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Abstract: This article presents a detailed examination of the methodology and modeling tools utilized to analyze

gas flow in pipelines, rooted in the fundamental principles of gas dynamics. The methodology integrates

numerical simulations with modern neural network techniques, particularly focusing on the Physics-Informed

Neural Network (PINN) method. This innovative approach combines artificial neural networks (ANNs) with

physical equations, offering a more efficient and accurate way to model various complex processes and phenomena.

The proposed mathematical model, based on the Euler equation, has been meticulously implemented using the

Python language. Verification with analytical solutions ensures the accuracy and reliability of the computations.

In the research, a comprehensive comparative analysis was conducted between results obtained using the PINN

method and those from conventional Computational Fluid Dynamics (CFD) approaches. The analysis highlighted

the advantages of the PINN method, which produced smoother pressure and velocity fluctuation profiles while

reducing computation time, demonstrating its potential as a transformative modeling tool. The data derived from

this study are of paramount importance for ensuring ongoing energy supply reliability and can also be used to

create predictive models related to gas behavior in pipelines. The application of modeling techniques for gas

flow simulation has the potential to revolutionize the integrity of our energy infrastructure and utilization of gas

resources. However, it is crucial to emphasize that the effectiveness of such models relies on continuous monitoring

and frequent updates to ensure alignment with real-world conditions. This research not only contributes to a

deeper understanding of compressible gas flows but also underscores the crucial role of advanced modeling

methodologies in the sustainable management of gas resources for both current and future generations.

Keywords: Physics-Informed Neural Networks; artificial neural networks; CFD; gas flow; Euler equation

1. Introduction

The efficient transportation and distribution of natural gas play a pivotal role in the economic
development and energy security of nations worldwide [1]. In Kazakhstan, a country abundant in
oil and gas resources, the modeling of gas flow in tubes holds significant importance across various
sectors. Understanding and accurately predicting the behavior of gas within pipelines and distribution
networks are paramount for optimizing infrastructure, ensuring energy supply reliability, and pro-
moting environmental sustainability [2,3]. Thus modeling gas flow in tubes holds critical significance
for Kazakhstan, impacting its oil and gas industry, energy sector development, infrastructure plan-
ning, environmental stewardship, research and innovation endeavors, and safety assurance. Through
advanced machine learning and computational fluid dynamics simulations, country can optimize its
energy resources, promote sustainable development, and bolster resilience in its energy infrastructure.

The comprehensive modeling of gas flow in tubes relies fundamentally on solving partial dif-
ferential equations (PDEs) governing fluid dynamics. PDEs, such as the Euler equations, form the
mathematical framework for describing the conservation laws of mass, momentum, and energy in
fluid flow. Solving these equations numerically using advanced computational techniques enables
the accurate prediction of gas behavior, including shock wave propagation, turbulence effects, and
flow characteristics within pipelines and tubes. In recent years, significant progress has been made
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in computational fluid dynamics (CFD) [4,5] in solving numerically PDEs, particularly in solving
Navier-Stokes equations [6–8], which has revolutionized ability to simulate and analyze complex
fluid flow phenomena using techniques like Finite Difference (FD) [9–11] and Finite Volume (FV)
methods [12,13]. Event though models such as Navier-Stokes equations [14–18] are able to describe
the underlying problem, at this point modeling still requires a large amount of computation cost to
achieve high precision.

The rapid growth of data, the parallel computing emergence, the advent of graphics processors
(GPUs) together with advanced theoretical results in numerical analysis has resulted in the explosive
growth of machine learning (ML) [19,20], particularly in the area of physical problems and math-
ematical physics. Modern models such as Physics-Informed Neural Networks (PINNs) [21–25] is
a type of artificial neural networks that can dramatically reduce the computational complexity of
modeling physical processes. The further need for development of potential of these models is still
relevant and they are still not a uniform method of the CFD, but in the field of forward problems it
has the higher precision and illustrates promising future. In recent advancements, PINNs have been
employed for solving compressible flow governed by the Navier-Stokes equations [26,27], offering
efficient simulations. However, despite these advancements, achieving optimal results in compressible
flow remains difficult process and still an art.

This research considers a transient gas flow in pipelines using Physics-Informed Neural Networks,
with manual selection of the necessary hyperparameters using a weighted loss function [28]. In
addition to that, evaluation of the PINN model performance, the following problems will be solved for
demonstrating the effectiveness of the method: Burgers Equation [29,30], Viscous Burgers Equation
[30,31] and Euler’s Equations of gas dynamics [32,33], where the main focus will be on the compressible
flow problem.

The article is organized as follows. Section 2 introduces the physical problem in the general
form of the PDE with initial and boundary conditions. Next Section 3 illustrates the numerical
continuous PINN model with the forward propagation procedure for the predictions of the true
solutions, multi-objective loss for the optimization and architecture of the model. In addition to that,
the discrete CFD model, which applied Runge-Kutta 4 step method with general form and space
derivatives discretization. In Section 4 one-dimensional problems are solved with short discussions of
it’s mathematical form: PDE, initial and boundary conditions and physical descriptions with graphical
comparisons to analytical solutions and with L norm error measures.

2. Physical Problem

The physical problem involves gas flow in the pipe, which is described by system of Euler’s
equations. Equations govern the motion of adiabatic, inviscid, compressible fluids, providing a
powerful model for analyzing fluid dynamics in many practical scenarios. In order to capture speed of
the rarefaction wave, the discontinuity and shock contacts, the problem is considered in a chamber
that is is separated by regions with high pressure and low pressure at interface point x = 0.5, as
shown in Figure 1. The physical process is observed for the time domain t ∈ [0, 0.1]. The space domain
is defined as x ∈ [0, 1].

High Pressure Low Pressure

Interface

High Pressure Low Pressure

0 0.5 1

Figure 1. Illustration of the pipe physical domain

Euler’s system of equations represents conservation of mass, momentum, and energy. The
conservation of mass in the system is described by continuity equation. It determines how changes in
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density affect fluid flow and ensures that the total mass within a fluid volume remains constant over
time:

∂ρ

∂t
+

∂( ρu )

∂x
= 0, (1)

where the density of gas ρ
[

kg · m−3 ] changes with respect to time and space as influenced by the
flow velocity component u

[
m · s−1 ].

The conservation of momentum is based on Newton’s laws of motion:

∂( ρu )

∂t
+

∂( ρu2 + p )
∂x

= 0. (2)

The momentum equation describing how the velocity of the fluid changes in response to convection
and pressure p

[
kg · m−1 · s−2 ]. It influences the formation of shocks and determines the acceleration

of the gas flow.
The general form of the energy equation is derived from principles of conservation of energy,

which is expresses as:
∂E
∂t

+
∂[ u(E + p) ]

∂x
= 0. (3)

The energy equation describes the conservation of energy in fluid flow, it influences the system by
determining how energy is transferred through advection and how work done by pressure forces,
where E

[
J · m−3 ] is the total energy and defines as,

E =
p

γ − 1
+

1
2

ρu2, (4)

with specific heat ratio γ
[
−

]
equal to 1.4.

Taking into account shock phenomena generation, next initial conditions are used:

( ρ, u, p )|t=0 =

{
( 1, 0, 1 ) , 0 ≤ x ≤ 0.5 ,
( 0.125, 0, 0.1 ) , 0.5 ≤ x ≤ 1 .

(5)

The Dirichlet boundary conditions is applied as boundary conditions, meaning that the quantities
take on the values prescribed by the initial conditions at both boundaries, which ensures that the flow
at the boundaries remains consistent with the initial conditions.

The transient gas flow in pipelines can be expressed in general form as:

∂U
∂t

+ N [U; λ ] = 0, x ∈ Ω, t ∈ [ 0, t f ] , (6)

U( x, 0 ) = I( x ), x ∈ Ω , (7)

U( x, t ) = B( t ), x ∈ ∂Ω, t ∈ [ 0, t f ]. (8)

The solution is denoted by Û( x, t ) ∈ R with spatial coordinate x ∈ R, time t and parameter of the PDE
λ, where Ω is the computational domain and ∂Ω is the boundary. Here, N (·) is a linear or nonlinear
differential operator, initial condition operator I(·) and boundary condition operator B(·). Note that
this form of reprezenation of parametrized PDE can be used for other problems as well.

3. Methodology

3.1. Continuous PINN Time Model

The continuous PINN time model is used as framework for solving PDE, the left-hand side of the
equation is defined as,

f ( x, t ) =
∂U
∂t

+ N [U; λ ], (9)
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the fully-connected deep L neural network with inputs din and outputs dout is defined as,

G : Rdin → Rdout , (10)

the forward propagation procedure will be used to approximate solution Û( x, t ) as follows,

G [l] = ( x, t ) ∈ Rdin , l = 0

G [l] = σ(W [l]G [l−1] + b[l] ) ∈ Rnl , 1 ≤ l ≤ L − 1,

G [l] = W [l]G [l−1] + b[l] ∈ Rdout , l = L,

(11)

Here, activation value G [l] denotes the output of the lth layer with weights matrix W [l] ∈ Rnl×nl−1 and
bias vector b[l] ∈ Rnl and nonlinear activation function σ(·), where nl denotes the number of neurons
in lth layer. For the last layer L linear activation function with dout outputs is used to approximate
solution, as Û( x, t ) ≈ U( x, t ) = W [L]G [L−1] + b[L].

The construction that converts PDE into an optimization problem is combined multi-objective
weighted squared loss L,

L = ( 1 − α )(LI + LB) + αLF , 0 ≤ α ≤ 1, (12)

where individual loss term is defined as,

LI =
1

NI

NI

∑
i=1

( I( xi
I ) − U( xi

I , ti
I ) )

2, (13)

LB =
1

NB

NB

∑
i=1

(B( ti
B ) − U( xi

B, ti
B ) )2, (14)

LF =
1

NF

NF

∑
i=1

f ( xi
F, ti

F )
2, (15)

weights and biases denoted by θ can be trained by minimizing,

θ∗ = arg min
θ

L( θ ), (16)

Here, for train the initial conditions { xi
I , ti

I }
i=NI
i=1 is used as inputs and { I( xi

I ) }
i=NI
i=1 is used as

outputs, for the boundary conditions { xi
B, ti

B }i=NB
i=1 is inputs and { B( ti

B ) }i=NB
i=1 is outputs, for training

the residual only inputs is required { xi
F, ti

F }
i=NF
i=1 , where all data points would be picked at random

either from entire computational domain or some subset without repetitions and NI + NB ≪ NF.
The multi-objective optimization goal is to train both supervised LI , LB and unsupervised LF losses,
where residual loss LF plays role as regularization term that allows model to generalize information
outside of some local region and prevent overfitting by penalization of the physical constraints and α

is balances between loss importances. It can be seen that with higher number of initial and boundary
data physics loss becomes less important α → 0 and vice-versa with less available data physics loss
becomes more important α → 1.

In order to solve optimization problem ADAM optimizer algorithm is used. For the calculations
of the partial derivatives for the LF automatic differentiation (AD) would be applied, which means
that outputs of the neural network u( x, t ) would be directly used to calculate it’s derivatives with
respect to the inputs ( x, t ), as [ ∂u/∂x, ∂u/∂t, ... ].

In Figure 2, there is shown a schematic representation of PINN with key elements (Neural
Network, automatic differentiation AD, Loss) with inputs ( x, t ) and outputs u and v. With AD
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outputs is differentiated with respect to it’s inputs in order to construct LF loss, then outputs is directly
used to compute LI ,LB losses then final loss L is computed.

Neural Network AD

Loss

Figure 2. Physics Informed Neural Network

3.2. Discrete Time Model

The Runge-Kutta (RK4) method for time integration is used as discrete time model CFD, it’s
particularly effective for addressing nonlinear problems. This method is characterized by it’s fourth-
order accuracy in time. Applying RK4 for general form of the case problem:

∂U
∂t

= N (U ). (17)

The Runge-Kutta’s all 4 steps written as:

U(1) = Un +
∆t
2
N n

U(2) = Un +
∆t
2
N (1)

U(3) = Un + ∆tN (2)

Un+1 = Un +
∆t
6
(N n + 2N (1) + 2N (2) + N (3)) (18)

Given the fact that the RK4 scheme only affects time, schemes are needed to approximate the space for
convective and viscous terms in order to achieve second-order accuracy in space. Thus the upwind
scheme is used for the flux terms:

−u
∂ξt

i
∂x

= −uRξR − uLξL
∆x

, (19)

where uR and uL are the average of the nodal point values, and are defined as follows:

uR =
ut

i + ut
i+1

2
, uL =

ut
i + ut

i−1
2

, (20)

functions ξR and ξL depend on the signs of uR and uL, and are defined as follows,

ξR =

{
ξt

i , uR ≥ 0
ξt

i+1, uR < 0
, ξL =

{
ξt

i−1, uL ≥ 0
ξt

i , uL < 0
(21)

This approach, specifically employed for convective terms calculates average values of velocities at the
cell boundaries of the spatial grid around each node point. It uses the directions of these velocities to
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establish which grid node the values of ξ need to be calculated, forming the differences in the flow.
The central difference scheme is used for derivatives not involving non linearity:

∆F(u)t
i

∆x
=

F(u)t
i+1 − F(u)t

i−1
2∆x

, (22)

The central difference scheme provides an approximation of spatial derivatives for the viscous part of
the equations, where F is the flux function.

4. Computational Experiments

First, viscid and inviscid Burgers’ equations are considered as reference solution to verify both
approaches. The computational experiments of the PINN and RK4 models will be compared to it’s
analytical solutions graphically and with L norm measures. Following with results for case study
problem.

The input data for the PINN model, such as, NN setup, number of initial conditions points
NI

[
−

]
, number of boundary conditions points NB

[
−

]
, number of interior points NF

[
−

]
, nonlinear

activation function σ(·), learning rate lr for the ADAM optimizer, value α
[
−

]
, number of iterations

epochs is given in Table 1, where Nx
[
−

]
, Nt

[
−

]
are grid sizes for the space and time domain,

respectively. In adition to that, input data for the CFD model, which is, grid size Nx, CFL
[
−

]
number

are presented in Table 2.

Table 1. Input data for the PINN model

Model NN setup Nx
[
−

]
Nt

[
−

]
NI

[
−

]
NB

[
−

]
NF

[
−

]
σ(·) lr α

[
−

]
Epochs

Burgers [ 3 × 64 ] 128 128 128 256 16384 Tanh 1e-3 0.25 23000

Viscous Burgers [ 3 × 64 ] 128 128 128 256 16384 Tanh 1e-3 0.1 8000

Euler 1D [ 10 × 20 ] 256 256 30 50 13600 Tanh 3e-4 5.3e-4 40000

Table 2. Input data for the CFD model

Model Nx
[
−

]
CFL

[
−

]
Burgers 600 0.25

Viscous Burgers 200 0.25

Euler 1D 1000 0.01

The precision of the proposed models will be measured with the following L norms defined as
follows,

L2 = || û − u ||2, (23)

L∞ = || û − u ||∞, (24)

Lp =
|| û − u ||2

|| û ||2
· 100%, (25)

4.1. Verification

Inviscid Burgers Equation
Despite simplicity of the Burgers equation without viscous part, it plays significant role in physics

due to ability of capturing essential fluid phenomena such as turbulence and wave propagation.
Equation describes the behavior of non-linear waves and shock waves:

∂u
∂t

+ u
∂u
∂x

= 0, x ∈ [ 0, 1 ], t ∈ [ 0, 1 ], (26)
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with the initial condition:
u( x, 0 ) =

1
2πts

sin( 2πx ), x ∈ [ 0, 1 ], (27)

where the time at which a shock forms is indicated by the ts
[
−

]
parameter and set equal to 1. Next

boundary conditions are used:

u( 0, t ) = u( 1, t ) = 0, t ∈ [ 0, 1 ], (28)

Figure 3 illustrates the comparison of the numerical solutions of the inviscid Burgers equation with it’s
analytical solution. The graph highlights the accuracy of both numerical approaches in capturing the
complex behavior of this fluid dynamics problem.

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u
[

]

t = 0.3
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00
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0.10

0.15

u
[

]

t = 0.7
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.15

0.10

0.05

0.00

0.05

0.10

0.15

u
[

]

t = 1.0
u
upinn

urk4

Figure 3. Numerical u solutions and Analytical û solution for the 1-D Burgers Equation at time 0.3, 0.7,
1 from left to right

The error measures for the Burgers equation are given in Table 3, it can be seen that RK4 model is
slightly better than PINN model, but it uses almost five times more space points.

Table 3. Errors for the Burgers model

Measure PINN CFD

L2 0.006194 0.001871

L∞ 0.04491 0.018461

Lp 0.488192 0.067882

Viscous Burgers Equation The viscosity introduces additional mathematical complexity, allowing
for the study of phenomena such as dissipation of kinetic energy, boundary layer separation, and
transition to turbulence. This transition provides valuable insights into the behavior of fluid flows near
solid boundaries and in regions of high velocity gradient. Viscous Burgers equation is described as:

∂u
∂t

+ u
∂u
∂x

= ν
∂2u
∂x2 , x ∈ [ 0, 1 ], t ∈ [ 0, 1 ], (29)

where ν
[
−

]
affects the diffusion term, which characterizes the viscosity in the equation and set equal

to 0.01. Next initial condition are prescribed:

u( x, 0 ) = sin(πx ), x ∈ [ 0, 1 ], (30)

following by boundary conditions:

u( 0, t ) = u( 1, t ) = 0, t ∈ [ 0, 1 ], (31)
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Figure 4 demonstrates comparison between the numerical solutions and the analytical solution for the
Burgers Equation with viscosity. The presence of a viscous term in the equation has a distinct impact
on the solution. Both methods shows high accuracy of capturing shock wave.
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Figure 4. Numerical u solutions and Analytical û solutions for the 1-D Viscous Burgers Equation at
time 0.3, 0.7, 1 from left to right

The error measures for the Viscous Burgers equation are given in Table 4. Similar to previous case
RK4 method shows slightly better results due to higher number of space points.

Table 4. Errors for the Viscous Burgers model

Measure PINN CFD

L2 0.001199 0.000607

L∞ 0.001853 0.000539

Lp 0.025945 0.01046

4.2. Case Study

Since both methods have been verified, a case study is investigated for further analysis of
capturing unique characteristics of gas flow in pipe, which involves contact discontinuity ans shock
wave.

Figure 5 illustrates three distinct plots with comparisons to analytical solutions. The significance
of these plots lies in their ability to demonstrate the accuracy of the numerical methods in capturing
the complex behavior of compressible flows. It can be seen that RK4 model has some oscillations in
velocity u and pressure p profiles, while PINN model is more smooth.

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.2

0.4

0.6

0.8

1.0

[
]

t = 0.1

pinn
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0.0 0.2 0.4 0.6 0.8 1.0
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0.4
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t = 0.1
u
upinn

urk4

0.0 0.2 0.4 0.6 0.8 1.0
x [ ]

0.2

0.4

0.6

0.8

1.0

p[
]

t = 0.1

p
ppinn

prk4

Figure 5. Numerical solutions ( ρ, u, p ) and analytical solutions ( ρ̂, û, p̂ ) for the 1-D Euler’s Equations
of gas dynamics at time 0.1 from left to right.

The error measures for the Euler’s equation for the density ρ, velocity u and pressure p are given
in Tables 5, 6, 7. The RK4 model has better results for the L2, Lp norms, while PINN model has better
result for the L∞, which also can be seen by the plotted profiles, since CFD model has oscillations.
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Table 5. Errors for the density ρ for the Euler model

Measure PINN CFD

L2 0.025784 0.009447

L∞ 0.018977 0.08876

Lp 0.235700 0.043762

Table 6. Errors for the velocity u for the Euler model

Measure PINN CFD

L2 0.052976 0.017599

L∞ 0.163342 0.447174

Lp 0.766744 0.12834

Table 7. Errors for the pressure p for the Euler model

Measure PINN CFD

L2 0.02363 0.006394

L∞ 0.026128 0.121339

Lp 0.220761 0.030278

The results obtained from computational experiments are sufficient for both models in terms
of comparing them with analytical plots and using L norms. The results show that the CFD model
outperforms the PINN model, but it was achieved due to higher number of points for space discretiza-
tion. The CFD model starts to exhibit oscillations for velocity and pressure, while the PINN model
gives a smoother solution, as can be seen from the values of L∞ norms. This effect could be explained
by the PINN nature to integrate physical laws into numerical solution. Thus it creates smooth and
continuous solutions. Although the CFD model gives better computational and optimal results for the
case of one-dimensional problems, as the dimensionality of the problem and the number of equations
increases, the CFD model will require a large grid size and a long computational process and the
obtained solutions may have oscillations, while the PINN model can generalize the information using
a subset of the entire computational domain in a relatively small number of iterations compared to the
CFD model, resulting in a smoother and more optimal solution.

5. Discussion

In the realm of numerical techniques for solving differential equations, both classical CFD and
PINN methods offer unique approaches and advantages. Understanding the comparative strengths
and limitations of these methods is crucial for selecting the most appropriate approach for a given
problem.

Accuracy and Precision:
Classical CFD methods are renowned for its ability to achieve high accuracy, especially when

employing fine grid resolutions. This method excels in problems where the underlying physics are
well-understood and can be accurately represented by explicit equations. However, CFD methods may
encounter challenges near discontinuities or sharp gradients, leading to accuracy degradation in such
regions.

Conversely, PINNs adopt a data-driven approach, leveraging neural networks to approximate
solutions based on available data. While PINNs may sacrifice some accuracy compared to FDM,
particularly in problems with well-defined physics, they offer advantages in handling complex or
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data-driven scenarios. PINNs can provide smoother and more continuous solutions, making them
suitable for problems with irregular geometries or unstructured data.

Computational Efficiency:
Classical CFD methods typically involve explicit grid generation and solving equations at each

grid point, which can be computationally intensive for large-scale problems. Conversely, PINNs
offer computational efficiency once trained, as they can rapidly generate solutions without the need
for explicit grid structures. This efficiency is particularly advantageous for problems with complex
geometries or time-dependent constraints.

Flexibility and Adaptability:
Classical CFD methods are constrained by grids shapes and may struggle with problems involving

complex or irregular geometries. In contrast, PINNs offer greater flexibility and adaptability, as they
can handle unstructured data and irregular domains more effectively. PINNs have the potential to
generalize well to new conditions or scenarios not explicitly included in the training data, enhancing
their applicability to a wide range of problems.

In conclusion, the choice between classical CFD and PINN methods depends on the specific
requirements of the problem, including the nature of the differential equations, the availability of data,
the complexity of the geometry, and computational resources. CFD methods excels in problems with
well-understood physics and structured domains, offering high accuracy with fine grid resolutions.
On the other hand, PINN provides flexibility, generalization, and efficiency advantages, especially
for complex or data-driven problems with irregular geometries. By understanding the comparative
strengths and limitations of these methods, researchers and engineers can make informed decisions to
select the most suitable approach for their specific applications.

6. Conclusions

This article investigates gas flow in pipeline for capturing the propagation speed of the rarefaction
wave, the contact discontinuity and the shock discontinuity. First the physical model is defined to
provide gas characteristics. Initial and boundary conditions were specified according to case problem.
Then two numerical models were proposed: the continuous PINN model and the discrete CFD model
(Runge-Kutta 4). The methods were verified through the one-dimensional inviscid and viscous Burgers
equations. Following with case study problem estimation, which is described by the system of one-
dimensional Euler’s equations. Results show sufficient accuracy in the graphical comparison with
the analytical solution and in the L norm indices. According to the results of numerical studies it can
be seen that for relatively simple problems classical CFD method is still superior to PINN, but with
increasing complexity of the problem CFD suffers from increasing the grid sizes and as a result may
have oscillations, where PINN has a smoother solution, which in turn gives to expect from PINN a
higher result with increasing the dimensionality of the problem and the number of input equations.
In conclusion, this study highlights the effectiveness of both Physics-Informed Neural Networks
and classical CFD methods in modeling gas flow in pipelines. By accurately capturing dynamic flow
characteristics such as rarefaction waves and shock discontinuities, these numerical techniques provide
valuable insights into the behavior of gas transportation systems. The comparison between PINN and
CFD approaches underscores the importance of selecting the most appropriate method based on the
specific requirements of the problem, ensuring reliable and efficient solutions for modeling gas flow in
pipelines.

Future research could be aimed at improving both models: for the continuous PINN model
a way to find the most appropriate hyperparameters using for instance Bayesian Hyperparameter
Optimization. For the discrete CFD model the approximation of derivatives using the finite difference
method should be replaced by more accurate methods with higher order of approximation over space
and flexibility on complex domains, such as finite volume method. In addition to that, case study
physical problem (Euler’s Equations) should be extended to two-dimensional forms and further to
two-dimensional Navier-Stokes equations.
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