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Abstract: In the quest for robust and efficient digital communication, this paper introduces cutting-edge key

exchange protocols leveraging tropical semirings’ computational prowess and block matrices’ structural resilience.

Moving away from the conventional use of finite fields, these protocols deliver markedly faster processing speeds

and heightened security. We present two implementations of our concept, each utilizing a different platform for

the set of commuting matrices: one employing tropical polynomials of matrices and the other employing Linde-de

la Puente matrices. The inherent simplicity of tropical semirings leads to a decrease in operational complexity,

and using block matrices enhances our protocols’ security profile. The security of these protocols relies on the

Matrix Decomposition Problem. We also provide a comparative analysis of our protocols against existing matrix

block-based protocols in finite fields. This research marks a significant shift in cryptographic protocol design,

specifically tailored for demanding engineering applications, and sets a new standard in secure and efficient

digital communication.

Keywords: key exchange protocol; tropical semiring; block matrices; polynomial of matrices; Linde-de la Puente

matrices

1. Introduction and Motivation

In an era where digital communication underpins the fabric of global connectivity, the role of
cryptography is more critical than ever. Ensuring the security and integrity of data in transit has led to
the evolution of sophisticated cryptographic protocols. Traditional approaches often rely on the well-
established mathematical frameworks of finite fields, but with the advent of advanced computational
capabilities and emerging cyber threats, the need for innovative and more efficient cryptographic
methods is evident. This paper contributes to this ongoing evolution by introducing a groundbreaking
approach to key exchange protocols utilizing the untapped potential of tropical semirings and block
matrices.

This research transcends the conventional boundaries of cryptographic solutions, delving into
the realms of tropical mathematics to harness the simplicity and computational efficiency offered by
tropical semirings. Coupled with this, the use of block matrices introduces a structural robustness that
enhances security measures. This combination not only serves as a novel approach but also sets a new
benchmark in operational efficiency, steering away from the computational complexities inherent in
finite fields Fq.

Historically, matrices have been instrumental in various cryptographic mechanisms. The lineage
of matrix-based cryptosystems, stretching back to foundational works such as [1], has been marked by
continual advancements. Diverse matrix forms were incorporated, ranging from singular [2,3] and
non-singular matrices [4] to matrices over bit strings [5]; Tribonacci matrices [6]; Hadamar matrices [7];
non-negative [8] and lattice matrices [9]. Tropical matrices are also of interest ([10–15]). Yet, despite
these developments, vulnerabilities have persisted, as evidenced by different documented attacks (see,
for example, [16–19]).
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In recent years, a variety of block matrix cryptosystems have emerged: [20] introduced a method
employing the Hilbert matrix for authentication and confidentiality, emphasizing shared key encryp-
tion; [21] constructed an invertible block matrix using Fibonacci sequences and devised an asymmetric
cryptosystem utilizing the skewed affine cipher over elliptic curves; [22] proposed a novel block-
cipher mechanism for ensuring information security in cloud systems, prioritizing high defense, low
complexity, and random operations. Together, these studies showcase the potential of block matrix
cryptosystems in enhancing data security.

Our protocols are designed to counteract the vulnerabilities of the schemes based on tropical
matrices by employing commutative properties of block matrices, resulting in a more streamlined and
secure key exchange process.

The contributions of this study are multifaceted and significant:

1. We introduce two key exchange protocols that exploit the commutative properties of tropical
block matrices, thereby simplifying the key exchange process while enhancing security.

2. A thorough analysis is presented, demonstrating the reduced operational overhead compared to
existing block matrix schemes. This includes comparative evaluations showing lower computa-
tional complexity while maintaining equivalent key sizes.

3. We anchor our security claims in the inherent difficulty of matrix decomposition within tropical
semirings, a challenge that poses significant barriers to conventional attack methodologies.

4. The paper also includes illustrative examples and comparative analyses to underscore the
tangible efficiency gains our protocols offer.

This paper is structured to guide the reader through the critical aspects of our research. Section 2
sets the mathematical foundation by introducing block matrices, tropical semirings, and commutative
matrices. Section 3 provides a detailed exposition of our proposed key exchange protocols. Section 4
delves into the security analysis, benchmarking our approach against current cryptographic standards.
Finally, we conclude in Section 5 with reflections on the broader implications of our work and its
potential to inspire future research in cryptography.

2. Preliminaries

Definition 1 (Block Matrix). A block matrix is a matrix partitioned into submatrices, referred to as blocks. For
instance, a block matrix M comprising four blocks can be denoted as:

M =

[
A B
C D

]
,

where A, B, C, and D are such blocks. These blocks may vary in size, and the total number of blocks and their
configuration is dependent on how the original matrix is partitioned.

Definition 2 (Semiring). A semiring is an algebraic structure represented by (S,⊕,⊗, 0, 1), where S is a set,
and the operations ⊕ (addition) and ⊗ (multiplication) satisfy the following conditions:

• (S,⊕, 0) forms a commutative monoid with identity element 0.
• (S,⊗, 1) forms a monoid with identity element 1.
• ⊗ distributes over ⊕.
• For all a ∈ S, 0 ⊗ a = 0 = a ⊗ 0.

The semiring is commutative if a ⊗ b = b ⊗ a for all a, b ∈ S.

Definition 3 (Matrix Operations over Semirings). Given matrices A and B over a semiring (S,⊕,⊗), the
operations are defined as follows:

• Addition (A ⊕ B) is the element-wise operation cij = aij ⊕ bij.
• Multiplication (A ⊗ B) is performed using the standard matrix multiplication rules applied with ⊗.
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• Scalar multiplication (x ⊗ A) scales each matrix element aij by x to obtain bij = x ⊗ aij.

These operations follow the distributive, associative, and commutative laws pertaining to the
semiring.

2.1. Exponentiation of Block Matrices

We examine block matrices formed as:

Bl(A, B, C) =

(
A B
O C

)
,

where A, B, and C are square matrices of the same order over a considered semiring, and O is the
corresponding zero matrix.

Theorem 1. [23] Let

Bl(A, B, C) =

(
A B
O C

)
be a block matrix. Then for any natural number k, it holds that

Bl(A, B, C)k =

(
Ak Bk
O Ck

)
,

with

Bk =
k−1

∑
n=0

Ak−1−nBCn, (1)

and furthermore, (
Bl(A, B, C)k

)l
=
(

Bl(A, B, C)l
)k

=

(
Akl Bk,l
O Ckl

)
,

with Bk,l = Bl,k for all k, l ∈ N.

Theorem 2. [23] Let A, B, C, D, and E be square matrices of the same order such that AD = DA, CE = EC,
and consider the block matrices Bl(A, B, C) and Bl(D, B, E). Then Bk,l = Bl,k for all k, l ∈ N.

2.2. Tropical Semirings

A tropical semiring, such as Rmax,+ ( or Rmin,+) is a set equipped with two operations that mimic
conventional addition and multiplication, but instead are defined using the maximum and addition
(or maximum and addition), respectively. This semiring and its operations enable the definition of
tropical matrix operations and polynomials.

Definition 4 (Tropical Polynomial). A tropical polynomial of a variable x with coefficients in a tropical
semiring is an expression of the form

P(x) =
n⊕

i=0

ai ⊗ x⊗i,

where n indicates the degree of the polynomial.

Proposition 1. For tropical polynomials p(x) and q(x), and a matrix M over a tropical semiring, it holds that

p(M)⊗ q(M) = q(M)⊗ p(M).
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Proof. The commutativity follows from the properties of matrix multiplication in tropical semir-
ings.

2.3. Commutative Matrices in Tropical Semirings

Commutative matrices in tropical semirings have the property that their product, irrespective
of the order, yields the same result. This property is crucial for the development of cryptographic
protocols that rely on the difficulty of matrix decomposition in tropical semirings.

Definition 5 (Linde-de la Puente Matrix). A matrix L in the semiring Rmax,+ is called a Linde-de la Puente
matrix if it satisfies certain criteria based on specified non-negative real number c for its diagonal entries and its
off-diagonal entries are from the range [2r, r], where r is a non-positive real number. Such a matrix is denoted as:
Lr

c.

Theorem 3. [15] Given a tropical semiring Rmax,+. All Linde-de la Puente matrices A and B commute under
the multiplication in this semiring.

Corollary 1. Given a tropical semiring Rmax,+. For Linde-de la Puente matrices A and B, and natural numbers
m and n, the matrices Am and Bn commute.

Proof. This result is a direct consequence of the commutative property of Linde-de la Puente matri-
ces.

3. Block Matrix Key Exchange Protocols

In this section, we propose an improvement on a well-known Block Matrix Key Exchange Protocol
(BMKEP) proposed by [23].

3.1. The original protocol

We first recall the BMKEP suggested in [23]. The domain parameters of this protocol are prime
number p and a square matrix B with entries from the finite field Fq (where q is a power of p).

1. Alice chooses as her private keys: one positive integer l and a matrix A ∈ M(Fq). She transmits
the set EA of matrices commuting with A.

2. Bob chooses as his private keys: one positive integer k and a matrix Y ∈ M(Fq). He transmits the
set EY of matrices commuting with Y.

3. Alice chooses her second private key: a matrix C ∈ EY. She calculates:

Bl(A, B, C)l =

(
Al Bl
O Cl

)

and sends Bl to Bob.
4. Bob chooses his second private key: a matrix X ∈ EA. He calculates:

Bl(X, B, Y)k =

(
Xk Bk
O Yk

)

and sends Bk to Alice.
5. Alice computes the common private key:

KAB = (Bl(X, B, Y)k)l .

6. Bob computes the common private key:

KBA = (Bl(A, B, C)l)k.
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At the end of the protocol, the users get the same key, due to the fact that AX = XA, CY = YC,
and the properties of the block matrices (Theorem 2).

This protocol requires the exchange of sets of matrices EA and EY commuting with A and Y,
respectively. This means more time and space. To overcome this problem, we suggest avoiding these
steps by using properly selected commutative matrices. In general, our idea for improving this protocol
is as follows:

1. Alice selects matrices A and B, and Bob selects matrices C and D with the property that A and C
commute; B and D also commute. This means that A and C belong to the same set of commuting
matrices, B and D belong to the same set of commuting matrices. Alice and Bob agree on a
matrix T. The secret keys of the users are positive integers a and b, respectively,

2. Alice computes

Bl(A, T, B) =

(
A T
O B

)
,

Bl(A, T, B)a =

(
Aa Ta

O Ba

)
,

where

Ta =
a−1

∑
n=0

A(a−1−n) · T · Bn.

She sends her public key KA = Ta to Bob.
3. Bob computes:

Bl(C, T, D) =

(
C T
O D

)
,

Bl(C, T, D)b =

(
Cb Tb
O Db

)
,

where

Tb =
b−1

∑
m=0

C(b−1−m) · T · Dm.

He sends his public key KB = Tb to Alice.
4. Alice computes the common key:

KAB =
a−1

∑
n=0

A(a−1−n) · KB · Bn.

5. Bob computes the common key:

KBA =
b−1

∑
m=0

C·(b−1−m) · KA · Dm.

The implementation of the protocol is shown in Figure 1.

3.2. Proposed Solution

The main idea behind our protocols is to utilize block matrices with commutative matrix blocks
to simplify the key exchange process. By selecting matrix blocks that commute, we eliminate the need
to transmit sets of commuting matrices publicly.

We construct block matrices of the form:
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Alice Bob

1) Chooses A, l

2) Considers EA

3) Chooses C ∈ Ey

4) Computes Bl

1) Chooses Y, k

2) Considers EY

3) Chooses X ∈ EA

4) Computes Bk

5) Computes KAB 4) Computes KBA

Sends EA Sends EY

Sends Bl Sends Bk

Figure 1. Block Matrix KEP

(
A T
O B

)
,

(
C T
O D

)
Here A, B, C, D and T are square matrices of the same order, and O is the zero matrix of this order.
Alice and Bob each select their own their own pair of matrices (A, B) and (C, D) such that A commutes
with C, and B commutes with D. This allows them to compute a common key.

3.3. Protocol Steps

The refined protocol unfolds in the following sequence:

1. Both parties agree on a common matrix T.
2. Alice opts for matrices A and B, while Bob picks matrices C and D. They ensure that A commutes

with C and B with D.
3. Alice calculates [Bl(A, T, B)]a. Her public key is set as KA = Ta.
4. Bob, in a parallel manner, computes [Bl(C, T, D)]b. He sets his public key as KB = Tb.
5. They then exchange their public keys.
6. Using Bob’s public key and her private matrices, Alice computes the shared key, KAB.
7. Similarly, using Alice’s public key and his private matrices, Bob computes the shared key, KBA.
8. Due to the inherent commutative properties, both parties find that KAB = KBA.

Here we give two examples for implementation of the above presented protocol, based on a
tropical semiring.

3.4. Implementation one - Tropical Block Matrix KEP using Polynomials of Matrices

The domain parameters of this protocol are: tropical semiring Rmax,+ = ⟨R∪ {−∞}, max,+⟩ or
Rmin,+ = ⟨R ∪ {+∞}, min,+⟩, and three arbitrary square tropical matrices M, N, and T of order n
over this semiring.

1. Alice selects as her secret key two tropical polynomials p1(x) and q1(x), and a positive integer a.
She computes:

A = p1(M), B = q1(N)

For Alice,

Bl(A, T, B) =

(
A T
O B

)
,

Bl(A, T, B)⊗a =

(
A⊗a Ta

O B⊗a

)
,
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where

Ta =
a−1⊕
n=0

A⊗(a−1−n) ⊗ T ⊗ Bn.

She sends her public key KA = Ta to Bob.
2. Bob selects as his secret key two tropical polynomials p2(x) and q2(x), and a positive integer b.

He computes:
C = p2(M), D = q2(N)

For Bob,

Bl(C, T, D) =

(
C T
O D

)
,

Bl(C, T, D)⊗b =

(
C⊗b Tb
O D⊗b

)
,

where

Tb =
b−1⊕
m=0

C⊗(b−1−m) ⊗ T ⊗ Dm.

He sends his public key KB = Tb to Alice.
3. Alice computes the common key:

KAB =
a−1⊕
n=0

A⊗(a−1−n) ⊗ KB ⊗ Bn.

4. Bob computes the common key:

KBA =
b−1⊕
m=0

C⊗(b−1−m) ⊗ KA ⊗ Dm.

At the end of the protocol, the users obtain the same secret key due to the following:

Theorem 4.

KAB =
a−1⊕
n=0

A⊗(a−1−n) ⊗ KB ⊗ Bn =
b−1⊕
m=0

C⊗(b−1−m) ⊗ KA ⊗ Dm = KBA.

Proof. In accordance with the choice of the matrices A, B, C, D, it follows that

A⊗C = C⊗A, B⊗D = D⊗B

(the multiplication of tropical polynomials of matrices is commutative). Additionally, conforming to
Theorem 2:

KAB =
a−1⊕
n=0

b−1⊕
m=0

A⊗(a−1−n) ⊗ C⊗(b−1−m) ⊗ T ⊗ D⊗(m) ⊗ B⊗(n)

=
b−1⊕
m=0

a−1⊕
n=0

C⊗(b−1−m) ⊗ A⊗(a−1−n) ⊗ T ⊗ B⊗(n) ⊗ D⊗(m) = KBA.

The execution of this protocol is illustrated in Figure 2.
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Alice Bob

1) Chooses p1(x), q1(x),
a

2) Computes A, B

3) Computes KA

1) Chooses p2(x), q2(x),
b

2) Computes C, D

3) Computes KB

4) Computes KAB 4) Computes KBA

Sends KA Sends KB

Figure 2. Tropical Block Matrix KEP using Polynomials of Matrices between Alice and Bob

3.5. Implementation two - Tropical Block Matrix KEP using Linde-de la Puente Matrices

The domain parameters of this protocol are: tropical semiring Rmax,+ = ⟨R ∪ {−∞}, max,+⟩,
one negative real number r, one positive real number c, and an arbitrary square tropical matrix T of
order n over this semiring.

1. Alice selects as her secret key two Linde-de la Puente matrices A = Lc1
r1 and B = Lc2

r2 , and a
positive integer a. She computes:

Bl(A, T, B) =

(
A T
O B

)
,

Bl(A, T, B)⊗a =

(
A⊗a Ta

O B⊗a

)
where

Ta =
a−1⊕
n=0

A⊗(a−1−n) ⊗ T ⊗ Bn.

She sends her public key KA = Ta to Bob.
2. Bob selects as his secret key two Linde-de la Puente matrices C = Lc3

r3 and D = Lc4
r4 , and a positive

integer b. He computes:

Bl(C, T, D) =

(
C T
O D

)
,

Bl(C, T, D)⊗b =

(
C⊗b Tb
O D⊗b

)
,

where

Tb =
b−1⊕
m=0

C⊗(b−1−m) ⊗ T ⊗ Dm.

He sends his public key KB = Tb to Alice.
3. Alice computes the common key:

KAB =
a−1⊕
n=0

A⊗(a−1−n) ⊗ KB ⊗ Bn.

4. Bob computes the common key:

KBA =
b−1⊕
m=0

C⊗(b−1−m) ⊗ KA ⊗ Dm.
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Alice Bob

1) Chooses A, B, a

2) Computes KA

1) Chooses C, D, b

2) Computes KB

3) Computes KAB 3) Computes KBA

Sends KA Sends KB

Figure 3. Tropical Block Matrix KEP using Linde-de la Puente matrices.

At the end of the protocol, the users obtain the same secret key due to Theorem 3 and Corollary
3.1.

The execution of the protocol is shown in Figure 3.

3.6. Advantages of our Protocols

Here we outline some of the advantages of our protocols:

• In the protocol suggested in [23], 4 messages are exchanged between users via a public (unse-
cured) channel. In our protocols, only two messages are exchanged. This results in Improved
security and Saving time and resources.

• Our protocols operate in tropical semirings, where the operations are only max/min and +. This
means that operations in our protocols are significantly faster than operations in the finite field
Fq.

• Our protocols do not use linear expressions for the general term, thus rendering traditional linear
algebra tools ineffective.

4. Security Analysis

The security framework of our proposed tropical block matrix key exchange protocols is anchored
in the computational hardness of the Matrix Decomposition Problem within tropical semirings. This
problem is known for its formidable complexity, making it an ideal basis for cryptographic security.
Crucially, our protocols are designed such that, even with knowledge of the communication transcript
and public parameters, an adversary cannot feasibly distinguish the session key derived from the
protocol from a random bitstring. This aligns with the contemporary standards for cryptographic
protocol security [24].

4.1. Matrix Decomposition Problem

The core challenge underpinning our protocols is the Matrix Decomposition Problem, defined as
follows: Given matrices K, T ∈ Rn×n

max,+, the problem is to find matrices A, B ∈ Rn×n
max,+ and an integer a

satisfying the equation:

K =
a−1⊕
i=0

A⊗(a−1−i) ⊗ T ⊗ Bi.

Essentially, this entails decomposing the matrix K into a series of operations involving its constituent
block matrices. The complexity of this problem is a crucial aspect of our security argument. Notably,
the best-known algorithms for such a decomposition, including Gauss-Jordan elimination and LU
decomposition, exhibit exponential runtime complexity (O(2n)) for a matrix of dimension n. This level
of computational demand renders the problem intractable for practical purposes, especially when
considering the suggested parameter sizes [1].
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4.2. Parameters for Enhanced Security

To strengthen the resistance against brute-force attacks and to align with the cryptographic
principle that the session key should be indistinguishable from a random bitstring by an adversary, we
recommend the following parameter settings for our protocols:

• Employ tropical matrices of at least order 60, ensuring a substantial level of complexity in the
matrix operations.

• Select matrix entries randomly within the range [−105, 105], which expands the solution space
significantly.

• The secret integers a and b should be chosen to be no less than 105, further increasing the
computational challenge for any potential attacker.

With these parameters, our protocols not only meet but exceed the contemporary requirements for
cryptographic security, effectively mitigating the risk of key exposure and unauthorized decryption.

4.3. Comparison with Existing Protocols

Compared to conventional commutative matrix-based key exchange protocols, the proposed
tropical matrix protocols exhibit several advantages:

• Reduced key sizes are a feature since commuting matrix sets are not exchanged. For an n × n
matrix, only n2 values are transmitted instead of 2n4.

• The protocols leverage the computational efficiency of tropical semirings, where matrix multipli-
cation is performed in O(n3) time rather than O(n3 log n) time as in finite fields.

• A decrease in the number of message exchanges is also observed, with the proposed proto-
cols requiring only two exchanges compared to four in traditional approaches, thus reducing
communication overhead.

The performance and resource usage metrics are detailed in Table 1, which illustrates the duration
(in seconds) and memory sizes (in MB) for each protocol variation across different matrix sizes. As
matrix size increases, the resource demands also tend to increase, which is a crucial factor in evaluating
the scalability of the protocols.

Table 2 depicts the private and public key sizes (in KB) for each protocol variation. It shows
the growth of key sizes with an increase in matrix dimension, highlighting the trade-off between
security and resource requirements. The disproportionality between private and public key sizes is
also noteworthy, indicating the asymmetry in the computational load between key generation and
verification processes.

Table 1. Duration (in seconds) and Memory Sizes (in MB) for each protocol.

Matrix Size Duration 1 Duration 2 Duration 3 Memory 1 Memory 2 Memory 3
60 0.03 0.01 0.02 0.05 0.05 0.05
65 0.04 0.02 0.03 0.06 0.06 0.06
70 0.06 0.03 0.04 0.07 0.07 0.07
75 0.08 0.04 0.06 0.08 0.08 0.08
80 0.12 0.06 0.09 0.09 0.09 0.09
85 0.18 0.09 0.13 0.10 0.10 0.10
90 0.24 0.13 0.18 0.12 0.12 0.12
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Table 2. Private and Public Key Sizes (in MB) for each protocol.

Matrix Size Private 1 Public 1 Private 2 Public 2 Private 3 Public 3
60 27.3 2191.2 27.3 27.3 27.3 27.3
65 32.3 2592.5 32.3 32.3 32.3 32.3
70 37.5 3008.7 37.5 37.5 37.5 37.5
75 43.0 3439.9 43.0 43.0 43.0 43.0
80 48.8 3885.9 48.8 48.8 48.8 48.8
85 54.8 4346.9 54.8 54.8 54.8 54.8
90 61.0 4822.7 61.0 61.0 61.0 61.0

5. Conclusion

In the dynamic realm of cryptographic research, innovations are imperative to address the ever-
evolving challenges of digital security. Our study has ventured into the unique domain of tropical
semirings and block matrices, presenting protocols that are poised to redefine the efficiency and
security paradigms of key exchange mechanisms.

Central to our contribution is the operational efficiency that tropical semirings introduce. More-
over, our protocols do not employ linear expressions for the general term, which makes traditional
linear algebra tools ineffective. By circumventing the computational intricacies typical of finite fields Fq,
our approach manifests both swiftness and an enhanced layer of security. This duality is paramount in
today’s digital age, where secure communications underpin a plethora of applications, from financial
transactions to personal messaging.

Furthermore, our research does not just stand as an endpoint but rather as a launchpad for future
explorations. The mathematical properties of tropical semirings, juxtaposed with the versatility of
block matrices, hint at vast cryptographic landscapes yet to be charted. There’s also the tantalizing
opportunity of amalgamating our protocols with existing cryptographic frameworks, giving rise to
hybrid systems that could potentially be more resilient than their individual counterparts.

In closing, our exploration underscores the profound impact that novel mathematical structures
can impart to the field of cryptography. As we harness the capabilities of tropical semirings and block
matrices, we’re not only charting a new course for key exchange protocols but also kindling a beacon
for future endeavors in the realm of secure communications. The cryptographic community now has a
fertile ground for further research, and it will be intriguing to witness the subsequent innovations that
build upon our foundational work.
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