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Abstract: Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to
diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by
integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy
confirmed metabolic-dysfunction associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and
biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic
profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The
efficacy of the model was assessed through the evaluation of the Out-of-Bag (OOB) error estimate. Our ML
model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model
exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for
biliary and 29.6% for TCMR. The metabolites serine and serotonin emerged as the topmost predictors. When
predicting binary outcomes using 3 models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR
vs. rest), the AUCs were 0.882, 0.972 and 0.96 respectively. Our ML tool integrating serum metabolites with
clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology.

Keywords: metabolomics; liver transplant; T-cell mediated rejection; metabolic dysfunction-associated
steatohepatitis (MASH); biliary complications

1. Introduction

Chronic graft injury compromises long-term survival: Liver transplantation saves thousands of
lives worldwide annually — in fact, there were over 37,000 transplants in 2022, and 13,400 in the
Americas alone[l]. However, long-term survival in 25% of liver transplant (LT) recipients is
compromised by ongoing graft injury that results in cirrhosis[2]. Liver graft injury is typically
heralded by abnormalities in liver biochemistry[3,4]. Causes of graft injury include T-cell mediated
rejection (TCMR), metabolic dysfunction-associated steatohepatitis (MASH), biliary complications
and viral infections, amongst others[5]. TCMR is the most common cause of liver graft injury, and
repeated episodes lead to chronic rejection, premature graft loss and compromised long-term
survival[6]. MASH recurs in most patients originally transplanted for MASH (MASH-LT), and an
estimated 50% develop significant graft fibrosis (defined as Stage 2 or greater) within 5 years of
transplant[7]. Overall, ongoing graft injury leads to accelerated fibrosis in comparison to the native
liver, progressing at an estimated rate of 0.4 stages per year, which can rapidly result in cirrhosis and
loss of the graft[6,8-11].

How can we best preserve the long-term health of the liver graft? It is imperative that we
optimize the long-term outcomes of the graft and its recipient using a personalized, data-driven
approach. The only way to reliably diagnose graft injury at present is by performing a liver biopsy
and assessing histological features. However, a liver biopsy is an invasive procedure with a 1.8% risk
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of complications, and it is impractical to perform longitudinal liver biopsies over a LT recipient’s
lifetime[12]. Thus, there is great need for effective serological biomarkers to facilitate the noninvasive
diagnosis of rejection, biliary complications and MASH.

The term ‘metabolomics’ describes the identification and quantification of metabolites in
biological tissue[13]. Metabolites, as downstream products of gene expression, protein and enzymatic
function can provide valuable information on the biological processes within a cell, tissue, organ
system or organism in addition to the pathophysiology behind different disease states[13,14]. In the
pre-transplant population, metabolomics studies have identified potential non-invasive biomarkers
associated with advanced MASH and hepatocellular carcinoma[15-18]. However, data is quite
limited, especially in post-transplant populations, although early single center studies have identified
potential metabolomic profiles in donors associated with early allograft dysfunction, indicators of
ischemia-reperfusion injury in recipients and TCMR in pediatric populations[14,19,20].

This study aimed to identify distinct metabolomic profiles in the serum of individuals following
liver transplant, with the goal of recognizing potential biomarkers capable of differentiating between
post-transplant complications, specifically MASH, TCMR, and biliary issues. Serum metabolomics is
relatively cost-effective as compared to other high-throughput approaches. We employed a random
forest (RF) algorithm to develop a classification model distinguishing between biliary complications,
MASH, and TCMR. The interpretation of the model was conducted through the permutation-based
feature importance measurement for random forests[21].

2. Materials and Methods

2.1. Sample Collection and Processing

Serum samples from consented patients with MASH (n=10), TCMR (n=18), biliary complications
(n=27) were retrieved from the Multi Organ Transplant Program at the Ajmera Transplant Centre
(UHN). Serum samples were processed for targeted metabolomics processing by The Metabolomics
Innovation Centre (TMIC Edmonton, AB, Canada, https://metabolomicscentre.ca) using a
combination of direct injection mass spectrometry with a reverse-phase LC-MS/MS custom assay.
This specialized assay enabled the accurate identification and quantification of 143 native metabolites
encompassing amino acids, acyl carnitines, biogenic amines and their derivatives, uremic toxins,
glycerophospholipids, sphingolipids, as well as various sugars. Mass spectrometric analysis was
performed on an ABSciex 4000 Qtrap® tandem mass spectrometry instrument (Applied
Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with an Agilent 1260 or Waters
series UHPLC system. The samples were delivered to the mass spectrometer by a LC method
followed by a direct injection (DI) method.

2.2. Data Analysis

Metabolite concentrations reported in uM units (absolute concentrations) for each sample were
used as input for MetaboAnalyst 5.0 software[22] for bioinformatics analysis. For each two-group
comparison, the data underwent a series of processing steps, including: (i) removing features with
more than 50% data missing, (ii) missing value imputation by replacing missing values with 1/5 of
the minimum positive value, and (iii) normalization using quantile normalization, log?2
transformation, and autoscaling. Subsequently, we applied multivariate analysis with Partial Least
Square — Discriminant Analysis (PLS-DA) approach to identify significant metabolites based on
Variable Importance in Projection (VIP) score calculated for each component. A metabolite was
considered significant if VIP > 1. These metabolites were then categorized into their respective
compound classes as per the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Human
Metabolome Database (HMDB) using Pathway Analysis module of the software. Finally, we
individually mapped them onto their primary biochemical pathways to gain a comprehensive visual
representation of the metabolic changes. Boxplots illustrating the normalized expression of the
significant metabolites and associated p-values from unpaired t-tests were generated using GraphPad
Prism V.10.1.0 (GraphPad Software, San Diego, California, USA).
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2.3. Integration of Clinical Variables with VIP Metabolites for Prediction of Patient Outcomes Post
Transplantation

In this study, the cohort of 55 patients was divided into a train-test strategy with a split ratio of
75-25. Subsequently, on the training dataset, a feature selection step was performed to identify crucial
metabolites exhibiting differential abundances across the three classes. This process involved receiver
operating characteristic (ROC) curve analysis, performed using the filterVarlmp function from the R
package 'caret'[23]. Each metabolite underwent univariate evaluation, and three pairwise
comparisons were conducted (Biliary vs MASH, Biliary vs TCMR, and MASH vs TCMR). The
maximum area under the curve (AUC) was recorded for each pairwise comparison. Only metabolites
surpassing an AUC threshold > 0.75 in at least two pairwise comparisons were considered significant.
This feature selection procedure identified a subset of 20 metabolites deemed crucial for the
classification task.

Subsequently, we integrated the metabolomic profiles with clinical and laboratory
measurements of individuals to train a 3-way Random Forest classifier using the randomkForest
package[24] in R. Before model training, normalization procedures were applied to both the
metabolomic profiles and clinical variables. To address class imbalances, particularly in the minority
MASH and TCMR classes, and achieve a balanced class distribution, the SMOTE (Synthetic Minority
Over-Sampling Technique) method[25] was employed to generate synthetic samples. The quality of
samples generated using SMOTE was visually assessed through t-distributed stochastic neighbor
embedding (t-SNE)[26] projections.

The efficacy of the three-class Random Forest classifier was assessed through the evaluation of
the Out-of-Bag (OOB) error estimate. To further elucidate the multi-class classification problem, we
employed a One-vs-Rest strategy, breaking it down into three distinct binary problems: Biliary versus
Rest, MASH versus Rest, and TCMR versus Rest. Mitigating class imbalances in the binary outcomes
involved under sampling the majority class. Moreover, we computed Area Under the Curve (AUC)
values to gauge the effectiveness of each model in distinguishing between classes, leveraging a
combination of metabolites and clinical markers.

To assess the significance of each explanatory variable (both metabolite and clinical variable),
we employed a permutation-based variable-importance measure and Gini impurity criterion, which
evaluated the capacity of predictors to mitigate data impurity or disorder. This assessment was
conducted using out-of-bag data from the RF models.

3. Results

A total of 55 participants were enrolled in the study of which 10 had a diagnosis of post LT
MASH, 18 had TCMR and 27 had biliary obstruction (Table 1). Most study participants were
transplanted for steatotic liver disease and there was no significant demographic inter-group
variability. Expectedly, alanine aminotransferase (ALT) levels were higher in participants with TCMR
and MASH whilst alkaline phosphatase (ALP) levels were more elevated in individuals with biliary

obstruction.
Table 1. Liver transplant (LT) recipient clinical and laboratory characteristics.
Biliary
. MASH TCMR .
Variable obstruction p-value
(n=10) (n=18)
(n=27)
Recipient age at LT (years) 54.5 [47,67] 52 [46,60] 59 [53,67] 0.2462
Sex 0.4890
5 (50%) 13 (72.2%) 18 (66.7%)
F 5 (50%) 5 (27.8%) 9 (33.3%)
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Laboratory readings (U/L)
ALT 77 [45,165] 115 [83,305] 55[37,90] 0.0062
AST 45.5 [28,132] 76 [47,198] 36[25,43] 0.0012
ALP 168.0 [104,684] 205[122,329] 241[147,408] 0.4782
Creatinine 98.5 [71,140] 80[71,107] 100[81,131] 0.5467
Hgb 123.5 [85,146] 112[105,120] 104[94,115] 0.161a
Indication for transplant 0.837>
ArLD 4 (40%) 4 (22.2%) 9 (33.4%)
MASH 3 (30%) 2 (11.1%) 4 (14.8%)
HBV 1(10%) 2 (11.1%) 1(3.7%)
HCV - 3 (16.7%) 3 (11.1%)
PBC - 2 (11.1%) 1(3.7%)
PSC - 1(5.6%) 2 (7.4%)
Autoimmune hepatitis - - 3 (11.1%)
Other 2 (20%) 4 (22.2%) 4 (14.8%)

Data are n (%) or median with 95% CI. Statistical p-value was calculated with: “®Kruskal-Wallis rank
sum test, "Fisher’s exact test. Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase;
AST, aspartate aminotransferase; Hgb, hemoglobin; ArLD, alcohol-related liver disease; MASH,
metabolic-dysfunction associated liver disease; HBV, chronic hepatitis B; HCV, chronic hepatitis C;
PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; TCMR, T-cell mediated
rejection.

Within each two-group comparison, a total of 132 metabolites successfully passed the
MetaboAnalyst processing steps detailed in the Materials and Methods section. Following these
steps, the normalization was applied for further multivariate analysis.

3.1. Alanine, Aspartate, and Glutamate Metabolism Pathway Exhibited Notable Alterations in a Comparative
Analysis of MASH (n=10) and TCMR (n=18) Patients

Employing PLS-DA, we identified 40 important metabolites, as documented in Table S1. The
PLS-DA plot, as well as the top 15 features, are graphically depicted in Figure 1A, upper panel.
Among these significant metabolites, several amino acids (serine, phenylalanine, alpha aminoadipic
acid) and cholines (lysophosphatidylcholine acyl C18:1, lysophosphatidylcholine acyl C26:1)
exhibited higher abundance in TCMR patients. Each of these amino acids have either been implicated
in immune modulation or as biomarkers of steatohepatitis, in some cases both[27-30]. Serine
deficiency, for example, has been repeatedly identified as a biomarker of MASH in non-transplant
populations and seems to also have a well-defined role in T-cell responses[31].
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Figure 1. Significant metabolites by teo-group comparison. A. MASH vs TCMR. B. Biliary vs MASH.

C. Biliary vs TCMR. p-values from unpaired t-tests.

The carnitines (nonaylcarnitine, decanoylcarnitine, octanoylcarnitine, dodecanoylcarnitine)
were significantly more prevalent in the MASH group. Selected metabolites with their normalized

concentrations are illustrated in Figure 1A, lower panel.

Conducting pathway analysis with VIP metabolites unveiled three significantly perturbed
signaling pathways. Among these, the alanine, aspartate, and glutamate metabolism pathway was

the most significantly affected, with an FDR-adjusted p-value of 1.09E-03 (Table 2).

Table 2. Pathway analysis results featuring top altered pathways specific to each two-group

comparison.
Group
comparison Pathway Name Altered metabolites from input list FDR
MASH vs Alanine, aspartate and L-Asparagine; Citrate; Fumarate;
TCMR glutamate metabolism Succinate; 2-Oxoglutarate 1.09E-03
2-Oxoglutarate; Succinate; Citrate; 2.91E-03
Citrate cycle (TCA cycle) ~ Fumarate
Arginine biosynthesis L-Citrulline; Oxoglutarate; Fumarate 1.46E-02
MASH vs Aminoacyl-tRNA L-Asparagine; L-Phenylalanine; Glycine; 1.35E-06
Biliary biosynthesis L-Aspartate; L-Valine; L-Alanine;
Isoleucine; L-Leucine; L-Tryptophan
Valine, leucine and
isoleucine biosynthesis L-Leucine;L-Isoleucine;L-Valine 2.99E-03
Alanine, aspartate and L-Aspartate; L-Asparagine; L-Alanine; 6.15E-03
glutamate metabolism Citrate; Succinate
Biliary vs (R)-3-Hydroxybutanoate, Butanoic acid;
TCMR Butanoate metabolism 2-Oxoglutarate; Succinate 8.13E-04
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Alanine, aspartate and L-Aspartate; L-Alanine; Succinate; 3.75E-03
glutamate metabolism 2-Oxoglutarate
Arginine biosynthesis L-Aspartate; L-Citrulline; 2-Oxoglutarate ~ 6.45E-03

3.2. Aminoacyl-tRNA Biosynthesis Emerged as the Pathway Exhibiting the Most Pronounced Alterations
when Comparing MASH with Biliary Complications Group

As a secondary analysis, we undertook a comparison between MASH patients (n=10) and those
with biliary complications (n=27). The application of Partial Least Squares Discriminant Analysis
provided valuable insights, particularly through the visualization in the PLS-DA plot, which
demonstrated a clear and effective separation of samples based on the respective diseases. To offer a
more comprehensive understanding of the results, we have presented the top 15 metabolites in Figure
1B, upper panel.

From this analysis, we identified 39 metabolites with VIP scores greater than or equal to 1, and
these findings are detailed in Table S2. Notably, our results indicated hydroxysphingomyeline as the
top changed metabolite (Figure 1B, lower panel), with VIP > 2.9, most prevalent in MASH patients.
Also, several phosphatidylcholines (lysophosphatidyl acyl cholines C14:0 and C18:0) and
phosphatidylcholine acyl-alkyl C40:6 were more abundant in the MASH group. On the contrary, a
two phosphatidyl diacyl cholines, C36:0 and C40:2, were found to be more prevalent in patients with
biliary complications. Additionally, we noted an elevated abundance of serine and phenylalanine
within this group. This differential metabolite distribution underscores the distinctive metabolic
profiles associated with these distinct disease conditions. While some of these metabolites have not
previously been identified in the development of either complication, a theoretical mechanism exists
to explain their abundance or scarcity. For example, hydroxysphingomyeline C22: is a ceramide.
Ceramide metabolism has been previously identified as being highly upregulated in non-transplant
patients with MASH, supporting its potential as an effective biomarker in transplant populations[32].

Using the top 39 metabolites we identified three most significant metabolic pathways (Table 2),
of which Aminoacyl-tRNA biosynthesis is the most significantly altered (FDR < 1.35E-06), with the
contribution of eight metabolites, mostly amino acids (Asparagine, Phenylalanine, Glycine,
Aspartate, Valine, Alanine, Isoleucine, Leucine, Tryptophan) from our list.

3.3. Significant Alterations in Butanoate (butyrate) Metabolism were Revealed in the Biliary vs TCMR
Group Comparison

The third and final comparative analysis was performed between individuals with biliary
complications and those in the TCMR group. A shorter list of just 28 significant metabolites (Table
S3) was revealed by PLS-DA, the top 15 being illustrated in Figure 1C, upper panel. Within this set
of metabolites, it was evident that serotonin and a pair of lysophosphatidyl acyl cholines (specifically
C24:0 and C26:1) exhibited greater abundance in the TCMR group. In contrast, a couple of carnitines,
specifically acetyl carnitine and pimeloyl carnitine, were more prevalent among patients with biliary
complications (Figure 1C, lower panel). While serotonin has not previously been identified as a
biomarker of post-LT complications, there is a strong biological mechanism for its marked difference
in biliary vs TCMR groups, as serotonin is a potent modulator of T cells and has multiple functions
in the liver including regulation of the biliary tree and cholangiocytes[33-35].

Furthermore, employing pathway analysis on metabolites with VIP scores exceeding 1, we
identified three significantly altered metabolic pathways, as presented in Table 2. Among these
pathways, the most pronounced alterations were observed in the butanoate (butyrate) metabolism
pathway, characterized by a false discovery rate value of less than 8.13E-04.

In summary, the metabolomics analysis alone unveiled disease-specific metabolic alterations
and highlighted the unique biological relevance of certain metabolites within these distinct pathways
for each disease condition.

d0i:10.20944/preprints202403.1827.v1
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3.4. Integration of Clinical Information with Metabolomics Data

Prior to integration with conventional clinical and laboratory measurements, we performed
feature selection on the metabolomics data using ROC curve analysis to retain only the most
discriminative metabolites. Employing a random train-test split of 75%-25% samples, metabolite
concentrations from the training set (n=40) were utilized to compute AUCs for each pairwise
comparison, resulting in the elimination of 112 metabolites. Twenty metabolites were identified as
crucial predictors, with AUC thresholds exceeding 0.75 for at least two of the classes. Notably,
decanoylcarnitine C10, citric acid, succinic acid, phenylalanine, and serine emerged as the top-
ranking metabolites, and their details are presented in Table 3.

Table 3. Top 20 metabolites identified through ROC Curve Analysis, showcasing each metabolite's
capacity, as measured by its ROC AUC value, to distinguish between classes.

Metabolite Biliary MASH TCMR
Decanoylcarnitine (C10) 0.811 0.901 0.901
Citric acid 0.832 0.868 0.868
Succinic acid 0.811 0.835 0.835
Phenylalanine 0.779 0.846 0.846
Serine 0.686 0.868 0.868
Dodecanoylcarnitine (C12) 0.739 0.835 0.835
Serotonin 0.812 0.78 0.812
Methylglutarylcarnitine 0.754 0.824 0.824
Hydroxysphingomyeline C22:1 0.832 0.832 0.72
alpha-Aminoadipic acid 0.725 0.824 0.824
Dodecenoylcarnitine (C12:1) 0.7 0.83 0.83
Hexadecenoylcarnitine 0.732 0.808 0.808
Octanoylcarnitine 0.736 0.802 0.802
Alanine 0.779 0.779 0.737
alpha-Ketoglutaric acid 0.71 0.786 0.786
Fumaric acid 0.689 0.791 0.791
Putrescine 0.775 0.775 0.72
Leucine 0.786 0.786 0.687
Sarcosine 0.785 0.686 0.785
Kynurenine 0.689 0.775 0.775

Subsequently, we developed a Random Forest classifier model by combining the eight key
clinical variables: age, sex, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate
aminotransferase (AST), creatinine, hemoglobin (HGB), and primary indication for transplantation —
integrated with the top 20 selected metabolites. The t-SNE projections of the original dataset are
shown in Figure S1A. The SMOTE-generated samples have good coherence with the original samples
as shown in Figure S1B. A 3-way classification was performed to predict the likelihood of a patient
belonging to one of three classes: Biliary, MASH, or TCMR. Model parameters were tuned using the
out-of-bag (OOB) error, revealing 5 as the optimal number of candidate predictors randomly drawn
for a split and the number of trees as 500, based on minimum OOB error. The 3-class classification
model yielded an overall OOB estimate of the error rate at 19.75%.

Figure 2A illustrates that at the individual class level, the model demonstrated the maximum
ability to distinguish MASH samples with an OOB error estimate of only 7.4%, compared to 22.2%
and 29.6% for Biliary and TCMR groups, respectively. The 3-way classifier model achieves an overall
accuracy of 79.66%. Serotonin and serine have surfaced as the primary predictors, identified through
both Mean Decrease in Accuracy and assessment via the Gini Impurity Criterion, which gauges the
capacity of predictors to mitigate data impurity or disorder.
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Figure 2. Model Evaluation. A. Classification results on the Out-of-Bag (OOB) samples. The OOB
estimate of the error rate is 19.75% for the 3-way classification model. B, C, and D show the Receiver
Operating Characteristic (ROC) curve and corresponding Area Under the Curve (AUC) statistics for
the following binary models: Biliary vs. Rest, MASH vs. Rest, and TCMR vs. Rest, respectively.

Apart from the 3-way classification, we also evaluated three Random Forest models predicting
binary outcomes: Biliary model (Biliary vs. Rest), MASH model (MASH vs. Rest), and TCMR model
(TCMR vs. Rest). The resulting OOB error rates were found to be 22.64%, 5.66%, and 24.53% for the
Biliary, MASH, and TCMR models, respectively. Figures 2 (B—D) show the ROC curves and the rank
of the variables for the three models. The AUCs for the Biliary, MASH, and TCMR models are 0.882,
0.972, and 0.896, respectively.

In our variable importance analysis, as shown in Figure 3, serotonin emerged as a top predictor
for the 3-way-Classification, Biliary, and TCMR models, consistent with Mean Decrease in Accuracy
and Mean Decrease in GINIL
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Figure 3. Variable Importance for the Random Forest Classification Models. A. Shows the scaled

Mean Decrease in Accuracy over all out-of-bag (OOB) cross-validated predictions. The drop in

prediction performance for the 3-way Classification, Biliary vs. Rest, and TCMR vs. Rest is highest

when the metabolite serotonin is omitted. B. The scaled GINI index, a measure of node impurity.

Serotonin has the highest GINI index and is again considered the most important variable to split the

data correctly by the 3-way Classification, Biliary vs. Rest, and TCMR vs. Rest models. TX ind =

primary indication for transplant.

The amino acid serine and hydroxysphingomyeline (SM(OH)C22:1) emerged as leading
predictors for 3-way-Classification and the MASH model, indicating their importance in classifying
MASH samples. Additionally, phenylalanine, decanoylcarnitine, and kynurenine were crucial
predictors of MASH. The liver enzymes AST and ALT appeared as the topmost important clinical
variables. Abundance levels of top predictor metabolites are plotted in Figure 4.
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Figure 4. Normalized abundance levels of top predictor metabolites. Shows the normalized
abundance levels of top six predictor metabolites across sample groups. The p-value used to signify

the difference in expression levels among the three groups are computed using independent t-test.

Only the significant p-values are shown.

3.5. Comparative Analysis of Integrated Model versus Individual Modalities

We additionally assessed our integrated 3-way classification model, which combines clinical
variables and metabolites, alongside two other 3-way classification models trained solely on a single
data type: i) clinical variables alone, and ii) metabolites alone. Our Random Forest classifier, when
trained on solely clinical variables, produced an overall OOB estimate of the error rate at 25.93%. At
the individual class level, depicted in Figure 5A, the model distinguished both MASH and TCMR
groups, with OOB error estimates of 22.2% and 33.3% for the Biliary group. The 3-way clinical-only
model achieves an overall accuracy of 73.37%. The top clinical predictors were ALT and AST as shown
in Figure 5B. While these conventional clinical variables can indicate liver graft injury, they are not
specific to etiologies of graft pathology.
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Figure 5. Clinical-only and Metabolite-only models. A. Classification results of clinical-only model
on the Out-of-Bag (OOB) samples. The OOB estimate of the error rate is 25.93% for the 3-way
classification model. B. Shows the Mean Decrease in Accuracy over all out-of-bag (OOB) cross-
validated predictions for the clinical-only model. C. Classification results of metabolite-only model
on the Out-of-Bag (OOB) samples. The OOB estimate of the error rate is 22.22% for the 3-way
classification model. D. Shows the Mean Decrease in Accuracy over all out-of-bag (OOB) cross-

validated predictions for the metabolite-only model.

In contrast, our Random Forest classifier trained on top ranked metabolites alone, produced a
lower overall OOB estimate of the error rate at 22.22%. Depicted in Figure 5C, the confusion matrix
for the metabolites-only model illustrated improved performance at individual class levels,
particularly evident in the MASH group with an OOB error estimate of 14.81% compared to the
clinical-only model. Achieving an overall accuracy of 77.14%, the metabolite-only model identified
Serine and Serotonin as top predictor metabolites, based on the mean decrease in accuracy, as shown
in Figure 5D.

4. Discussion

In this study, we aimed to identify distinct, measurable metabolomic profiles to differentiate
causes of liver graft injury along with clinical variables in post-transplant populations. Our
metabolomic analysis detected specific metabolites that exhibited significant changes in individuals
with TCMR, biliary complications and MASH post-liver transplant. In addition to identifying
individual metabolites that varied between disease groups, pathway analysis was conducted to
determine which metabolic pathways were most differentially affected.
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In the case of MASH vs TCMR, amino acid metabolism was broadly highlighted, with two of
the main pathways affected being alanine aspartate glutamate metabolism and arginine biosynthesis.
Both pathways have been affected in steatohepatitis in non-transplant populations and in rejection
for transplant populations, further supporting their potential inclusion as relevant biomarkers in
post-LT complications[36-38].

Comparing MASH vs Biliary groups, amino acid metabolism was once again of great
significance, with branch chain AA(BCAA) synthesis and alanine aspartate glutamate metabolism
being highlighted. The BCAA synthesis pathway may be particularly useful as a biomarker of MASH,
as levels of these amino acids have been shown to increase greatly in non-transplant MASH
populations[39].

Lastly, the biliary vs TCMR groups highlighted one unique metabolic pathway, butanoate
metabolism. Butanoate is a short chain fatty acid synthesized by enteric bacteria and has been
repeatedly implicated in mediating tolerogenic phenotypes of T cells and may therefore be associated
with graft tolerance or rejection[40,41]. Considering its unique role in mediating immune functioning,
biomarkers associated with butanoate metabolism may be effective in identifying TCMR.

We then developed an ML tool, a Random Forest classifier to predict liver graft pathology and
compared its accuracy on three circumstances: when using only (i) clinical parameters, (ii)
metabolites, and (iii) integrating both categories. The improvement in overall accuracy observed in
the integrated model, as discussed in Section 3.4, reaffirms our assertion that the complete complexity
of graft pathology cannot be adequately captured by any singular data modality. Our results show
that clinical variables and metabolites are complementary in nature and integrating them provides a
more comprehensive understanding of liver graft pathology.

When integrating metabolomic data with clinical information via ML modeling, serotonin was
identified as a top predictor for the 3-way-Classification. Serotonin has been shown to regulate
fibrosis progression[42,43], with higher levels being linked to increased chances of developing
MASLD[44]. Our ML model also revealed serine and hydroxysphingomyeline (SM(OH)C22:1) as
crucial metabolites for 3-way-Classification and the MASH model. Indeed, previous studies have
shown the association between serine deficiency and MASH][45,46]. Sphingomyelin is the most
frequently observed sphingolipid in mammalian cells and circulating levels have shown promise as
a noninvasive biomarker of MASHJ[45]. It is considered a bioactive lipid, functioning as a component
of cell membranes, with a role in cell signaling, growth, death, senescence, adhesion and migration.
The liver plays an important role in lipid metabolism, taking up free fatty acids, forming triglycerides
and VLDL in addition to acting as a site for lipid storage. Lovric et al identified a positive correlation
between serum concentrations of sphingomyelin with increased ectopic fat accumulation (including
hepatic steatosis)[47,48]. In murine models it has been shown that sphingomyeline synthesis is
activated in MASH, being related to hepatocyte pyroptosis[49]. However, Zhou et al noted a
significant decrease in serum sphingomyelin and lysophosphatidylcholine levels in individuals with
MASH versus MASLDJ[50].

Other top metabolites as predictors for MASH were phenylalanine, decanoylcarnitine, and
kynurenine. In agreement with our results, other studies have indicated an increased level of the
phenylalanine in MASH patients[51]. Hanssen et al. have shown alteration of the kynurenine
pathway in MASLD patients, favoring inflammation and fibrosis through regulation by inflammation
markers such as IFN, IL6, LPS[52].

Interestingly, our results showed that carnitines were more prevalent in MASH. Studies looking
at the different diets on the serum metabolomic profile noted an increase in both long and short chain
acyl carnitines with a traditionally more obeso-genic, ‘western” diet when compared to individuals
on a vegetarian diet and associated with increased risk of cardiovascular disease[42,43]. Additionally,
there was a positive correlation between short chain acyl carnitines and fasting insulin levels[42].
Under normal physiologic conditions, carnitine plays an important role in the £ oxidation of fatty
acids by facilitating the transmembrane transfer of acetyl-CoA via acetyl carnitine. In pathological
situations, including obesity and MASH, where there is an excess of fatty acids due to insulin
resistance, increased lipogenesis and impaired fatty acid oxidation, acyl carnitine levels have been
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shown to accumulate[45,46], with one study demonstrating an AUC > 0.90 for MASH with elevated
levels of long chain acyl carnitines: C20, C16:1 and C14:10H, in the pre-transplant population[45].

5. Conclusions

In this project, we have developed an ML tool integrating serum metabolites with clinical
variables in liver transplant patients with MASH, TCMR and biliary complications. Our tool appears
to be a promising non-invasive indicator for detecting graft pathology. The model identified serine
and serotonin as top altered metabolites, and liver enzymes AST and ALT as the most important
clinical variables. It also exceled in predicting the occurrence of MASH following a transplant with
the highest accuracy, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6%
for TCMR. In the prediction of binary outcomes across three models: Biliary (biliary vs. others),
MASH (MASH vs. others), and TCMR (TCMR vs. others), the Area Under the Curve (AUC) scores
were 0.882, 0.972, and 0.96, respectively.

As a limitation to note, our dataset accurately reflects the group of patients from our own
institution, without incorporating data from an external cohort for validation purposes. Despite this
limitation, it is important to recognize that this work serves as a pilot study featuring a thoroughly
detailed and carefully selected group of patients. The outcomes from this study are promising,
highlighting the potential of our approach.
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