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Abstract: Graft injury affects over 50% of liver transplant (LT) recipients, but non-invasive biomarkers to 

diagnose and guide treatment are currently limited. We aimed to develop a biomarker of graft injury by 

integrating serum metabolomic profiles with clinical variables. Serum from 55 LT recipients with biopsy 

confirmed metabolic-dysfunction associated steatohepatitis (MASH), T-cell mediated rejection (TCMR) and 

biliary complications was collected and processed using a combination of LC-MS/MS assay. The metabolomic 

profiles were integrated with clinical information using a multi-class Machine Learning (ML) classifier. The 

efficacy of the model was assessed through the evaluation of the Out-of-Bag (OOB) error estimate. Our ML 

model yielded an overall accuracy of 79.66% with an OOB estimate of the error rate at 19.75%. The model 

exhibited a maximum ability to distinguish MASH, with an OOB error estimate of 7.4% compared to 22.2% for 

biliary and 29.6% for TCMR.  The metabolites serine and serotonin emerged as the topmost predictors. When 

predicting binary outcomes using 3 models: Biliary (biliary vs. rest), MASH (MASH vs. rest) and TCMR (TCMR 

vs. rest), the AUCs were 0.882, 0.972 and 0.96 respectively. Our ML tool integrating serum metabolites with 

clinical variables shows promise as a non-invasive, multi-class serum biomarker of graft pathology. 

Keywords: metabolomics; liver transplant; T-cell mediated rejection; metabolic dysfunction-associated 

steatohepatitis (MASH); biliary complications 

 

1. Introduction 

Chronic graft injury compromises long-term survival: Liver transplantation saves thousands of 

lives worldwide annually – in fact, there were over 37,000 transplants in 2022, and 13,400 in the 

Americas alone[1]. However, long-term survival in 25% of liver transplant (LT) recipients is 

compromised by ongoing graft injury that results in cirrhosis[2]. Liver graft injury is typically 

heralded by abnormalities in liver biochemistry[3,4]. Causes of graft injury include T-cell mediated 

rejection (TCMR), metabolic dysfunction-associated steatohepatitis (MASH), biliary complications 

and viral infections, amongst others[5]. TCMR is the most common cause of liver graft injury, and 

repeated episodes lead to chronic rejection, premature graft loss and compromised long-term 

survival[6]. MASH recurs in most patients originally transplanted for MASH (MASH-LT), and an 

estimated 50% develop significant graft fibrosis (defined as Stage 2 or greater) within 5 years of 

transplant[7]. Overall, ongoing graft injury leads to accelerated fibrosis in comparison to the native 

liver, progressing at an estimated rate of 0.4 stages per year, which can rapidly result in cirrhosis and 

loss of the graft[6,8–11].  

How can we best preserve the long-term health of the liver graft? It is imperative that we 

optimize the long-term outcomes of the graft and its recipient using a personalized, data-driven 

approach. The only way to reliably diagnose graft injury at present is by performing a liver biopsy 

and assessing histological features. However, a liver biopsy is an invasive procedure with a 1.8% risk 
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of complications, and it is impractical to perform longitudinal liver biopsies over a LT recipient’s 

lifetime[12]. Thus, there is great need for effective serological biomarkers to facilitate the noninvasive 

diagnosis of rejection, biliary complications and MASH.  

The term ‘metabolomics’ describes the identification and quantification of metabolites in 

biological tissue[13]. Metabolites, as downstream products of gene expression, protein and enzymatic 

function can provide valuable information on the biological processes within a cell, tissue, organ 

system or organism in addition to the pathophysiology behind different disease states[13,14]. In the 

pre-transplant population, metabolomics studies have identified potential non-invasive biomarkers 

associated with advanced MASH and hepatocellular carcinoma[15–18]. However,  data is quite 

limited, especially in post-transplant populations, although early single center studies have identified 

potential metabolomic profiles in donors associated with early allograft dysfunction, indicators of 

ischemia-reperfusion injury in recipients and TCMR in pediatric populations[14,19,20].  

This study aimed to identify distinct metabolomic profiles in the serum of individuals following 

liver transplant, with the goal of recognizing potential biomarkers capable of differentiating between 

post-transplant complications, specifically MASH, TCMR, and biliary issues. Serum metabolomics is 

relatively cost-effective as compared to other high-throughput approaches. We employed a random 

forest (RF) algorithm to develop a classification model distinguishing between biliary complications, 

MASH, and TCMR. The interpretation of the model was conducted through the permutation-based 

feature importance measurement for random forests[21]. 

2. Materials and Methods 

2.1. Sample Collection and Processing 

Serum samples from consented patients with MASH (n=10), TCMR (n=18), biliary complications 

(n=27) were retrieved from the Multi Organ Transplant Program at the Ajmera Transplant Centre 

(UHN). Serum samples were processed for targeted metabolomics processing by The Metabolomics 

Innovation Centre (TMIC Edmonton, AB, Canada, https://metabolomicscentre.ca) using a 

combination of direct injection mass spectrometry with a reverse-phase LC-MS/MS custom assay.  

This specialized assay enabled the accurate identification and quantification of 143 native metabolites 

encompassing amino acids, acyl carnitines, biogenic amines and their derivatives, uremic toxins, 

glycerophospholipids, sphingolipids, as well as various sugars. Mass spectrometric analysis was 

performed on an ABSciex 4000 Qtrap® tandem mass spectrometry instrument (Applied 

Biosystems/MDS Analytical Technologies, Foster City, CA) equipped with an Agilent 1260 or Waters 

series UHPLC system. The samples were delivered to the mass spectrometer by a LC method 

followed by a direct injection (DI) method. 

2.2. Data Analysis 

Metabolite concentrations reported in uM units (absolute concentrations) for each sample were 

used as input for MetaboAnalyst 5.0 software[22] for bioinformatics analysis. For each two-group 

comparison, the data underwent a series of processing steps, including: (i) removing features with 

more than 50% data missing, (ii) missing value imputation by replacing missing values with 1/5 of 

the minimum positive value, and (iii) normalization using quantile normalization, log2 

transformation, and autoscaling. Subsequently, we applied multivariate analysis with Partial Least 

Square – Discriminant Analysis (PLS-DA) approach to identify significant metabolites based on 

Variable Importance in Projection (VIP) score calculated for each component. A metabolite was 

considered significant if VIP > 1. These metabolites were then categorized into their respective 

compound classes as per the Kyoto Encyclopedia of Genes and Genomes (KEGG) and the Human 

Metabolome Database (HMDB) using Pathway Analysis module of the software. Finally, we 

individually mapped them onto their primary biochemical pathways to gain a comprehensive visual 

representation of the metabolic changes. Boxplots illustrating the normalized expression of the 

significant metabolites and associated p-values from unpaired t-tests were generated using GraphPad 

Prism V.10.1.0 (GraphPad Software, San Diego, California, USA). 
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2.3. Integration of Clinical Variables with VIP Metabolites for Prediction of Patient Outcomes Post 

Transplantation 

In this study, the cohort of 55 patients was divided into a train-test strategy with a split ratio of 

75-25. Subsequently, on the training dataset, a feature selection step was performed to identify crucial 

metabolites exhibiting differential abundances across the three classes. This process involved receiver 

operating characteristic (ROC) curve analysis, performed using the filterVarImp function from the R 

package 'caret'[23]. Each metabolite underwent univariate evaluation, and three pairwise 

comparisons were conducted (Biliary vs MASH, Biliary vs TCMR, and MASH vs TCMR). The 

maximum area under the curve (AUC) was recorded for each pairwise comparison. Only metabolites 

surpassing an AUC threshold > 0.75 in at least two pairwise comparisons were considered significant. 

This feature selection procedure identified a subset of 20 metabolites deemed crucial for the 

classification task. 

Subsequently, we integrated the metabolomic profiles with clinical and laboratory 

measurements of individuals to train a 3-way Random Forest classifier using the randomForest 

package[24] in R. Before model training, normalization procedures were applied to both the 

metabolomic profiles and clinical variables. To address class imbalances, particularly in the minority 

MASH and TCMR classes, and achieve a balanced class distribution, the SMOTE (Synthetic Minority 

Over-Sampling Technique)  method[25] was employed to generate synthetic samples. The quality of 

samples generated using SMOTE was visually assessed through t-distributed stochastic neighbor 

embedding (t-SNE)[26] projections. 

The efficacy of the three-class Random Forest classifier was assessed through the evaluation of 

the Out-of-Bag (OOB) error estimate. To further elucidate the multi-class classification problem, we 

employed a One-vs-Rest strategy, breaking it down into three distinct binary problems: Biliary versus 

Rest, MASH versus Rest, and TCMR versus Rest. Mitigating class imbalances in the binary outcomes 

involved under sampling the majority class. Moreover, we computed Area Under the Curve (AUC) 

values to gauge the effectiveness of each model in distinguishing between classes, leveraging a 

combination of metabolites and clinical markers. 

To assess the significance of each explanatory variable (both metabolite and clinical variable), 

we employed a permutation-based variable-importance measure and Gini impurity criterion, which 

evaluated the capacity of predictors to mitigate data impurity or disorder. This assessment was 

conducted using out-of-bag data from the RF models. 

3. Results 

A total of 55 participants were enrolled in the study of which 10 had a diagnosis of post LT 

MASH, 18 had TCMR and 27 had biliary obstruction (Table 1). Most study participants were 

transplanted for steatotic liver disease and there was no significant demographic inter-group 

variability. Expectedly, alanine aminotransferase (ALT) levels were higher in participants with TCMR 

and MASH whilst alkaline phosphatase (ALP) levels were more elevated in individuals with biliary 

obstruction. 

Table 1. Liver transplant (LT) recipient clinical and laboratory characteristics. 

Variable  
MASH  

(n=10) 

TCMR 

(n=18) 

Biliary 

obstruction 

(n=27) 

p-value 

Recipient age at LT (years) 54.5 [47,67] 52 [46,60] 59 [53,67] 0.246a 

 

Sex 
    

0.489b 

M 5 (50%) 13 (72.2%) 18 (66.7%)  

F 5 (50%)  5 (27.8%)  9 (33.3%)  
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Laboratory readings (U/L) 
    

ALT 77 [45,165] 115 [83,305] 55[37,90] 0.006a 

AST 45.5 [28,132] 76 [47,198] 36[25,43] 0.001a 

ALP 168.0 [104,684] 205[122,329] 241[147,408] 0.478a 

Creatinine 98.5 [71,140] 80[71,107] 100[81,131] 0.546 a 

Hgb 123.5 [85,146] 112[105,120] 104[94,115] 0.161 a 

 

Indication for transplant 
    

0.837b 

ArLD 4 (40%) 4 (22.2%) 9 (33.4%)  

MASH 3 (30%) 2 (11.1%) 4 (14.8%)  

HBV 1(10%) 2 (11.1%) 1 (3.7%)  

HCV - 3 (16.7%) 3 (11.1%)  

PBC - 2 (11.1%) 1 (3.7%)  

PSC - 1 (5.6%) 2 (7.4%)  

Autoimmune hepatitis  - - 3 (11.1%)  

Other 2 (20%) 4 (22.2%) 4 (14.8%)  

Data are n (%) or median with 95% CI. Statistical p-value was calculated with: aKruskal-Wallis rank 

sum test, bFisher’s exact test. Abbreviations: ALP, alkaline phosphatase; ALT, alanine transaminase; 

AST, aspartate aminotransferase; Hgb, hemoglobin; ArLD, alcohol-related liver disease; MASH, 

metabolic-dysfunction associated liver disease; HBV, chronic hepatitis B; HCV, chronic hepatitis C; 

PBC, primary biliary cholangitis; PSC, primary sclerosing cholangitis; TCMR, T-cell mediated 

rejection. 

Within each two-group comparison, a total of 132 metabolites successfully passed the 

MetaboAnalyst processing steps detailed in the Materials and Methods section. Following these 

steps, the normalization was applied for further multivariate analysis. 

3.1. Alanine, Aspartate, and Glutamate Metabolism Pathway Exhibited Notable Alterations in a Comparative 

Analysis of MASH (n=10) and TCMR (n=18) Patients 

Employing PLS-DA, we identified 40 important metabolites, as documented in Table S1. The 

PLS-DA plot, as well as the top 15 features, are graphically depicted in Figure 1A, upper panel. 

Among these significant metabolites, several amino acids (serine, phenylalanine, alpha aminoadipic 

acid) and cholines (lysophosphatidylcholine acyl C18:1, lysophosphatidylcholine acyl C26:1) 

exhibited higher abundance in TCMR patients. Each of these amino acids have either been implicated 

in immune modulation or as biomarkers of steatohepatitis, in some cases both[27–30]. Serine 

deficiency, for example, has been repeatedly identified as a biomarker of MASH in non-transplant 

populations and seems to also have a well-defined role in T-cell responses[31].  
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Figure 1. Significant metabolites by teo-group comparison. A. MASH vs TCMR. B. Biliary vs MASH. 

C. Biliary vs TCMR. p-values from unpaired t-tests. 

The carnitines (nonaylcarnitine, decanoylcarnitine, octanoylcarnitine, dodecanoylcarnitine) 

were significantly more prevalent in the MASH group. Selected metabolites with their normalized 

concentrations are illustrated in Figure 1A, lower panel. 

Conducting pathway analysis with VIP metabolites unveiled three significantly perturbed 

signaling pathways. Among these, the alanine, aspartate, and glutamate metabolism pathway was 

the most significantly affected, with an FDR-adjusted p-value of 1.09E-03 (Table 2). 

Table 2. Pathway analysis results featuring top altered pathways specific to each two-group 

comparison. 

Group 

comparison Pathway Name Altered metabolites from input list FDR 

MASH vs 

TCMR 

Alanine, aspartate and 

glutamate metabolism 

L-Asparagine; Citrate; Fumarate; 

Succinate; 2-Oxoglutarate  1.09E-03  

 

 

Citrate cycle (TCA cycle)  

2-Oxoglutarate; Succinate; Citrate; 

Fumarate  

2.91E-03 

  
  Arginine biosynthesis  L-Citrulline; Oxoglutarate; Fumarate  1.46E-02  
MASH vs 

Biliary 

  

Aminoacyl-tRNA 

biosynthesis 

  

L-Asparagine; L-Phenylalanine; Glycine; 

L-Aspartate; L-Valine; L-Alanine; 

Isoleucine; L-Leucine; L-Tryptophan  

1.35E-06 

 

  

 

 

Valine, leucine and 

isoleucine biosynthesis L-Leucine;L-Isoleucine;L-Valine  2.99E-03  

  

 

Alanine, aspartate and 

glutamate metabolism  

L-Aspartate; L-Asparagine; L-Alanine; 

Citrate; Succinate  

6.15E-03 

  
Biliary vs 

TCMR Butanoate metabolism  

(R)-3-Hydroxybutanoate, Butanoic acid;  

2-Oxoglutarate; Succinate 8.13E-04  
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Alanine, aspartate and 

glutamate metabolism  

L-Aspartate; L-Alanine; Succinate;  

2-Oxoglutarate   

3.75E-03 

  
  Arginine biosynthesis  L-Aspartate; L-Citrulline; 2-Oxoglutarate  6.45E-03  

3.2. Aminoacyl-tRNA Biosynthesis Emerged as the Pathway Exhibiting the Most Pronounced Alterations 

when Comparing MASH with Biliary Complications Group 

As a secondary analysis, we undertook a comparison between MASH patients (n=10) and those 

with biliary complications (n=27). The application of Partial Least Squares Discriminant Analysis 

provided valuable insights, particularly through the visualization in the PLS-DA plot, which 

demonstrated a clear and effective separation of samples based on the respective diseases. To offer a 

more comprehensive understanding of the results, we have presented the top 15 metabolites in Figure 

1B, upper panel. 

From this analysis, we identified 39 metabolites with VIP scores greater than or equal to 1, and 

these findings are detailed in Table S2. Notably, our results indicated hydroxysphingomyeline as the 

top changed metabolite (Figure 1B, lower panel), with VIP > 2.9, most prevalent in MASH patients. 

Also, several phosphatidylcholines (lysophosphatidyl acyl cholines C14:0 and C18:0) and 

phosphatidylcholine acyl-alkyl C40:6 were more abundant in the MASH group. On the contrary, a 

two phosphatidyl diacyl cholines, C36:0 and C40:2, were found to be more prevalent in patients with 

biliary complications. Additionally, we noted an elevated abundance of serine and phenylalanine 

within this group. This differential metabolite distribution underscores the distinctive metabolic 

profiles associated with these distinct disease conditions. While some of these metabolites have not 

previously been identified in the development of either complication, a theoretical mechanism exists 

to explain their abundance or scarcity. For example, hydroxysphingomyeline C22: is a ceramide. 

Ceramide metabolism has been previously identified as being highly upregulated in non-transplant 

patients with MASH, supporting its potential as an effective biomarker in transplant populations[32].  

Using the top 39 metabolites we identified three most significant metabolic pathways (Table 2), 

of which Aminoacyl-tRNA biosynthesis is the most significantly altered (FDR < 1.35E-06), with the 

contribution of eight metabolites, mostly amino acids (Asparagine, Phenylalanine, Glycine, 

Aspartate, Valine, Alanine, Isoleucine, Leucine, Tryptophan) from our list. 

3.3. Significant Alterations in Butanoate (butyrate) Metabolism were Revealed in the Biliary vs TCMR 

Group Comparison 

The third and final comparative analysis was performed between individuals with biliary 

complications and those in the TCMR group. A shorter list of just 28 significant metabolites (Table 

S3) was revealed by PLS-DA, the top 15 being illustrated in Figure 1C, upper panel. Within this set 

of metabolites, it was evident that serotonin and a pair of lysophosphatidyl acyl cholines (specifically 

C24:0 and C26:1) exhibited greater abundance in the TCMR group. In contrast, a couple of carnitines, 

specifically acetyl carnitine and pimeloyl carnitine, were more prevalent among patients with biliary 

complications (Figure 1C, lower panel). While serotonin has not previously been identified as a 

biomarker of post-LT complications, there is a strong biological mechanism for its marked difference 

in biliary vs TCMR groups, as serotonin is a potent modulator of T cells and has multiple functions 

in the liver including regulation of the biliary tree and cholangiocytes[33–35]. 

Furthermore, employing pathway analysis on metabolites with VIP scores exceeding 1, we 

identified three significantly altered metabolic pathways, as presented in Table 2. Among these 

pathways, the most pronounced alterations were observed in the butanoate (butyrate) metabolism 

pathway, characterized by a false discovery rate value of less than 8.13E-04.  

In summary, the metabolomics analysis alone unveiled disease-specific metabolic alterations 

and highlighted the unique biological relevance of certain metabolites within these distinct pathways 

for each disease condition. 
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3.4. Integration of Clinical Information with Metabolomics Data 

Prior to integration with conventional clinical and laboratory measurements, we performed 

feature selection on the metabolomics data using ROC curve analysis to retain only the most 

discriminative metabolites. Employing a random train-test split of 75%-25% samples, metabolite 

concentrations from the training set (n=40) were utilized to compute AUCs for each pairwise 

comparison, resulting in the elimination of 112 metabolites. Twenty metabolites were identified as 

crucial predictors, with AUC thresholds exceeding 0.75 for at least two of the classes. Notably, 

decanoylcarnitine C10, citric acid, succinic acid, phenylalanine, and serine emerged as the top-

ranking metabolites, and their details are presented in Table 3. 

Table 3. Top 20 metabolites identified through ROC Curve Analysis, showcasing each metabolite's 

capacity, as measured by its ROC AUC value, to distinguish between classes. 

Metabolite Biliary MASH TCMR 

Decanoylcarnitine (C10) 0.811 0.901 0.901 

Citric acid 0.832 0.868 0.868 

Succinic acid 0.811 0.835 0.835 

Phenylalanine 0.779 0.846 0.846 

Serine 0.686 0.868 0.868 

Dodecanoylcarnitine (C12) 0.739 0.835 0.835 

Serotonin 0.812 0.78 0.812 

Methylglutarylcarnitine 0.754 0.824 0.824 

Hydroxysphingomyeline C22:1 0.832 0.832 0.72 

alpha-Aminoadipic acid 0.725 0.824 0.824 

Dodecenoylcarnitine (C12:1) 0.7 0.83 0.83 

Hexadecenoylcarnitine  0.732 0.808 0.808 

Octanoylcarnitine 0.736 0.802 0.802 

Alanine 0.779 0.779 0.737 

alpha-Ketoglutaric acid 0.71 0.786 0.786 

Fumaric acid 0.689 0.791 0.791 

Putrescine 0.775 0.775 0.72 

Leucine 0.786 0.786 0.687 

Sarcosine 0.785 0.686 0.785 

Kynurenine 0.689 0.775 0.775 

Subsequently, we developed a Random Forest classifier model by combining the eight key 

clinical variables: age, sex, alkaline phosphatase (ALP), alanine transaminase (ALT), aspartate 

aminotransferase (AST), creatinine, hemoglobin (HGB), and primary indication for transplantation—

integrated with the top 20 selected metabolites. The t-SNE projections of the original dataset are 

shown in Figure S1A. The SMOTE-generated samples have good coherence with the original samples 

as shown in Figure S1B. A 3-way classification was performed to predict the likelihood of a patient 

belonging to one of three classes: Biliary, MASH, or TCMR. Model parameters were tuned using the 

out-of-bag (OOB) error, revealing 5 as the optimal number of candidate predictors randomly drawn 

for a split and the number of trees as 500, based on minimum OOB error. The 3-class classification 

model yielded an overall OOB estimate of the error rate at 19.75%.  

Figure 2A illustrates that at the individual class level, the model demonstrated the maximum 

ability to distinguish MASH samples with an OOB error estimate of only 7.4%, compared to 22.2% 

and 29.6% for Biliary and TCMR groups, respectively. The 3-way classifier model achieves an overall 

accuracy of 79.66%. Serotonin and serine have surfaced as the primary predictors, identified through 

both Mean Decrease in Accuracy and assessment via the Gini Impurity Criterion, which gauges the 

capacity of predictors to mitigate data impurity or disorder. 
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Figure 2. Model Evaluation. A. Classification results on the Out-of-Bag (OOB) samples. The OOB 

estimate of the error rate is 19.75% for the 3-way classification model. B, C, and D show the Receiver 

Operating Characteristic (ROC) curve and corresponding Area Under the Curve (AUC) statistics for 

the following binary models: Biliary vs. Rest, MASH vs. Rest, and TCMR vs. Rest, respectively. 

Apart from the 3-way classification, we also evaluated three Random Forest models predicting 

binary outcomes: Biliary model (Biliary vs. Rest), MASH model (MASH vs. Rest), and TCMR model 

(TCMR vs. Rest). The resulting OOB error rates were found to be 22.64%, 5.66%, and 24.53% for the 

Biliary, MASH, and TCMR models, respectively. Figures 2 (B—D) show the ROC curves and the rank 

of the variables for the three models. The AUCs for the Biliary, MASH, and TCMR models are 0.882, 

0.972, and 0.896, respectively. 

In our variable importance analysis, as shown in Figure 3, serotonin emerged as a top predictor 

for the 3-way-Classification, Biliary, and TCMR models, consistent with Mean Decrease in Accuracy 

and Mean Decrease in GINI. 
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Figure 3. Variable Importance for the Random Forest Classification Models. A. Shows the scaled 

Mean Decrease in Accuracy over all out-of-bag (OOB) cross-validated predictions. The drop in 

prediction performance for the 3-way Classification, Biliary vs. Rest, and TCMR vs. Rest is highest 

when the metabolite serotonin is omitted. B. The scaled GINI index, a measure of node impurity. 

Serotonin has the highest GINI index and is again considered the most important variable to split the 

data correctly by the 3-way Classification, Biliary vs. Rest, and TCMR vs. Rest models. TX ind = 

primary indication for transplant. 

The amino acid serine and hydroxysphingomyeline (SM(OH)C22:1) emerged as leading 

predictors for 3-way-Classification and the MASH model, indicating their importance in classifying 

MASH samples. Additionally, phenylalanine, decanoylcarnitine, and kynurenine were crucial 

predictors of MASH. The liver enzymes AST and ALT appeared as the topmost important clinical 

variables.  Abundance levels of top predictor metabolites are plotted in Figure 4. 
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Figure 4. Normalized abundance levels of top predictor metabolites. Shows the normalized 

abundance levels of top six predictor metabolites across sample groups. The p-value used to signify 

the difference in expression levels among the three groups are computed using independent t-test. 

Only the significant p-values are shown. 

3.5. Comparative Analysis of Integrated Model versus Individual Modalities 

We additionally assessed our integrated 3-way classification model, which combines clinical 

variables and metabolites, alongside two other 3-way classification models trained solely on a single 

data type: i) clinical variables alone, and ii) metabolites alone. Our Random Forest classifier, when 

trained on solely clinical variables, produced an overall OOB estimate of the error rate at 25.93%. At 

the individual class level, depicted in Figure 5A, the model  distinguished both MASH and TCMR 

groups, with OOB error estimates of 22.2% and 33.3% for the Biliary group. The 3-way clinical-only 

model achieves an overall accuracy of 73.37%. The top clinical predictors were ALT and AST as shown 

in Figure 5B. While these conventional clinical variables can indicate liver graft injury, they are not 

specific to etiologies of graft pathology. 
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Figure 5. Clinical-only and Metabolite-only models. A. Classification results of clinical-only model 

on the Out-of-Bag (OOB) samples. The OOB estimate of the error rate is 25.93% for the 3-way 

classification model. B. Shows the Mean Decrease in Accuracy over all out-of-bag (OOB) cross-

validated predictions for the clinical-only model. C. Classification results of metabolite-only model 

on the Out-of-Bag (OOB) samples. The OOB estimate of the error rate is 22.22% for the 3-way 

classification model. D. Shows the Mean Decrease in Accuracy over all out-of-bag (OOB) cross-

validated predictions for the metabolite-only model. 

In contrast, our Random Forest classifier trained on top ranked metabolites alone, produced a 

lower overall OOB estimate of the error rate at 22.22%. Depicted in Figure 5C, the confusion matrix 

for the metabolites-only model illustrated improved performance at individual class levels, 

particularly evident in the MASH group with an OOB error estimate of 14.81% compared to the 

clinical-only model. Achieving an overall accuracy of 77.14%, the metabolite-only model identified 

Serine and Serotonin as top predictor metabolites, based on the mean decrease in accuracy, as shown 

in Figure 5D. 

4. Discussion 

In this study, we aimed to identify distinct, measurable metabolomic profiles to differentiate 

causes of liver graft injury along with clinical variables in post-transplant populations. Our 

metabolomic analysis detected specific metabolites that exhibited significant changes in individuals 

with TCMR, biliary complications and MASH post-liver transplant. In addition to identifying 

individual metabolites that varied between disease groups, pathway analysis was conducted to 

determine which metabolic pathways were most differentially affected.  
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In the case of MASH vs TCMR, amino acid metabolism was broadly highlighted, with two of 

the main pathways affected being alanine aspartate glutamate metabolism and arginine biosynthesis. 

Both pathways have been affected in steatohepatitis in non-transplant populations and in rejection 

for transplant populations, further supporting their potential inclusion as relevant biomarkers in 

post-LT complications[36–38]. 

Comparing MASH vs Biliary groups, amino acid metabolism was once again of great 

significance, with branch chain AA(BCAA) synthesis and alanine aspartate glutamate metabolism 

being highlighted. The BCAA synthesis pathway may be particularly useful as a biomarker of MASH, 

as levels of these amino acids have been shown to increase greatly in non-transplant MASH 

populations[39]. 

Lastly, the biliary vs TCMR groups highlighted one unique metabolic pathway, butanoate 

metabolism. Butanoate is a short chain fatty acid synthesized by enteric bacteria and has been 

repeatedly implicated in mediating tolerogenic phenotypes of T cells and may therefore be associated 

with graft tolerance or rejection[40,41]. Considering its unique role in mediating immune functioning, 

biomarkers associated with butanoate metabolism may be effective in identifying TCMR. 

We then developed an ML tool, a Random Forest classifier to predict liver graft pathology and 

compared its accuracy on three circumstances: when using only (i) clinical parameters, (ii) 

metabolites, and (iii) integrating both categories. The improvement in overall accuracy observed in 

the integrated model, as discussed in Section 3.4, reaffirms our assertion that the complete complexity 

of graft pathology cannot be adequately captured by any singular data modality. Our results show 

that clinical variables and metabolites are complementary in nature and integrating them provides a 

more comprehensive understanding of liver graft pathology. 

When integrating metabolomic data with clinical information via ML modeling, serotonin was 

identified as a top predictor for the 3-way-Classification. Serotonin has been shown to regulate 

fibrosis progression[42,43], with higher levels being linked to increased chances of developing 

MASLD[44]. Our ML model also revealed serine and hydroxysphingomyeline (SM(OH)C22:1) as 

crucial metabolites for 3-way-Classification and the MASH model. Indeed, previous studies have 

shown the association between serine deficiency and MASH[45,46].  Sphingomyelin is the most 

frequently observed sphingolipid in mammalian cells and circulating levels have shown promise as 

a noninvasive biomarker of MASH[45]. It is considered a bioactive lipid, functioning as a component 

of cell membranes, with a role in cell signaling, growth, death, senescence, adhesion and migration. 

The liver plays an important role in lipid metabolism, taking up free fatty acids, forming triglycerides 

and VLDL in addition to acting as a site for lipid storage.  Lovric et al identified a positive correlation 

between serum concentrations of sphingomyelin with increased ectopic fat accumulation (including 

hepatic steatosis)[47,48]. In murine models it has been shown that sphingomyeline synthesis is 

activated in MASH, being related to hepatocyte pyroptosis[49]. However, Zhou et al noted a 

significant decrease in serum sphingomyelin and lysophosphatidylcholine levels in individuals with 

MASH versus MASLD[50].  

Other top metabolites as predictors for MASH were phenylalanine, decanoylcarnitine, and 

kynurenine. In agreement with our results, other studies have indicated an increased level of the 

phenylalanine in MASH patients[51]. Hanssen et al. have shown alteration of the kynurenine 

pathway in MASLD patients, favoring inflammation and fibrosis through regulation by inflammation 

markers such as IFN, IL6, LPS[52].  

Interestingly, our results showed that carnitines were more prevalent in MASH. Studies looking 

at the different diets on the serum metabolomic profile noted an increase in both long and short chain 

acyl carnitines with a traditionally more obeso-genic, ‘western’ diet when compared to individuals 

on a vegetarian diet and associated with increased risk of cardiovascular disease[42,43]. Additionally, 

there was a positive correlation between short chain acyl carnitines and fasting insulin levels[42]. 

Under normal physiologic conditions, carnitine plays an important role in the ß oxidation of fatty 

acids by facilitating the transmembrane transfer of acetyl-CoA via acetyl carnitine. In pathological 

situations, including obesity and MASH, where there is an excess of fatty acids due to insulin 

resistance, increased lipogenesis and impaired fatty acid oxidation, acyl carnitine levels have been 
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shown to accumulate[45,46], with one study demonstrating an AUC > 0.90 for MASH with elevated 

levels of long chain acyl carnitines: C20, C16:1 and C14:1OH, in the pre-transplant population[45].   

5. Conclusions 

In this project, we have developed an ML tool integrating serum metabolites with clinical 

variables in liver transplant patients with MASH, TCMR and biliary complications. Our tool appears 

to be a promising non-invasive indicator for detecting graft pathology. The model identified serine 

and serotonin as top altered metabolites, and liver enzymes AST and ALT as the most important 

clinical variables. It also exceled in predicting the occurrence of MASH following a transplant with 

the highest accuracy, with an OOB error estimate of 7.4% compared to 22.2% for biliary and 29.6% 

for TCMR. In the prediction of binary outcomes across three models: Biliary (biliary vs. others), 

MASH (MASH vs. others), and TCMR (TCMR vs. others), the Area Under the Curve (AUC) scores 

were 0.882, 0.972, and 0.96, respectively.  

As a limitation to note, our dataset accurately reflects the group of patients from our own 

institution, without incorporating data from an external cohort for validation purposes. Despite this 

limitation, it is important to recognize that this work serves as a pilot study featuring a thoroughly 

detailed and carefully selected group of patients. The outcomes from this study are promising, 

highlighting the potential of our approach.  
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