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Abstract-The classical limit definition of a derivative is expressed in a more general form. The
general form includes two arbitrary functions of the parameter for which the limit is calculated. A
special case of the general form, which includes scaling and translational symmetry transformations
of the limiting parameter, is also discussed. The errors in using the classical definition and the
generalized form are calculated for small values of the limiting parameter. The derivatives of some
known functions are proven using the new definition. For some well-known functions, a suitable
selection of the generalized form may introduce simplicity in calculating the derivatives.
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Introduction

Calculating derivatives is one of the most important and elementary topics in calculus. The
geometric meaning of the derivative is given as the slope of the function at a given point. To calculate
the slope of a function f(x), the approximate slope is first written as a ratio of Af/Ax, where Af =
f(Gx+h) — f(x) and Ax = h. Then, letting h — 0, the error in the approximate slope expression is
reduced until the exact slope of the function f(x) is calculated at point x (Thomas & Finney, 1984;
Strang, 1991).

First, the abovementioned basic definition of the derivative is expressed in a more general form.
Ax and Af are expressed as functional forms of the limiting parameter. The properties of the
generalized form are discussed. The error introduced without taking the limit is calculated for the
classical and generalized definitions. A special case of the generalized definition that covers scaling
and translational transformations is also given. Finally, for some of the well-known functions, the
derivatives are determined using the generalized form. The generalized definition may introduce
some simplicity in calculating the derivatives of some of the functions.

Generalized Definition of the Derivative

The classical definition of derivative, which can be traced in any calculus textbook, is
£ = 11m e L )

Usually, in calculus textbooks, instead of the parameter &, the more common notation of 4 is

f(x+e)—f(x)
£

employed. The term is the approximate slope of a line passing through points (x, f(x))

and (x + ¢, f(x +¢€)). As € approaches zero, the approximate slope coincides with the exact slope of
the function at point x. The following generalization of the derivative expression is proposed in this
work for the first time:
(f(g(S)x+h(8))—f(x)

f@) = im™= e @
where the functions g(¢) and h(e) are arbitrary functions of the limiting parameter on the condition
that

limg(e) =1, limh(e) = 0. 3)

£-0 £-0

The generalized definition can be expressed in a more compact form
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f'(x) = 11m f&D)-f ) 4)

-X x*—x

where x* = g(s)x + h(e) with the functions satisfying (3).
In an interesting video in YouTube (see the website given in the references), the alternative
definition of the derivative is discussed in detail.

f'(x) = 11mM . )

tx—x
In our generahzed form, the above expression corresponds to the special case of
gle)=1+¢ and h(e) =0 with t=1+¢. It is shown in the video that the alternative
definition introduces some simplicity in determining the derivatives of some of the well-known
functions. The quantum derivative, which is similar to (5), is used by physicists with the expression

f (qx) f (€3]

being without the limiting process (Kunt et al., 2022). Another generalization of the usual

derlvatlve is the fractal derivatives in which the derivative operation consists of fractional repetitions
rather than integers. See Deppman et al. (2023) for a review of such fractional generalizations. For
applications of fractional derivatives to boundary value problems, see He (2020).

Another subcase of the general definition (2) may also be proposed

f/(x) — !c_l_l;% (f(e®4x+be)=f(x)

eI (a, b constant parameters) (6)
where the transformation x* = e®**x + be is indeed a special Lie group of transformations covering

scaling and translational transformations as special cases (Pakdemirli & Yiiriisoy, 1998).

Error Analysis

If the function is unknown, as in the case of differential equations, usually the approximate form
of the derivative is substituted. For example, for the first-order differential equation

y' =F(x,y), 7)
the derivative of the classical version is approximated as

y =20 0 =0,12,.., (8)
and substituted yielding

Yn+1 = Yn + hF (xp, ¥n), n=0,1,2, ... . )

The above recursive relation is the famous Euler method used in numerical analysis (O'Neil,
1991). The errors introduced by approximate definitions such as (8) are of technical importance. For
the classical version given in (1), if

fOr+8) = f0) +ef () + 52" (x) + -+ (10)
is substituted into (1) without the limit
A ' ")
Txf)+el 24 ) (11)
and the error in the slope is
—fx) = el (")+-- (12)

If |f7(x)| < M, where M is a real number, then the error is of order «.

To calculate the error in the generalized version, substitute

FG) = F) + /(" =)+ () (" = 2)? + - (13)
to the right-hand side of (4) without taking the limit
=f@+e -2+, (14)

and the error is
_ 7! (x) ~ 7' (x)
=Y = (=024 = [(g(0) — Dx+ RIS+ (15)
For |fT()| < M, in order not to depend the error on x, g(¢) = 1, that is, for functions g(¢) # 1,

the error depends on x and may become large for large values of x.
For g(¢) = 1, the error is from (15):

e=h(e) 2+ .. (16)
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and hence, the error is of order h(e). If h(g)~¢e™, then one can say that the error is of order €™ in
terms of the parameter e. Theoretically speaking, more precise calculations of slope are available in
terms of the parameter ¢ if n > 1.

Calculation of the Derivatives

In this section, the derivatives of some of the functions are calculated.

Example 1. The derivative of Inx is difficult to determine in the classical version
In(x+e)—In(x)

£ = lim ———=, (17)
&>
since there are difficulties in evaluating the above limit. Taylor expansions and/or 1'Hopital’s rule
cannot be used since they require knowledge of the derivative, which is unknown. In the generalized
version, if one defines g(¢) =1 + ¢, h(e) = 0, then the limit is

f1() = (Inx)’ = lim 20, (18)
E—

(1+&)x—x
Using the property in((1 + €)x) = In(1 + ¢) +In (x) above and simplifying
£ = 2lim 22 = Lyim (1 + £) Ve, (19)
X -0 & X -0

If one defines ¢ = %, then the limit is

1 n
limIn(1+&)/* = lim In (1+3) = Ine =1 (20)
&e-0 n—oo n
Hence, it is proven that the derivative of In(x) is
, 1
fray =1 (21)

The derivative of In(x) is calculated by using the integral definition In(x) = | 1x %dt and

differentiating both sides (Thomas & Finney, 1984) or by employing the properties of the exponential
function (Strang, 1991) but not directly from (17). According to the generalized definition (18), this
task becomes simpler and more straightforward.

Example 2.

To calculate the derivative of the exponential function, take g(e) =1,

h(e)=In(1+e¢)ie, x" =x+In(1+¢)

x+in (1+€)_,x —

F0) = @ =i e = el s = < Iy
and the limit can easily be calculated
=lim——s=lm—=1 , (23)

i = lim =
g0 In (1+8)  go0ln (1+8)Y/8  noeo gy (1+_)n nooln e
n

(22)

proving that the derivative of the function is

(e®)' =e* . (24)

In the classical definition, one needs two consecutive transformations instead of the one
employed above.

Frx) = (€9 = lim o = o lim &L, (25)
£50 X+e—x £50 €
The first transformation is € = In (1 + t)
. eln+_q t . 1
tl_r>r(} In (1+t) = tl_r>r(} In (1+t) = ltl_r>r(} In (1+t)1/t (26)

and the second transformation is t = %, which proves that the limit equals unity and that the

derivative of the exponential function is itself.
Example 3.
To calculate the derivative of the hyperbolic sine function from the generalized definition, take
ge)=1,he)=n(1+¢),ie, x*=x+In(1+¢),
sinh(x + In(1 + €)) — sinhx

(sinhx)’" = lim

£-0 x+n(l+¢e)—x
= lim sinh x cosh(In(1+¢&))+cosh x sinh(In(1+¢&))—sinhx
N £-0 In (1+¢)
= sinha lim SN TL | o chy lim S2AARAE) (27)
=0 In (1+¢) £-0 In (1+¢)
The first limit is
lim cosh(n(1+e)—-1 _ ,. e+ -inCi+e) 5 1+5+1+_£—2

=1
£-0 In(1+¢) £-0 2In(1+¢) >0 21In(1+¢)
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£
=lim————.
-0 2(1+&)In (1+&)1/¢€
1

(28)

Since lin& In(1 + &)e = 1, the result is
ED
&

lim—— = (29)
-0 2(1+¢)
Proceeding in a similar way, the second limit is

. sinh(In(1+e¢ . 2+
l-g% lrf (1i—s) 2 = =0 2(1+¢) = (30)
Hence, it is proven that

(sinhx)' = coshx. (31)

For trigonometric functions, the generalized definition might not introduce simplicities, and the
classical definition may be employed in proving the derivatives.

Concluding Remarks

The classical limit definition of a derivative is proposed in a more general form. Functional
relationships are used in the generalized version. A subversion of the most general form in which
scaling and translational transformations are used is also proposed. The error analysis of the
approximate definition is given. For errors not to depend on the independent variable, scaling
transformations are not allowed. The new definition introduces some simplicity in proving the
derivatives of some functions, such as exponential, logarithmic and hyperbolic functions.
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