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Abstract-The classical limit definition of a derivative is expressed in a more general form. The 
general form includes two arbitrary functions of the parameter for which the limit is calculated. A 
special case of the general form, which includes scaling and translational symmetry transformations 
of the limiting parameter, is also discussed. The errors in using the classical definition and the 
generalized form are calculated for small values of the limiting parameter. The derivatives of some 
known functions are proven using the new definition. For some well-known functions, a suitable 
selection of the generalized form may introduce simplicity in calculating the derivatives. 
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Introduction 

Calculating derivatives is one of the most important and elementary topics in calculus. The 
geometric meaning of the derivative is given as the slope of the function at a given point. To calculate 
the slope of a function 𝑓𝑓(𝑥𝑥), the approximate slope is first written as a ratio of ∆𝑓𝑓/∆𝑥𝑥, where ∆𝑓𝑓 =
𝑓𝑓(𝑥𝑥 + ℎ) − 𝑓𝑓(𝑥𝑥) and ∆𝑥𝑥 = ℎ. Then, letting ℎ → 0, the error in the approximate slope expression is 
reduced until the exact slope of the function 𝑓𝑓(𝑥𝑥) is calculated at point x (Thomas & Finney, 1984; 
Strang, 1991). 

First, the abovementioned basic definition of the derivative is expressed in a more general form. 
∆𝑥𝑥  and ∆𝑓𝑓  are expressed as functional forms of the limiting parameter. The properties of the 
generalized form are discussed. The error introduced without taking the limit is calculated for the 
classical and generalized definitions. A special case of the generalized definition that covers scaling 
and translational transformations is also given. Finally, for some of the well-known functions, the 
derivatives are determined using the generalized form. The generalized definition may introduce 
some simplicity in calculating the derivatives of some of the functions. 

Generalized Definition of the Derivative 

The classical definition of derivative, which can be traced in any calculus textbook, is 
𝑓𝑓′(𝑥𝑥) = lim

𝜀𝜀→0

𝑓𝑓(𝑥𝑥+𝜀𝜀)−𝑓𝑓(𝑥𝑥)
𝜀𝜀

        (1) 
Usually, in calculus textbooks, instead of the parameter 𝜀𝜀, the more common notation of h is 

employed. The term 𝑓𝑓(𝑥𝑥+𝜀𝜀)−𝑓𝑓(𝑥𝑥)
𝜀𝜀

 is the approximate slope of a line passing through points (𝑥𝑥, 𝑓𝑓(𝑥𝑥)) 
and (𝑥𝑥 + 𝜀𝜀,𝑓𝑓(𝑥𝑥 + 𝜀𝜀)). As 𝜀𝜀 approaches zero, the approximate slope coincides with the exact slope of 
the function at point 𝑥𝑥. The following generalization of the derivative expression is proposed in this 
work for the first time: 

𝑓𝑓′(𝑥𝑥) = lim
𝜀𝜀→0

(𝑓𝑓(𝑔𝑔(𝜀𝜀)𝑥𝑥+ℎ(𝜀𝜀))−𝑓𝑓(𝑥𝑥)
𝑔𝑔(𝜀𝜀)𝑥𝑥+ℎ(𝜀𝜀)−𝑥𝑥

        (2) 

where the functions 𝑔𝑔(𝜀𝜀) and ℎ(𝜀𝜀) are arbitrary functions of the limiting parameter on the condition 
that 

lim
𝜀𝜀→0

𝑔𝑔(𝜀𝜀) = 1,  lim
𝜀𝜀→0

ℎ(𝜀𝜀) = 0.      (3) 
The generalized definition can be expressed in a more compact form 
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𝑓𝑓′(𝑥𝑥) = lim
𝑥𝑥∗→𝑥𝑥

𝑓𝑓(𝑥𝑥∗)−𝑓𝑓(𝑥𝑥)
𝑥𝑥∗−𝑥𝑥

         (4) 
where 𝑥𝑥∗ = 𝑔𝑔(𝜀𝜀)𝑥𝑥 + ℎ(𝜀𝜀) with the functions satisfying (3). 

In an interesting video in YouTube (see the website given in the references), the alternative 
definition of the derivative is discussed in detail. 

𝑓𝑓′(𝑥𝑥) = lim
𝑡𝑡→1

𝑓𝑓(𝑡𝑡𝑡𝑡)−𝑓𝑓(𝑥𝑥)
𝑡𝑡𝑡𝑡−𝑥𝑥

  .       (5) 
In our generalized form, the above expression corresponds to the special case of 
𝑔𝑔(𝜀𝜀) = 1 + 𝜀𝜀  and ℎ(𝜀𝜀) = 0  with 𝑡𝑡 = 1 + 𝜀𝜀 . It is shown in the video that the alternative 

definition introduces some simplicity in determining the derivatives of some of the well-known 
functions. The quantum derivative, which is similar to (5), is used by physicists with the expression 
being 𝑓𝑓(𝑞𝑞𝑞𝑞)−𝑓𝑓(𝑥𝑥)

𝑞𝑞𝑞𝑞−𝑥𝑥
 without the limiting process (Kunt et al., 2022). Another generalization of the usual 

derivative is the fractal derivatives in which the derivative operation consists of fractional repetitions 
rather than integers. See Deppman et al. (2023) for a review of such fractional generalizations. For 
applications of fractional derivatives to boundary value problems, see He (2020).  

Another subcase of the general definition (2) may also be proposed 
𝑓𝑓′(𝑥𝑥) = lim

𝜀𝜀→0

(𝑓𝑓(𝑒𝑒𝜀𝜀𝜀𝜀𝑥𝑥+𝑏𝑏𝑏𝑏)−𝑓𝑓(𝑥𝑥)
𝑒𝑒𝜀𝜀𝜀𝜀𝑥𝑥+𝑏𝑏𝑏𝑏−𝑥𝑥

  (a, b constant parameters)   (6) 
where the transformation 𝑥𝑥∗ = 𝑒𝑒𝜀𝜀𝜀𝜀𝑥𝑥 + 𝑏𝑏𝑏𝑏 is indeed a special Lie group of transformations covering 
scaling and translational transformations as special cases (Pakdemirli & Yürüsoy, 1998). 

Error Analysis 

If the function is unknown, as in the case of differential equations, usually the approximate form 
of the derivative is substituted. For example, for the first-order differential equation 

𝑦𝑦′ = 𝐹𝐹(𝑥𝑥, 𝑦𝑦),           (7) 
the derivative of the classical version is approximated as 

𝑦𝑦′ = 𝑦𝑦𝑛𝑛+1−𝑦𝑦𝑛𝑛
ℎ

,𝑛𝑛 = 0,1,2, …,        (8) 
and substituted yielding 

𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛 + ℎ𝐹𝐹(𝑥𝑥𝑛𝑛 ,𝑦𝑦𝑛𝑛), 𝑛𝑛 = 0,1,2, …  .     (9) 
The above recursive relation is the famous Euler method used in numerical analysis (O’Neil, 

1991). The errors introduced by approximate definitions such as (8) are of technical importance. For 
the classical version given in (1), if 

𝑓𝑓(𝑥𝑥 + 𝜀𝜀) = 𝑓𝑓(𝑥𝑥) + 𝜀𝜀𝑓𝑓′(𝑥𝑥) + 1
2
𝜀𝜀2𝑓𝑓′′(𝑥𝑥) + ⋯     (10) 

is substituted into (1) without the limit 
∆𝑓𝑓
∆𝑥𝑥
≅ 𝑓𝑓′(𝑥𝑥) + 𝜀𝜀 𝑓𝑓

′′(𝑥𝑥)
2

+ ⋯  ,       (11) 
and the error in the slope is 

𝑒𝑒 ≅ ∆𝑓𝑓
∆𝑥𝑥
− 𝑓𝑓′(𝑥𝑥) = 𝜀𝜀 𝑓𝑓

′′(𝑥𝑥)
2

+ ⋯.       (12) 

If �𝑓𝑓
′′(𝑥𝑥)
2
� ≤ 𝑀𝑀, where M is a real number, then the error is of order 𝜀𝜀. 

To calculate the error in the generalized version, substitute 
𝑓𝑓(𝑥𝑥∗) = 𝑓𝑓(𝑥𝑥) + 𝑓𝑓′(𝑥𝑥)(𝑥𝑥∗ − 𝑥𝑥) + 1

2
𝑓𝑓′′(𝑥𝑥)(𝑥𝑥∗ − 𝑥𝑥)2 + ⋯     (13) 

to the right-hand side of (4) without taking the limit 
∆𝑓𝑓
∆𝑥𝑥
≅ 𝑓𝑓′(𝑥𝑥) + (𝑥𝑥∗ − 𝑥𝑥) 𝑓𝑓

′′(𝑥𝑥)
2

+ ⋯  ,      (14) 
and the error is 

𝑒𝑒 ≅ ∆𝑓𝑓
∆𝑥𝑥
− 𝑓𝑓′(𝑥𝑥) = (𝑥𝑥∗ − 𝑥𝑥) 𝑓𝑓

′′(𝑥𝑥)
2

+ ⋯ ≅ [(𝑔𝑔(𝜀𝜀) − 1)𝑥𝑥 + ℎ(𝜀𝜀)] 𝑓𝑓
′′(𝑥𝑥)
2

+ ⋯. (15) 

For �𝑓𝑓
′′(𝑥𝑥)
2
� ≤ 𝑀𝑀, in order not to depend the error on 𝑥𝑥, 𝑔𝑔(𝜀𝜀) = 1, that is, for functions 𝑔𝑔(𝜀𝜀) ≠ 1, 

the error depends on x and may become large for large values of x. 
For 𝑔𝑔(𝜀𝜀) = 1, the error is from (15): 
𝑒𝑒 ≅ ℎ(𝜀𝜀) 𝑓𝑓

′′(𝑥𝑥)
2

+ ⋯          (16) 
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and hence, the error is of order ℎ(𝜀𝜀). If ℎ(𝜀𝜀)~𝜀𝜀𝑛𝑛, then one can say that the error is of order 𝜀𝜀𝑛𝑛 in 
terms of the parameter 𝜀𝜀. Theoretically speaking, more precise calculations of slope are available in 
terms of the parameter 𝜀𝜀 if 𝑛𝑛 > 1. 

Calculation of the Derivatives 

In this section, the derivatives of some of the functions are calculated. 
Example 1. The derivative of 𝑙𝑙𝑙𝑙𝑙𝑙 is difficult to determine in the classical version 
𝑓𝑓′(𝑥𝑥) = lim

𝜀𝜀→0

𝑙𝑙𝑙𝑙(𝑥𝑥+𝜀𝜀)−𝑙𝑙𝑙𝑙(𝑥𝑥)
𝜀𝜀

,        (17) 
since there are difficulties in evaluating the above limit. Taylor expansions and/or l’Hopital’s rule 
cannot be used since they require knowledge of the derivative, which is unknown. In the generalized 
version, if one defines 𝑔𝑔(𝜀𝜀) = 1 + 𝜀𝜀, ℎ(𝜀𝜀) = 0, then the limit is 

𝑓𝑓′(𝑥𝑥) = (𝑙𝑙𝑙𝑙𝑙𝑙)′ = lim
𝜀𝜀→0

𝑙𝑙𝑙𝑙((1+𝜀𝜀)𝑥𝑥)−𝑙𝑙𝑙𝑙(𝑥𝑥)
(1+𝜀𝜀)𝑥𝑥−𝑥𝑥

,       (18) 
Using the property 𝑙𝑙𝑙𝑙((1 + 𝜀𝜀)𝑥𝑥) = ln(1 + 𝜀𝜀) + ln (𝑥𝑥) above and simplifying 
𝑓𝑓′(𝑥𝑥) = 1

𝑥𝑥
lim
𝜀𝜀→0

𝑙𝑙𝑙𝑙(1+𝜀𝜀)
𝜀𝜀

=  1
𝑥𝑥

lim
𝜀𝜀→0

𝑙𝑙𝑙𝑙(1 + 𝜀𝜀)1 𝜀𝜀⁄ ,     (19) 

If one defines 𝜀𝜀 = 1
𝑛𝑛
, then the limit is 

lim
𝜀𝜀→0

𝑙𝑙𝑙𝑙(1 + 𝜀𝜀)1 𝜀𝜀⁄ = lim
𝑛𝑛→∞

𝑙𝑙𝑙𝑙 �1 + 1
𝑛𝑛
�
𝑛𝑛

= 𝑙𝑙𝑙𝑙𝑙𝑙 = 1     (20) 
Hence, it is proven that the derivative of 𝑙𝑙𝑙𝑙(𝑥𝑥) is 
𝑓𝑓′(𝑥𝑥) = 1

𝑥𝑥
           (21) 

The derivative of 𝑙𝑙𝑙𝑙(𝑥𝑥)  is calculated by using the integral definition 𝑙𝑙𝑙𝑙(𝑥𝑥) = ∫ 1
𝑡𝑡
𝑑𝑑𝑑𝑑𝑥𝑥

1  and 
differentiating both sides (Thomas & Finney, 1984) or by employing the properties of the exponential 
function (Strang, 1991) but not directly from (17). According to the generalized definition (18), this 
task becomes simpler and more straightforward. 

Example 2. 
To calculate the derivative of the exponential function, take 𝑔𝑔(𝜀𝜀) = 1, 
ℎ(𝜀𝜀) = 𝑙𝑙𝑙𝑙 (1 + 𝜀𝜀), i.e., 𝑥𝑥∗ = 𝑥𝑥 + 𝑙𝑙𝑙𝑙 (1 + 𝜀𝜀) 

𝑓𝑓′(𝑥𝑥) = (𝑒𝑒𝑥𝑥)′ = lim
𝜀𝜀→0

𝑒𝑒𝑥𝑥+𝑙𝑙𝑙𝑙 (1+𝜀𝜀)−𝑒𝑒𝑥𝑥

𝑥𝑥+𝑙𝑙𝑙𝑙 (1+𝜀𝜀)−𝑥𝑥
= 𝑒𝑒𝑥𝑥 lim

𝜀𝜀→0

(1+𝜀𝜀)−1
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

 =  𝑒𝑒𝑥𝑥 lim
𝜀𝜀→0

𝜀𝜀
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

,  (22) 

and the limit can easily be calculated 
lim
𝜀𝜀→0

𝜀𝜀
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

= lim
𝜀𝜀→0

1
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)1/𝜀𝜀 = lim

𝑛𝑛→∞

1

𝑙𝑙𝑙𝑙 �1+1𝑛𝑛�
𝑛𝑛 = lim

𝑛𝑛→∞

1
𝑙𝑙𝑙𝑙 𝑒𝑒

= 1  , (23) 

proving that the derivative of the function is 
(𝑒𝑒𝑥𝑥)′ = 𝑒𝑒𝑥𝑥  .         (24) 
In the classical definition, one needs two consecutive transformations instead of the one 

employed above. 
𝑓𝑓′(𝑥𝑥) = (𝑒𝑒𝑥𝑥)′ = lim

𝜀𝜀→0

𝑒𝑒𝑥𝑥+𝜀𝜀−𝑒𝑒𝑥𝑥

𝑥𝑥+𝜀𝜀−𝑥𝑥
= 𝑒𝑒𝑥𝑥 lim

𝜀𝜀→0

𝑒𝑒𝜀𝜀−1
𝜀𝜀

,     (25) 
The first transformation is 𝜀𝜀 = 𝑙𝑙𝑙𝑙 (1 + 𝑡𝑡) 

lim
𝑡𝑡→0

𝑒𝑒𝑙𝑙𝑙𝑙 (1+𝑡𝑡)−1
𝑙𝑙𝑙𝑙 (1+𝑡𝑡)

= lim
𝑡𝑡→0

𝑡𝑡
𝑙𝑙𝑙𝑙 (1+𝑡𝑡)

= lim
𝑡𝑡→0

1
𝑙𝑙𝑙𝑙 (1+𝑡𝑡)1/𝑡𝑡     (26) 

and the second transformation is 𝑡𝑡 = 1
𝑛𝑛

, which proves that the limit equals unity and that the 
derivative of the exponential function is itself. 

Example 3. 
To calculate the derivative of the hyperbolic sine function from the generalized definition, take 

𝑔𝑔(𝜀𝜀) = 1, ℎ(𝜀𝜀) = 𝑙𝑙𝑙𝑙 (1 + 𝜀𝜀), i.e., 𝑥𝑥∗ = 𝑥𝑥 + 𝑙𝑙𝑙𝑙 (1 + 𝜀𝜀), 

(𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑥𝑥)′ = lim
𝜀𝜀→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑥𝑥 + 𝑙𝑙 𝑛𝑛(1 + 𝜀𝜀)) − 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑥𝑥
𝑥𝑥 + 𝑙𝑙𝑙𝑙(1 + 𝜀𝜀) − 𝑥𝑥

 

= lim
𝜀𝜀→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))+𝑐𝑐𝑐𝑐𝑐𝑐ℎ 𝑥𝑥 𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))−𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑥𝑥
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

   

= 𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑥𝑥 lim
𝜀𝜀→0

𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))−1
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

+ 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑥𝑥 lim
𝜀𝜀→0

𝑠𝑠𝑠𝑠𝑠𝑠ℎ(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

    (27) 

The first limit is 

lim
𝜀𝜀→0

𝑐𝑐𝑐𝑐𝑐𝑐ℎ(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))−1
𝑙𝑙𝑙𝑙(1+𝜀𝜀)

= lim
𝜀𝜀→0

𝑒𝑒𝑙𝑙𝑙𝑙(1+𝜀𝜀)+𝑒𝑒− 𝑙𝑙𝑙𝑙(1+𝜀𝜀)−2
2 𝑙𝑙𝑙𝑙(1+𝜀𝜀)

= lim
𝜀𝜀→0

1+𝜀𝜀+ 1
1+𝜀𝜀−2

2 𝑙𝑙𝑙𝑙(1+𝜀𝜀)
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= lim
𝜀𝜀→0

𝜀𝜀
2(1+𝜀𝜀)𝑙𝑙𝑙𝑙 (1+𝜀𝜀)1/𝜀𝜀.     (28) 

Since lim
𝜀𝜀→0

𝑙𝑙𝑙𝑙(1 + 𝜀𝜀)
1
𝜀𝜀 = 1, the result is 

lim
𝜀𝜀→0

𝜀𝜀
2(1+𝜀𝜀)

= 0          (29) 
Proceeding in a similar way, the second limit is 
lim
𝜀𝜀→0

sinh(𝑙𝑙 𝑛𝑛(1+𝜀𝜀))
𝑙𝑙𝑙𝑙 (1+𝜀𝜀)

= lim
𝜀𝜀→0

2+𝜀𝜀
2(1+𝜀𝜀)

= 1       (30) 

Hence, it is proven that 
(𝑠𝑠𝑠𝑠𝑠𝑠ℎ𝑥𝑥)′ = 𝑐𝑐𝑐𝑐𝑐𝑐ℎ𝑥𝑥.         (31) 
For trigonometric functions, the generalized definition might not introduce simplicities, and the 

classical definition may be employed in proving the derivatives. 

Concluding Remarks 

The classical limit definition of a derivative is proposed in a more general form. Functional 
relationships are used in the generalized version. A subversion of the most general form in which 
scaling and translational transformations are used is also proposed. The error analysis of the 
approximate definition is given. For errors not to depend on the independent variable, scaling 
transformations are not allowed. The new definition introduces some simplicity in proving the 
derivatives of some functions, such as exponential, logarithmic and hyperbolic functions. 
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