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Abstract: The expression of polysialic acid (polySia) on the neuronal cell adhesion molecule (NCAM), is called 

NCAM-polysialylation, which is strongly related to the migration and invasion of tumor cells and with 

aggressive in the clinic. Thus, it’s important to select a proper drug to block tumor cell migration for clinic 

treatment. In this study, we proposed that lactoferrin (LFcinB11) may be a more ideal candidate for inhibition 

of NCAM polysialylation comparing with CMP and low molecular weight heparin (LMWH), which were 

determined based on our NMR studies. On the other hand, because neutrophil extracellular traps (NET) is the 

most dramatic stage in cell death process, and NETs’ release are related to pathogenesis of autoimmune and 

inflammatory disorders, with proposed involvement in glomerulonephritis, chronic lung disease, sepsis and 

vascular disorders. In this study, the molecular mechanism of inhibition of NETs’ release using LFcinB11 as 

inhibitor was also determined. Based on these results, LFcinB11 is proposed to be bifunctional inhibitor for 

inhibiting both NCAM polysialylation and NETs releases. 

Keywords: polysialic acid; polysialyltransferase; polysialyltransferase domain; chemical shift 

perturbation; NMR spectroscopy; lactoferrin 

 

1. Introduction 

Polysialic acid (polySia) expression on neuronal cell adhesion molecule (NCAM) [1–7] is called 

NCAM polysialylation, which is related to cancer cell migration through the interactions between 

polysialyltransferases (polySTs) and CMP-Sia, and polyST and polysialic acid (polySia) [8,9]. More 

specifically, these interactions are actually the direct bindings of Polysialyltransferase Domain 

(PSTD) to CMP-Sia, and PSTD to polySia [10–15]. PSTD is a polybasic motif of 32 amino acids in two 

polySTs, ST8SiaIV and ST8SiaII [16].  

Inhibition of posttranslational modifications (PTM) is related to a number of diseases such as 

cancer, nervous and cardiovascular system diseases. One of the latest advances in PTM research is 

inhibition of polysialylation of neuronal cell adhesion molecule (NCAM) [17,18], which is strongly 

related to the migration and invasion of tumor cells and with aggressive, metastatic disease and poor 

clinical prognosis in the clinic due to the formation of polysialic acid (poly-Sia) on the surface of 

NCAM [19–22].  

It has been known that NCAM-polySia expression on cancer cells is catalyzed by two 

polysialyltransferases (polySTs), ST8SiaIV and ST8SiaII, and specifically two polybasic motifs, 

Polybasic Region (PBR) and Polysialyltransferase Domain (PSTD) within each polyST, have been 
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found to be critically important for polyST activity based on recent mutation and molecular modeling 

analyses [16,23]. Thus, the intermolecular interactions of PBR-NCAM, PSTD-polySia and PSTD-

(CMP-sialic acid) have been suggested during NCAM polysialylation and tested by more recent 

NMR studies [14]. Furthermore, a modulation model of NCAM-polysialylation and cell migration 

has been proposed by incorporating the intramolecular interaction of PBR-PSTD into above 

intermolecular interaction [14]. This model has been further supported using Chou’s wenxiang 

diagram method [24–28]. 

Two inhibitors of NCAM polysialylation, Low-molecular-weight heparin (LMWH) and cytidine 

monophosphate (CMP), have been proposed as drug research and help to development related to the 

tumor-targeted polysialyltranseferases based on above modulation model of NCAM-polysialylation. 

The previous in vitro study showed that heparin LMWH is an efficient inhibitor due to its 

stronger binding to the PSTD [16], and was further supported using the recent NMR studies [23].  

However, the use of heparin should be carefully, because the previous reports indicated that 

intracerebral hemorrhage of patients were related to heparin intake [29]. 

Another inhibitor, cytidine monophosphate (CMP) has been also verified that the polysialylation 

could be partially inhibited when CMP-Sia and polySia co-exist in solution by the recent NMR 

studies. CMP-Sia may play a role in reducing the gathering extent of polySia chains on the PSTD, and 

may benefit for the inhibition of polysialylation [30]. However, CMP could not inhibit the PSTD-

polySia interaction [30]. 

Lactoferrin (LF) is an iron-binding glycoprotein composed of 49 amino acids, and has 

antimicrobial, antiviral, antitumor, and immunological activity [31]. In the more recent studies, a 11-

residual peptide (RRWQWRMKKLG) from the N-terminus [32] of LF, was designed as (LFcinB11), 

which has also similar antimicrobial activities in bovine lactoferricin (BLFC) [33,34].     

In this study, our interest is to determine whether can LFcinB11 also inhibit NCAM 

polysialylation? If so, what its minimum concentration to ensure its inhibitory effect on the 

polysialylation?  

In addition, the previous study has proposed that the release of neutrophil extracellular traps 

(NET) could be inhibited through the interaction between polySia and LF, using a native gel 

electrophoresis application using in vitro experiments [31–33]. In the current study, molecular 

mechanism of this interaction is determined based on our NMR studies. Thus, LFcinB11 may play a 

bifunctional role in inhibition of formation of NETs and NCAM polysialylation.  

2. Results 

2.1. CD Data 

As shown in Figure 1, our CD spectra display that the α-helical content of the PSTD contains 

23.0% in the absence of any ligands. The helical contents were decreased to 16.4% after adding the 

mixture of 40uM (CMP-Sia) and 4uM polySia, and was further decreased to 14.8% after added 

LFcinB11. These results suggested the helices in the PSTD were unwound due to the addition of the 

mixture of CMP-Sia and polySia, and further unwinding after adding LFcinB11. The decreases of 

helical contents in the PSTD indicate its conformational change and verified the PSTD not only 

interact with the mixture of CMP-Sia and polySia as the previous study [10–14], but also suggest an 

interaction between the PSTD and LFcinB11. However, the difference of 16.4% and 14.8% is only 

1.6%. This means that the helical structure of the PSTD is basically stable after LFcinB11 was added 

to the sample. A possible explanation is that there is an interaction between LFcinB11 and polySia. 

Because This interaction may decrease the helical unwinding extent in the PSTD.   
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Figure 1. The CD spectra of the PSTD in the absence (red), and the presence of the mixture of CMP-

Sia and polySia (green), and the mixture of CMP-Sia, polySia and LFcinB11 (blue). The helical contents 

of these three CD spectra of the PSTD are 23%, 16.4%, and 14.8%, respectively. 

2.2. NMR Results (a) 

In order to verify the interaction between the PSTD and LFcinB11, 2D-HSQC experiments of the 

mixtures of the LFcinB11 with different concentration and the PSTD were carried out. In addition, 

the PSTD-LFcinB11 interaction was also tested. 

2.2.1. The Interaction between the PSTD and 20 uM LFcinB11 

In this study, the overlaid HSQC spectra of the PSTD for the PSTD-(20 uM LFcinB11) interaction, 

showed that the significant changes in chemical shift are found in 8 residues, K246, K250, V251, R252, 

T253, S257, V273 and I275 (Table 1 & Figure 2A), in which most residues are located on the binding 

region of CMP-Sia (K246-L258) (Table 2) except from two residues V273 and I275 (Figure 2A). In 

addition, the CSP values in this range (K246-L258) for the PSTD-20uM LFcinB11 interaction are less 

than that for the PSTD-(CMP-Sia) interaction (Figure 2). These results indicate that 20uM LFcin11 

could not inhibit the interaction between the PSTD-(CMP-Sia). Similarly, the CSPs values in the 

polySia binding region of the PSTD (A263-N271) are also smaller that for the PSTD-polySia 

interaction (Figure 3). 
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Figure 2. The overlaid 1H-15N HSQC spectra of the 2mM PSTD in the absence and the presence of 

20uM LFcinB11 (A), and 40uM LFcinB11 (B), and 60uM LFcinB11 (C) and 80uM LFcinB11, 

respectively. 
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(A) 

        

(B) 

Figure 3. Chemical shift perturbations (CSPs) of the PSTD when the PSTD interacted with 20uM 

LFcinB11 (blue), 40uM LFcinB11 (orange), 60uM LFcinB11 (gray), and 1mM CMP-Sia (red), 

respectively (A); Chemical shift perturbations (CSPs) of the PSTD when the PSTD interacted with 

20uM LFcinB11(blue), 40uM LFcinB11 (black), 60uM LFcinB11 (gray), 80uM LFcinB11 (orange), and 

0.1mM polySia (red), respectively (B). 

Table 1. The effect of different lactoferrin concentrations (20uM, 40uM, 60uM and 80uM) on chemical 

shift of the residues for the PSTD-LFcinB11 interaction based on the data from Figures 2 and 3. 

LFcinB11 concentration 

interacted with the 

PSTD 

Residues in the PSTD that do not 

change in chemical shift 

Residues in the PSTD that 

changed in chemical shift 

20 uM 

17 residues 

(K248,A254,Y255,L258,R259,V260,I261

,H262,A263,V264,R265,Y267,W268,L2

69,K272,K276,S279) 

8 residues 

(K246,K250,V251,R252,T253,S257,V

273,I275) 

40 uM 
6 residues 

(R259,V260,I261,H262,A263,K272) 

19 residues 

(K246,K248,K250,V251,R252,T253,A

254,Y255,S257,L258,V264,R265,Y267

,W268,L269,V273,I275,R277,S279) 

60 uM 3 residues (R259,V260,A263) 22 residues 

80 uM 0 residues 25 residues 
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Table 2. The binding regions of CMP-Sia and polySia for the different ligands on the PSTD. The 

maximum CSPs in each binding region are compared with the maximum CSPs for the PSTD-(CMP-

Sia) interaction and for the PSTD-polySia interaction, respectively. The all CSPs were obtained based 

on current and the previous 2D 1H-15N HSQC experiments [23,30]. 

Ligands binding to the PSTD 
The maximum CSPs in CMP-

Sia binding region (K246-L258) 

The maximum CSPs in polySia 

binding region (A263-R271) 

CMP-Sia 0.063 0.030 

polySia 0.031 0.045 

Heparin LMWH (80 uM) 0.087 0.072 

CMP (1mM) 0.087 0.046 

LFcinB11 (20 uM) 0.047 0.038 

LFcinB11 (40 uM) 0.081 0.061 

LFcinB11 (60 uM) 0.124 0.092 

LFcinB11 (80 uM) 0.151 0.109 

2.2.2. The Interaction between the PSTD and 40 uM LFcinB11 

When LFcinB11 concentration was increased to 40 uM, the significant changes in chemical shift 

are found in 19 residues, K246, K248, K250, V251, R252, T253, A254, Y255, S257, L258, V264, R265, 

Y267, W268, L269, V273, I275, R277 and S279, and there are only 6 residues (R259, V260, I261, H262, 

A263 and K272) no change in chemical shift (Table 1 & Figure 2b). The CSPs for PSTD-40uM 

LFcinB11interaction are larger than that for the PSTD-(CMP-Sia) and for the PSTD-20uM LFcinB11 

interactions (Figure 3a) in the CMP-Sia binding region, indicating the PSTD-(CMP-Sia) interaction 

could be inhibited by 40uM LFcin. In addition, most CSPs for PSTD-40uM LFcin interaction and the 

PSTD-polySia interaction are very closed in the polySia binding region (Figure 3b). However, the 

CSPs for the former are larger than that for the later at residue L269 and N271 (Figure 3b). Thus 

suggest that the PSTD-polySia interaction could be inhibited when LFcinB11 concentration is more 

than 40uM. 

2.2.3. The Interaction between the PSTD and 60 uM LFcinB11 

LFcin11 concentration was increased to 60 uM, the significant changes in chemical shift are 

found in most residues according to the overlaid HSQC spectra (Figure 2C), and there are only 3 

residues (R259, V260, and A263) no change in chemical shift (Table 1 & Figure 2C). The CSPs for 

PSTD-60uM LFcinB11 interaction are larger than that for the PSTD-(CMP-Sia) interaction (Figure 3a) 

in the CMP-Sia binding region, indicating the PSTD-(CMP-Sia) interaction could be inhibited by 

60uM LFcinB11. In addition, the CSPs for PSTD-60uM LFcinB11 interaction are also larger than that 

for the PSTD-polySia interaction in the polySia binding region (Figure 3b), and thus further suggest 

that the PSTD-polySia interaction could be inhibited by 60uM LFcinB11. 

2.2.4. The Interaction between the PSTD and 80 uM LFcinB11 

When LFcinB11 concentration was increased to 80 uM, almost all residues of the PSTD have 

changed in chemical shift (Figure 2D), and the CSP of each residue is larger than that for the 

interaction between the PSTD and 60 uM LFcin. In the CMP-Sia binding region for the PSTD-(CMP-

Sia) interaction, the maximum CSP is 0.151, which is larger than that for the PSTD-60uM LF, and in 

the polySia binding region, the maximum CSP is 0.109, which is also much larger than that for the 

PSTD-60uM LFcinB11 (Table 2). These results indicate that the CSPs in both CMP-Sia and polySia 

binding regions of the PSTD are increased with LF’s concentration. 

2.2.5. The Interaction between LFcinB11 and polySia 

In order to determine the interaction between polySia and LFcinB11, the overlaid 2D 1H-15N 

HSQC spectra were carried out at our NMR spectrometer. As shown in Figure 4, there is no any 
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chemical shift is detected except residue 11G after polySia and LFcinB11 were mixed. However, the 

peak intensities of almost all residues were significantly decreased, thus suggesting the interaction 

between polySia and LFcinB11 through the formation of LFcinB11-polySia aggregates. 

 

Figure 4. The overlaid 1H-15N HSQC spectra of 50 uM LFcin11 in the absence (black) and the presence 

of 50 uM polySia (red), respectively. 

3. Discussion 

So far both 3D X-ray and NMR structures of the polySTs have not yet been reported, due to the 

existence of many hydrophobic residues in the polySTs, which are in the membrane environment 

[13,14]. However, the 3-D solution structure of the PSTD peptide, an active site in the ST8Sia IV, has 

been obtained based on our NMR studies [10–14]. Thus, a hypothesis has been proposed: the 

interaction between the PSTD and the ligands such as CMP-Sia, polySia or any possible inhibitors 

may correspond to the interactions between the polyST and these ligands. This is an efficient research 

strategy and methodology for studying biological problems using biophysical and NMR structural 

biology. The above hypothesis has been successfully tested by the recent NMR studies [23–25]. 

Above CD spectra qualitatively demonstrate the possible interaction between the PSTD and 

LfcinB11. The more details of the interactions between the PSTD and Lfcin11 were provided by our 

NMR experimental results 

The polysialylation of trimer of α-2,8-linked sialic acid (triSia) was inhibited by cytidine 

monophosphate (CMP) in the presence of ST8SiaII and CMP-Neu5Ac (CMP-Sia) based on in vitro 

experiments [30,35]. The more recent studies verified that the PSTD-(CMP-Sia) could be inhibited by 

CMP, but the PSTD-polySia binding could not be inhibited by CMP even in mixture status of CMP-

Sia, polySia and the PSTD based on our NMR data [30]. 

There are two binding regions for CMP-Sia in the PSTD, one is in the residue range K246-L258, 

and other one in the range Y267-R277 [30]. The former is also the binding region of CMP, and the 

latter is covered in CMP-PSTD binding region (V264-K276) [30]. In this study, the CSP values for the 
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PSTD-LFcinB11interactions are larger than that for the PSTD-CMP and the PSTD-polySia interactions 

when LFcinB11 concentration at least 40 uM (Figure 5). These results indicate that LFcinB11 is more 

powerful in inhibiting both the PSTD-(CMP-Sia) and the PSTD-polySia interactions than CMP.  

     
(A) 

 
(B) 

Figure 5. The Chemical shift perturbations (CSPs) of the PSTD when it interacted with 1mM CMP-

Sia, 80 uM CMP, and 40 uM and 60 uM LFcinB11, respectively (A); and the CSPs of the PSTD when it 

interacted with 0.1 mM PSA, 1mM CMP, and 40 uM and 60 uM LFcinB11, respectively (B). 

The previous NMR studies indicated that heparin LMWH is an effective inhibitor of NCAM 

polysialylation. Twelve residues, N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, 

and K276 in the PSTD were discovered to be the binding sites of the LMWH, and they were mainly 

located on the long α-helix of the PSTD, and the short 3-residue loop of the C-terminal PSTD [23]. 

The range of LNWH binding to the PSTD is almost same with that of the LF (Figure 6). As shown in 

Figure 6a and Table 2, the CSPs of the PSTD for the PSTD-LMWH (80uM) interaction are larger than 

that for the PSTD-(CMP-Sia) interaction, indicated the PSTD-(CMP-Sia) binding could be inhibited 

by 80 uM LMWH. However, only take 40 uM LF, both the PSTD-(CMP-Sia) interaction and the PSTD-

polySia interaction could be inhibited (Figure 6b). In addition, as an inhibitor LFcinB11 may be more 

safety than LMWH. Because the intracerebral hemorrhage of patients was related to heparin intake 

[29].  
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(A) 

 
(B) 

Figure 6. The Chemical shift perturbations (CSPs) of the PSTD when it interacted with 1mM CMP-

Sia, 80 uM heparin LMWH, and 40 uM and 60 uM LFcinB11, respectively (A); and the CSPs of the 

PSTD when it interacted with 0.1 mM PSA, 80 uM hepain LWH, and 40 uM and 60 uM LFcinB11, 

respectively (B). 

LFcinB11not only can interact with the PSTD to inhibit the interactions of the PSTD-(CMP-Sia) 

and the PSTD-polySia, but also can directly interact with polySia (Figure 4). This NMR result is 

consistent with the results using in vitro experiments [32–34], and proposed that the major 

contribution of the interaction between LF and polySia is from the N-ternminal residues of LF, 

particularly in LFcinB11 domain. 

4. Materials and Methods 

4.1. Material Sources 

The PSTD (246K-277R) should be a 32 amino acid sequence peptide from ST8Sia IV molecule. 

However, in order to obtain more accurate 3D structural information by NMR spectroscopy, one 

amino acid (245L) and two amino acids (278P and 279S) from ST8Sia IV sequence were added into 

the N- and C- terminals of PSTD, respectively [12–14,25,30]. Thus, a 35 amino acid sequence peptide 

sample containing PSTD was synthesized as follows: 
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245LKNKLKVRTAYPSLRLIHAVRGYWLTNKVPIKRPS279”. In which, the PSTD sequence is labelled 

by underline. This intact peptide sample was chemically synthesized by automated solid-phase 

synthesis using the F-MOC-protection strategy and purified by HPLC (GenScript, NanJing, China). 

Its molecular weight was determined to be 4117.95 and its purity established to be 99.36%.  

LFcinB11 peptide was purchased from BACHEM, amino sequence RRWQWRMKKLG, and 

relative molecular mass 1544.8.  PolySia were purchased from Santa Cruz Biotechnology.  

4.2. Circular Dichroism (CD) Spectroscopy 

The concentrations of the 35 amino acid-PSTD peptide and LFcinB11 in 20 mM phosphate buffer 

(pH 6.7) with 25% tetrafluoroethylene (TFE) were 8.0 uM and 400 uM, respectively. The measured 

and recorded methods of CD spectra are the same as the previous articles [23,30]. 

4.3. NMR Sample Preparation 

The 35 amino acid peptide containing the PSTD was prepared as described above in a 20 mM 

phosphate buffer containing 25% TFE. Chemical shifts were referenced with respect to 2-dimethyl-2-

silapentane-5-sulfonic acid (DSS) used as the internal standard. 

For both the 1-D and 2-D NMR experiments, the concentration of the PSTD peptide in the 

absence or the presence of LFcinB11 was 2.0 mM. The concentrations of LFcinB11 in the presence of 

the PSTD were all 20, 40, 60, and 80 uM, respectively. For 2-D NMR experiments of the polySia-

LBcinB11 interaction, the concentration of polySia and LFcinB11 are all 50 uM. 

All NMR samples were dissolved in 25%TFE (v/v), 10% D2O (v/v), and 65% (v/v) 20 mM 

phosphate buffer (pH 6.7). Following this, 2-Dimethyl-2-silapentane-5-sulfonic acid (DSS) was added 

to all samples to serve as a reference standard.  

4.4. NMR Spectroscopic Methods 

NMR spectroscopy is a powerful tool for studying biomolecule-protein (DNA) or protein-ligand 

interactions [36–45]. All NMR spectra were recorded at 298 K using an Agilent DD2 800 MHz 

spectrometer equipped with a cold-probe in the NMR laboratory at the Guangxi Academy of 

Sciences. Water resonance was suppressed using pre-saturation. NOESY mixing times were set at 300 

msec while the TOCSY experiments were recorded with mixing times of 80 msec [30,46]. All chemical 

shifts were referenced to the internal DSS signal set at 0.00 ppm for proton, and indirectly for carbon 

and nitrogen [23,30]. Data were typically apodized with a shifted sine bell window function and zero-

filled to double the data points in F1, prior to being Fourier transformed. NMRPipe [23,30]. CcpNmr 

(www.ccpn.ac.uk/v2-software/analysis) was used for processing the data and spectral analysis. Spin 

system identification and sequential assignment of individual resonances were carried out using a 

combination of TOCSY and NOESY spectra, as previously described [23,30], and coupled with an 

analysis of 1H-15N and 1H-13C HSQC for overlapping resonances. In order to identify and 

characterize the specificity of the PSTD-ligand binding, the chemical shift perturbation (CSP) of each 

amino acid in the PSTD was calculated using the formula:  

CSP = [(D2
NH + (DN/5)2)/2]1/2  (1) 

Where, DN and DNH represent the changes in 15N and 1H chemical shifts, respectively, upon 

ligand binding [46]. 

5. Conclusion 

Our results indicate that LFcin11 is a more powerful inhibitor than LMWF and CMP, and can be 

safely used. Furthermore, the bifunctional effects of LFcinB11are proposed, i.e. LFcinB11 not only can 

inhibit the NCAM polysialylation through the PSTD-LFcinB11 interaction, but also inhibit the 

formation of neutrophil extracellular traps (NETs), a network of extracellular strings of DNA that 

bind pathogenic microbes [46–56]. Because the NETs role in promoting tumor metastasis formation 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 26 March 2024                   doi:10.20944/preprints202403.1534.v1



 11 

 

could be blocked by addition of LFcin B11 [57–62], a binfunctional effect of LFcinB11 has been 

proposed in this study. In the future studies, we will further study the molecular mechanism of the 

interaction between polySia and LFcinB11 to understand how does LFcin block tumor metastasis 

formation related to the formation of the NETs. 
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Abbreviations 

polySia polysialic acid 

Sia mono-sialic acid 

CMP-Sia cytidine monophosphate-sialic acid 

NCAMs neural cell adhesion molecules 

polySTs polysialyltransferases (ST8Sia II (STX) & ST8Sia IV (PST) 

PSTD 

LMWH 

CMP  

polysialyltransferase domain 

Low molecular weight heparin 

cytidine monophosphate 
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chemical shift perturbation 
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