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Abstract: Objectives: The study aimed to develop a deep learning-based edge AI model deployed 

on electrocardiograph (ECG) devices for real-time detection of atrial fibrillation (AF)-risk during 

sinus rhythm (SR) using standard 10-second 12-lead electrocardiograms (ECGs). Methods: A novel 

approach was used to convert standard 12-lead ECGs into binary images for model input, and a 

lightweight convolutional neural network (CNN)-based model was trained using data collected by 

the Japan Agency for Medical and Research Development (AMED) between 2019 and 2022. Patients 

over 40 years old with digital, SR ECGs were retrospectively enrolled and divided into AF and non-

AF groups. Data labeling was supervised by cardiologists. The dataset was randomly allocated into 

training, validation, and internal testing datasets. External testing was conducted on data collected 

from other hospitals. Results: The best-trained model achieved an AUC of 0.82 and 0.80, sensitivity 

of 79.5% and 72.3%, specificity of 77.8% and 77.7%, precision of 78.2% and 76.4%, and overall 

accuracy of 78.6% and 75.0% in the internal and external testing datasets, respectively. The deployed 

model and app package utilized 2.5MB and 40MB of the available ROM and RAM capacity on the 

edge ECG device, correspondingly. Processing time for AF-risk detection was approximately 2 

seconds. Conclusion: The model maintains comparable performance and improves its suitability 

for deployment on resource-constrained ECG devices, thereby expanding its potential impact to a 

wide range of healthcare settings. Its successful deployment enables real-time AF-risk detection 

during SR, allowing for timely intervention to prevent AF-related serious consequences like stroke 

and premature death. 

Keywords: atrial fibrillation; sinus rhythm; standard 12-lead ECGs; deep learning-based; edge AI 

deployment 

 

1. Introduction 

AF is a common arrhythmia, with an estimated prevalence of 3% in adults [1], and is associated 

with an elevated risk of stroke, heart failure, and premature death [2]. However, early detection of 

AF, particularly paroxysmal AF, is very challenging due to its asymptomatic or infrequent nature. 
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Even when patients present with symptoms such as palpitations or chest discomfort, standard ECG 

examinations often show SR. Some studies suggest that the progression of AF can induce electrical 

and structural changes, manifesting as subtle patterns on normal SR ECGs [3]. However, currently it 

remains difficult for cardiologists to manually distinguish AF on ECGs with normal SR. 

With the rapid progress and breakthrough brought from the artificial Intelligence (AI) 

technology, serval studies demonstrated that some subtle signals caused from clinically important 

phenomena can be detected with AI in ECG data that are imperceptible to the human eye [4]. Some 

studies have reported promising results from well-trained AI models in extracting relevant features 

from subtle pattern changes in 12-lead ECGs [3,5,6]. However, these studies often encountered 

imbalanced datasets between the positive and the negative classes. Furthermore, each patient had 

unequal numbers of ECG records included in training, validation and testing datasets, which could 

potentially mislead the prediction accuracy and the estimated area under the receiver operating 

characteristic (ROC) curve (AUC) [7,8]. Variations exist among various studies, particularly in four 

key aspects: dataset composition and pre-processing, types of model input, deep learning model 

architectures, and classification approaches [9]. Despite these advancements, much of the existing 

literature remains confined to academic research and lacks exploration into the feasibility and 

efficiency of methods for deploying edge AI.  

In this study, we proposed a novel approach to convert standard 10-second, 12-lead ECGs into 

binary images for model input and design a lightweight CNN model to enable real-time AF-risk 

detection on edge ECG devices. The dataset was well-balanced between the AF and non-AF groups, 

with each patient contributing an equal number of ECG data, specifically one ECG data per patient 

for testing. Performance evaluation and statistical analysis were conducted using internal and 

external testing datasets collected from diverse clinical facilities in Japan. 

2. Methods 

2.1. Ethics and Data Collection 

Approval for data collection was obtained from the Ethics Committees of Tokyo Medical and 

Dental University. A total of 3109 ECGs of 2930 patients aged over 40 years were retrospectively 

collected from seven affiliated hospitals between September 2019 and March 2022. The study adhered 

to the Code of Ethics of the World Medical Association (Declaration of Helsinki) and the Ethical 

Guidelines for Medical and Health Research Involving Human Subjects issued by the Ministry of 

Education of Japan in 2015. Only data from individuals who provided consent were used, and all 

records were anonymized. All ECGs were recorded at a sampling rate of 500Hz with 10-second length 

using FCP-8800 ECG machines manufactured by Fukuda Denshi, Tokyo, Japan. Diagnostic labels 

were assigned by trained physicians under the supervision of cardiologists. 

The flowchart of data collection and data composition is presented in Figure 1. A total of 1668 

ECGs from 1489 patients with AF records and 1441 ECGs from 1441 non-AF patients were initially 

collected. After applying exclusion criteria and selecting one 12-lead SR ECG data per patient, from 

both groups, three datasets were prepared: a training and validation dataset with a ratio of 8:2, 

comprising 2330 ECGs (AF:1165, non-AF:1165). The remaining 234 ECGs (AF:117, non-AF:117) were 

used as the internal testing dataset.  

Additionally, to assess the generalization ability and external performance validation of AF-risk 

detection, 800 (AF:400, non-AF:400) more ECGs with paired label data were retrospectively collected 

from Kameda General Hospital and Yokohama City University Medical Center from April 2023 to 

July 2023. Approval for data collection was obtained from the Ethics Committees of these two 

facilities. All ECG records were anonymized and an opt-out form on a website was used as an 

acceptable method to obtain consent from the patients. These two distinct facilities did not contribute 

any data to the model training. The same SR ECGs inclusion and exclusion criteria described above 

were applied for data selection. According to the determined sample size for performance validation, 

a total of 220 ECGs from 220 patients in the AF group were randomly selected, and an equal number 
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of SR-ECGs with similar patient characteristics were matched from the non-AF group, resulting in an 

external testing dataset comprising 440 ECGs (AF:220, non-AF:220). 

 

Figure 1. The flowchart of data collection and dataset composition. A total of 3909 ECGs from 3730 

patients were collected for training, validation, internal testing, and external testing. Following the 

exclusion criteria, SR ECGs collected from 1282 patients with AF and 1282 patients from the control 

group were randomly allocated into three datasets for training, validation and internal testing. 

Additionally, an external testing dataset comprised 440 SR ECGs collected from 220 patients with AF 

and 220 patients from the control group. 

2.2. Identifying Study Groups and Selecting SR ECGs 

Both the digital SR ECGs and the extracted labels of the included patients were collected. The 

dataset was divided into two groups: one group labeled as AF, consisting of patients with at least one 

documented AF episode within the past 2 years before the collected SR ECGs, and the other labeled 

as non-AF, consisting of patients without any chief complaint of palpitation symptoms and without 

an AF diagnostic code in their electronic medical records. Patients with an AF diagnostic code but no 

corresponding ECG documentation of AF were excluded from the performance analysis to mitigate 

ambiguity. 

The inclusion criteria for selecting SR ECGs in both groups are illustrated in Figure 2. For the AF 

group, the last event of AF ECG was served as an index, and SR ECGs within 2 years following this 

index were considered for selection. If multiple SR ECGs were available, the one closest to the index 

within the 2-year window was selected. SR ECGs recorded before the index or after catheter ablation 

were excluded. The figure on the right side illustrates examples of SR ECGs selection in the non-AF 

group. The latest SR ECG was served as an index. The window of interest was defined as a timeframe 

of 5 years before the index SR ECG. If the presence of at least one more SR ECG before it within the 

5-year period, the SR ECG was selected. Otherwise, it was discarded. 
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Figure 2. The selection process of SR ECGs in both the positive AF group and negative non-AF group. 

The top and bottom two examples depict the SR ECG selection for the AF and non-AF groups, 

respectively. 

According to the prevalence analysis of atrial fibrillation in the general population of Japan 

[10,11], all patients included in both study groups were required to be over 40 years old at the date 

the selected SR ECG was recorded. Additionally, none of the patients in either group received any 

anti-arrhythmic drugs. The following six criteria were applied for data exclusion: 1) ECGs with paced 

rhythms. 2) ECGs recorded after catheter ablation or heart surgery. 3) Patients with mitral stenosis or 

artificial valve replacement. 4) Patients with a history of cardiogenic cerebral embolism in the control 

group. 5) ECGs included in an arrhythmia exclusion list defined by the cardiologists (Supplementary 

material online, Table S1). 6) ECGs recorded with misplaced electrodes or poor recording conditions.  

2.3. Data Pre-processing and Model Input Type 

ECG signals often contain various types of noises and artifacts, such as power line interference, 

myoelectric noise, base-line drift, and high frequency noise components that arise from the device or 

environment. The corresponding digital filters are provided on the ECG device. Clinicians may apply 

different filters during ECG recording to remove noise, and information about the applied filters is 

recorded in the saved ECG data. To standardize the conditions of all collected ECGs, the unused 

filters among the provided four filters were applied to the ECG signals for uniform noise removal of 

all ECGs. 

Since all ECGs were collected during SR with 10-second long and 12 leads, the data 

dimensionality was high for 12-lead ECG signals. Some researchers used only a subset of 12-leads or 

part of signal segments to reduce the computation cost, but still a quite deep AI model needs to be 

used for a good performance. This increases the difficulty of a high memory usage for edge AI 

deployment on resource-constrained devices. In this study, we proposed a novel approach to 

transform standard 10-second, 12-lead ECGs into binary images for model input and to design a 

lightweight CNN model for real-time AF-risk detection on edge ECG devices. Five steps of signal 

pre-processing were conducted: 1) R wave-triggered signal averaging method was used to generate 

averaged ECGs with a length of 1 second for each lead. 2) The averaged waveforms were compressed 

along the time and amplitude axes to an appropriate size suitable for deployment. 3) The compressed 

averaged waveform was converted into a binary image using brightness processing. 4) Binary images 

from 12 leads were arranged into a composite image with a layout of 4 rows and 3 columns. 5) The 

total image resolution was adjusted to align with the depth of the CNN model and suitable for 

deployment. Figure 3 illustrates an example of the 12 generated average waveforms being converted 

into a composite binary image. 
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Figure 3. Converting the 12 averaged waveforms into a composite binary image. 

2.4. Model Architecture and Deployment 

To ensure that the AI model remains compact, efficient and accurate, a convolutional neural 

network with a small number of layers was implemented using the Keras package with a TensorFlow 

backend in Python. The architecture of the model consisted of four convolution blocks, each 

comprising a two-dimensional convolution layer with kernel size of 3×3, ReLU activation function, 

different filters, and a max-pooling layer as illustrated in Figure 4. After the final max-pooling layer, 

the extracted ECG features were input to a fully connected layer (Flatten layer), two dense layers and 

a dropout layer, before being fed into an output layer activated with softmax function for AF 

classification. The batch size was set to 64, and the Adam optimizer was employed to iteratively 

update network weights trained on a computer equipped with an NVIDIA GeForce GTX1080 

GPU(8GB). 

 

Figure 4. The architecture of the AI model. 

The trained AI model, developed in the Python environment, was saved in JSON format and 

uploaded, along with the necessary header library, into the app package written in C++ for on-board 

AF-risk detection. The model was optimized to ensure low memory usage, making it suitable for 

deployment on resource-constrained ECG devices. 

2.5. Outcome Assessments 

Performance metrics refer to mathematical formulas that are used for assessing how well an AI 

model predicts clinical or other health outcomes from the data. In binary classification tasks, where 
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outcomes are classified into two categories, several metrics such as accuracy, sensitivity, specificity, 

precision and AUC are commonly used. While accuracy and AUC are suitable for well-balanced 

datasets, they may not be appropriate for datasets with class imbalances. To address potential bias 

and ensure robust evaluation, all datasets in this study, including those used for training, validation, 

internal testing, and external testing, were well-balanced between AF and non-AF groups. This 

allows for the comprehensive assessment of model performance using all the metrics mentioned 

above. 

2.6. Statistical Analysis 

Statistical analysis involves collecting and analyzing large volumes of data to identify trends 

and develop insights. Once the final fitted model was obtained, a statistical analysis plan was 

designed and specified in advance for external testing. The plan included the following steps: 1) 

Descriptive and Inferential analysis of the clinical characteristics of patients included in AF and non-

AF groups. Mean, standard deviation and independent t-tests for continuous variables, and 

percentages and Fisher exact tests for categorical variables were calculated and performed to verify 

if there were statistically significant differences (p < 0.05) in clinical variables between the patients in 

the two groups. 2) Measurement of outcomes and estimation of their 95% confidence intervals. 3) 

Special data testing for non-AF identification. All the statistical analyses were performed using EZR 

version 1.55 and R version 4.3.1 software. 

3. Results 

3.1. Internal Testing 

The model was input with the binary ECG images and trained using the dataset (n=2330, AF: 

1165, non-AF:1165) as described in Section 2.1. To enrich the training dataset, a representative 

waveform, termed the dominant waveform, was extracted from each lead of the recorded 10-second, 

12-lead ECGs. These dominant waveforms exhibited less noise and matched the 1-second length of 

the averaged waveforms used for training. Following the signal pre-processing described in Section 

2.3, two binary ECG images were generated per patient, effectively doubling the dataset size to 

n=4660 (AF: 2330, non-AF: 2330) for model training. 

For internal testing, a dataset comprising 234 ECGs (AF:117, non-AF:117) was utilized. Each 

patient contributed one binary image using the averaged waveforms, and no dominant ECG 

waveforms were used for testing. The outcome metrics of the internal testing were measured as 

follows: AUC, 0.82 (95% CI 0.77-0.88); sensitivity, 79.5% (95% CI 71.0-86.4); specificity, 77.8% (95% CI 

69.2-84.9); precision, 78.2% (95% CI 69.6-85.2), and accuracy, 78.6% (95% CI 72.8-83.7). The ROC curve 

was depicted on the left side in Figure 5 (a), shown in Section 3.2.4 to compare with the ROC curve 

obtained from the following external testing. 

3.2. External Testing 

3.2.1. External Dataset Analysis 

The external testing and statistical analysis were further conducted using the external dataset 

(n=440, AF:220, non-AF:220) as described in Section 2.1. Each patient contributed one binary image 

using the averaged waveforms, and no dominant waveforms were used as the same for internal 

testing. The age distribution of patients was analyzed and compared with that of the training + 

validation datasets, as shown in Table 1. Notably, in the external testing dataset presented on the 

right side of Table 1, there was a 17% decrease in patients aged 40 to 59, and a 14% increase in patients 

aged 70 to 89, compared with the training and validation dataset. This distribution trend more closely 

resembled the prevalence proportion observed in the age group of the AF population, and the 

proportion of female patients was observed 5% increase in the external testing dataset as well. 

Additionally, in addition to collecting ECGs from patients visiting the Department of Cardiovascular 

Medicine for training, validation, and internal testing datasets, we also included ECGs from patients 
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transported by emergency or other departments in the external testing dataset. This broader sample 

allows for a more comprehensive validation of the generalization ability of the developed AI model. 

Table 1. Age distribution comparison between training and external testing datasets. 

Age 

Group 

Training +Validation (n=2330) External Testing (n=440) 

Patients Female Male Proportion Patients Female Male Proportion 

40-49 329 101 228 14.1% 19 6 13 4.3% 

50-59 438 115 323 18.8% 52 16 36 11.8% 

60-69 628 192 436 27.0% 125 50 75 28.4% 

70-79 673 275 398 28.9% 162 67 95 36.8% 

80-89 250 103 147 10.7% 74 31 43 16.8% 

90-100 12 5 7 0.5% 8 2 6 1.8% 

Total 2330 791 1539 100.0% 440 172 268 100.0% 

Proportion  33.9% 66.1% 100.0%  39.1% 60.9% 100.0% 

3.2.2. Additional Measures of Bias Minimization 

To minimize the influence of bias from patient characteristics between AF and non-AF groups 

on performance evaluation, additional steps were taken. After selecting the necessary ECGs of AF 

patients randomly from the available data, an equal number of non-AF ECGs were selected. These 

selections were not only matched with the clinical characteristics but also the age distribution of the 

patients in the AF group. The results, as presented in Table 2, indicate that apart from a higher 

number of Diabetes patients in the non-AF group compared to the AF group, other patient 

characteristic items were quite similar between the two groups. Furthermore, patients with both 

normal (borderline normal included) and abnormal (borderline abnormal included) ECGs during 

ECG automatic interpretation, were well-balanced as well. Therefore, no bias effect existed during 

external performance evaluation. The disparity in the occurrence of Diabetes, similar to that observed 

in the training dataset, may be attributed to patients without a history of AF predominantly visiting 

the hospital for periodic inspections. This approach helps ensure the robustness and reliability of the 

model's performance evaluation process by mitigating potential biases. 

Table 2. Matched Patient Characteristics in two groups for external testing. 

Items non-AF AF Items non-AF AF 

40-49 10 10 Male 135 137 

50-59 26 25 Female 85 83 

60-69 62 62 Smoking 118 117 

70-79 81 82 Hypertension 116 117 

80-89 37 37 Diabetes 82 47 

90-99 4 4 Normal (ECGs) 122 121 

Total 220 220 Abnormal (ECGs) 98 99 

3.2.3. Statistical Analysis of Patients Characteristics 

According to the first step of the statistical analysis plan outlined in Section 2.6, patient 

characteristics were statistically analyzed. The results are summarized in Table 3. It was observed 

that several data points were missing in the Smoking and Hypertension items. The mean values of 

age, height, and weight for patients in both groups were approximately 70 years, 160cm, and 61kg, 

respectively. Additionally, approximately 61% of patients were male. 
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P-values for continuous variables and categorical variables were obtained from F-test, student 

t-tests and Fisher exact tests, respectively. With the exception of the Diabetes item, all p-values were 

greater than the 0.05 significance level. This indicates that there were no statistically significant 

differences in clinical characteristics between patients in the AF and the non-AF groups. 

Table 3. Statistical analysis of the patient characteristics in the external testing dataset. 

Items 
non-AF 

Group n=220 

AF Group 

n=220 

p-value of  

F-test 

p-value of  

t-test 

p-value of  

Fisher exact test 

Age 69.8 ± 10.7 70.3 ± 10.8 0.848 0.638 NA 

Height 160.1 ± 9.5 160.3 ± 10.3 0.218 0.846 NA 

Weight 60.9 ± 14.5 61.5 ± 14.6 0.880 0.700 NA 

BMI 23.7 ± 5.1 23.8 ± 5.1 0.935 0.802 NA 

Gender (M/F) 134/86 134/86 NA NA 1.000 

Smoking (NaN/F/T)   1/101/118 1/101/118 NA NA 1.000 

Hypertension (NaN/F/T)  0/102/118 3/102/115 NA NA 0.324 

Diabetes (F/T) 142/78 173/47 NA NA 0.001 

NaN: Missing data; F: False; T: True. 

3.2.4. Performance Validation 

In the second step of the statistical analysis plan, the performance of the fitted model used for 

external validation was assessed. The following performance metrics were evaluated: AUC, 0.80 (95% 

CI 0.76-0.84); sensitivity, 72.3% (95% CI 65.9-78.1); specificity, 77.7% (95% CI 71.6-83.0); precision, 

76.4% (95% CI 70.1-82.0), and accuracy, 75.0% (95% CI 70.7-79.0), respectively. Two-sided 95% 

confidence intervals for the measured metrics were estimated with the Delong method for AUC and 

the Clopper-Pearson method for the other metrics. The ROC curve obtained from the external testing 

is depicted on the right side in Figure 5 (b). The mere 2% difference compared to the AUC from the 

internal testing suggests a strong generalizability of the fitted model. 

 

Figure 5. The ROC curves: (a) on the internal testing dataset; (b) on the external testing dataset. 

3.2.5. Special Data Testing 

To minimize the risk of mislabeling patients in the non-AF group who may have undetected AF, 

several measures were implemented. Patients presenting with a chief complaint of palpitations or 

subjective symptoms were excluded from the non-AF data collection. Moreover, at least two SR ECGs 

recorded in the past five years based on the latest selected SR ECG were required for inclusion. In the 

third step of the statistical analysis plan, patients with palpitations but diagnosed with inappropriate 
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sinus tachycardia (IST), or atrioventricular nodal reentrant tachycardia (AVNRT) after catheter 

ablation, had their SR ECGs collected before the catheter ablation and utilized as special data for non-

AF identification.  

A total of 29 patients were collected, comprising 12 males and 17 females, with ages ranging 

from 40s to 80s. The detection rate of non-AF in this subset was 75.9% (95% CI 56.5-89.7), which was 

slightly lower (1.8%) than the specificity of 77.7% measured from the external testing data (n=440). 

This outcome further indicates a successful detection rate on the special data with similar accuracy 

for non-AF identification.  

Each patient contributed one binary image using the averaged waveforms, ensuring no data 

duplication occurred in the special data testing. Furthermore, we utilized the arrhythmia exclusion 

list described in Section 2.2 to exclude patients with heart diseases unrelated to AF. 

3.3. Successful Deployment 

The app package with the edge AI model was successfully deployed on an edge ECG device, 

where the time for detecting AF-risk on board was measured to be approximately 2 seconds, nearly 

in real-time following an automated diagnosis of routine standard 10-second, 12-lead ECGs. 

Additionally, the prediction results obtained on the edge device after deployment were confirmed 

completely the same compared with the results predicted on a PC in a Python environment. These 

comparative results validated the low-cost and successful deployment of the method. 

4. Discussion 

4.1. Major Findings and Key Outcomes 

• Existing screening methods for AF often miss cases due to the condition's paroxysmal and 

asymptomatic nature. This under-detection can lead to serious consequences such as stroke and 

premature death. The findings of this study highlight the potential of deep learning-based edge 

AI models in the early detection of AF during normal SR using standard 10-second 12-lead ECGs. 

• The inclusion and exclusion criteria for data collection, such as age over 40 years old, the 

presence of normal SR, and exclusion of the ECGs included in a defined arrhythmia exclusion 

list, aimed to capture a representative sample of patients who may have undetected AF in the 

past 2 years but are not currently experiencing symptomatic episodes. 

• The well-balanced data collection, with each patient contributing an equal number of ECG data, 

specifically one ECG data per patient for testing, additional measures of bias minimization in 

the two groups, and the rigorous labeling process conducted by trained physicians under 

cardiologist supervision, ensured the reliability of the datasets for model training, testing, and 

accurate performance evaluation. 

• The proposed method involved converting the averaged waveform from each lead of a standard 

10-second, 12-lead ECGs into a binary image and then composing them. This approach 

facilitated the training of a lightweight CNN model for AF-risk detection during SR. 

• The performance metrics of the deployed model, including sensitivity, specificity, precision, 

overall accuracy, and AUC, demonstrate its effectiveness and generalization capability in 

detecting AF-risk during SR in both internal and external testing datasets. 

• The model maintains comparable performance and improves its suitability for deployment on 

resource-constrained devices, thereby expanding its potential impact to a wide range of 

healthcare settings. Its successful deployment enables real-time AF-risk detection during SR in 

clinical settings where immediate intervention is crucial. 

4.2. AUC and Methods Comparison 

The estimated AUC for the fitted model in internal and external testing was 0.82 (95% CI: 0.77-

0.88) and 0.80 (95% CI: 0.76-0.84), respectively. These values outperform those of other medical 

screening tests, such as B-type natriuretic peptide (BNP) for heart failure and cardiovascular disease 

diagnosis (AUC: 0.60-0.70) [12], Papanicolaou smear for cervical cancer screening (AUC: 0.70) [13], 

and the CHA2DS2-VASc score for stroke risk assessment (AUC: 0.57-0.72) [14]. 
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Several studies have been reported for AF-risk detection during SR ECGs in the recent 5 years. 

The difference between this study and others are summarized in Table 4. 

Table 4. Method and performance comparison between this study and the other studies. 

Items The Other Studies This Study 

Age of patients 18 years or older [3,5,6] 40 years or older 

Training and testing dataset Imbalanced [3,5] Well-balanced 

Testing data Multi-ECGs per patient [3,5,6] one ECG data per patient 

Bias minimization unreported [3,5,6] Done for external testing 

Model input type 

Time-series ECGs 

with multiple leads (8 or 12),  

each lasting 8 or 10 seconds [3,5,6] 

Binary ECG images 

with 12-lead 

averaged waveforms 

AI model Resnet [3,6], RNN [6], LSTM [5] Standard CNN 

AUC from internal testing 0.87 [3], 0.79 [5,6] 0.82 

AUC from external testing 0.75 [5] 0.80 

Type of product Algorithm [3,5,6] Edge AI deployed 

 

The achieved sensitivity and specificity of the external testing were balanced at the optimized 

cutoff of 0.467. This threshold can be adjusted depending on clinical needs. A low cutoff with high 

sensitivity may be useful in excluding healthy individuals who do not require further inspection, 

while a high cutoff with high specificity may be beneficial for identifying patients with a high pretest 

probability for intensive monitoring.  

By employing the R wave-triggered signal averaging method to generate averaged waveforms 

from SR ECGs and then converting them into binary images, a lightweight CNN model was trained. 

This approach proved to be efficient and feasible for AF-risk detection on resource-constrained ECG 

devices, with an approximate time of 2 seconds after automatic 12-lead ECGs interpretation. 

4.3. Limitations and Future Directions 

Several limitations were identified in this study. First, all ECG data was retrospectively collected 

from general or university affiliated hospitals, necessitating further evaluation in a broader, 

ostensibly healthy population. Second, although a total of 1502 AF-labeled ECGs, with one data per 

patient, were collected, which is more than some other studies, the relatively moderate scale of the 

ECG dataset for AI model training may limit model performance and robustness. This warrants 

further analysis with additional data. Finally, being a multi-center retrospective study, prospective, 

large-scale studies are required to validate the model’s performance in the future.  

5. Conclusions 

The proposed method, which involved extracting averaged waveforms from standard 10-

second, 12-lead SR ECGs and converting them into binary images, facilitated the training of a 

lightweight CNN model for AF-risk detection during SR. The achieved performance, as evaluated 

from internal and external datasets, demonstrated the effectiveness and generalization capability of 

the trained model in detecting undiagnosed AF.  

Moreover, the successful deployment of the app package on edge ECG devices enables the 

practical application of undiagnosed AF detection in real-time during SR. This development marks a 

significant contribution to the advancement of AI in healthcare and holds important implications for 

early AF screening and the management of patients with unexplained stroke. 
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Moving forward, further improvements can be explored through the utilization of large-scale 

data. Continual refinement and validation of the model's performance will be essential for its 

continued effectiveness and reliability in clinical practice. 

Overall, the deployment of the model on edge AI ECG devices represents a significant step 

towards enhancing healthcare outcomes and addressing the challenges associated with undiagnosed 

AF, ultimately improving patient care and management strategies. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org.The arrhythmia exclusion list. 
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