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Abstract: In this paper the attention is focused on the analysis and the optimization of energy flows in networked

systems via a fluid-dynamic model. In particular, a cost functional that represents a term proportional to the

kinetic energy of an energy system is studied. First, the functional is optimized for a simple network having a

unique node, with an incoming arc and two outgoing ones. The optimization deals with distribution coefficients

and explicit solutions are found. Then, the global optimization is obtained using the local optimal parameters at

the various nodes of the system. Considering the case study of an energy hub, interesting results are obtained for

the whole network, proving the correctness of the proposed approach.
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1. Introduction

In the context of energy sectors, a primary importance is given to problems of energy conver-
sion/management ([1,2]), as well as possible interactions between renewable sources and environment
(see [3] for power planning, [4] for control issues and [5] for a survey). This occurs especially in cases
of multi-generation systems, useful to produce electricity as well as hydrogen, heat and cooling power,
with consequent advantages for high efficiencies and reduced CO2 emissions.

In this direction, scientific communities are focusing on possible models for energy networked
systems, with emphasis on optimization problems that arise naturally in daily situations, see [6] and
[7] for possible applications as well as [8] for a complete vision. In particular, energy hubs are a class of
multi-generation systems where multiple energy carriers are converted, stored and dissipated, [9,10].

In this paper, following the ideas proposed in [11] and [12], an energy hub, designed in Waterloo,
Canada, is modeled and energy flows at its nodes are optimized. Indeed, this problem is already
considered in [11], where the authors provide a control-oriented methodology, based on a mixed
integer dynamic model and an optimal scheduling (see also [13]) which is robust to uncertainties in
specific scenarios. In this case, the main discussion is different, as we want to guarantee a robust
optimization focusing on this fundamental issue: a description of the space-time behavior of the energy
flows in order to explicitly mitigate the power fluctuations that could affect the correct and reliable
energy system operation.

In order to achieve this aim, we deal with the conservation of energy flows, a situation that
should be considered in most cases involving multi-generation systems. This requirement leads to a
continuous model that foresees conservation laws, i.e. Partial Differential Equations (PDEs), see [14].
In particular, we use an approach taken from road traffic and suggested by the Lightwill-Whitham-
Richards (LWR) equation ([15,16]), enriched by junction traffic assignments so as to model with real
networks ([17–19]). The outcome is a model that reproduces the main features of the car traffic (queues
formation and backward propagation), and that, in cases of energy systems, offers the possibility
of analyzing energy flows in each part of the network and for every time. In spite of the apparent
simplicity of the LWR equation, this network approach for energy systems represents, to the best
knowledge of the authors, a good compromise to focus on scenarios that are not always in the steady
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states. Indeed, the superiority of the LWR model is also due to results of existence and uniqueness of
solutions for large networks, guaranteeing a solid analytical theory for numerical approximations and
optimization problems (similar drawbacks are also described for different types of PDEs in [20] and [21]
and for energy issues in [22]). For instance, in [23], efficient numerical algorithms are described to treat
complex networks in acceptable computational times. In particular, this is the main issue to address
optimization problems, which otherwise would be computationally too expensive. Similar results are
given in [24] and [25]; [26] and [27] deal with possible optimization techniques via genetic algorithms,
while [28] considers optimization and control problems through machine learning techniques.

Finally, the choice of the LWR approach for energy systems is motivated by three main reasons:

• Modeling. The LWR model for networks allows the reproduction of features dealing with space-
time behaviors of energy flows. The same does not happen for richer fluid dynamic models (see,
for instance, [29]) and/or static models, which consider only steady states.

• Analysis. As for the theory on networks, the LWR model has fundamental and detailed results.
To the best knowledge of the authors, there are not similar and complete theoretical developments
for other models, especially of fluid dynamic type.

• Numerics and Optimization. The robust theory for LWR also gives rise to fast numerical
algorithms (an example is in [30]), which allow to consider complicated optimization strategies.

Following the just described approach, an energy hub is modeled with a finite set of arcs, that
meet at some nodes, i.e. junctions. Space-time evolutions of energy flows within the arcs are found
using conservation laws. The dynamics at junctions is solved via linear programming problems that
consider the maximization of the through flows under constraints that foresee: bounded incoming
and outgoing flows; distribution coefficients that determine how flows on incoming arcs distribute to
outgoing ones.

Once assumed the model for energy flows, we consider a cost functional to estimate a term
proportional to the kinetic energy on the energy hub. In particular, we want to maximize the functional
with respect to (w.r.t.) distribution coefficients at nodes. Unfortunately, as it is difficult to foresee
a-priori an exact evolution of energy flows on the hub, the analytical optimization of the cost functional
is not possible. For this reason, we adopt a strategy that consists of the following three steps (a similar
technique is used in [31]):

1. For network topologies with a unique node and every initial data, compute the optimal distri-
bution coefficients. Then, assuming infinite length arcs so as to avoid boundary data effects,
consider the asymptotic solution.

2. For generic networks with complex topologies, use the (locally) optimal distribution coefficients
at each node, updating the values of the parameters at every time instant through the actual
flows on the arcs near the junction.

3. Using simulations, verify the performances obtained by (locally) optimal distribution coefficients
through comparisons with random choices of parameters.

Notice that the first step is non-trivial even for simple nodes. In fact, we deal with a hybrid
problem, as continuous flows are influenced by discrete variables, such as the distribution coefficients
at junctions. For this reason, and also considering the topology of the energy hub under discussion,
we focus on the particular case of nodes of 1 × 2 type, i.e. one incoming arc and two outgoing ones.
The second step is done for the energy hub described in [11], while step three considers two different
types of distribution parameters: (locally) optimal, according to the step one, and random, i.e. the
coefficients are chosen randomly at the beginning of the simulation and then are kept constant. In
particular, numerical approximations for simulations are obtained via some methods described in
[32,33] and [34].

Considering that the optimization approach considers a local optimization in the asymptotic state,
the obtained results are very good: using optimal parameters, the behavior of the cost functional is
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better than the ones achieved using random distribution coefficients. Indeed, the approach is also quite
robust, as indicated by a further analysis of the asymptotic values of the cost functional in random
cases and in the optimal situation. This also indicates that the followed approach is suitable for the
energy hub control, as well as for a possible scheduling of resources over a long time interval.

The paper has the following structure. Section 2 presents a model for energy flows on networks.
The subsequent Section 3 is devoted to the optimization results on energy networks via the cost
functional described above. Section 4 provides an example of a real energy hub designed in Waterloo,
Canada. Subsection 4.2 presents some simulations of energy transitions over the energy hub under
discussion for two possible choices of distribution coefficients: optimal and random. Conclusions
(Section 5) end the paper.

2. Theoretical Foundations

An energy network is described by a couple (I ,J ), where: I ={In}n=1,...,N is the set of arcs
In, n = 1, . . . , N, each one represented by [an, bn] ⊂ R; J ={jk}k=1,...,J is the collection of nodes jk,
k = 1, . . . , J.

Each arc In ∈ I , n = 1, ..., N, is described by:

• a density function ρn := ρn(t, x) ∈ [0, ρn
max], (t, x) ∈ [0,+∞[× [an, bn], where ρn

max is the maximal
allowed density for arc In;

• a velocity function vn := vn(ρn) ∈ [0, vn
max], where vn

max indicates the maximal velocity for
particles travelling on arc In;

• a flux function defined as fn(ρn) := ρnvn.

The three above quantities have the following interpretation: ρn is the energy density at time
t in the point x of arc Ii, vn is the average velocity of each energy particle, while fn(ρn) is the flux
associated to ρn. Notice that, as we are dealing with macroscopic quantities, particles are assumed to
be of various type. Such an assumption is essential for the case study, where different quantities, that
deal with gas, heat, electricity, and so on.

For In ∈ I , n = 1, ..., N, the evolution of ρn(t, x) follows the Lighthill-Whitham-Richards (LWR)
model ([15,16]), expressed by the conservation law:

∂

∂t
ρn +

∂

∂x
fn(ρn) = 0. (1)

Without loss of generality, choosing, ∀ n = 1, . . . , N, ρn
max = ρmax, vn

max = vmax and a decreasing
velocity function vn(ρn) = vmax

(
1 − ρn

ρmax

)
, ρn ∈ [0 ρmax], the flux function f (ρn) := fn(ρn) simply

reads as:

f (ρn) = vmax ρn

(
1 − ρn

ρmax

)
, ρn ∈ [0, ρmax]. (2)

The evolution at a node jk ∈ J , k = 1, ..., J, obeys Riemann Problems (RPs), i.e. Cauchy Problems
that have constant initial data for incoming and outgoing arcs.

Fix a node jk of r × s type, namely r incoming arcs Ik
φ, φ = 1, . . . , r, and s outgoing ones Ik

ψ,

ψ = r + 1, . . . , r + s, and indicate by ρk
0 =

(
ρk

1,0, . . . , ρk
r,0, ρk

r+1,0, . . . , ρk
r+s,0

)
∈ [0, ρmax]

r+s the initial
datum at jk.

Definition 1. For the node jk a Riemann Solver (RS) is a function

RS : [0, ρmax]
r × [0, ρmax]

s → [0, ρmax]
r × [0, ρmax]

s

such that

ρk
i (t, x) :=

{
(ρk

i,0, ρ̂k
i ), Ik

i , i = 1, . . . , r,
(ρ̂k

i , ρk
i,0), Ik

i , i = r + 1, . . . , r + s,
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is a weak solution [14] of (1) with initial datum ρk
i,0 and boundary condition ρ̂k

i , and such that furthermore: (C1)

RS
(

RS
(

ρk
0

))
= RS

(
ρk

0

)
; (C2) on arc Ik

φ, φ = 1, . . . , r, the wave
(

ρk
φ,0, ρ̂k

φ

)
has negative speed, and on arc

Ik
ψ, ψ = r + 1, . . . , r + s, the wave

(
ρ̂k

ψ, ρk
ψ,0

)
has positive speed.

Intuitively, for the assigned initial datum ρk
0 at jk, a RS associates a vector ρ̂k =

(
ρ̂k

1, . . . , ρ̂k
n, ρ̂k

n+1, . . . , ρ̂k
n+m

)
∈

[0, ρmax]
r+s such that on Ik

i , i = 1, . . . , r + s, ρk
i is a solution of (1) with initial datum ρk

i,0 and boundary
condition ρ̂k

i . More precisely, for φ ∈ {1, . . . , r} and ψ ∈ {r + 1, . . . , r + s}, the solution consists of the

wave
(

ρk
φ,0, ρ̂k

φ

)
on Ik

φ and the wave
(

ρ̂k
ψ, ρk

ψ,0

)
on Ik

ψ.
If r ≤ s, a possible RS at the node jk is constructed using the rules (see [18]):

(A) The traffic of particles distributes at jk according to some coefficients, collected in a matrix Ajk =(
α

jk
ψ,φ

)
, φ = 1, ..., r, ψ = r + 1, ..., r + s, 0 < α

jk
ψ,φ < 1,

r+s
∑

ψ=r+1
α

jk
ψ,φ = 1. The φ−th column of Ajk

represents the percentages of particles that, from Ik
φ, distribute to the outgoing arcs;

(B) The flux through jk is maximized respecting rule (A).

If r > s, beside rules (A) and (B), a further criterion is needed. For instance, if jk is of r × 1 type, a
possible rule is the following:

(Cr×1) Not all particles enter the outgoing arc, and assume that Q is the quantity that can do it. Then,

pk
φQ particles come from Ik

φ to cross the arc junction, where 0 < pk
φ < 1,

r
∑

φ=1
pk

φ = 1, is the priority

parameter of Ik
φ, φ = 1, ..., r.

Remark 1. Notice that, if r = 1 and s = 2, i. e. the junction jk is of 1 × 2 type, the matrix Ajk has only the

parameters αk := α
jk
2,1 and 1 − αk := α

jk
3,1. If r = 2 and s = 1, i. e. jk of 2 × 1 type, the priority parameters are

pk := pk
1 and 1 − pk := pk

2, while Ajk = (1, 1).

From rules (A), (B) and (C) (this last one if necessary), for a junction jk of r × s type, with initial
datum ρk

0 and the flux function (2), the solution ρ̂k to the RP at jk is as follows. Consider the function
ω : [0, ρmax] → [0, ρmax] that, for each arc Ik

i , i = 1, ..., r + s, satisfies the properties:

• f
(

ω
(

ρk
i

))
= f

(
ρk

i

)
∀ ρk

i ∈ [0, ρmax];

• ω
(

ρk
i

)
̸= ρk

i ∀ ρk
i ∈ [0, ρmax] \

{ ρmax
2

}
.

Then, for Ik
φ, φ = 1, . . . , r:

• ρ̂k
φ ∈

{
ρk

φ,0

}
∪
]
ω
(

ρk
φ,0

)
, ρmax

]
if 0 ≤ ρk

φ,0 ≤ ρmax
2 ;

• ρ̂k
φ ∈

[ ρmax
2 , ρmax

]
if ρmax

2 ≤ ρk
φ,0 ≤ ρmax.

For Ik
ψ, ψ = r + 1, . . . , r + s:

• ρ̂k
ψ ∈

[
0, ρmax

2
]

if 0 ≤ ρk
ψ,0 ≤ ρmax

2 ;

• ρ̂k
ψ ∈

{
ρk

ψ,0

}
∪
[
0, ω

(
ρk

ψ,0

)[
if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax.

From ρ̂k
φ and ρ̂k

ψ, we get the maximal flux values on Ik
φ, φ = 1, . . . , r and Ik

ψ, ψ = r + 1, . . . , r + s, i.
e.:

γk,max
φ =

 f
(

ρk
φ,0

)
, if 0 ≤ ρk

φ,0 ≤ ρmax
2 ,

f
( ρmax

2
)
, if ρmax

2 ≤ ρk
φ,0 ≤ ρmax,

(3)
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γk,max
ψ =

 f
( ρmax

2
)
, if 0 ≤ ρk

ψ,0 ≤ ρmax
2 ,

f
(

ρk
ψ,0

)
, if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax.

(4)

Remark 2. Notice that such an approach allows to define solutions to the Cauchy problem on the network
(I ,J ) via a wave-front tracking algorithm (see [17,18]). Refer to Appendix 6 for details about the construction
of solutions.

3. Energy Optimization

Consider an energy network (I ,J ) as described in Section 2. For the optimization of the network
performances, we define the cost functional:

E(t) :=

 N

∑
n=1

∫
In

vn(ρn(t, x))dx

2

,

that represents a term proportional to the kinetic energy on the whole network.
Considering bounded ρn(t, x), n = 1, ..., N, the aim is to maximize E(t) w.r.t. the distribution

coefficients of matrices Ajk ∀ jk ∈ J .
As the solution of such optimization control problem involves space-time variables and the

optimization itself refers only to 1 × 2 nodes for the energy hub described in Section 4, we consider an
approach defined by the steps:

1. Consider a node jk ∈ J of 1 × 2 type (one incoming arc, Ik
1 , and two outgoing arcs, Ik

2 and Ik
3)

for which only one distribution coefficient αk is considered, see Remark 1. Assuming an initial
datum

(
ρk

1,0, ρk
2,0, ρk

3,0

)
at jk, fix the local cost functional:

Ejk (t) :=

 3

∑
m=1

∫
Ik
m

vm

(
ρk

m(t, x)
)

dx


2

.

2. For a time horizon [0, T], with T quite big, assume the traffic distribution coefficient αk as control,
and maximize Ejk (T) w.r.t. αk.

3. Construct the optimal solution of the overall network by localization, i.e by using the single
optimization solutions at each node jk ∈ J of 1 × 2 type.

For step 2, assume the conditions:

• T1 : γk,max
3 ≤ γk,max

1
2 < γk,max

1 ≤ γk,max
2 ;

• T2 : γk,max
2 <

γk,max
1

2 < γk,max
1 ≤ γk,max

3 ;
• T3 : γk,max

2 < γk,max
3 < γk,max

1 ;
• T3A : γk,max

1 − γk,max
3 ≥ γk,max

2 ;

• T3B : γk,max
1 − γk,max

3 < γk,max
2 ≤ γk,max

1
2 ;

• T4 : γk,max
3 < γk,max

2 < γk,max
1 ;

• T5 : γk,max
1

2 ≤ γk,max
1 − γk,max

3 < γk,max
2 ,

and define:

gk,max
uv :=

γk,max
u

γk,max
v

.

We get the following:
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Theorem 1. Consider a node jk ∈ J of 1 × 2 type, and assume T sufficiently big. Then, Ejk (T) is maximized
for the value α

opt
k (for some cases, the optimal control does not exist and it is approximated through a positive

and small constant ε):

α
opt
k =



1 − gk,max
31 + ε, if T1 holds;

gk,max
21 , if T2 is satisfied;(
1 + gk,max

32

)−1
, if T3 and T3A both hold;

gk,max
21 − ε, if T3 and T3B are both true;(
1 + gk,max

32

)−1
+ ε, if T3A and T4 both hold;

1 − gk,max
31 − ε, if T5 is satisfied;

1
2 , otherwise.

Proof. Assume that vmax = ρmax = 1. Other cases for which vmax ̸= 1 and/or ρmax ̸= 1 lead to the
same results. Fix a node jk ∈ J of 1 × 2 type and T quite big. Considering the solution to the RP at jk,
Ejk (T) writes as:

Ejk (T) =
(

3 − sk
1

√
1 − 4γ̂k

1 − sk
2

√
1 − 4αkγ̂k

1 − sk
3

√
1 − 4(1 − αk)γ̂

k
1

)
, (5)

where coefficients sk
1 and sk

ψ, ψ = 2, 3, are:

sk
1 =


+1, if ρk

1,0 ≥ 1
2 ,

or ρk
1,0 < 1

2 and γk,max
1 > min

{
γk,max

2
αk

, γk,max
3

1−αk

}
,

−1, if ρk
1,0 < 1

2 and γk,max
1 ≤ min

{
γk,max

2
αk

, γk,max
3

1−αk

}
,

sk
ψ =


+1, if ρk

ψ,0 > 1
2 and

γk,max
ψ

αψ
≤ min

{
γk,max

1 ,
γk,max

ψ′
αψ′

}
, ψ′ ̸= ψ,

−1, if ρk
ψ,0 ≤ 1

2 ,

or ρk
ψ,0 > 1

2 and
γk,max

ψ

αψ
> min

{
γk,max

1 ,
γk,max

ψ′
αψ′

}
, ψ′ ̸= ψ,

with

αψ =

{
αk, if ψ = 2,
1 − αk, if ψ = 3.

For simplicity, from now on we drop the dependence on jk and T from E . As the solution to the RP at
jk depends on αk, we have various cases. Here, for seek of brevity, we consider only two of them, as
the proof for other cases is similar.

Assume γk,max
1 < γk,max

3 < γk,max
2 . In this case, γ̂k

1 = γk,max
1 , sk

1 = sk
2 = sk

3 = −1 and we have to
maximize:

E =

(
3 +

√
1 − 4γk,max

1 +
√

1 − 4αkγk,max
1 +

√
1 − 4(1 − αk)γ

k,max
1

)2
,

defined for αk ∈ ]0, 1[. We get that:

∂E
∂αk

= 4Eγk,max
1 [Φ(1 − αk)− Φ(αk)], (6)

where Φ(αk) is:

Φ(αk) :=
1√

1 − 4αkγk,max
1

.
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Since
∂E
∂αk

≥ 0 ⇔ αk ≤
1
2

,

then α
opt
k =

1
2

.

Consider now the case γk,max
3 < γk,max

1 < γk,max
2 . We have that:

• if 0 < αk ≤ 1 − gk,max
31 , γ̂k

1 =
γk,max

3
1 − αk

and sk
1 = sk

3 = +1, sk
2 = −1;

• if 1 − gk,max
31 < αk < 1, γ̂k

1 = γk,max
1 and sk

1 = sk
2 = sk

3 = −1.

Hence, (5) becomes:

E =

 E1, 0 < αk ≤ 1 − gk,max
31 ,

E2, 1 − gk,max
31 < αk < 1,

where:

E1 =

3 −

√
1 − 4

γk,max
3

1 − αk
+

√
1 − 4αk

γk,max
3

1 − αk
−

√
1 − 4γk,max

3

2

,

E2 =

(
3 +

√
1 − 4γk,max

1 +
√

1 − 4αkγk,max
1 +

√
1 − 4(1 − αk)γ

k,max
1

)2
.

If 0 < αk ≤ 1 − gk,max
31 , then

∂E
∂αk

=
4Eγk,max

3

(1 − αk)
2

[
Ψ
(

1
1 − αk

)
− Ψ

(
αk

1 − αk

)]
,

where:
Ψ(αk) :=

1√
1 − 4αkγk,max

3

.

It is possible to verify that E is an increasing function. If 1 − gk,max
31 < αk < 1,

∂E
∂αk

is the expression (6).

Hence, we conclude that:

• if 1 − gk,max
31 <

1
2

, E is optimized for α
opt
k =

1
2

;

• if 1 − gk,max
31 ≥ 1

2
, E has not an optimal value, hence α

opt
k is chosen as α

opt
k = 1 − gk,max

31 + ε, where
ε is a positive and small constant.

4. Application Deployment

4.1. Energy Hub Operation Scheduling

To assess the effectiveness of the proposed methodology in the task of solving real operation
problems in complex networked systems, the problem of optimal energy flow management of a
realistic energy hub is here considered. This is a relevant problem in modern energy systems, where
the increasing inter-dependencies between heterogeneous energy infrastructures is introducing new
and more complex vulnerabilities, requiring effective modeling and optimization tools aimed at
improving the accuracy and the robustness of coordinated control actions. In this context, the large
scale deployment for the energy hub could have a strategic role, since it allows improving the energy
networks flexibility by providing reliable energy services, such as electricity and heating, by exploiting
different combinations of the energy carriers available at the hub inputs. To this aim, a system designed
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in Waterloo, Canada, for the supply of commercial load, has been analyzed. More details on this
system, which is schematically depicted in Figure 1, can be found in [11].
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Figure 1. Simplified structure of the energy hub shown in [11].

From Figure 1 it is worth noting as the input power flows are the electricity, PE, and the natural
gas, PG, while the output power flows are electricity, LE, and heat, LH . Notice that PE is splitted into
β1PE and β2PE, while PG is divided into β3PG and β4PG. Precisely, β1PE and β2PE are, respectively,
inputs of the Hydrogen Production Plant (HPP) and of the Transformer (T); β3PG is input of the
Combined Heat Power (CHP), while β4PG is input of the Furnace (F). The system works as follows:

• The subsystem HPP, characterized by electric-hydrogen and heat-hydrogen efficiences ηHPP
1 and

ηHPP
2 , transforms a part of the electricity, β1PEηHPP

1 , into hydrogen that feeds the Fuel Cell (FC)
and another part, β1PEηHPP

2 , into heat.
• Using the hydrogen-electricity and hydrogen-heat efficiencies ηFC

1 and ηFC
2 , the subsystem FC

transform a part of the hydrogen, β1PEηHPP
1 ηFC

1 , into electricity and another part, β1PEηHPP
1 ηFC

2 ,
into heat.

• The subsystem T, due to its efficiency ηT , has the electricity power flow β2PEηT as output.
• The subsystem CHP, considering the gas-electric and gas-heat efficiencies ηCHP

1 and ηCHP
2 , trans-

forms a part of natural gas, β3PGηCHP
1 , into electricity and another part, β3PGηCHP

2 , into heat.
• Finally, the subsystem F, characterized by its efficiency ηF, has output β4PGηF, that is heat.

As for the outputs of the energy hub, we simply get that:

LE = β1PEηHPP
1 ηFC

1 + β2PEηT + β3PGηCHP
1 , (7)

LH = β1PEηHPP
1 ηFC

2 + β1PEηHPP
2 + β3PGηCHP

2 + β4PGηF. (8)

Notice that (7) and (8) are obtained considering some losses that depend on coefficients ηHPP
1 , ηHPP

2 ,
ηFC

1 , ηFC
2 , ηT , ηCHP

1 , ηCHP
2 and ηF. Such parameters are usually fixed and, for the topology described

in Figure 1, they are the following: ηHPP
1 = 0.7, ηHPP

2 = 0.2, ηFC
1 = 0.55, ηFC

2 = 0.4, ηT = 0.98,
ηCHP

1 = 0.45, ηCHP
2 = 0.35, ηF = 0.48. Moreover, note that β2 = 1 − β1, β4 = 1 − β3, 0 < β1 < 1,

0 < β2 < 1, hence there is the possibility of choosing how to redistribute incoming flows over the
energy hub.

The definition of optimal energy hub operation strategies could follow different directions. An
example is described in [11]. In our case, for fixed incoming flows PE and PG, we want to find the
optimal coefficients β1 and β2 (of nodes with one incoming arc and two outgoing ones) such that
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the global energy conversion losses are minimized. Obviously, different and more general operation
criteria could be defined, without affecting the effectiveness of the proposed methodology.

In order to achieve this aim, we choose to model the energy hub using an approach dealing with
conservation laws on networks (an exhaustive overview is in [18]), considering that eventual losses
over the system are considered “output” different from LE and LH .

4.2. Numerical Results

This section presents the simulations for the energy hub, represented in Figure 2 as a couple
(I ,J ), with I ={In}n=1,..,23 and J ={jk}k=1,..,11, see Section 2. The features of the network in Figure
2 are as follows. External arcs: I1, I5, I7, I12, I13, I14, I17, I19, I21, I23. Inner arcs: I2, I3, I4, I6, I8, I9, I10,
I11, I15, I16, I18, I20, I22. Nodes of: 1 × 2 type, j1, j4, j7, j9; 2 × 1 type: j5, j6, j10, j11; 1 × 3 type: j2, j3, j8.

For simplicity of discussion, from now on we indicate a node jk and its distribution matrix Ajk
simply by k and Ak, respectively; the same with arc Im, named simply m.

Notice that arcs 1 and 14 are the inputs of the systems, while outputs are arcs 13 and 23, indicated,
respectively, by OUT 2 and OUT 1.

OUT

OUT

Figure 2. Topology of the energy hub.

The performances of the network are evaluated through the cost functional E(t), whose evolution
is deeply influenced by the distribution parameters. Indeed, due to the real characteristics of the
energy hub, for nodes 2, 3, 4, 8 and 9, distribution matrices AJ , J ∈ {2, 3, 4, 8, 9} assume the form:

A2 =

 α4,2
α5,2

α6,2

 =

 0.7
0.1
0.2

,

A3 =

 α7,4
α8,4
α9,4

 =

 0.05
0.55
0.4

,

A4 =

(
α11,3
α12,3

)
=

(
0.98
0.02

)
,

A8 =

 α17,15
α18,15
α19,15

 =

 0.2
0.45
0.35

,
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A9 =

(
α20,16
α21,16

)
=

(
0.68
0.32

)
.

Moreover, always referring to measures on the real hub, priority parameters are all chosen 0.5 for
incoming arcs of nodes 5, 6, 10 and 11. Hence, no control is considered for junctions 2, 3, 4, 5, 6, 8, 9, 10
and 11, and the optimization of E(t) deals only with the distribution coefficients at nodes 1 and 7 of
1 × 2 type.

As for the numerical construction of E(t), it is necessary a suitable approximation for densities
ρi(t, x), i = 1, ..., 23, whose evolution is ruled by equation (1).

In this paper, we apply the Godunov scheme (see [32], [33,34]),using a numerical grid with
constant space and time sizes, ∆x = 0.0125 and ∆t = 0.5∆x, respectively (see subsection 4.4 for details
about the computational cost). The network of Figure 2 is simulated in such conditions: time interval
of simulation: [0, T], with T = 150 min; empty arcs when the simulation starts (t = 0); boundary data
of Dirichlet type, equal to 0.3 for arcs 1 and 14 while, for arcs 5, 7, 12, 13, 17, 19, 21 and 23, we choose a
Dirichlet boundary data equal to 0.9.

Notice that typical maximal values for inputs of our hub are 15 MWh and 20 MWh for arcs 1
and 14, respectively. In our case, associating at ρmax = 1 the quantity 15 MWh, we simply get that
boundary data 0.3 and 0.9 correspond to 4.5 MWh and 13.5 MWh.

Two different choices of the distribution parameters are assumed for nodes 1 and 7:

• optimal case: parameters that optimize locally the asymptotic behaviour of E(t), i.e. distribution
coefficients that refer to Theorem 1 for junctions 1 and 7. Such type of simulation is useful to test
the global performance, starting from analytical results that consider only a part of nodes of the
network.

• random case: parameters at nodes 1 and 7 are chosen in a random way at t = 0 and then are
kept constant in [0, T]. A random simulation allows comparisons with network performances
obtained via local optimal distribution coefficients.

4.3. Results Discussion

In Figures 3, 4, 5 and 6 we show some simulation results for the energy hub. More precisely, the
values of E(t), computed on the whole network, is represented as function of the time.

In particular, the behavior of E(t) in the optimal case is compared with the ones obtained via ten
different simulation random studies. As for these last cases, Figures 3 and 4 show the first five ones,
while Figures 5 and 6 the remaining other ones.

20 40 60 80 100 120 140

t HminL

200

250

300

350

400

450

500

550

Ε�
�
Ht
L

Figure 3. Evolution in [0, T] of E(t) for optimal distribution coefficients (dashed line) and the first five
different random choices (continuous lines).
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Figure 4. Zoom of Figure 3 around the asymptotic values.
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Figure 5. Behaviour in [0, T] of E(t) in case of optimal distribution coefficients (dashed line) and the
remaining different random choices (continuous lines).
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Figure 6. Zoom of Figure 5 around the asymptotic values.

The optimization algorithm for 1 × 2 nodes, which is of local type, can be applied to the complex
topology of the energy hub without compromising the possibility of a global optimization. Such a
situation is evident in the optimal case for E(t), that is compared to the behaviors in ten different
random cases. In Figures 3, 4, 5 and 6, it is shown that the optimal case is always higher than random
cases.

Indeed, 100 random cases have been simulated and compared with the optimal behavior for E(t).
Table 1 reports the value of E(t) in the optimal configuration at T = 150, i.e. OPTconf T, with the
average value (RAND T) of random simulations at T = 150.
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Table 1. Compared values of E(t)

E(t)
OPTconf T 258.773
RAND T 212.845

Notice that OPTconf T is, as expected, higher than RAND T, namely the global optimization of
local type has a strong robustness. Such result is also represented in Figure 7, where a histogram
reports the values of E(t) at the final instant T for the random simulation.

180 200 220 240

5

10

15

20

25

30

Figure 7. Histograms of random values of simulations at T = 150 for [0, T] of E(t). Black point:
OPTconf T = 150; dashed line: RAND T = 150.

Finally, notice that the simulated system has always bounded outputs, as a consequence of the
model itself, which deals with limited densities on arcs (see section 2). In particular, in our case study,
the upper limits for arcs 13 and 23 (OUT 2 and OUT 1) are, respectively, 0.1218 (36.54 kWh) and
0.180075 (54.0225 kWh).

4.4. Computational Cost

This subsection presents some details about the computational cost for the simulation of the
presented energy system. Focus on a network represented by the couple (I ,J ), with I ={In}n=1,..,N
and J ={jk}k=1,..,J .

In order to find a suitable numerical approximation in [0, T] for the density functions ρn(t, x),
n = 1, .., N, on arcs and update of boundary data at nodes, assume that each arc In, n = 1, .., N, has
length Ln; space and time grid sizes are, respectively, ∆xn and ∆tn. Using the Godunov method, the

computational cost depends on
N
∑

n=1

Ln

∆xn
and

J
∑

k=1

T
∆tk

for densities and boundary data, respectively.

For simplicity, for the simulation of the described energy hub we consider a constant space grid
size ∆x, assume (∆xn, ∆tn) = (∆x, 0.5∆x) ∀ n = 1, ..., N, and compute the CPU times (measured
in seconds and calculated by an Intel(R) Core (TM) i7-3630 QM CPU @2.40 GHz, RAM 8 GB) and
convergence errors. The obtained results are in Table 2.

Table 2. CPU times and convergence order (γ)

Space grid size ∆x = 0.00625 ∆x = 0.0125 ∆x = 0.025
CPU and

convergence order
CPU = 0.97
γ = 0.96653

CPU = 0.62
γ = 0.92572

CPU = 0.33
γ = 0.90572

From the previous table, we simply get that the CPU time increases of about 0.30 seconds when
∆x decreases. As for the convergence error, it almost remains the same for different values of ∆x.
Some further studies, as well as different numerical approaches for conservation laws on networks,
are carefully analyzed in [18,23] and [30].

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 2 April 2024                   doi:10.20944/preprints202404.0126.v1



13 of 16

5. Conclusions

In this paper the theoretical foundations of a novel computing paradigm based on the fluid
dynamic theory for modeling, analysis and optimization of complex and networked energy systems
have been presented. The proposed paradigm is based on the challenging idea of integrating in a
unique framework both network modeling and the optimization features, which are traditionally
treated as two separate problems, and solved by using distinct solution techniques. To address this
issue the application of conservation laws and the definition of cost functional, which represents
a term proportional to the kinetic energy of the system, have been proposed for dealing with the
network modeling and optimization, respectively. Thanks to these features the functional maximization
is directly obtained as a result of the network model process, which optimally tunes the network
parameters ruling the distribution of the energy flows among the network arcs.

The benefits due to the application of the proposed approach have been assessed on a realistic
case study, dealing with the solution of the optimal energy flow management problem for a complex
energy hub designed in Waterloo, Canada. The obtained results demonstrated the effectiveness of the
fluid dynamic-based approach in the task of optimizing the energy flows of the hub components in
order to drastically reduce the conversion losses.

Finally, on the basis of repetitive simulations, it could be argue that the obtained solution is
globally optimal, and robust against distributed parameters variations, which can be considered
further, and certainly relevant, benefits. A rigorous theoretical justification of these intuitions are
currently under investigation by the authors.
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Appendix A

Following rules (A) and (B) and adopting the flux function (2), see Section 2, we provide precise
details for the construction of ρk

i (t, x) for a node jk ∈ J of r × s type with distribution matrix Ajk . The

basic step is to find the solution to the RP at jk, namely the vector γ̂k = f
(

ρ̂k
)
∈
[
0, ρmax

2
]r+s, that is:

γ̂k :=
(

γ̂k
1, γ̂k

2, ..., γ̂k
r , γ̂k

r+1, γ̂k
r+2, ..., γ̂k

r+s

)
.

The solution to the RP at jk on the incoming arcs is indicated by the first r components of γ̂k, i.e. γ̂k
in :=(

γ̂k
1, γ̂k

2, ..., γ̂k
r

)
∈
[
0, ρmax

2
]r; the last s components of γ̂k, represented by γ̂k

out :=
(

γ̂k
r+1, γ̂k

r+2, ..., γ̂k
r+s

)
∈[

0, ρmax
2

]s, refer to the solution to the RP at jk for the outgoing arcs.
From rule (A), we simply get: (

γ̂k
out

)T
= Ajk ·

(
γ̂k

in

)T
. (A1)

Rule (B) defines γ̂k
in that, in case γ := (γ1, γ2, ..., γr) ∈ Rr, is solution of the linear programming

problem Pjk :

(Pjk ) max
γ

r

∑
φ=1

γφ, (A2)
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with constraints:

γ ∈
r

∏
φ=1

[
0, γk,max

φ

]
, Ajk · γT ∈

r+s

∏
ψ=r+1

[
0, γk,max

ψ

]
.

Finally, the solution ρk(t, x) =
(

ρk
1(t, x), . . . , ρk

r (t, x), ρk
r+1(t, x), . . . , ρk

r+s(t, x)
)

∈ [0, ρmax]
r+s at jk is

obtained as follows.

1. (S1) From (9) and (10), find γ̂k.
2. (S2) Use definitions for ρ̂k

φ and ρ̂k
ψ, see Section 2, to get ρ̂k. Precisely, for the incoming arc Ik

φ,
φ = 1, . . . , r:

ρ̂k
φ =


ρk

φ,0, if 0 ≤ ρk
φ,0 ≤ ρmax

2 and γ̂k
φ = γk,max

φ ,

vmaxρmax+
√

vmaxρmax(vmaxρmax−4γ̂k
φ)

2vmax
,

if 0 ≤ ρk
φ,0 ≤ ρmax

2 and γ̂k
φ < γk,max

φ ,
or ρmax

2 ≤ ρk
φ,0 ≤ ρmax.

For the outgoing arc Ik
ψ, ψ = r + 1, . . . , r + s:

ρ̂k
ψ =


vmaxρmax−

√
vmaxρmax(vmaxρmax−4γ̂k

ψ)
2vmax

,
if 0 ≤ ρk

ψ,0 ≤ ρmax
2 ,

or if ρmax
2 ≤ ρk

ψ,0 ≤ ρmax and γ̂k
ψ < γk,max

ψ ,

ρk
ψ,0, if ρmax

2 ≤ ρk
ψ,0 ≤ ρmax and γ̂k

ψ = γk,max
ψ ;

3. (S3) For each arc Ik
i , i = 1, . . . , r + s, solve the initial-boundary value problem:

(
ρk

i

)
t
+ f

(
ρk

i

)
x
= 0, x ∈ Ik

i , t > 0,

ρk
i (0, x) = ρk

i,0,
ρk

i (t, 0) = ρ̂k
i .
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