadoop  benchmark  applications. 

Furthermore,  our  findings  illustrate  that  the  adaptive policies  are well‐suited  to  the  frugal  SBC‐

cluster environment, yielding  improved outcomes across both higher‐grade hardware and older, 

slower SBC models. 

3. Proposed Scheduling Mechanism for Frugal SBC‐Based Clusters 

3.1. Motivation and Limitations 

In  the  native Hadoop  framework,  there  exists  no  inherent mechanism  for  determining  the 

specific  capacities of  individual nodes,  such as CPU processing  capabilities, or physical memory 

availability, etc. It is pertinent that these characteristics of nodes within clusters on the edge made 

with resource‐frugal devices would play a pivotal role in determining the performance of executing 

concurrent MapReduce tasks.   
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In [11], the authors observed that the performance of Raspberry Pi 3B based Hadoop cluster was 

inferior to Ordoid Xu‐4 machines primarily due to the frugal nature of the onboard components on 

the devices. The RPi based cluster in particular was more prone to failure due to lack of memory error 

frequently  hindering  the  progress  of MapReduce  task. MapReduce  tasks  being  dropped  due  to 

memory limits indicate issues such as inefficient memory usage within the application, or insufficient 

memory  resources  allocated  to  the  cluster. Upon  further  examination,  it became  apparent  that  a 

native Hadoop setup does not support concurrent execution of two or more map tasks on a node 

with only 1 GB of RAM. On the other hand, the Odriod Xu‐4 SBC did not present similar performance 

bottleneck due to memory restrictions. It was able to handle up to two containers per node/device.   

However, the native YARN settings do discern the limited capabilities of these devices. When 

the number of containers exceeds two on a SBC node, it can overwhelm the task queue within the 

scheduler. This overburdening of tasks can cause the system to become unresponsive, as it struggles 

to manage the concurrent execution of tasks efficiently. Consequently, the system may reach a point 

where it becomes irresponsive to further requests or tasks, leading to a potential halt in job execution. 

In such scenarios, users may need to intervene by manually terminating the jobs to alleviate the strain 

on the system and restore its functionality. A Raspberry Pi Hadoop node equipped with 1 GB of RAM 

is  unable  to  effectively  carry  out  significant  data  processing  tasks  that  necessitate  simultaneous 

execution of multiple map tasks.   

To  this  end,  we  modified  the  mapreduce.map.memory.mb  property  in  the  mapred‐site.xml 

configuration file to maximize the memory limit to 852 MB. Table 2 shows the Hadoop and YARN 

configuration files. This limits only one container to execute on the frugal RPi devices in the cluster 

ensuring that the application does not crash. A similar observation is also made by the authors in [12] 

where the authors run in to similar  issues with regards to memory management. To alleviate this 

restriction, one approach is to increase the size of the swap partition on the host operating system to 

maximize the utilization of the virtual memory, however, this resulted in slower performance due to 

the significantly slow read/write speeds on the local storage media (SD Cards). Regardless of these 

improvements, it is imperative that the physical memory constraint restricts parallelization within 

the cluster, effectively throttling the performance due to the frugal nature of the SBC devices. 

In  this  section, we  redesign  the YARN  scheduling mechanism  to  align with  the  frugal‐SBC 

resources in the cluster. We define a frugality‐index that classifies frugal SBC nodes based on their 

onboard processing capacities and memory size. Using Hadoop Remote Procedure Calls (RPC), the 

frugalityIndex  is passed as parameter  to  the RM, NM and Application Manager  to assign relevant 

containers  to  the  frugal  SBC  node(s). We  redefine  YARN  scheduling  policies  to  adapt  to  the 

frugalityIndex  and  proposed  a  adaptiveConfig  policy  for  scheduling  jobs/tasks.  The  assignment  of 

containers is prioritized and placed on frugal nodes within the cluster based on these parameters. 

This approach ensures efficient resource utilization and improves the systemʹs overall efficiency by 

adaptively  assigning Map  and Reduce  tasks  according  to  the  heterogeneous  capacities  of nodes 

within the SBC‐based cluster. The following details these proposed changes to the YARN design. 

Table 2. Hadoop YARN configuration properties used for resource frugal SBC‐based cluster. 

Mapred‐site.xml  Value 

yarn.app.mapreduce.am.resource.mb  852 

mapreduce.map.cpu.vcores  1 

mapreduce.reduce.cpu.vcores  1 

mapreduce.map.memory.mb  852 

mapreduce.reduce.memory.mb  852 

   

YARN‐site.xml  Value 

yarn.nodemanager.resource.memory‐mb    1024 

yarn.nodemanager.resource.cpu‐vcores    1 

yarn.scheduler.maximum‐allocation‐mb  852 

yarn.scheduler.maximum‐allocation‐vcores  8 

yarn.nodemanager.vmem‐pmem‐ratio  2.1 
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3.2. Frugality Index 

The native Hadoop  framework  lacks  any mechanism  to discern  the  container placement on 

nodes  based  on  their  specific  physical  computational  capacities  or  physical memory  space. As 

mentioned earlier, it is evident that the physical memory capacities of nodes play a crucial role in 

influencing the concurrent execution of MapReduce tasks.   

The NM on each node in the cluster determines the frugality index (Findex) based on the local 

device/ Node’s physical characteristics. Table 3 presents a Findex guideline for various SBC used in 

this study. The Findex value implicitly is derived from the size of the on‐board memory available on 

the device. The Findex value  is communicated  from  the NM  to  the RM along with  the heartbeat 

messages. This  is  to  reduce  the overall  communication overhead. The RM  considers  the updates 

along with the scehduling policies to place containers on the various worker‐nodes. 

Table 3. Frugality Index guideline. 

FIndex  Device  CPU  Memory 

4  Raspberry Pi 5  2.4 GHz  8 GB 

3  Raspberry Pi 4  1.5 GHz  4 GB 

3  Pine64 Rockpro64  1.8 GHz  4 GB 

2  Odroid Xu4  2.0 GHz  2 GB 

1  Raspberry Pi 3B  1.4 GHz  1 GB 

1  Raspberry Pi 2  900 MHz  1 GB 

3.3. Heartbeat Messages 

The RM in Hadoop YARN determines the resources required for a job based on the applicationʹs 

resource requests, the clusterʹs available resources, and any configured scheduling policies. When a 

user submits a job to the RM, the application specifies its resource requirements, including CPU cores, 

memory, and other  resources  through  the Application Manager. When  the AM  initiates,  it posts 

request to the scheduler. Based on the provided parameters, the Scheduler requests ResourceTracker 

to  launch  the AM.  It  finds suitable datanode  that supports  the AM container and assigns  it  to  the 

application. The application Manager launches the AM on the worker node. A datanode executes the 

NM. NM periodically update  the RM  to  inform about  their available resources  through a process 

called the heartbeat mechanism.   

NM periodically sends heartbeat messages to the RM to indicate their availability and resource 

status. These heartbeat messages contain  information such as  the nodeʹs  total memory, CPU cores, 

available memory, available CPU cores, and other resource metrics. The RM receives these heartbeat 

messages  from  all  active NM  in  the  cluster.  Based  on  its  resource  allocation  decision,  the  RM 

communicates with  specific NM  to  allocate  containers  for  executing  job  tasks. Each  container  is 

launched with  the  specified  resource allocation, and  tasks within  the  containers begin execution. 

Throughout  the  jobʹs  execution, NM  continue  to  send  periodic  heartbeat messages  to  the  RM, 

providing updates on container status and resource usage. Figure 2 illustrates the information flow 

between various  components of  the RM and NM. The Findex values  are used by  the  scheduling 

mechanism to determine appropriate resources for containers and assign tasks to frugal nodes for 

computation in the cluster.   
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Figure 2. Information flow between various components of RM and NM in modified YARN. 

3.4. Adaptive Fair Scheduling Scheme 

Native YARN offers three distinct scheduling policies: FIFO, Capacity, and Fair [15]. The FIFO 

scheduling policy, being  the  simplest, executes applications  in  the order of  their arrival, without 

permitting  concurrent  execution.  Consequently,  long‐running  applications  have  the  potential  to 

block the execution of shorter  jobs that may only require a fraction of the available resources. The 

Capacity scheduling policy enables the definition of multiple queues each assigned with a percentage 

of cluster resources. Each queue  is assured a minimum resource allocation, facilitating concurrent 

execution of applications submitted  to different queues. In addition, applications within the same 

queue may also run concurrently, subject to the queue policy. The Fair scheduling policy, similar to 

Capacity policy, features queues with minimum resource guarantees. However, instead of statically 

partitioning  resources,  they  are  dynamically  balanced  among  submitted  jobs.  These  scheduling 

policies are set in the Hadoop and YARN configuration properties yarn.scheduler.capacity.maximum‐

allocation‐mb and yarn.scheduler.capacity.maximum‐allocation‐vcores.   

Configuring Hadoop  for  launching  containers  necessitates  the  userʹs  insight  and  expertise. 

Inspired by work in [16,17], we implement an adaptiveConfig policy that interacts with YARN to obtain 

workload and cluster status. The configuration parameters are initiated at the onset of the cluster; 

YARN  reads  the  job  history  server  to  obtain  each  jobs  status  information,  such  as  submission 

timestamps,  resources  required etc. Next  it  reads  the yarn‐site.xml  file  to obtain  the status of  the 

cluster resources such as maximum available vcores and memory on the node. Finally, it accesses the 

capacity‐scheduler.xml  or  fair‐scheduler.xml  file  to  re‐configure  the  schedulers  parameters. We 

modify  these  files  to  implement  our  adaptiveConfig  policy.  The  Findex  is  used  by  the  RM  to 

dynamically  set  and  assign  the  number  of  containers while  considering  the  onboard  processing 

power and memory availability on the node. As a NM registers with the RM, through the heartbeat 

message, RM  computes  the number  of  available  containers  for  each worker nodes based  on  the 

container related properties defined in the configuration parameters. For a NM executing on a frugal 

node with Findex larger than 1, it will assign only one container to execute on the node. Alternatively, 

for a Findex value 2, up  to a maximum of  two containers would be assigned. For  larger values of 

Findex, the YARN default values set‐in allowing more than two containers to be assigned to the NM.   

The  proposed  adaptiveConfig  scheduling  policy  enhances  the  Fair  scheduling  policy  by 

facilitating adaptive resource allocation, dynamically adjusting to utilize the resources available on 

the physical nodes effectively. This approach ensures optimal resource utilization and enhances the 

overall efficiency of the system by intelligently allocating Map tasks based on the varying capacities 

of individual nodes within the heterogenous SBC based cluster.   

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2024                   doi:10.20944/preprints202404.0154.v1



  9 

 

3.5. Tasks Locality and Prioritization 

The scheduling policy aims to optimize resource utilization, minimize job completion time, and 

ensure  fairness among users and applications sharing  the cluster  resources  [18]. The  inconsistent 

performance observed  in Hadoop applications stems primarily  from  the performance gap among 

heterogeneous SBC nodes, which the native Hadoop framework fails to address adequately. Unlike 

map  tasks,  there  are no  specific guidelines  for  assigning AM  and  reduce  tasks  to  cluster nodes. 

Consequently, AM and reduce  tasks can be distributed across any node  in  the cluster,  leading  to 

significant performance discrepancies based on node capabilities. In essence, assigning reduce tasks 

to SBC nodes with limited computational power results in prolonged execution times for Hadoop 

MapReduce jobs, as map tasks on these nodes cannot fully leverage data locality.   

Hadoop defines three priorities for data locality namely NODE_LOCAL, RACK_LOCAL and 

OFF_SWITCH [19]. NODE_LOCAL refers to the highest priority level for task scheduling. It means 

that Hadoop Scheduler  tries  to  assign  tasks  to nodes where  the data needed  for  computation  is 

present, resulting in minimal data transfer across the network. RACK_LOCAL comes next in priority, 

where tasks are scheduled to nodes in the same rack as the required data, thus minimizing network 

traffic compared to off‐rack assignments. Finally, OFF_SWITCH refers to the lowest priority level, 

where tasks are assigned to any available node regardless of its proximity to the data, resulting in 

potentially higher network overhead as data needs  to be  transferred over  longer distances. These 

priorities aim to optimize data locality and minimize network traffic for improved performance in 

Hadoop clusters [20]. 

In  our  proposed  YARN  re‐design,  the  RM  and AM  are  processes  that  need  to  execute  on 

powerful SBC with a higher priority. We define the NODE_LOCAL(HIGH) priority that would be 

assigned to these processes on any available powerful SBCs. As these processes initiate at the onset 

of the cluster establishment, there is a higher probability that these processes would be assigned to 

powerful SBC. However, the same cannot be said about application containers  that are created  to 

complete a MapReduce Task  [21]. As  the number of  tasks  increase,  there  is no guarantee  that the 

native Hadoop scheduler would assign  fewer containers to a  frugal node.  It  is quite possible  that 

multiple map and reduce tasks would be assigned to a node hosting and possibly executing multiple 

containers  on  the  same  node while  other  nodes  in  the  cluster may  have  been  assigned  fewer 

containers or none at all. This uneven distribution of resources is quite common with native Hadoop.   

To alleviate this concern and to improve uniform distribution of tasks across the cluster, we look 

at  the state of  the container. The status of any container  in Hadoop can be any of ALLOCATED, 

ACTIVE, PENDING, COMPLETED or KILLED. A container is considered ACTIVE when it has been 

allocated resources and is currently executing tasks assigned to it. During this state, the container is 

actively processing data or running computations as part of a job. A container is in a PENDING state 

when  it  has  been  requested  by  an  application  but  has  not  yet  been  allocated  resources  to  start 

execution.   

Containers  typically  enter  the  pending  state while  the RM  processes  resource  requests  and 

determines  where  to  allocate  resources  within  the  cluster.  During  the  shuffle  and  sort  phase, 

intermediate key‐value pairs are streamed from map task outputs to the disks of the nodes where the 

reduce tasks will be executed. As these intermediate key‐value pairs arrive at the reduce node, they 

are immediately available for processing by the reduce task. The reduce task can start processing the 

intermediate data as soon as a predefined threshold of data is available, typically referred to as the 

fetch_threshold. This threshold ensures that the reduce task has enough data to begin its processing 

efficiently without waiting for the entire dataset to be transferred. Once the fetch_threshold is reached, 

the  reduce  task  initiates  its processing  logic, which  involves grouping,  sorting, and  reducing  the 

intermediate data to produce the final output. Furthermore, the priority for any reduce task is set to 

RACK_LOCAL;  i.e. no two reduce tasks would execute on the same physical node. By starting to 

work on  available  intermediate data  early,  reduce  tasks  can  overlap  their  computation with  the 

ongoing data transfer, thus reducing idle time and improving overall job throughput. This approach 

leverages  the distributed nature of MapReduce processing, enabling efficient utilization of cluster 

resources and faster job completion times. This enhances placement or tasks in the clusters improving 
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its overall parallelism. Figure 3 summarizes the proposed changes to the YARN information flow in 

a heterogenous frugal SBC based cluster. 

 

 

Figure 3. Information flow between various components of RM and NM in modified YARN. 

4. Performance Evaluation and Results 

This section presents the experimental evaluation and presents the empirical results. 

4.1. Experimental Setup 

We prepare our heterogenous frugal SBC cluster using 13 SBC composed of one master node 

and  12 worker  nodes.  The master  node would  be  hosted  on  the  best  SBC  at  our  disposal,  i.e. 

Raspberry Pi 5 assigned Findex=4. The worker nodes would execute on 3x Raspberry Pi5 (Findex=4), 

3x Raspberry 3B (Findex=1), 3x Odriod Xu4 (Findex=2) and 3x Rockpro64 (Findex=3) SBC. Details for 

these SBCs can be found in Table 1. Each SBC is fitted with a 64 GB SD Card and is connected to a 

Gigabit  Ethernet. A  schematic  diagram  can  be  seen  in  figure  4.  The Ubuntu  22.04.4  LTS  64‐bit 
Operating System (OS) for ARM processors was installed on each SDCard. A 4 GB swap space was 

reserved on all SBC during installation. We opted not to install a Graphic User Interface (GUI) like 

the GNOME desktop on Ubuntu, this was to maximize the available resources for YARN. Hadoop 

version 3.3.6 was installed on each node. To initialize the Hadoop cluster, we used the vcores and 

memory  limits provided  in Table 2. The default Hadoop values for these properties always cause 

memory related issues in the SBC clusters. The 4GB swap space would be useful for resource‐frugal 

devices with limited onboard memory when running containers concurrently.   
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Figure 4. Heterogeneous Hadoop cluster built with frugal SBC devices including RPi5, RPi3, Odroid 

Xu4 and RockPro64. 

In this experimental study we would be focusing on task completion times for various map and 

reduce tasks. We would also be measuring the CPU utilization, memory utilization, network traffic. 

To ensure a comprehensive assessment, our evaluation will concentrate on workloads that are both 

CPU‐intensive  and  I/O‐intensive. Specifically, we will utilize  two  standard Hadoop benchmarks: 

WordCount  and  Terasort  programs.  WordCount  is  a  CPU‐intensive  benchmark  that  involves 

counting  the  occurrences  of  words  in  a  given  dataset.  It  primarily  stresses  the  computational 

capabilities of the system, making it suitable for evaluating CPU performance. On the other hand, 

Terasort is an I/O‐intensive benchmark that focuses on sorting large volumes of data. This benchmark 

heavily  exercises  the  input/output  subsystem  of  the  system,  making  it  ideal  for  assessing  I/O 

performance.   

Through the evaluation of these benchmarks, we aim to evaluate the efficacy of the proposed 

changes to the YARN scheduling mechanism compared to the native YARN settings. This assessment 

involves analyzing how well the system manages tasks demanding substantial CPU processing and 

those  reliant  on  intensive  input/output  operations.  By  focusing  on  these  two  distinct  types  of 

workloads, we can obtain a deeper understanding of the systemʹs performance with regards to the 

placement of containers in the heterogenous SBC cluster.   

Moreover, our evaluation extends to examining the influence of the Frugality Index Findex value 

on container placement within the cluster, taking into account the frugality levels of individual SBC 

nodes.  Additionally,  we  delve  into  the  consequences  of  the  scheduling  policy  outlined  in  the 

preceding  section,  contrasting  its  effectiveness  against  the  native  Hadoop  scheduling  policies. 

Furthermore, we scrutinize the implications of prioritizing container placement for RM, NM, AM, 

and Reduce tasks. This comprehensive experimental  investigation aids  in unraveling insights  into 

the proposed systemʹs adaptability to varying computational demands on frugal SBC‐based cluster, 

thereby facilitating a more comprehensive assessment of its overall efficiency and efficacy. 

4.2. Task Distribution in Native YARN vs the Proposed Approach 

The inherent behavior of the native Hadoop framework lacks discrimination in task assignment 

to  worker  nodes,  disregarding  their  individual  computational  and  memory  capabilities.  This 

indiscriminate allocation approach may inadvertently result in CPU‐intensive tasks, such as RM and 

AM,  being  assigned  to  SBCs  with  lower  performance  capabilities  within  the  cluster.  To 

comprehensively assess the ramifications of such task distribution, we conduct a detailed analysis 

focusing on the impact of heterogeneous node assignment on cluster performance. Leveraging the 

Terasort benchmark application, we  closely monitor and  evaluate how  task distribution patterns 

influence overall cluster efficiency and resource utilization. Through  this  investigation, we aim  to 
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gain  deeper  insights  into  the  dynamics  of  task  allocation  and  its  implications  for  workload 

management within heterogeneous SBC‐based Hadoop clusters. 

We establish two fundamental scenarios to delineate native Hadoopʹs task distribution: Firstly, 

in the best_native scenario, RM, AM, and Reduce tasks are allocated to robust SBCs only. Conversely, 

in the worst_native scenario, RM, AM, and Reduce tasks are dispatched to frugal SBC work nodes 

only. The map tasks are assigned to any available SBC device as in default native YARN scheduler 

settings. These contrasting configurations in comparison to the proposed mechanism provide a clear 

framework for evaluating the impact of task assignment strategies on overall cluster performance. 

Next, we run the Terasort benchmark application with various input data sizes and vary the number 

of Reduce tasks to observe the time taken to complete the tasks. This allows us to compare the native 

Hadoop best_native, worst_native and the proposed YARN framework designed for frugal SBC‐based 

clusters, frugal_conf runtimes.   

 

Figure 5. Execution times of various Terasort jobs with chunk size C= 64MB and 128MB with varying 

dataset size 1GB, 2GB, 4GB and 8GB and Number of Reduce tasks = 1, 2, 4 and 8.    . 

Figure 5 shows the comparison of Terasort run times for best_native, worst_native, and frugal_conf 

settings. We show the comparison in terms of execution times for various settings running Terasort 

on the cluster with chunk sizes 64 MB and 128 MB. The impact of the increasing number of reduce 

tasks can be observed in the figure. For a single reduce task, the time taken for any size of dataset is 

the largest for worst_native. It must be noted that as the number of reduce tasks increase, the execution 

time decreases proportionally, however for worst_native, the time increases due to unavailability of 

powerful SBC nodes for reduce tasks. On the other hand, all the reduce tasks execute on powerful 

SBCs for best_native scenario. As the number of reduce tasks exceed the number of powerful available 

SBC, i.e. for 8 reduce tasks, the execution time also increases. We note that this is because of native 

RM scheduling multiple reduce tasks on the same node causing delay in overall execution time. In 

comparison  the proposed  frugal_conf provides  faster runtimes  for all dataset sizes and number of 

reduce tasks. The proposed frugal_conf leverages the availability of powerful SBCs to execute reduce 

tasks. Furthermore, as only one reduce task is allowed to execute on a powerful SBC, this results in a 

better uniform distribution of tasks across the cluster.   

Figure 6 shows the comparison in terms of ratio of execution time comparing frugal_conf with 

worst_native and best_native. The proposed frugal_conf executes on average of 4.6x and 2.0x faster than 

worst_native  and  best_native  respectively  for  chunk  sizes  =  64MB.  For  larger  chunk  size  =  128, 

frugal_conf executes 4.7x and 1.9x faster than the worst_native and best_native scenarios. These results 

show that the proposed frugal_conf outperforms the native YARN baseline best and worst settings. 
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Figure 6. Comparison of Terasort Execution times ratios of frugal_conf vs worst_native and frugal_conf 

vs best_native for chunk sizes C=64MB and C=128MB. The datasizes are 1GB, 2GB, 4GB and 8GB with 

Number of Reduce = 1, 2, 4 and 8. 

4.3. Effect of adaptiveConfig Scheduling Policy on Task Distribution 

To understand  the  effect of  Findex  and  the proposed NODE_LOCAL(HIGH) priority  in  the 

cluster, we first analyze how the tasks are distributed on a single powerful SBC node. If the Findex 

value for a SBC node is 1, it implies that it is allowed to execute only one AM or reduce task per node. 

Alternatively, a Findex value of 2 and 4 indicates that the system will assign up to 2 or 4 reduce tasks 

per SBC node respectively. This setting may allow AM to co‐locate with reduce tasks on powerful 

SBCs.   

In the following experiment we create three scenarios where i) we assign Findex 1 to all nodes in 

the cluster; this will ensure that a max of one AM or reduce task would execute on a node. ii) We 

assign Findex 2, to all SBC nodes besides RPI 3B+ SBCs. This will allow a maximum of two AM or 

reduce tasks to be co‐located on a single SBC node. Finally, iii) we assign Findex as presented in Table 

3, this ensures that AM and multiple reduce tasks are co‐located on a SBC node. Next, we execute 

Terasort and wordcount benchmark on the cluster for various datasets of different sizes 1GB, 2GB, 4 

GB and 8GB. We also provide the number of reduce tasks to execute the Hadoop job.   

Table 4 shows the execution runtimes of Terasort jobs for the various settings. For each data size 

and chunk size, we see a decrease in execution time as the number of reducers increases from 1 to 8. 

This is expected result of increased parallelism as more reducers allow for parallel processing of data, 

resulting in faster execution times. It is worth noting that the execution time for scenario 3 is far less 

than scenarios 1 and 2  for various chunk sizes and dataset sizes. This  indicates  that the proposed 

NODE_LOCAL(HIGH) priority along with Findex ensures placement of correct number of AM and 

reduce  tasks on  each SBC node. As  the data  size  increases, we generally observe  an  increase  in 

execution time across all configurations. This is expected, as larger datasets require more processing 

time. On average, the Scenario3 Terasort task executions show the lowest execution times, indicating 

that  it  is  the  most  optimized  configuration.  For  8GB  dataset  with  8  reduce  tasks,  Scenario3 

configuration  outperforms  scenario1  configuration  by  5.86x,  whereas  it  outperforms  Scenario2 

configuration by 1.79x. Similarly, Scenario 2 also outperforms the Scenario1 by 3.65x.   

Table 4. Terasort execution times for Findex scenarios with various Datasize and Reduce jobs. 

  Terasort execution time (seconds) 

  Chunk size 64  Chunk size 128 

# of Reduce  Data size (GB)  Scenario1  Scenario2  Scenario3  Scenario1  Scenario2  Scenario3 

1  1  392.3  163.1  132.1  451.1  171.3  129.5 

2  1  235.3  144.7  117.2  270.6  151.9  114.9 

4  1  219.6  114.3  92.6  252.5  120.0  66.9 
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8  1  201.4  109.8  88.9  231.6  115.3  58.7 

1  2  861.0  273.2  221.3  887.1  275.9  216.9 

2  2  693.1  289.6  234.6  679.5  292.5  229.9 

4  2  615.4  293.8  238.0  668.6  293.1  233.2 

8  2  598.4  291.6  236.2  645.7  294.5  231.5 

1  4  1989.1  351.4  305.7  2015.6  365.5  299.6 

2  4  1673.3  298.3  259.5  1798.4  310.2  254.3 

4  4  1498.1  274.5  238.8  1456.1  269.3  234.0 

8  4  1613.7  319.6  278.1  1598.7  323.1  272.5 

1  8  5193.9  1025.6  892.3  5341.9  1016.3  874.4 

2  8  3819.2  916.5  797.4  3857.4  934.8  781.4 

4  8  3189.1  856.1  744.8  3093.4  873.2  729.9 

8  8  3091.8  813.5  707.7  3030.0  829.8  693.6 

Table 5 shows the execution runtimes of Wordcount jobs for the various settings. As wordcount 

is a CPU  intensive application,  it stress  tests  the CPU on  the  frugal SBC based cluster. For  larger 

datasets, e.g. with 8GB Scenario1 and Scenario2 configurations were not able to complete the task. 

Executing these tasks took excess of 3 hours of time, hence these were terminated. For Scenario1, with 

8 reduce  jobs, it was not possible to complete the task as the policy restricts the cluster to execute 

multiple AM and reduce tasks on each node. In some cases, the execution failed which is attributed 

to  the out of memory problem previously discussed. Scenario3 configuration was able  to execute 

wordcount  for  all  the  experiment  variations.  For  4GB  dataset  with  4  reduce  tasks,  Scenario3 

configuration  outperforms  scenario1  configuration  by  2.63x,  whereas  it  outperforms  Scenario2 

configuration by 1.29x. Scenario2 configuration also outperforms the Scenario1 by 1.98x.   

Table 5. Wordcount  execution  times  for Findex  scenarios with various Datasize and Reduce  jobs. 

*denotes the job was not completed in the max allowed time. 

   WordCount execution time (seconds) 

   Chunk size 64  Chunk size 128 

# of 

Reduces 

Data size 

(GB) 

Scenario1  Scenario2  Scenario3  Scenario1  Scenario2  Scenario3 

1  1  3089.1  1729.9  1401.2  3552.5  1816.4  1373.2 

2  1  1891.6  1059.3  858.0  2175.3  1112.3  840.9 

4  1  1651.4  924.8  749.1  1899.1  971.0  734.1 

8  1  *  875.1  708.8  *  918.9  674.1 

1  2  6103.7  3418.1  2768.6  7019.3  3452.3  2713.3 

2  2  4714.3  2640.0  2138.4  5421.4  2666.4  2095.6 

4  2  4309.1  2413.1  1954.6  4955.5  2437.2  1915.5 

8  2  *  2289.7  1854.7  *  2312.6  1817.6 

1  4  13173.8  7377.3  6418.3  15149.9  7672.4  6289.9 

2  4  9513.4  5327.5  4634.9  10940.4  5540.6  4681.3 

4  4  8963.1  5219.4  3953.0  10307.6  5428.2  3992.5 

8  4  *  5069.1  3761.0  *  5271.9  3798.6 

1  8  *  *  12915.3  *  *  13044.5 

2  8  *  *  8194.0  *  *  8030.1 

4  8  *  *  7149.0  *  *  7006.0 

8  8  *  *  6328.0  *  *  6201.4 

4.4. Effect of fetch_threshold Values 

In section 3.5, we defined a fetch_threshold that initiates a reduce task to start processing of the 

intermediate data as soon as the data is available. This threshold ensures that the reduce task has 
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enough data to begin its processing efficiently without waiting for the entire dataset to be transferred. 

In this analysis, we investigate the influence of the fetch_threshold parameter on the parallel execution 

of Terasort and Wordcount applications. Our aim is to discern how this parameter affects the level of 

parallelism within the proposed scheduling mechanism. 

The results in figure 7 show varying trends in Terasort execution time with different values of 

fetch_threshold. We execute the terasort benchmark with 4 and 8 reduce to understand the impact of 

fetch_threshold on the parallelism on the cluster. For Scenario3, with a fetch_threshold of 0.05, there is a 

consistent decrease in execution time as the number of reducers increases. This shows that the reduce 

tasks would be  initiated as  soon as 5% of  intermediate data  is available  therefore  improving  the 

parallelism resulting in reduced execution time. However, as fetch_threshold increases, this trend is 

not consistently observed. For larger data sizes and higher numbers of reducers, the execution time 

tends  to  decrease  initially  and  then  stabilize  or  increase  slightly.  It  has  a  negligible  effect with 

scenarios with a smaller number of reduce tasks.   

Across  all  dataset  sizes,  reducing  the  fetch_threshold  from  0.3  to  0.05  consistently  reduces 

execution  times.  This  is  because  reducing  the  threshold  allows  reduce  tasks  to  start  processing 

intermediate data earlier, improving parallelism and reducing overall execution times. Similar to the 

case of a single reduce task, decreasing the fetch_threshold generally results in shorter execution times 

for Terasort. However, the improvement diminishes as the number of reduce tasks increases. This is 

because with multiple reduce tasks, the data is divided among them, and reducing the threshold may 

not  have  as  significant  an  impact  on  parallelism.  As  the  dataset  size  increases,  the  impact  of 

fetch_threshold becomes more pronounced. Larger datasets benefit more from a lower fetch_threshold 

as they can take advantage of parallel processing early in the execution. 

The results for wordcount experimentation are shown in figure 8. The impact of fetch_threshold 

observed  with  the  wordcount  benchmark  is  similar,  although  the  overall  execution  time  is 

significantly  larger. Wordcount, being a CPU‐intensive  task, may see even greater  improvements 

with lower fetch_threshold values, especially for larger dataset sizes. This is because CPU‐bound tasks 

benefit more from increased parallelism.   

This  suggests  that  the  impact  of  fetch_threshold  on  parallelism  depends  on  the  specific 

configuration and workload characteristics, highlighting the importance of optimizing this parameter 

based on the context of the application and cluster setup. 

 

Figure 7. Comparison of fetch_threshold values for Terasort Execution times for Scenario3 with 8 and 

4 reduce tasks with chunk sizes C=64MB. 
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Figure 8. Comparison of fetch_threshold values for WordCount Execution times for Scenario3 with 8 

and 4 reduce tasks with chunk sizes C=64MB. 

5. Discussion and Future Directions 

The  concept  of  SBC‐based  clusters  introduces  a  frugal  approach  to  resource  utilization  in 

distributed computing environments. These clusters, often composed of devices  like Raspberry Pi 

and Odroid Xu‐4 etc., possess limited processing power and memory compared to traditional server 

nodes. The  frugality arises  from  the  inherent constraints of  these devices, which can  impact  their 

ability to efficiently execute concurrent MapReduce tasks. The study highlights that the performance 

of such clusters  is notably affected by memory  limitations, with devices  like  the Raspberry Pi 3B 

struggling due to their modest 1 GB RAM. This limitation necessitates adjustments in the Hadoop 

framework to accommodate the constraints of SBCs, leading to the proposed changes in the YARN 

scheduling mechanism. 

The proposed changes to the YARN scheduling mechanism aim to address the limitations posed 

by frugal SBC‐based clusters. By introducing a frugalityIndex and adaptiveConfig policy, the redesign 

seeks to optimize resource allocation and enhance system efficiency. The frugalityIndex classifies SBC 

nodes  based on  their processing  capacities  and memory  sizes, providing  crucial  information  for 

container placement and task scheduling. Additionally, the adaptiveConfig policy dynamically adjusts 

resource allocation based on workload and cluster status, ensuring optimal utilization of available 

resources. These changes aim to mitigate performance bottlenecks caused by memory constraints and 

improve the overall efficiency of SBC‐based clusters. 

The suggested changes have significant implications for the performance and scalability of SBC‐

based  clusters.  By  incorporating  the  frugalityIndex  and  adaptiveConfig  policy  into  the  YARN 

scheduling mechanism, the clusters can adapt to the heterogeneous capacities of individual nodes 

more effectively. This adaptive approach enables better utilization of resources, mitigating the impact 

of frugality on cluster performance. Furthermore, the prioritization of tasks based on data locality 

and container status enhances parallelism and reduces job completion times. Overall, the proposed 

changes  facilitate  more  efficient  and  resilient  operation  of  SBC‐based  clusters,  addressing  the 

challenges posed by resource constraints. 

The results demonstrate the effectiveness of custom scheduling mechanisms in optimizing task 

distribution and improving overall cluster performance in a heterogeneous frugal SBC environment. 

By considering individual SBC capabilities through the frugalityIndex and adaptiveConfig policy, the 

study  achieves  better  resource  utilization  and  reduced  task  completion  times.  Furthermore,  the 

impact of fetch_threshold on parallelism highlights the importance of fine‐tuning parameters based on 

workload characteristics. Lower fetch_threshold values lead to improved parallelism, but the optimal 

threshold may vary depending on the specific configuration and workload. 

With the emergence of powerful SBCs such as the Raspberry Pi 5, clusters comprised of these 

devices  can  significantly  enhance  both  per‐watt  and  per‐dollar  efficiency,  thereby  bolstering 

sustainability  efforts.  These  SBCs  are  renowned  for  their  energy  efficiency,  consuming minimal 

power while delivering respectable computational capabilities. In the experimental setup described, 

each SBC within the cluster is outfitted with a 64 GB SD Card and connected via Gigabit Ethernet, 
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ensuring  minimal  power  consumption  compared  to  conventional  server  configurations.  The 

utilization of  a  frugal  SBC  cluster  architecture optimizes  resource utilization by  employing  only 

necessary components, thereby reducing overall energy consumption. 

Moreover, the adoption of frugal SBCs aligns with sustainability objectives by fostering more 

efficient  resource  utilization.  By  repurposing  these  low‐power  devices  for  cluster  computing, 

organizations can prolong their lifespan, curbing electronic waste and promoting a more sustainable 

IT  ecosystem.  The  clusterʹs  focus  on  optimizing  resource  usage,  exemplified  by  tailored 

configurations  such  as  adjusting  the number  of  reduce  tasks per  SBC  node  based  on  its  Findex, 

underscores the commitment to efficient resource allocation and sustainability. 

The experimental setupʹs inclusion of a heterogeneous cluster comprising various SBC models 

allows for cost optimization by selecting models based on their price‐performance ratio and specific 

workload  demands.  The  cost  of  our  cluster  setup was USD  966  for  the  13  devices  along with 

networking essentials (cables, Gigabit Switch) and SDCard storage media. We noted that the cluster 

required approximately 76W of power during wordcount execution. The overall power consumption 

ranged between 69W and 78W for the various experiments.   

To analyze the cluster performance in terms of performance‐per‐watt and per‐dollar, we built a 

similar setup on a PC with Intel i7‐12700KF @ 12‐Core processor with 16GB RAM and a 500GB SSD. 

The power consumption for similar terasort and wordcount jobs ranged between 112W and 138W. 

We  also  noted  that  the  task  execution  times  on  PC were  1.3x  and  1.8x  faster  for  terasort  and 

wordcount jobs compared to the SBC‐based cluster. The performance of the SBC‐based cluster does 

not match that of a PC in terms of cost‐effectiveness per dollar or per watt, mainly due to the fact that 

the previous generation RPi 3B nodes never reached the level of desktop PCs in either metric. Their 

overall performance remains notably  lower compared to the  latest generation RPi 5 nodes. At the 

moment the cost of a RPi5 is approx. 80 USD, it is reasonable to anticipate that the prices for these 

devices will lower in the near future. Heterogeneous SBC‐based clusters comprised of the latest RPi 

5 or upcoming generations of RPi nodes may present promising opportunities for enhancing big data 

processing performance metrics. 

6. Conclusions 

This experimental study underscores the efficacy of heterogeneous frugal SBC‐based cluster for 

sustainable big data processing. The performance of resource frugal nodes in the cluster is notably 

affected by memory limitations. These limitations necessitate adjustments in the Hadoop framework 

to  accommodate  the  constraints.  To  this  end,  in  this work we  proposed  changes  in  the  YARN 

scheduling mechanism. By introducing a frugalityIndex and adaptiveConfig policy, the redesign seeks 

to optimize resource allocation and enhance system efficiency. The frugalityIndex serves as a crucial 

metric for categorizing SBC nodes based on their capabilities. By considering factors such as CPU 

speed and memory size, the index facilitates intelligent resource allocation, ensuring that tasks are 

assigned to nodes best suited to handle them. The adaptiveConfig policy enhances the flexibility of the 

YARN  scheduler  by  dynamically  adjusting  resource  allocation  based  on  workload  and  cluster 

conditions. By optimizing resource allocation in real‐time, the policy enables SBC‐based clusters to 

adapt to changing workloads and maintain high performance levels. The fetch_threshold for reduce 

tasks, enhances task prioritization and data processing efficiency. 

Results  show  that  by  achieving  faster  execution  times  compared  to  traditional  Hadoop 

configurations while consuming minimal power, the cluster maximizes computational output while 

minimizing  energy  expenditure.  Further  optimizations,  such  as  the  proposed  scheduling 

mechanisms  and parameter  tuning,  contribute  to  enhanced performance  efficiency,  enabling  the 

cluster  to achieve superior performance metrics  relative  to  resource consumption. The  frugal_conf 

setting  demonstrates  significant  performance  improvements,  executing  4.7  times  faster  than  the 

worst_native scenario and 1.9 times faster than the best_native scenario. In terms of Terasort execution, 

Scenario3 outperforms Scenario1 by 5.86 times and Scenario2 by 1.79 times. Additionally, setting the 

fetch_threshold to 0.05 achieves 1.23 times faster runtimes for configurations involving 8 reduce tasks. 
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The use of frugal SBCs aligns with sustainability goals by utilizing resources more efficiently. 

Instead of relying on high‐power, energy‐hungry servers, the cluster leverages multiple low‐power 

SBCs, which collectively provide adequate computational capacity. By repurposing frugal SBCs for 

cluster computing, organizations can extend the lifespan of these devices, reducing electronic waste 

and  contributing  to  a more  sustainable  IT  ecosystem.  The  focus  on  optimizing  resource  usage, 

demonstrated by tailoring configurations such as the number of reduce tasks per SBC node based on 

its  frugalityIndex  ensures  efficient  utilization  of  computational  resources,  further  enhancing 

sustainability. 
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