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Abstract: Objectives: The study aimed to develop a deep learning-based edge Al model deployed
on electrocardiograph (ECG) devices for real-time detection of atrial fibrillation (AF)-risk during
sinus rhythm (SR) using standard 10-second 12-lead electrocardiograms (ECGs). Methods: A novel
approach was used to convert standard 12-lead ECGs into binary images for model input, and a
lightweight convolutional neural network (CNN)-based model was trained using data collected by
the Japan Agency for Medical and Research Development (AMED) between 2019 and 2022. Patients
over 40 years old with digital, SR ECGs were retrospectively enrolled and divided into AF and non-
AF groups. Data labeling was supervised by cardiologists. The dataset was randomly allocated into
training, validation, and internal testing datasets. External testing was conducted on data collected
from other hospitals. Results: The best-trained model achieved an AUC of 0.82 and 0.80, sensitivity
of 79.5% and 72.3%, specificity of 77.8% and 77.7%, precision of 78.2% and 76.4%, and overall
accuracy of 78.6% and 75.0% in the internal and external testing datasets, respectively. The deployed
model and app package utilized 2.5MB and 40MB of the available ROM and RAM capacity on the
edge ECG device, correspondingly. Processing time for AF-risk detection was approximately 2
seconds. Conclusion: The model maintains comparable performance and improves its suitability
for deployment on resource-constrained ECG devices, thereby expanding its potential impact to a
wide range of healthcare settings. Its successful deployment enables real-time AF-risk detection
during SR, allowing for timely intervention to prevent AF-related serious consequences like stroke
and premature death.

Keywords: atrial fibrillation; sinus rhythm; standard 12-lead ECGs; deep learning-based; edge Al
deployment

1. Introduction

AF is a common arrhythmia, with an estimated prevalence of 3% in adults [1], and is associated
with an elevated risk of stroke, heart failure, and premature death [2]. However, early detection of
AF, particularly paroxysmal AF, is very challenging due to its asymptomatic or infrequent nature.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Even when patients present with symptoms such as palpitations or chest discomfort, standard ECG
examinations often show SR. Some studies suggest that the progression of AF can induce electrical
and structural changes, manifesting as subtle patterns on normal SR ECGs [3]. However, currently it
remains difficult for cardiologists to manually distinguish AF on ECGs with normal SR.

With the rapid progress and breakthrough brought from the artificial Intelligence (AI)
technology, serval studies demonstrated that some subtle signals caused from clinically important
phenomena can be detected with Al in ECG data that are imperceptible to the human eye [4]. Some
studies have reported promising results from well-trained Al models in extracting relevant features
from subtle pattern changes in 12-lead ECGs [3,5,6]. However, these studies often encountered
imbalanced datasets between the positive and the negative classes. Furthermore, each patient had
unequal numbers of ECG records included in training, validation and testing datasets, which could
potentially mislead the prediction accuracy and the estimated area under the receiver operating
characteristic (ROC) curve (AUC) [7,8]. Variations exist among various studies, particularly in four
key aspects: dataset composition and pre-processing, types of model input, deep learning model
architectures, and classification approaches [9]. Despite these advancements, much of the existing
literature remains confined to academic research and lacks exploration into the feasibility and
efficiency of methods for deploying edge Al

In this study, we proposed a novel approach to convert standard 10-second, 12-lead ECGs into
binary images for model input and design a lightweight CNN model to enable real-time AF-risk
detection on edge ECG devices. The dataset was well-balanced between the AF and non-AF groups,
with each patient contributing an equal number of ECG data, specifically one ECG data per patient
for testing. Performance evaluation and statistical analysis were conducted using internal and
external testing datasets collected from diverse clinical facilities in Japan.

2. Methods

2.1. Ethics and Data Collection

Approval for data collection was obtained from the Ethics Committees of Tokyo Medical and
Dental University. A total of 3109 ECGs of 2930 patients aged over 40 years were retrospectively
collected from seven affiliated hospitals between September 2019 and March 2022. The study adhered
to the Code of Ethics of the World Medical Association (Declaration of Helsinki) and the Ethical
Guidelines for Medical and Health Research Involving Human Subjects issued by the Ministry of
Education of Japan in 2015. Only data from individuals who provided consent were used, and all
records were anonymized. All ECGs were recorded at a sampling rate of 500Hz with 10-second length
using FCP-8800 ECG machines manufactured by Fukuda Denshi, Tokyo, Japan. Diagnostic labels
were assigned by trained physicians under the supervision of cardiologists.

The flowchart of data collection and data composition is presented in Figure 1. A total of 1668
ECGs from 1489 patients with AF records and 1441 ECGs from 1441 non-AF patients were initially
collected. After applying exclusion criteria and selecting one 12-lead SR ECG data per patient, from
both groups, three datasets were prepared: a training and validation dataset with a ratio of 8:2,
comprising 2330 ECGs (AF:1165, non-AF:1165). The remaining 234 ECGs (AF:117, non-AF:117) were
used as the internal testing dataset.

Additionally, to assess the generalization ability and external performance validation of AF-risk
detection, 800 (AF:400, non-AF:400) more ECGs with paired label data were retrospectively collected
from Kameda General Hospital and Yokohama City University Medical Center from April 2023 to
July 2023. Approval for data collection was obtained from the Ethics Committees of these two
facilities. All ECG records were anonymized and an opt-out form on a website was used as an
acceptable method to obtain consent from the patients. These two distinct facilities did not contribute
any data to the model training. The same SR ECGs inclusion and exclusion criteria described above
were applied for data selection. According to the determined sample size for performance validation,
a total of 220 ECGs from 220 patients in the AF group were randomly selected, and an equal number
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of SR-ECGs with similar patient characteristics were matched from the non-AF group, resulting in an
external testing dataset comprising 440 ECGs (AF:220, non-AF:220).

ECGs and label paired data from seven affiliated ECGs and label paired data from Kameda
hospitals of Tokyo Medical and Dental University General Hospital and Yokohama City
and Jichi Medical University (n=3109) University Medical Center (n=800)

Exclusion
»  Age <40 years old
+ Datients received any anti-arrhythmic
drugs
+ ECGs recorded with misplaced electrodes
or poor recording conditions
AF Group:
» ECGs with paced thythm
* ECGs recorded after catheter ablation
2564 Patients with sinus + ECGsincluded in an arrhythmia exclusion 568 Patients with sinus
thythm ECGs list defined by the cardiologists thythm ECGs
AF:1282, non-AF:1282 Non-AF Group: AF:266, non-AF:302
» Patients with chief complaint of palpitation
symptoms
» Patients with a history of cardiogenic
cerebral embolism

| | }

Training dataset: Validation dataset Internal Testing dataset External Testing dataset
(AF:932, non-AF:932) (AF:233, non-AF:233) (AF:117, non-AF:117) (AF:220, non-AF:220)

Figure 1. The flowchart of data collection and dataset composition. A total of 3909 ECGs from 3730
patients were collected for training, validation, internal testing, and external testing. Following the
exclusion criteria, SR ECGs collected from 1282 patients with AF and 1282 patients from the control
group were randomly allocated into three datasets for training, validation and internal testing.
Additionally, an external testing dataset comprised 440 SR ECGs collected from 220 patients with AF
and 220 patients from the control group.

2.2. Identifying Study Groups and Selecting SR ECGs

Both the digital SR ECGs and the extracted labels of the included patients were collected. The
dataset was divided into two groups: one group labeled as AF, consisting of patients with at least one
documented AF episode within the past 2 years before the collected SR ECGs, and the other labeled
as non-AF, consisting of patients without any chief complaint of palpitation symptoms and without
an AF diagnostic code in their electronic medical records. Patients with an AF diagnostic code but no
corresponding ECG documentation of AF were excluded from the performance analysis to mitigate
ambiguity.

The inclusion criteria for selecting SR ECGs in both groups are illustrated in Figure 2. For the AF
group, the last event of AF ECG was served as an index, and SR ECGs within 2 years following this
index were considered for selection. If multiple SR ECGs were available, the one closest to the index
within the 2-year window was selected. SR ECGs recorded before the index or after catheter ablation
were excluded. The figure on the right side illustrates examples of SR ECGs selection in the non-AF
group. The latest SR ECG was served as an index. The window of interest was defined as a timeframe
of 5 years before the index SR ECG. If the presence of at least one more SR ECG before it within the
5-year period, the SR ECG was selected. Otherwise, it was discarded.
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Figure 2. The selection process of SR ECGs in both the positive AF group and negative non-AF group.
The top and bottom two examples depict the SR ECG selection for the AF and non-AF groups,
respectively.

According to the prevalence analysis of atrial fibrillation in the general population of Japan
[10,11], all patients included in both study groups were required to be over 40 years old at the date
the selected SR ECG was recorded. Additionally, none of the patients in either group received any
anti-arrhythmic drugs. The following six criteria were applied for data exclusion: 1) ECGs with paced
rhythms. 2) ECGs recorded after catheter ablation or heart surgery. 3) Patients with mitral stenosis or
artificial valve replacement. 4) Patients with a history of cardiogenic cerebral embolism in the control
group. 5) ECGs included in an arrhythmia exclusion list defined by the cardiologists (Supplementary
material online, Table S1). 6) ECGs recorded with misplaced electrodes or poor recording conditions.

2.3. Data Pre-processing and Model Input Type

ECG signals often contain various types of noises and artifacts, such as power line interference,
myoelectric noise, base-line drift, and high frequency noise components that arise from the device or
environment. The corresponding digital filters are provided on the ECG device. Clinicians may apply
different filters during ECG recording to remove noise, and information about the applied filters is
recorded in the saved ECG data. To standardize the conditions of all collected ECGs, the unused
filters among the provided four filters were applied to the ECG signals for uniform noise removal of
all ECGs.

Since all ECGs were collected during SR with 10-second long and 12 leads, the data
dimensionality was high for 12-lead ECG signals. Some researchers used only a subset of 12-leads or
part of signal segments to reduce the computation cost, but still a quite deep Al model needs to be
used for a good performance. This increases the difficulty of a high memory usage for edge Al
deployment on resource-constrained devices. In this study, we proposed a novel approach to
transform standard 10-second, 12-lead ECGs into binary images for model input and to design a
lightweight CNN model for real-time AF-risk detection on edge ECG devices. Five steps of signal
pre-processing were conducted: 1) R wave-triggered signal averaging method was used to generate
averaged ECGs with a length of 1 second for each lead. 2) The averaged waveforms were compressed
along the time and amplitude axes to an appropriate size suitable for deployment. 3) The compressed
averaged waveform was converted into a binary image using brightness processing. 4) Binary images
from 12 leads were arranged into a composite image with a layout of 4 rows and 3 columns. 5) The
total image resolution was adjusted to align with the depth of the CNN model and suitable for
deployment. Figure 3 illustrates an example of the 12 generated average waveforms being converted
into a composite binary image.
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Figure 3. Converting the 12 averaged waveforms into a composite binary image.

2.4. Model Architecture and Deployment

To ensure that the Al model remains compact, efficient and accurate, a convolutional neural
network with a small number of layers was implemented using the Keras package with a TensorFlow
backend in Python. The architecture of the model consisted of four convolution blocks, each
comprising a two-dimensional convolution layer with kernel size of 3x3, ReLU activation function,
different filters, and a max-pooling layer as illustrated in Figure 4. After the final max-pooling layer,
the extracted ECG features were input to a fully connected layer (Flatten layer), two dense layers and
a dropout layer, before being fed into an output layer activated with softmax function for AF
classification. The batch size was set to 64, and the Adam optimizer was employed to iteratively
update network weights trained on a computer equipped with an NVIDIA GeForce GTX1080

GPU(8GB). o
npui

Convolution Block

‘ Convolution Block1 ‘

I -
: \Convolution Block4 \
I
i ‘ Flatter} Layer ‘
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Figure 4. The architecture of the Al model.

The trained Al model, developed in the Python environment, was saved in JSON format and
uploaded, along with the necessary header library, into the app package written in C++ for on-board
AF-risk detection. The model was optimized to ensure low memory usage, making it suitable for
deployment on resource-constrained ECG devices.

2.5. Outcome Assessments

Performance metrics refer to mathematical formulas that are used for assessing how well an Al
model predicts clinical or other health outcomes from the data. In binary classification tasks, where
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outcomes are classified into two categories, several metrics such as accuracy, sensitivity, specificity,
precision and AUC are commonly used. While accuracy and AUC are suitable for well-balanced
datasets, they may not be appropriate for datasets with class imbalances. To address potential bias
and ensure robust evaluation, all datasets in this study, including those used for training, validation,
internal testing, and external testing, were well-balanced between AF and non-AF groups. This
allows for the comprehensive assessment of model performance using all the metrics mentioned
above.

2.6. Statistical Analysis

Statistical analysis involves collecting and analyzing large volumes of data to identify trends
and develop insights. Once the final fitted model was obtained, a statistical analysis plan was
designed and specified in advance for external testing. The plan included the following steps: 1)
Descriptive and Inferential analysis of the clinical characteristics of patients included in AF and non-
AF groups. Mean, standard deviation and independent t-tests for continuous variables, and
percentages and Fisher exact tests for categorical variables were calculated and performed to verify
if there were statistically significant differences (p < 0.05) in clinical variables between the patients in
the two groups. 2) Measurement of outcomes and estimation of their 95% confidence intervals. 3)
Special data testing for non-AF identification. All the statistical analyses were performed using EZR
version 1.55 and R version 4.3.1 software.

3. Results

3.1. Internal Testing

The model was input with the binary ECG images and trained using the dataset (n=2330, AF:
1165, non-AF:1165) as described in Section 2.1. To enrich the training dataset, a representative
waveform, termed the dominant waveform, was extracted from each lead of the recorded 10-second,
12-lead ECGs. These dominant waveforms exhibited less noise and matched the 1-second length of
the averaged waveforms used for training. Following the signal pre-processing described in Section
2.3, two binary ECG images were generated per patient, effectively doubling the dataset size to
n=4660 (AF: 2330, non-AF: 2330) for model training.

For internal testing, a dataset comprising 234 ECGs (AF:117, non-AF:117) was utilized. Each
patient contributed one binary image using the averaged waveforms, and no dominant ECG
waveforms were used for testing. The outcome metrics of the internal testing were measured as
follows: AUC, 0.82 (95% CI 0.77-0.88); sensitivity, 79.5% (95% CI 71.0-86.4); specificity, 77.8% (95% CI
69.2-84.9); precision, 78.2% (95% CI 69.6-85.2), and accuracy, 78.6% (95% CI72.8-83.7). The ROC curve
was depicted on the left side in Figure 5 (a), shown in Section 3.2.4 to compare with the ROC curve
obtained from the following external testing.

3.2. External Testing

3.2.1. External Dataset Analysis

The external testing and statistical analysis were further conducted using the external dataset
(n=440, AF:220, non-AF:220) as described in Section 2.1. Each patient contributed one binary image
using the averaged waveforms, and no dominant waveforms were used as the same for internal
testing. The age distribution of patients was analyzed and compared with that of the training +
validation datasets, as shown in Table 1. Notably, in the external testing dataset presented on the
right side of Table 1, there was a 17% decrease in patients aged 40 to 59, and a 14% increase in patients
aged 70 to 89, compared with the training and validation dataset. This distribution trend more closely
resembled the prevalence proportion observed in the age group of the AF population, and the
proportion of female patients was observed 5% increase in the external testing dataset as well.
Additionally, in addition to collecting ECGs from patients visiting the Department of Cardiovascular
Medicine for training, validation, and internal testing datasets, we also included ECGs from patients
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transported by emergency or other departments in the external testing dataset. This broader sample
allows for a more comprehensive validation of the generalization ability of the developed Al model.

Table 1. Age distribution comparison between training and external testing datasets.

Age Training +Validation (n=2330) External Testing (n=440)

Group Patients | Female | Male | Proportion | Patients | Female | Male Proportion
40-49 329 101 228 14.1% 19 6 13 4.3%
50-59 438 115 323 18.8% 52 16 36 11.8%
60-69 628 192 436 27.0% 125 50 75 28.4%
70-79 673 275 398 28.9% 162 67 95 36.8%
80-89 250 103 147 10.7% 74 31 43 16.8%

90-100 12 5 7 0.5% 8 2 6 1.8%
Total 2330 791 1539 100.0% 440 172 268 100.0%

Proportion 33.9% 66.1% 100.0% 39.1% 60.9% 100.0%

3.2.2. Additional Measures of Bias Minimization

To minimize the influence of bias from patient characteristics between AF and non-AF groups
on performance evaluation, additional steps were taken. After selecting the necessary ECGs of AF
patients randomly from the available data, an equal number of non-AF ECGs were selected. These
selections were not only matched with the clinical characteristics but also the age distribution of the
patients in the AF group. The results, as presented in Table 2, indicate that apart from a higher
number of Diabetes patients in the non-AF group compared to the AF group, other patient
characteristic items were quite similar between the two groups. Furthermore, patients with both
normal (borderline normal included) and abnormal (borderline abnormal included) ECGs during
ECG automatic interpretation, were well-balanced as well. Therefore, no bias effect existed during
external performance evaluation. The disparity in the occurrence of Diabetes, similar to that observed
in the training dataset, may be attributed to patients without a history of AF predominantly visiting
the hospital for periodic inspections. This approach helps ensure the robustness and reliability of the
model's performance evaluation process by mitigating potential biases.

Table 2. Matched Patient Characteristics in two groups for external testing.

Items non-AF AF Items non-AF AF
40-49 10 10 Male 135 137
50-59 26 25 Female 85 83
60-69 62 62 Smoking 118 117
70-79 81 82 Hypertension 116 117
80-89 37 37 Diabetes 82 47
90-99 4 4 Normal (ECGs) 122 121
Total 220 220 Abnormal (ECGs) 98 99

3.2.3. Statistical Analysis of Patients Characteristics

According to the first step of the statistical analysis plan outlined in Section 2.6, patient
characteristics were statistically analyzed. The results are summarized in Table 3. It was observed
that several data points were missing in the Smoking and Hypertension items. The mean values of
age, height, and weight for patients in both groups were approximately 70 years, 160cm, and 61kg,
respectively. Additionally, approximately 61% of patients were male.
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P-values for continuous variables and categorical variables were obtained from F-test, student
t-tests and Fisher exact tests, respectively. With the exception of the Diabetes item, all p-values were
greater than the 0.05 significance level. This indicates that there were no statistically significant
differences in clinical characteristics between patients in the AF and the non-AF groups.

Table 3. Statistical analysis of the patient characteristics in the external testing dataset.

non-AF AF Group p-value of | p-value of p-value of
ftems Group n=220 n=220 F-test t-test Fisher exact test
Age 69.8£10.7 70.3+£10.8 0.848 0.638 NA
Height 160.1+9.5 160.3 £10.3 0.218 0.846 NA
Weight 60.9 +14.5 61.5+14.6 0.880 0.700 NA
BMI 23.7+5.1 23.8+5.1 0.935 0.802 NA
Gender (M/F) 134/86 134/86 NA NA 1.000
Smoking (NaN/F/T) 1/101/118 1/101/118 NA NA 1.000
Hypertension (NaN/F/T) 0/102/118 3/102/115 NA NA 0.324
Diabetes (F/T) 142/78 173/47 NA NA 0.001

NaN: Missing data; F: False; T: True.

3.2.4. Performance Validation

In the second step of the statistical analysis plan, the performance of the fitted model used for
external validation was assessed. The following performance metrics were evaluated: AUC, 0.80 (95%
CI 0.76-0.84); sensitivity, 72.3% (95% CI 65.9-78.1); specificity, 77.7% (95% CI 71.6-83.0); precision,
76.4% (95% CI 70.1-82.0), and accuracy, 75.0% (95% CI 70.7-79.0), respectively. Two-sided 95%
confidence intervals for the measured metrics were estimated with the Delong method for AUC and
the Clopper-Pearson method for the other metrics. The ROC curve obtained from the external testing
is depicted on the right side in Figure 5 (b). The mere 2% difference compared to the AUC from the
internal testing suggests a strong generalizability of the fitted model.
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Figure 5. The ROC curves: (a) on the internal testing dataset; (b) on the external testing dataset.

3.2.5. Special Data Testing

To minimize the risk of mislabeling patients in the non-AF group who may have undetected AF,
several measures were implemented. Patients presenting with a chief complaint of palpitations or
subjective symptoms were excluded from the non-AF data collection. Moreover, at least two SR ECGs
recorded in the past five years based on the latest selected SR ECG were required for inclusion. In the
third step of the statistical analysis plan, patients with palpitations but diagnosed with inappropriate
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sinus tachycardia (IST), or atrioventricular nodal reentrant tachycardia (AVNRT) after catheter
ablation, had their SR ECGs collected before the catheter ablation and utilized as special data for non-
AF identification.

A total of 29 patients were collected, comprising 12 males and 17 females, with ages ranging
from 40s to 80s. The detection rate of non-AF in this subset was 75.9% (95% CI 56.5-89.7), which was
slightly lower (1.8%) than the specificity of 77.7% measured from the external testing data (n=440).
This outcome further indicates a successful detection rate on the special data with similar accuracy
for non-AF identification.

Each patient contributed one binary image using the averaged waveforms, ensuring no data
duplication occurred in the special data testing. Furthermore, we utilized the arrhythmia exclusion
list described in Section 2.2 to exclude patients with heart diseases unrelated to AF.

3.3. Successful Deployment

The app package with the edge Al model was successfully deployed on an edge ECG device,
where the time for detecting AF-risk on board was measured to be approximately 2 seconds, nearly
in real-time following an automated diagnosis of routine standard 10-second, 12-lead ECGs.
Additionally, the prediction results obtained on the edge device after deployment were confirmed
completely the same compared with the results predicted on a PC in a Python environment. These
comparative results validated the low-cost and successful deployment of the method.

4. Discussion

4.1. Major Findings and Key Outcomes

e  Existing screening methods for AF often miss cases due to the condition's paroxysmal and
asymptomatic nature. This under-detection can lead to serious consequences such as stroke and
premature death. The findings of this study highlight the potential of deep learning-based edge
Al models in the early detection of AF during normal SR using standard 10-second 12-lead ECGs.

e The inclusion and exclusion criteria for data collection, such as age over 40 years old, the
presence of normal SR, and exclusion of the ECGs included in a defined arrhythmia exclusion
list, aimed to capture a representative sample of patients who may have undetected AF in the
past 2 years but are not currently experiencing symptomatic episodes.

e  The well-balanced data collection, with each patient contributing an equal number of ECG data,
specifically one ECG data per patient for testing, additional measures of bias minimization in
the two groups, and the rigorous labeling process conducted by trained physicians under
cardiologist supervision, ensured the reliability of the datasets for model training, testing, and
accurate performance evaluation.

e  The proposed method involved converting the averaged waveform from each lead of a standard
10-second, 12-lead ECGs into a binary image and then composing them. This approach
facilitated the training of a lightweight CNN model for AF-risk detection during SR.

e  The performance metrics of the deployed model, including sensitivity, specificity, precision,
overall accuracy, and AUC, demonstrate its effectiveness and generalization capability in
detecting AF-risk during SR in both internal and external testing datasets.

e  The model maintains comparable performance and improves its suitability for deployment on
resource-constrained devices, thereby expanding its potential impact to a wide range of
healthcare settings. Its successful deployment enables real-time AF-risk detection during SR in
clinical settings where immediate intervention is crucial.

4.2. AUC and Methods Comparison

The estimated AUC for the fitted model in internal and external testing was 0.82 (95% CI: 0.77-
0.88) and 0.80 (95% CI: 0.76-0.84), respectively. These values outperform those of other medical
screening tests, such as B-type natriuretic peptide (BNP) for heart failure and cardiovascular disease
diagnosis (AUC: 0.60-0.70) [12], Papanicolaou smear for cervical cancer screening (AUC: 0.70) [13],
and the CHA2DS2-V ASc score for stroke risk assessment (AUC: 0.57-0.72) [14].
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Several studies have been reported for AF-risk detection during SR ECGs in the recent 5 years.

The difference between this study and others are summarized in Table 4.

Table 4. Method and performance comparison between this study and the other studies.

Items

The Other Studies

This Study

Age of patients

18 years or older [3,5,6]

40 years or older

Training and testing dataset

Imbalanced [3,5]

Well-balanced

Testing data

Multi-ECGs per patient [3,5,6]

one ECG data per patient

Bias minimization

unreported [3,5,6]

Done for external testing

Time-series ECGs

Binary ECG images

Model input type with multiple leads (8 or 12), with 12-lead
each lasting 8 or 10 seconds [3,5,6] averaged waveforms
Al model Resnet [3,6], RNN [6], LSTM [5] Standard CNN
AUC from internal testing 0.87 [3], 0.79 [5,6] 0.82
AUC from external testing 0.75 [5] 0.80
Type of product Algorithm [3,5,6] Edge Al deployed

The achieved sensitivity and specificity of the external testing were balanced at the optimized
cutoff of 0.467. This threshold can be adjusted depending on clinical needs. A low cutoff with high
sensitivity may be useful in excluding healthy individuals who do not require further inspection,
while a high cutoff with high specificity may be beneficial for identifying patients with a high pretest
probability for intensive monitoring.

By employing the R wave-triggered signal averaging method to generate averaged waveforms
from SR ECGs and then converting them into binary images, a lightweight CNN model was trained.
This approach proved to be efficient and feasible for AF-risk detection on resource-constrained ECG
devices, with an approximate time of 2 seconds after automatic 12-lead ECGs interpretation.

4.3. Limitations and Future Directions

Several limitations were identified in this study. First, all ECG data was retrospectively collected
from general or university affiliated hospitals, necessitating further evaluation in a broader,
ostensibly healthy population. Second, although a total of 1502 AF-labeled ECGs, with one data per
patient, were collected, which is more than some other studies, the relatively moderate scale of the
ECG dataset for Al model training may limit model performance and robustness. This warrants
further analysis with additional data. Finally, being a multi-center retrospective study, prospective,
large-scale studies are required to validate the model’s performance in the future.

5. Conclusions

The proposed method, which involved extracting averaged waveforms from standard 10-
second, 12-lead SR ECGs and converting them into binary images, facilitated the training of a
lightweight CNN model for AF-risk detection during SR. The achieved performance, as evaluated
from internal and external datasets, demonstrated the effectiveness and generalization capability of
the trained model in detecting undiagnosed AF.

Moreover, the successful deployment of the app package on edge ECG devices enables the
practical application of undiagnosed AF detection in real-time during SR. This development marks a
significant contribution to the advancement of Al in healthcare and holds important implications for
early AF screening and the management of patients with unexplained stroke.
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Moving forward, further improvements can be explored through the utilization of large-scale
data. Continual refinement and validation of the model's performance will be essential for its
continued effectiveness and reliability in clinical practice.

Overall, the deployment of the model on edge AI ECG devices represents a significant step
towards enhancing healthcare outcomes and addressing the challenges associated with undiagnosed
AF, ultimately improving patient care and management strategies.

Supplementary Materials: The following supporting information can be downloaded at the website of this
paper posted on Preprints.org.The arrhythmia exclusion list.
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