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Abstract: In the dynamic landscape of sustainable computing, use of edge devices is paramount for
reducing the need for large-scale centralized data centers. By processing data locally, edge devices
minimize the energy-intensive computing in data centers, improving the overall performance, cost-
effectiveness whereas reducing the environmental impact. Edge devices may constitute edge
clusters composed of resource frugal Single Board Computers (SBC) such as Raspberry Pi etc. The
small form-factor and energy efficiency of these computers makes them ideal for processing large
data on the edge. Despite their potential, traditional Hadoop configurations struggle to optimize
performance in heterogeneous SBC clusters due to disparities in computing resources.
Consequently, we propose modifications to the Yet Another Resource Negotiator (YARN)
scheduling mechanism to address these challenges. Our proposed changes include the introduction
of a Frugality Index and an adaptiveConfig policy. The Frugality Index categorizes SBC nodes based
on their capabilities, enabling intelligent resource allocation. The adaptiveConfig policy
dynamically adjusts resource allocation in response to workload and cluster conditions, enhancing
system efficiency. Additionally, we introduce a fetch_threshold for reduce tasks to improve task
prioritization based on locality and data processing efficiency. We evaluate our approach using a
13-node SBC cluster and conduct experiments with CPU-intensive and IO-intensive Hadoop
benchmarks. The results demonstrate significant performance improvements compared to native
YARN settings, with execution times 4.7 times faster than the worst_native and 1.9 times faster than
the best_native scenarios. Furthermore, the proposed adaptiveConfig policy implementing the
frugality index and a fetch_threshold outperforms the native YARN by 5.86 times and 1.79 times in
Terasort and wordcount executions respectively. Our findings underscore the effectiveness of our
approach in managing the heterogeneous nature of SBC clusters and optimizing performance across
various hardware configurations. The adaptive policies prove well-suited to the frugal SBC-cluster
context, yielding enhanced outcomes and paving the way for sustainable big data processing
initiatives.

Keywords: single board computers; frugal edge computing; Hadoop; YARN; heterogeneous

1. Introduction

In the realm of sustainability and environmental conservation, the utilization of low-cost single
board computers (SBCs) in edge devices stands out as a beacon of innovation and efficiency. These
compact computing devices offer a myriad of benefits that extend beyond conventional computing
paradigms. From reducing energy consumption to enabling localized processing, the integration of
SBCs in edge devices holds significant promise for mitigating environmental impact while fostering
sustainable technological advancements [1]. Unlike traditional computing setups that often require
substantial power consumption, SBCs are designed to operate efficiently with minimal energy usage.
This inherent characteristic makes them ideal candidates for powering edge devices, which are
frequently deployed in remote or off-grid locations where energy resources may be limited. By

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2024 d0i:10.20944/preprints202404.0154.v1

minimizing energy consumption, SBC-based edge devices contribute to overall energy conservation
efforts, thereby reducing carbon emissions and lessening the strain on the environment [2]. Edge
clusters, comprised of diverse SBCs with varying processing capabilities, memory, and power
requirements, present a unique opportunity to leverage distributed computing resources in
environmentally conscious ways.

The compact form factor of SBCs enables the development of small-scale, localized computing
solutions tailored to specific environmental challenges. These edge devices can be strategically
deployed in various settings, ranging from agricultural fields to urban infrastructure, to collect and
analyze data in real-time. By processing data at the edge, without the need for continuous
connectivity to centralized servers, SBC-based devices minimize latency and bandwidth
requirements while enhancing overall system responsiveness. V. Thesma et. al., in [3] developed a
low-cost distributed computing pipeline for cotton plant phenotyping using Raspberry Pi, Hadoop,
and deep learning. They compare the performance of the Raspberry Pi based Hadoop cluster in
various configurations for high-throughput cotton phenotyping in field-based agriculture.
Veerachamy in [4] present agricultural irrigation recommendation and alert system using
optimization and machine learning in Hadoop for sustainable agriculture. They use machine learning
algorithms to forecast alerts based on various parameters such as air pressure, water level, humidity
etc. Setiyawan in [5] developed a Internet of Things (IoT)-Based Wireless Engine Diagnostic Tool
prototype using a Raspberry Pi. This plug-and-play tool is used for engine diagnostics in vehicle
repairs shops. In [6], researchers developed an Intelligent Personal Assistant System Based on IoT for
People with Disabilities. The proposed system utilizes Raspberry Pi as a control device for processing
natural language input. Netinant et. al. in [7] developed an IoT-Driven Smart Home Security and
Automation framework with Voice Commands. The proposed framework ensures the incorporation
of components, including Raspberry Pj, relays, motion sensors, etc. Authors in [8] analyze the impact
of Lightweight Mutual Authentication for Healthcare IoT. The proposed technique significantly
improves the disadvantages of IoT devices that lack computing power.

Over the past decade, Apache Hadoop has become a leading framework for big data processing
[9]. Hadoop, a robust framework designed for distributed storage and processing of vast datasets,
serves as a cornerstone in fostering sustainability initiatives across diverse domains. Its distributed
computing model enhances energy efficiency by enabling parallel processing of data across multiple
nodes within a cluster. Lately, researchers in [9-14] have directed their attention towards achieving
energy-efficient remote data processing through the utilization of clusters comprised of single-board
computers (SBCs) like Raspberry Pi, coupled with the Hadoop framework for handling large-scale
data processing tasks in various context including agriculture, smart cities, smart homes, healthcare
etc. Qureshi et. al. in [11] developed a heterogenous cluster of 20 SBCs including Raspberry Pis and
Ordoid Xu-4 for data analytics using Hadoop. They conduct various experiments to analyze the
performance and energy efficiency of the cluster for workloads of various sizes. They observed that
the performance of Raspberry Pi based cluster was inferior to Ordoid Xu-4 machines due to the frugal
nature of the devices. Lee in [12] present an in-depth investigation into Hadoop performance,
focusing specifically on the latest generation Raspberry Pi cluster, built with RPi model 4B. They
conduct a thorough examination of Apache Hadoop benchmarks and note that the cluster composed
of 5 latest model SBC can successfully process workload of a few tera-bytes. Neto et.al in [13] analyze
the performance of Raspberry Pi based cluster using various benchmark including Terasort and
DFSIO. They note that clusters formed by Raspberry Pi have proved to be a viable and economical
solution for carrying out tasks involving the use of Big Data. Nugroho et. al. in [14] also design a
parallel computing framework using raspberry Pi clusters for IoT services and applications. The
proposed framework uses Hadoop HDFS for data storage and processing.

Based on the preceding studies, it is evident that employing SBC-based clusters for big data
processing with Hadoop offers viable and sustainable solutions for diverse applications. The
presence of heterogeneous SBC clusters within the Hadoop framework introduces fresh challenges
stemming from disparities in computing resources across individual nodes. Native Hadoop fails to
adequately address the diversity among cluster nodes, leading to notable discrepancies in
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performance or, more critically, recurrent node failures within heterogeneous SBC-based Hadoop
clusters. At its core, Yet Another Resource Negotiator (YARN) serves as a resource management
and job scheduling framework in Apache Hadoop, facilitating the efficient allocation of
computational resources across a cluster. However, traditional approaches to YARN optimization
may not fully account for the characteristics of frugal heterogeneous edge clusters, where SBCs
operate under constraints of computational power, memory, and network connectivity. Thus, there
is a pressing need to explore novel strategies and techniques tailored to the specific challenges and
opportunities presented by SBC-based edge computing environments.

In this study, we propose modifications to the YARN scheduling mechanism aimed at enhancing
system efficiency in SBC-based clusters. These changes involve the introduction of a Frugality-Index
and an adaptiveConfig policy. The Frugality-Index serves as a pivotal metric for categorizing SBC
nodes according to their capabilities, incorporating factors such as CPU speed and memory size. This
index facilitates intelligent resource allocation, ensuring tasks are assigned to nodes best equipped to
handle them. Additionally, the adaptiveConfig policy enhances the YARN scheduler's flexibility by
dynamically adjusting resource allocation in response to workload and cluster conditions. This real-
time optimization enables SBC-based clusters to adapt to evolving workloads while maintaining high
performance levels. Furthermore, the introduction of a fetch_threshold for reduce tasks enhances task
prioritization and overall data processing efficiency.

We construct a SBC cluster composed of 13 SBC devices and conduct various experiments to test
the proposed scheduling mechanism using CPU-intensive and IO-intensive Hadoop benchmarks
against native YARN settings. The proposed settings demonstrate significant performance
improvements, executing 4.7 times faster than the worst_native and 1.9 times faster than the best_native
scenarios. In terms of Terasort execution, Scenario3 outperforms Scenariol by 5.86 times and
Scenario2 by 1.79 times. Additionally, setting the fetch_threshold to 0.05 achieves 1.23 times faster
runtimes for configurations leveraging higher level of parallelism. Our findings indicate the efficacy
of our approach in managing the heterogeneous cluster nature and performing well across standard
CPU-Intensive and IO-Intensive Hadoop benchmark applications. Additionally, we ascertain that the
adaptive policies are well-matched to the frugal SBC-cluster context, yielding enhanced outcomes
across various hardware configurations, including newer high-performance models and older,
slower SBCs.

The rest of the paper is organized as follows. Section 2 presents relevant work and background.
Section 3 details the re-designed architecture of the YARN based on the proposed policy framework.
Section 4 presents extensive performance evaluation of the SBC cluster followed by discussion and
future directions in section 5. Section 6 concludes this work.

2. Background

In this section we present SBC properties; Apache Hadoop YARN components and architecture;
and the motivation to design scheduling policies in YARN for frugal SBC based clusters.

2.1. Single Board Computers

SBCs are compact computing devices built on a single circuit board, encompassing all essential
components such as CPU, memory, storage, and input/output interfaces. These boards offer a range
of advantages, particularly in terms of small form factor while being power and energy-efficient.
Their compact design makes them suitable for applications where space is limited, and their
integrated components contribute to lower power consumption compared to traditional desktop
computers. Additionally, many SBCs are designed to operate efficiently on minimal power, making
them ideal for battery-powered devices and scenarios where energy efficiency is paramount. SBCs
also come with certain limitations.

While they offer sufficient processing power for many tasks, their performance may be limited
compared to desktop computers, particularly for demanding computational tasks such as big data
applications. Despite these limitations, SBCs remain popular and versatile computing platforms used
in various applications. Examples of well-known SBCs include the Raspberry Pi (RPi), Arduino,
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NVIDIA Jetson Nano, Odroid XU4, and BeagleBone Black. Each of these devices offers unique
features and specifications, catering to a diverse range of use cases, while embodying the principles
of compactness, efficiency, and affordability that define the SBC ecosystem.

Table 1 provides a summary of SBCs used in this study. Raspberry Pi computers are by far the
most popular SBC and are widely used in industrial, healthcare, robotics and IoT applications. First
released in 2012, are cost-effective, energy efficient and are widely accessible and have been used in
various studies. A major drawback with earlier generation RPi was the computational capacity as
highlighted in our earlier work in [11]. With newer models 3B+, 4B and 5th generation, the use of
improved on-board processors has significantly improved the performance of individual SBCs.
Additionally, the increased upgraded RAM module using LPDDR4X RAM available on RPI 4B and
5 is a useful upgrade. Gigabit Ethernet and HDMI come standard with these SBCs for faster
connectivity and A/V display. We also use Odriod XU-4 'SBCs that use Samsung Exynos Octa core
ARM processor with a 2GHz quad-core Cortex-A15 and 1.3 GHz quad-core Cortex-A7 processor. The
Xu-4 has 2 GB DDR3 RAM, gigabit ethernet and a standard HDMI port. The Pine64 RockportPro64
%is another SBC used in this work. It's powered by a Rockchip RK3399 Hexa-Core (dual ARM Cortex
A72 and quad ARM Cortex A53) 64-Bit Processor with MALI T-860 Quad-Core GPU. The
ROCKPro64 is equipped with 4GB LPDDR4 system memory and 128Mb SPI boot Flash. All of these
SBCs support microSD Cards for storage with varying sizes including 64GB. Odroid Xu4 and
Rockpro64 also support the faster eMMC modules.

Table 1. Specifications of various SBC used in this work.

Raspberry Pi 5 Pine64 Rockpro64 Raspberry Pi 3B+ Odriod XU-4
Processor 2.4 GHz quad-core 64- 1.8GHz Hexa Rockchip 1.4GHz 64-bit quad-core Exynos5 Octa ARM
bit ARM Cortex A76  RK3399 ARM Cortex ARM Cortex-A53 Cortex-A15 Quad 2Ghz

A72 and 1.4 GHz Quad and Cortex-A7 Quad
Cortex-A53 1.3GHz
Memory 8GB 4GB 1GB 2GB
LPDDR4X-SDRAM LPDDR4-SDRAM LPDDR3-SDRAM DDR3
Ethernet Gigabit Ethernet Gigabit Ethernet 300Mbit/s Gigabit Ethernet
GPU VideoCore VII Mali-T860 GPU VideoCore IV Mali-T628 MP6
800MHz 700MHz 400MHz 600 MHz
AV HDMI HDMI HDMI 1.3 HDMI
Price (USD) 80 79.99 35 53
Release 2023 2018 2018 2016
Power 1.3 Widle; 3.1 Widle; 1.9 W idle; 2.1 W idle;
8.6 W max 10.9 W max 5.1 W max 6.4 W max

2.2. Apache Hadoop YARN

The Hadoop ecosystem encompasses a suite of open-source projects and tools revolving around
the core Hadoop framework. Hadoop, a distributed computing framework, facilitates the storage and
processing of vast datasets across clusters of commodity hardware. Central to this ecosystem is the
Hadoop MapReduce providing a programming model for distributed data processing, while YARN
manages resource allocation. Hadoop YARN scheduling is a critical component of the Hadoop
ecosystem, tasked with efficiently managing resources across the cluster.

In Hadoop, the NameNode serves as the central component of the Hadoop Distributed File
System (HDFS), managing metadata about the file system namespace and block locations. It directs
client read and write requests and oversees the storage of data across the cluster's worker nodes called
DataNodes. The Resource Manager (RM), running on the master node, manages resource allocation and
job scheduling and monitors their execution. Together, the NameNode and RM facilitate efficient
distributed storage and processing. A DataNode is a worker node responsible for storing data blocks

1 Odroid Xu-4 https://www.odroid.co.uk/hardkernel-odroid-xu4/odroid-xu4
2 Pine 64 RockPro64 https://pine64.com/product/rockpro64-4gb-single-board-computer,
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and ensuring data replication and availability. It communicates with the NameNode to report block
information and handles read and write requests. Conversely, the Node Manager (NM) is a per-node
agent managing resources and executing tasks on worker nodes. It reports available resources to the
RM, launches and monitors containers, and ensures the proper execution of tasks. The Application
Master (AM) manages the execution of individual applications within the cluster, negotiating
resources from the RM, coordinating task execution, and monitoring progress.

A container, represents a unit of resource allocation. When a client submits a MapReduce job to
the Hadoop cluster, the RM receives the request and designates a worker node to host the AM in a
container for the job. The NM on the worker node is notified of the job which coordinates with the
AM to request the required number of containers. The NM allocates resources to containers and
launches the required number of containers on the worker node. These containers host the actual
MapReduce tasks or application code. In case containers fail, YARN provides fault tolerance by
swiftly detecting node failures through NM, which report to the RM through periodic heatbeat
messages. Tasks affected by node failures are rescheduled on available nodes, and containers' states
are recovered to ensure uninterrupted progress. Figure 1 shows the various components of the YARN
architecture and the service flow. The RM employs its scheduler to allocate resources based on
availability and predefined policies. YARN supports various scheduling policies such as FIFO,
Capacity, and Fair schedulers, each with distinct resource allocation and job prioritization methods.
it dynamically manages the allocation of containers based on the available resources and the
requirements of applications running on the cluster.

Master Node Worker Node Worker Node Worker Node

DataNode DataNode DataNode

e Manager — Manager

Application Master ’

Node Manager

Application Master

Figure 1. Hadoop YARN architecture and service flow.

In this work we propose changes to the YARN architecture so that it is able to discern frugal SBC
based nodes in the cluster. The proposed changes are designed to improve the resource scheduling
policies focusing on optimal placement of resources in the cluster. In order to evaluate the proposed
approach, we implement a SBC based cluster consisting of four types of SBC devices. Our results
demonstrate that the proposed approach effectively adapts to the heterogeneous nature of the cluster
and perform well for standard CPU-Intensive and IO-Intensive Hadoop benchmark applications.
Furthermore, our findings illustrate that the adaptive policies are well-suited to the frugal SBC-
cluster environment, yielding improved outcomes across both higher-grade hardware and older,
slower SBC models.

3. Proposed Scheduling Mechanism for Frugal SBC-Based Clusters

3.1. Motivation and Limitations

In the native Hadoop framework, there exists no inherent mechanism for determining the
specific capacities of individual nodes, such as CPU processing capabilities, or physical memory
availability, etc. It is pertinent that these characteristics of nodes within clusters on the edge made
with resource-frugal devices would play a pivotal role in determining the performance of executing
concurrent MapReduce tasks.
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In [11], the authors observed that the performance of Raspberry Pi 3B based Hadoop cluster was
inferior to Ordoid Xu-4 machines primarily due to the frugal nature of the onboard components on
the devices. The RPi based cluster in particular was more prone to failure due to lack of memory error
frequently hindering the progress of MapReduce task. MapReduce tasks being dropped due to
memory limits indicate issues such as inefficient memory usage within the application, or insufficient
memory resources allocated to the cluster. Upon further examination, it became apparent that a
native Hadoop setup does not support concurrent execution of two or more map tasks on a node
with only 1 GB of RAM. On the other hand, the Odriod Xu-4 SBC did not present similar performance
bottleneck due to memory restrictions. It was able to handle up to two containers per node/device.

However, the native YARN settings do discern the limited capabilities of these devices. When
the number of containers exceeds two on a SBC node, it can overwhelm the task queue within the
scheduler. This overburdening of tasks can cause the system to become unresponsive, as it struggles
to manage the concurrent execution of tasks efficiently. Consequently, the system may reach a point
where it becomes irresponsive to further requests or tasks, leading to a potential halt in job execution.
In such scenarios, users may need to intervene by manually terminating the jobs to alleviate the strain
on the system and restore its functionality. A Raspberry Pi Hadoop node equipped with 1 GB of RAM
is unable to effectively carry out significant data processing tasks that necessitate simultaneous
execution of multiple map tasks.

To this end, we modified the mapreduce.map.memory.mb property in the mapred-site.xml
configuration file to maximize the memory limit to 852 MB. Table 2 shows the Hadoop and YARN
configuration files. This limits only one container to execute on the frugal RPi devices in the cluster
ensuring that the application does not crash. A similar observation is also made by the authors in [12]
where the authors run in to similar issues with regards to memory management. To alleviate this
restriction, one approach is to increase the size of the swap partition on the host operating system to
maximize the utilization of the virtual memory, however, this resulted in slower performance due to
the significantly slow read/write speeds on the local storage media (SD Cards). Regardless of these
improvements, it is imperative that the physical memory constraint restricts parallelization within
the cluster, effectively throttling the performance due to the frugal nature of the SBC devices.

In this section, we redesign the YARN scheduling mechanism to align with the frugal-SBC
resources in the cluster. We define a frugality-index that classifies frugal SBC nodes based on their
onboard processing capacities and memory size. Using Hadoop Remote Procedure Calls (RPC), the
frugalityIndex is passed as parameter to the RM, NM and Application Manager to assign relevant
containers to the frugal SBC node(s). We redefine YARN scheduling policies to adapt to the
frugalitylndex and proposed a adaptiveConfig policy for scheduling jobs/tasks. The assignment of
containers is prioritized and placed on frugal nodes within the cluster based on these parameters.
This approach ensures efficient resource utilization and improves the system's overall efficiency by
adaptively assigning Map and Reduce tasks according to the heterogeneous capacities of nodes
within the SBC-based cluster. The following details these proposed changes to the YARN design.

Table 2. Hadoop YARN configuration properties used for resource frugal SBC-based cluster.

Mapred-site.xml Value
yarn.app.mapreduce.am.resource.mb 852
mapreduce.map.cpu.vcores 1
mapreduce.reduce.cpu.vcores 1
mapreduce.map.memory.mb 852
mapreduce.reduce.memory.mb 852
YARN-site.xml Value
yarn.nodemanager.resource.memory-mb 1024
yarn.nodemanager.resource.cpu-vcores 1
yarn.scheduler.maximum-allocation-mb 852
yarn.scheduler.maximum-allocation-vcores 8

yarn.nodemanager.vmem-pmem-ratio 2.1
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3.2. Frugality Index

The native Hadoop framework lacks any mechanism to discern the container placement on
nodes based on their specific physical computational capacities or physical memory space. As
mentioned earlier, it is evident that the physical memory capacities of nodes play a crucial role in
influencing the concurrent execution of MapReduce tasks.

The NM on each node in the cluster determines the frugality index (Findex) based on the local
device/ Node’s physical characteristics. Table 3 presents a Findex guideline for various SBC used in
this study. The Findex value implicitly is derived from the size of the on-board memory available on
the device. The Findex value is communicated from the NM to the RM along with the heartbeat
messages. This is to reduce the overall communication overhead. The RM considers the updates
along with the scehduling policies to place containers on the various worker-nodes.

Table 3. Frugality Index guideline.

FIndex Device CPU Memory
4 Raspberry Pi 5 2.4 GHz 8 GB
3 Raspberry Pi 4 1.5GHz 4GB
3 Pine64 Rockpro64 1.8 GHz 4GB
2 Odroid Xu4 2.0 GHz 2GB
1 Raspberry Pi 3B 1.4 GHz 1GB
1 Raspberry Pi 2 900 MHz 1 GB

3.3. Heartbeat Messages

The RM in Hadoop YARN determines the resources required for a job based on the application's
resource requests, the cluster's available resources, and any configured scheduling policies. When a
user submits a job to the RM, the application specifies its resource requirements, including CPU cores,
memory, and other resources through the Application Manager. When the AM initiates, it posts
request to the scheduler. Based on the provided parameters, the Scheduler requests ResourceTracker
to launch the AM. It finds suitable datanode that supports the AM container and assigns it to the
application. The application Manager launches the AM on the worker node. A datanode executes the
NM. NM periodically update the RM to inform about their available resources through a process
called the heartbeat mechanism.

NM periodically sends heartbeat messages to the RM to indicate their availability and resource
status. These heartbeat messages contain information such as the node's total memory, CPU cores,
available memory, available CPU cores, and other resource metrics. The RM receives these heartbeat
messages from all active NM in the cluster. Based on its resource allocation decision, the RM
communicates with specific NM to allocate containers for executing job tasks. Each container is
launched with the specified resource allocation, and tasks within the containers begin execution.
Throughout the job's execution, NM continue to send periodic heartbeat messages to the RM,
providing updates on container status and resource usage. Figure 2 illustrates the information flow
between various components of the RM and NM. The Findex values are used by the scheduling
mechanism to determine appropriate resources for containers and assign tasks to frugal nodes for
computation in the cluster.
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Figure 2. Information flow between various components of RM and NM in modified YARN.

3.4. Adaptive Fair Scheduling Scheme

Native YARN offers three distinct scheduling policies: FIFO, Capacity, and Fair [15]. The FIFO
scheduling policy, being the simplest, executes applications in the order of their arrival, without
permitting concurrent execution. Consequently, long-running applications have the potential to
block the execution of shorter jobs that may only require a fraction of the available resources. The
Capacity scheduling policy enables the definition of multiple queues each assigned with a percentage
of cluster resources. Each queue is assured a minimum resource allocation, facilitating concurrent
execution of applications submitted to different queues. In addition, applications within the same
queue may also run concurrently, subject to the queue policy. The Fair scheduling policy, similar to
Capacity policy, features queues with minimum resource guarantees. However, instead of statically
partitioning resources, they are dynamically balanced among submitted jobs. These scheduling
policies are set in the Hadoop and YARN configuration properties yarn.scheduler.capacity.maximum-
allocation-mb and yarn.scheduler.capacity.maximum-allocation-vcores.

Configuring Hadoop for launching containers necessitates the user's insight and expertise.
Inspired by work in [16,17], we implement an adaptiveConfig policy that interacts with YARN to obtain
workload and cluster status. The configuration parameters are initiated at the onset of the cluster;
YARN reads the job history server to obtain each jobs status information, such as submission
timestamps, resources required etc. Next it reads the yarn-site.xml file to obtain the status of the
cluster resources such as maximum available vcores and memory on the node. Finally, it accesses the
capacity-scheduler.xml or fair-scheduler.xml file to re-configure the schedulers parameters. We
modify these files to implement our adaptiveConfig policy. The Findex is used by the RM to
dynamically set and assign the number of containers while considering the onboard processing
power and memory availability on the node. As a NM registers with the RM, through the heartbeat
message, RM computes the number of available containers for each worker nodes based on the
container related properties defined in the configuration parameters. For a NM executing on a frugal
node with Findex larger than 1, it will assign only one container to execute on the node. Alternatively,
for a Findex value 2, up to a maximum of two containers would be assigned. For larger values of
Findex, the YARN default values set-in allowing more than two containers to be assigned to the NM.

The proposed adaptiveConfig scheduling policy enhances the Fair scheduling policy by
facilitating adaptive resource allocation, dynamically adjusting to utilize the resources available on
the physical nodes effectively. This approach ensures optimal resource utilization and enhances the
overall efficiency of the system by intelligently allocating Map tasks based on the varying capacities
of individual nodes within the heterogenous SBC based cluster.
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3.5. Tasks Locality and Prioritization

The scheduling policy aims to optimize resource utilization, minimize job completion time, and
ensure fairness among users and applications sharing the cluster resources [18]. The inconsistent
performance observed in Hadoop applications stems primarily from the performance gap among
heterogeneous SBC nodes, which the native Hadoop framework fails to address adequately. Unlike
map tasks, there are no specific guidelines for assigning AM and reduce tasks to cluster nodes.
Consequently, AM and reduce tasks can be distributed across any node in the cluster, leading to
significant performance discrepancies based on node capabilities. In essence, assigning reduce tasks
to SBC nodes with limited computational power results in prolonged execution times for Hadoop
MapReduce jobs, as map tasks on these nodes cannot fully leverage data locality.

Hadoop defines three priorities for data locality namely NODE_LOCAL, RACK_LOCAL and
OFF_SWITCH [19]. NODE_LOCAL refers to the highest priority level for task scheduling. It means
that Hadoop Scheduler tries to assign tasks to nodes where the data needed for computation is
present, resulting in minimal data transfer across the network. RACK_LOCAL comes next in priority,
where tasks are scheduled to nodes in the same rack as the required data, thus minimizing network
traffic compared to off-rack assignments. Finally, OFF_SWITCH refers to the lowest priority level,
where tasks are assigned to any available node regardless of its proximity to the data, resulting in
potentially higher network overhead as data needs to be transferred over longer distances. These
priorities aim to optimize data locality and minimize network traffic for improved performance in
Hadoop clusters [20].

In our proposed YARN re-design, the RM and AM are processes that need to execute on
powerful SBC with a higher priority. We define the NODE_LOCAL(HIGH) priority that would be
assigned to these processes on any available powerful SBCs. As these processes initiate at the onset
of the cluster establishment, there is a higher probability that these processes would be assigned to
powerful SBC. However, the same cannot be said about application containers that are created to
complete a MapReduce Task [21]. As the number of tasks increase, there is no guarantee that the
native Hadoop scheduler would assign fewer containers to a frugal node. It is quite possible that
multiple map and reduce tasks would be assigned to a node hosting and possibly executing multiple
containers on the same node while other nodes in the cluster may have been assigned fewer
containers or none at all. This uneven distribution of resources is quite common with native Hadoop.

To alleviate this concern and to improve uniform distribution of tasks across the cluster, we look
at the state of the container. The status of any container in Hadoop can be any of ALLOCATED,
ACTIVE, PENDING, COMPLETED or KILLED. A container is considered ACTIVE when it has been
allocated resources and is currently executing tasks assigned to it. During this state, the container is
actively processing data or running computations as part of a job. A container is in a PENDING state
when it has been requested by an application but has not yet been allocated resources to start
execution.

Containers typically enter the pending state while the RM processes resource requests and
determines where to allocate resources within the cluster. During the shuffle and sort phase,
intermediate key-value pairs are streamed from map task outputs to the disks of the nodes where the
reduce tasks will be executed. As these intermediate key-value pairs arrive at the reduce node, they
are immediately available for processing by the reduce task. The reduce task can start processing the
intermediate data as soon as a predefined threshold of data is available, typically referred to as the
fetch_threshold. This threshold ensures that the reduce task has enough data to begin its processing
efficiently without waiting for the entire dataset to be transferred. Once the fetch_threshold is reached,
the reduce task initiates its processing logic, which involves grouping, sorting, and reducing the
intermediate data to produce the final output. Furthermore, the priority for any reduce task is set to
RACK_LOCAL; i.e. no two reduce tasks would execute on the same physical node. By starting to
work on available intermediate data early, reduce tasks can overlap their computation with the
ongoing data transfer, thus reducing idle time and improving overall job throughput. This approach
leverages the distributed nature of MapReduce processing, enabling efficient utilization of cluster
resources and faster job completion times. This enhances placement or tasks in the clusters improving
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its overall parallelism. Figure 3 summarizes the proposed changes to the YARN information flow in
a heterogenous frugal SBC based cluster.

Scheduler NODE_LOCAL Host2, Rackl 2 1GB + 1 core 1l
RACK_LOCAL Host3, Rackl 4 2GB + 1 core 1
NODE_LOCAL Hostl, Rackl 1 1GB + 1 core 1
Resource NODE_LOCAL  Host3, Rackl 4 2GB + 1 core 2
Tracker
NODE_LOCAL Host2, Rackl 2 1GB + 1 core 1

Fomeae
Launch/AM e g T
Negotiate N ‘\\‘_ ‘"~-_\\_‘
resources \, heartbeat "\\\. “\—‘__‘\
NM / NM NM NM
; Container m Container task
Container A | .
Container
Host0, Rackl Hostl, Rackl Host2, Rackl Host3, Rackl

Launch Tasks in containers
Figure 3. Information flow between various components of RM and NM in modified YARN.

4. Performance Evaluation and Results

This section presents the experimental evaluation and presents the empirical results.

4.1. Experimental Setup

We prepare our heterogenous frugal SBC cluster using 13 SBC composed of one master node
and 12 worker nodes. The master node would be hosted on the best SBC at our disposal, i.e.
Raspberry Pi 5 assigned Findex=4. The worker nodes would execute on 3x Raspberry Pi5 (Findex=4),
3x Raspberry 3B (Findex=1), 3x Odriod Xu4 (Findex=2) and 3x Rockpro64 (Findex=3) SBC. Details for
these SBCs can be found in Table 1. Each SBC is fitted with a 64 GB SD Card and is connected to a
Gigabit Ethernet. A schematic diagram can be seen in figure 4. The Ubuntu 22.04.4 LTS 64-bit
Operating System (OS) for ARM processors was installed on each SDCard. A 4 GB swap space was
reserved on all SBC during installation. We opted not to install a Graphic User Interface (GUI) like
the GNOME desktop on Ubuntu, this was to maximize the available resources for YARN. Hadoop
version 3.3.6 was installed on each node. To initialize the Hadoop cluster, we used the vcores and
memory limits provided in Table 2. The default Hadoop values for these properties always cause
memory related issues in the SBC clusters. The 4GB swap space would be useful for resource-frugal
devices with limited onboard memory when running containers concurrently.
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Figure 4. Heterogeneous Hadoop cluster built with frugal SBC devices including RPi5, RPi3, Odroid
Xu4 and RockPro64.

In this experimental study we would be focusing on task completion times for various map and
reduce tasks. We would also be measuring the CPU utilization, memory utilization, network traffic.
To ensure a comprehensive assessment, our evaluation will concentrate on workloads that are both
CPU-intensive and I/O-intensive. Specifically, we will utilize two standard Hadoop benchmarks:
WordCount and Terasort programs. WordCount is a CPU-intensive benchmark that involves
counting the occurrences of words in a given dataset. It primarily stresses the computational
capabilities of the system, making it suitable for evaluating CPU performance. On the other hand,
Terasort is an I/O-intensive benchmark that focuses on sorting large volumes of data. This benchmark
heavily exercises the input/output subsystem of the system, making it ideal for assessing I/O
performance.

Through the evaluation of these benchmarks, we aim to evaluate the efficacy of the proposed
changes to the YARN scheduling mechanism compared to the native YARN settings. This assessment
involves analyzing how well the system manages tasks demanding substantial CPU processing and
those reliant on intensive input/output operations. By focusing on these two distinct types of
workloads, we can obtain a deeper understanding of the system's performance with regards to the
placement of containers in the heterogenous SBC cluster.

Moreover, our evaluation extends to examining the influence of the Frugality Index Findex value
on container placement within the cluster, taking into account the frugality levels of individual SBC
nodes. Additionally, we delve into the consequences of the scheduling policy outlined in the
preceding section, contrasting its effectiveness against the native Hadoop scheduling policies.
Furthermore, we scrutinize the implications of prioritizing container placement for RM, NM, AM,
and Reduce tasks. This comprehensive experimental investigation aids in unraveling insights into
the proposed system's adaptability to varying computational demands on frugal SBC-based cluster,
thereby facilitating a more comprehensive assessment of its overall efficiency and efficacy.

4.2. Task Distribution in Native YARN vs the Proposed Approach

The inherent behavior of the native Hadoop framework lacks discrimination in task assignment
to worker nodes, disregarding their individual computational and memory capabilities. This
indiscriminate allocation approach may inadvertently result in CPU-intensive tasks, such as RM and
AM, being assigned to SBCs with lower performance capabilities within the cluster. To
comprehensively assess the ramifications of such task distribution, we conduct a detailed analysis
focusing on the impact of heterogeneous node assignment on cluster performance. Leveraging the
Terasort benchmark application, we closely monitor and evaluate how task distribution patterns
influence overall cluster efficiency and resource utilization. Through this investigation, we aim to
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gain deeper insights into the dynamics of task allocation and its implications for workload
management within heterogeneous SBC-based Hadoop clusters.

We establish two fundamental scenarios to delineate native Hadoop's task distribution: Firstly,
in the best_native scenario, RM, AM, and Reduce tasks are allocated to robust SBCs only. Conversely,
in the worst_native scenario, RM, AM, and Reduce tasks are dispatched to frugal SBC work nodes
only. The map tasks are assigned to any available SBC device as in default native YARN scheduler
settings. These contrasting configurations in comparison to the proposed mechanism provide a clear
framework for evaluating the impact of task assignment strategies on overall cluster performance.
Next, we run the Terasort benchmark application with various input data sizes and vary the number
of Reduce tasks to observe the time taken to complete the tasks. This allows us to compare the native
Hadoop best_native, worst_native and the proposed YARN framework designed for frugal SBC-based
clusters, frugal_conf runtimes.

Terasort Execution time with C=64 MB Terasort Execution time with C=128 MB
4000 mworst_natwe 8 6000 mworst_native 8
m best_native m best_native
mfrugal_conf 7 nfrugal_conf 7
# of Reduces 5000 4 ofReduces
3000 6 6

4000

2000 4 3000 4

Number of Reduces
Number of Reduces

2000

UEEEFL!EELLFLlLLLo WMFF%FLEEELL#L!LLLl

Data size in GB Data size in GB

Execution time (seconds)
Execution time (seconds)

-

Figure 5. Execution times of various Terasort jobs with chunk size C= 64MB and 128MB with varying
dataset size 1GB, 2GB, 4GB and 8GB and Number of Reduce tasks =1, 2, 4 and 8.

Figure 5 shows the comparison of Terasort run times for best_native, worst_native, and frugal_conf
settings. We show the comparison in terms of execution times for various settings running Terasort
on the cluster with chunk sizes 64 MB and 128 MB. The impact of the increasing number of reduce
tasks can be observed in the figure. For a single reduce task, the time taken for any size of dataset is
the largest for worst_native. It must be noted that as the number of reduce tasks increase, the execution
time decreases proportionally, however for worst_native, the time increases due to unavailability of
powerful SBC nodes for reduce tasks. On the other hand, all the reduce tasks execute on powerful
SBCs for best_native scenario. As the number of reduce tasks exceed the number of powerful available
SBC, i.e. for 8 reduce tasks, the execution time also increases. We note that this is because of native
RM scheduling multiple reduce tasks on the same node causing delay in overall execution time. In
comparison the proposed frugal_conf provides faster runtimes for all dataset sizes and number of
reduce tasks. The proposed frugal_conf leverages the availability of powerful SBCs to execute reduce
tasks. Furthermore, as only one reduce task is allowed to execute on a powerful SBC, this results in a
better uniform distribution of tasks across the cluster.

Figure 6 shows the comparison in terms of ratio of execution time comparing frugal conf with
worst_native and best_native. The proposed frugal_conf executes on average of 4.6x and 2.0x faster than
worst_native and best_native respectively for chunk sizes = 64MB. For larger chunk size = 128,
frugal_conf executes 4.7x and 1.9x faster than the worst_native and best_native scenarios. These results
show that the proposed frugal_conf outperforms the native YARN baseline best and worst settings.
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Figure 6. Comparison of Terasort Execution times ratios of frugal_conf vs worst_native and frugal_conf
vs best_native for chunk sizes C=64MB and C=128MB. The datasizes are 1GB, 2GB, 4GB and 8GB with
Number of Reduce =1, 2, 4 and 8.

4.3. Effect of adaptiveConfig Scheduling Policy on Task Distribution

To understand the effect of Findex and the proposed NODE_LOCAL(HIGH) priority in the
cluster, we first analyze how the tasks are distributed on a single powerful SBC node. If the Findex
value for a SBC node is 1, it implies that it is allowed to execute only one AM or reduce task per node.
Alternatively, a Findex value of 2 and 4 indicates that the system will assign up to 2 or 4 reduce tasks
per SBC node respectively. This setting may allow AM to co-locate with reduce tasks on powerful
SBCs.

In the following experiment we create three scenarios where i) we assign Findex 1 to all nodes in
the cluster; this will ensure that a max of one AM or reduce task would execute on a node. ii) We
assign Findex 2, to all SBC nodes besides RPI 3B+ SBCs. This will allow a maximum of two AM or
reduce tasks to be co-located on a single SBC node. Finally, iii) we assign Findex as presented in Table
3, this ensures that AM and multiple reduce tasks are co-located on a SBC node. Next, we execute
Terasort and wordcount benchmark on the cluster for various datasets of different sizes 1GB, 2GB, 4
GB and 8GB. We also provide the number of reduce tasks to execute the Hadoop job.

Table 4 shows the execution runtimes of Terasort jobs for the various settings. For each data size
and chunk size, we see a decrease in execution time as the number of reducers increases from 1 to 8.
This is expected result of increased parallelism as more reducers allow for parallel processing of data,
resulting in faster execution times. It is worth noting that the execution time for scenario 3 is far less
than scenarios 1 and 2 for various chunk sizes and dataset sizes. This indicates that the proposed
NODE_LOCALHIGH) priority along with Findex ensures placement of correct number of AM and
reduce tasks on each SBC node. As the data size increases, we generally observe an increase in
execution time across all configurations. This is expected, as larger datasets require more processing
time. On average, the Scenario3 Terasort task executions show the lowest execution times, indicating
that it is the most optimized configuration. For 8GB dataset with 8 reduce tasks, Scenario3
configuration outperforms scenariol configuration by 5.86x, whereas it outperforms Scenario2
configuration by 1.79x. Similarly, Scenario 2 also outperforms the Scenariol by 3.65x.

Table 4. Terasort execution times for Findex scenarios with various Datasize and Reduce jobs.

Terasort execution time (seconds)

Chunk size 64 Chunk size 128
# of Reduce | Data size (GB) | Scenariol Scenario2 Scenario3 Scenariol Scenario2 Scenario3
1 1 392.3 163.1 132.1 451.1 171.3 129.5
2 1 235.3 144.7 117.2 270.6 151.9 114.9

4 1 219.6 114.3 92.6 252.5 120.0 66.9
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8 1 201.4 109.8 88.9 231.6 1153 58.7
1 2 861.0 273.2 221.3 887.1 275.9 216.9
2 2 693.1 289.6 234.6 679.5 292.5 229.9
4 2 615.4 293.8 238.0 668.6 293.1 233.2
8 2 598.4 291.6 236.2 645.7 294.5 231.5
1 4 1989.1 351.4 305.7 2015.6 365.5 299.6
2 4 1673.3 298.3 259.5 1798.4 310.2 254.3
4 4 1498.1 274.5 238.8 1456.1 269.3 234.0
8 4 1613.7 319.6 278.1 1598.7 323.1 272.5
1 8 5193.9 1025.6 892.3 5341.9 1016.3 874.4
2 8 3819.2 916.5 797 4 3857.4 934.8 781.4
4 8 3189.1 856.1 744.8 3093.4 873.2 729.9
8 8 3091.8 813.5 707.7 3030.0 829.8 693.6

Table 5 shows the execution runtimes of Wordcount jobs for the various settings. As wordcount
is a CPU intensive application, it stress tests the CPU on the frugal SBC based cluster. For larger
datasets, e.g. with 8GB Scenariol and Scenario2 configurations were not able to complete the task.
Executing these tasks took excess of 3 hours of time, hence these were terminated. For Scenariol, with
8 reduce jobs, it was not possible to complete the task as the policy restricts the cluster to execute
multiple AM and reduce tasks on each node. In some cases, the execution failed which is attributed
to the out of memory problem previously discussed. Scenario3 configuration was able to execute
wordcount for all the experiment variations. For 4GB dataset with 4 reduce tasks, Scenario3
configuration outperforms scenariol configuration by 2.63x, whereas it outperforms Scenario2
configuration by 1.29x. Scenario2 configuration also outperforms the Scenariol by 1.98x.

Table 5. Wordcount execution times for Findex scenarios with various Datasize and Reduce jobs.
*denotes the job was not completed in the max allowed time.

WordCount execution time (seconds)

Chunk size 64 Chunk size 128
# of Data size Scenariol Scenario2 Scenario3 Scenariol Scenario2 Scenario3
Reduces (GB)

1 1 3089.1 1729.9 1401.2 3552.5 1816.4 1373.2
2 1 1891.6 1059.3 858.0 2175.3 1112.3 840.9

4 1 1651.4 924.8 749.1 1899.1 971.0 734.1

8 1 * 875.1 708.8 * 918.9 674.1

1 2 6103.7 3418.1 2768.6 7019.3 3452.3 2713.3
2 2 4714.3 2640.0 2138.4 5421.4 2666.4 2095.6
4 2 4309.1 2413.1 1954.6 4955.5 2437.2 1915.5
8 2 * 2289.7 1854.7 * 2312.6 1817.6
1 4 13173.8 7377.3 6418.3 15149.9 7672.4 6289.9
2 4 9513.4 5327.5 4634.9 10940.4 5540.6 4681.3
4 4 8963.1 5219.4 3953.0 10307.6 5428.2 3992.5
8 4 * 5069.1 3761.0 * 5271.9 3798.6
1 8 * * 12915.3 * * 13044.5
2 8 * * 8194.0 * * 8030.1
4 8 * * 7149.0 * * 7006.0
8 8 * * 6328.0 * * 6201.4

4.4. Effect of fetch_threshold Values

In section 3.5, we defined a fetch_threshold that initiates a reduce task to start processing of the
intermediate data as soon as the data is available. This threshold ensures that the reduce task has
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enough data to begin its processing efficiently without waiting for the entire dataset to be transferred.
In this analysis, we investigate the influence of the fetch_threshold parameter on the parallel execution
of Terasort and Wordcount applications. Our aim is to discern how this parameter affects the level of
parallelism within the proposed scheduling mechanism.

The results in figure 7 show varying trends in Terasort execution time with different values of
fetch_threshold. We execute the terasort benchmark with 4 and 8 reduce to understand the impact of
fetch_threshold on the parallelism on the cluster. For Scenario3, with a fetch_threshold of 0.05, there is a
consistent decrease in execution time as the number of reducers increases. This shows that the reduce
tasks would be initiated as soon as 5% of intermediate data is available therefore improving the
parallelism resulting in reduced execution time. However, as fetch_threshold increases, this trend is
not consistently observed. For larger data sizes and higher numbers of reducers, the execution time
tends to decrease initially and then stabilize or increase slightly. It has a negligible effect with
scenarios with a smaller number of reduce tasks.

Across all dataset sizes, reducing the fetch_threshold from 0.3 to 0.05 consistently reduces
execution times. This is because reducing the threshold allows reduce tasks to start processing
intermediate data earlier, improving parallelism and reducing overall execution times. Similar to the
case of a single reduce task, decreasing the fetch_threshold generally results in shorter execution times
for Terasort. However, the improvement diminishes as the number of reduce tasks increases. This is
because with multiple reduce tasks, the data is divided among them, and reducing the threshold may
not have as significant an impact on parallelism. As the dataset size increases, the impact of
fetch_threshold becomes more pronounced. Larger datasets benefit more from a lower fetch_threshold
as they can take advantage of parallel processing early in the execution.

The results for wordcount experimentation are shown in figure 8. The impact of fetch_threshold
observed with the wordcount benchmark is similar, although the overall execution time is
significantly larger. Wordcount, being a CPU-intensive task, may see even greater improvements
with lower fetch_threshold values, especially for larger dataset sizes. This is because CPU-bound tasks
benefit more from increased parallelism.

This suggests that the impact of fetch_threshold on parallelism depends on the specific
configuration and workload characteristics, highlighting the importance of optimizing this parameter
based on the context of the application and cluster setup.

Terasort runtimes with varying fetch_threshold Terasort runtimes with varying fetch_threshold
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Figure 7. Comparison of fetch_threshold values for Terasort Execution times for Scenario3 with 8 and
4 reduce tasks with chunk sizes C=64MB.
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Figure 8. Comparison of fetch_threshold values for WordCount Execution times for Scenario3 with 8
and 4 reduce tasks with chunk sizes C=64MB.

5. Discussion and Future Directions

The concept of SBC-based clusters introduces a frugal approach to resource utilization in
distributed computing environments. These clusters, often composed of devices like Raspberry Pi
and Odroid Xu-4 etc., possess limited processing power and memory compared to traditional server
nodes. The frugality arises from the inherent constraints of these devices, which can impact their
ability to efficiently execute concurrent MapReduce tasks. The study highlights that the performance
of such clusters is notably affected by memory limitations, with devices like the Raspberry Pi 3B
struggling due to their modest 1 GB RAM. This limitation necessitates adjustments in the Hadoop
framework to accommodate the constraints of SBCs, leading to the proposed changes in the YARN
scheduling mechanism.

The proposed changes to the YARN scheduling mechanism aim to address the limitations posed
by frugal SBC-based clusters. By introducing a frugalityIndex and adaptiveConfig policy, the redesign
seeks to optimize resource allocation and enhance system efficiency. The frugalitylndex classifies SBC
nodes based on their processing capacities and memory sizes, providing crucial information for
container placement and task scheduling. Additionally, the adaptiveConfig policy dynamically adjusts
resource allocation based on workload and cluster status, ensuring optimal utilization of available
resources. These changes aim to mitigate performance bottlenecks caused by memory constraints and
improve the overall efficiency of SBC-based clusters.

The suggested changes have significant implications for the performance and scalability of SBC-
based clusters. By incorporating the frugalitylndex and adaptiveConfig policy into the YARN
scheduling mechanism, the clusters can adapt to the heterogeneous capacities of individual nodes
more effectively. This adaptive approach enables better utilization of resources, mitigating the impact
of frugality on cluster performance. Furthermore, the prioritization of tasks based on data locality
and container status enhances parallelism and reduces job completion times. Overall, the proposed
changes facilitate more efficient and resilient operation of SBC-based clusters, addressing the
challenges posed by resource constraints.

The results demonstrate the effectiveness of custom scheduling mechanisms in optimizing task
distribution and improving overall cluster performance in a heterogeneous frugal SBC environment.
By considering individual SBC capabilities through the frugalitylndex and adaptiveConfig policy, the
study achieves better resource utilization and reduced task completion times. Furthermore, the
impact of fetch_threshold on parallelism highlights the importance of fine-tuning parameters based on
workload characteristics. Lower fetch_threshold values lead to improved parallelism, but the optimal
threshold may vary depending on the specific configuration and workload.

With the emergence of powerful SBCs such as the Raspberry Pi 5, clusters comprised of these
devices can significantly enhance both per-watt and per-dollar efficiency, thereby bolstering
sustainability efforts. These SBCs are renowned for their energy efficiency, consuming minimal
power while delivering respectable computational capabilities. In the experimental setup described,
each SBC within the cluster is outfitted with a 64 GB SD Card and connected via Gigabit Ethernet,



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 2 April 2024 d0i:10.20944/preprints202404.0154.v1

17

ensuring minimal power consumption compared to conventional server configurations. The
utilization of a frugal SBC cluster architecture optimizes resource utilization by employing only
necessary components, thereby reducing overall energy consumption.

Moreover, the adoption of frugal SBCs aligns with sustainability objectives by fostering more
efficient resource utilization. By repurposing these low-power devices for cluster computing,
organizations can prolong their lifespan, curbing electronic waste and promoting a more sustainable
IT ecosystem. The cluster's focus on optimizing resource usage, exemplified by tailored
configurations such as adjusting the number of reduce tasks per SBC node based on its Findex,
underscores the commitment to efficient resource allocation and sustainability.

The experimental setup's inclusion of a heterogeneous cluster comprising various SBC models
allows for cost optimization by selecting models based on their price-performance ratio and specific
workload demands. The cost of our cluster setup was USD 966 for the 13 devices along with
networking essentials (cables, Gigabit Switch) and SDCard storage media. We noted that the cluster
required approximately 76W of power during wordcount execution. The overall power consumption
ranged between 69W and 78W for the various experiments.

To analyze the cluster performance in terms of performance-per-watt and per-dollar, we built a
similar setup on a PC with Intel i7-12700KF @ 12-Core processor with 16GB RAM and a 500GB SSD.
The power consumption for similar terasort and wordcount jobs ranged between 112W and 138W.
We also noted that the task execution times on PC were 1.3x and 1.8x faster for terasort and
wordcount jobs compared to the SBC-based cluster. The performance of the SBC-based cluster does
not match that of a PC in terms of cost-effectiveness per dollar or per watt, mainly due to the fact that
the previous generation RPi 3B nodes never reached the level of desktop PCs in either metric. Their
overall performance remains notably lower compared to the latest generation RPi 5 nodes. At the
moment the cost of a RPi5 is approx. 80 USD, it is reasonable to anticipate that the prices for these
devices will lower in the near future. Heterogeneous SBC-based clusters comprised of the latest RPi
5 or upcoming generations of RPi nodes may present promising opportunities for enhancing big data
processing performance metrics.

6. Conclusions

This experimental study underscores the efficacy of heterogeneous frugal SBC-based cluster for
sustainable big data processing. The performance of resource frugal nodes in the cluster is notably
affected by memory limitations. These limitations necessitate adjustments in the Hadoop framework
to accommodate the constraints. To this end, in this work we proposed changes in the YARN
scheduling mechanism. By introducing a frugalitylndex and adaptiveConfig policy, the redesign seeks
to optimize resource allocation and enhance system efficiency. The frugalitylndex serves as a crucial
metric for categorizing SBC nodes based on their capabilities. By considering factors such as CPU
speed and memory size, the index facilitates intelligent resource allocation, ensuring that tasks are
assigned to nodes best suited to handle them. The adaptiveConfig policy enhances the flexibility of the
YARN scheduler by dynamically adjusting resource allocation based on workload and cluster
conditions. By optimizing resource allocation in real-time, the policy enables SBC-based clusters to
adapt to changing workloads and maintain high performance levels. The fetch_threshold for reduce
tasks, enhances task prioritization and data processing efficiency.

Results show that by achieving faster execution times compared to traditional Hadoop
configurations while consuming minimal power, the cluster maximizes computational output while
minimizing energy expenditure. Further optimizations, such as the proposed scheduling
mechanisms and parameter tuning, contribute to enhanced performance efficiency, enabling the
cluster to achieve superior performance metrics relative to resource consumption. The frugal conf
setting demonstrates significant performance improvements, executing 4.7 times faster than the
worst_native scenario and 1.9 times faster than the best_native scenario. In terms of Terasort execution,
Scenario3 outperforms Scenariol by 5.86 times and Scenario2 by 1.79 times. Additionally, setting the
fetch_threshold to 0.05 achieves 1.23 times faster runtimes for configurations involving 8 reduce tasks.
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The use of frugal SBCs aligns with sustainability goals by utilizing resources more efficiently.
Instead of relying on high-power, energy-hungry servers, the cluster leverages multiple low-power
SBCs, which collectively provide adequate computational capacity. By repurposing frugal SBCs for
cluster computing, organizations can extend the lifespan of these devices, reducing electronic waste
and contributing to a more sustainable IT ecosystem. The focus on optimizing resource usage,
demonstrated by tailoring configurations such as the number of reduce tasks per SBC node based on
its frugalitylndex ensures efficient utilization of computational resources, further enhancing
sustainability.
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