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Abstract: This work (in two parts) will review the recently developed predictive modeling 

methodology called “4th-BERRU-PM” and its applicability to energy systems as exemplified by an 

illustrative application to the Polyethylene-Reflected Plutonium (acronym: PERP) OECD/NEA 

reactor physics benchmark. The acronym 4th-BERRU-PM designates the “Fourth-Order Best-

Estimate Results with Reduced Uncertainties Predictive Modeling” methodology, which yields 

best-estimate results with reduced uncertainties for the first fourth-order moments (mean values, 

covariance, skewness, and kurtosis) of the optimally predicted posterior distribution of model 

results and calibrated model parameters. The 4th-BERRU-PM uses the Maximum Entropy (MaxEnt) 

principle to incorporate fourth-order experimental and computational information, including 

fourth (and higher) order sensitivities of computed model responses to model parameters, thus 

incorporating, as particular cases, the results previously predicted by the second-order predictive 

modeling methodology 2nd-BERRU-PM, and vastly generalizing the results produced by extant data 

assimilation and data adjustment procedures. The 4th-BERRU-PM methodology encompasses the 

scopes of high-order sensitivity analysis (SA), uncertainty quantification (UQ), data assimilation 

(DA) and model calibration (MC). The application of the 4th-BERRU-PM methodology to energy 

systems is illustrated by means of the above-mentioned OECD/NEA reactor physics benchmark, 

which is modeled using the neutron transport Boltzmann equation involving 21976 imprecisely 

known parameters, the solution of which is representative of “large-scale computations.” The model 

result (“response”) of interest is the leakage of neutrons through the outer surface of this spherical 

benchmark, which can be computed numerically and measured experimentally. Part 1 of this work 

illustrates the impact of high-order sensitivities, in conjunction with parameter standard deviations 

of various magnitudes, on the determination of the expected value and variance of the computed 

response in terms of the first four moments of the distribution of the uncertain model parameters. 

Part 2 of this work will illustrate the capabilities of the 4th-BERRU-PM methodology for combining 

computational and experimental information, up to and including forth-order sensitivities and 

distributional moments, for producing best-estimate values for the predicted responses and model 

parameters while reducing their accompanying uncertainties.  

Keywords: predictive modeling; sensitivity analysis; uncertainty quantification; data assimilation; 

model calibration; reducing predicted uncertainties 

 

1. Introduction 

This work briefly reviews the “4th-Order Best-Estimate Results with Reduced Uncertainties 

Predictive Modeling” (abbreviated as “4th-BERRU-PM”) methodology developed recently by Cacuci 

[1] and illustrates its application to energy systems by considering the Polyethylene-Reflected 
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Plutonium (acronym: PERP) OECD/NEA reactor physics benchmark [2]. The 4th-BERRU-PM uses the 

Maximum Entropy (MaxEnt) Principle [3] to combine sensitivities and moments (up to and including 

fourth-order) of the distribution of model parameters and model responses (i.e., results of interest) 

which stem from model computations and imprecisely known external experimental measurements. 

Using this high-order computational and experimental information, the 4th-BERRU-PM methodology 

yields the 4th-order MaxEnt joint posterior distribution of model parameters and responses. In 

particular, this posterior distribution yields best-estimate results for the optimally predicted 

moments (up to and including fourth-order) of the best-estimate predicted model parameters 

(“model calibration”) and predicted responses. The 4th-BERRU-PM methodology encompasses the 

scopes of high-order sensitivity analysis (SA), uncertainty quantification (UQ), data assimilation (DA) 

and model calibration (MC). The 4th-BERRU-PM methodology is currently peerless and includes, as 

particular cases, the results delivered by the second-order “2nd-BERRU-PM” predictive modeling 

methodology developed by Cacuci [4,5], while vastly generalizing the extant data adjustment [6,7] 

and data assimilation methodologies [8–12].  

The fundamental importance of the new results provided by the 4th-BERRU-PM methodology 

will be highlighted in this work by applying this predictive modeling methodology to the 

Polyethylene-Reflected Plutonium OECD/NEA reactor physics benchmark [2]. As has been detailed 

by Cacuci and Fang [13], the numerical modeling of the PERP benchmark is performed by using the 

neutron transport Boltzmann equation, involving 21976 imprecisely known parameters. The 

response (i.e., result) of interest for this benchmark is the total leakage of neutrons through the 

benchmark’s outer surface. The computation of high-order sensitivities of the leakage response with 

respect to the benchmark’s parameters is representative of “large-scale computations” and has been 

accomplished by applying the high-order adjoint sensitivity analysis methodology developed by 

Cacuci [14,15], which overcomes the curse of dimensionality [16] in sensitivity analysis.  

Section 2 of this work reviews the mathematical forms of the “input information” that needs to 

be extracted from the computational model to be incorporated into the 4th-BERRU-PM methodology. 

Extracting this information requires performing a “4th-order sensitivity analysis” (4th-SA) and a “4th-

order uncertainty quantification” (4th-UQ) of the computational model by propagating the first four 

moments (including the means, variances, skewness, kurtosis) of the distribution of model 

parameters using the response sensitivities (from first- to fourth-order) to obtain the requisite 

moments (from first to fourth) of the distribution of computed responses. This Section also discusses 

briefly the computational issues required to alleviate the impact of the ”curse of dimensionality” [16]) 

when computing such 4th-order sensitivities and uncertainties for energy systems. 

Section 3 presents the application of the mathematical concepts reviewed in Section 2 to the 

PERP reactor physics benchmark, illustrating the effect of the high-order sensitivities on the expected 

value and variance of the computed model response, when considering: (i) parameters that are 

known with “high precision” having uniform standard deviations of 2%; (ii) parameters known with 

“medium precision” having uniform standard deviations of 5%; and (iii) parameters known with 

“low precision” having uniform standard deviations of 10%, respectively. Section 4 concludes this 

work by discussing the impact of the combination of parameter uncertainties with high-order 

sensitivities on the uncertainties in the computed model, and also prepares the ground for the 

continuation, in the accompanying Part 2 [17], of the application of the 4th-BERRU-PM methodology 

for obtaining predicted best-estimate mean value, standard deviation, skewness, and kurtosis for the 

neutron leakage response of the PERP benchmark.    

2. Model Sensitivity and Uncertainty Analysis Input for the Fourth-Order Maximum Entropy 

Based Predictive Modeling Methodology (4th-BERRU-PM): Review and Applicability to Energy 

Systems 

The 4th-BERRU-PM methodology uses as “input” the first four moments of the unknown 

distributions of the responses computed using a mathematical/computational model, which are 

combined using the maximum entropy principle with the first four moments of the distribution of 

measured responses. The moments of the distribution of the computed model responses are obtained 
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by combining the moments of the distribution of model parameters with the sensitivities of the model 

responses with respect to the model parameters. Thus, the moments of the distribution of the 

computed model responses are obtained by performing (simultaneously or sequentially) a 4th-order 

sensitivity analysis and a 4th-order uncertainty analysis of the underlying 

mathematical/computational model.  

The mathematical expressions of the moments of the computed responses are obtained in terms 

of the moments of the distribution of model parameters by expanding formally each response in a 

Taylor-series around the nominal or mean parameter values and subsequently using this series, 

within its radius of convergence, for obtaining expressions of the moments of the respective responses 

in terms of the moments of the model parameters and the response sensitivities (i.e., derivatives) with 

respect to the model parameters. General expressions, up to sixth-order sensitivities, for the moments 

of computed responses can be found in the book by Cacuci [14], which generalizes the expressions 

originally obtained by Tukey [18]. In particular, the following fourth-order Taylor-series expansion 

of a response, denoted as ( )kr α , as a function of the parameters ( )
†

1,..., TP α , where TP  denotes 

the total number of parameters under consideration, is used within the 4th-BERRU-PM methodology 

to compute the various moments of the distribution of the leakage response in the phase-space of the 

benchmark’s total cross section (parameters): 
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In Eq. (1), the notation   0
α

 indicates that the functional derivatives within the braces are 

computed at the known expected/nominal parameter values, which are denoted as 0

i  (using the 

superscript “0”); the corresponding column vector of nominal parameter values is denoted as 

( )
†

0 0 0

1 ,..., TP α . The quantity 
k

  comprises all quantifiable errors in the representation of the 

computed response ( )kr α  as a function of the model parameters ( )
†

1,..., TP α . Vector and 

matrices will be denoted using bold letters while the dagger “ † ” will be used to denote 

“transposition.” The symbol “ ” will be used to denote “is defined as” or “is by definition equal to.” 

The radius/domain of convergence of the series in Eq. (1) determines the largest values of the 

parameter variations 
j

  which are admissible before the respective series becomes divergent. In 

turn, these maximum admissible parameter variations limit the largest parameter 

covariances/standard deviations which are acceptable for using the Taylor-expansion for computing 

moments of the distribution of computed responses. 

2.1. Input to 4th-BERRU-PM Methodology: 4th-Order Sensitivity and Uncertainty Analysis of Model 

Responses to Model Parameters 

The moments of the computed model responses are obtained by using the Taylor-series 

expansion shown in Eq. (1) of a response in terms of parameter variations. The expression of these 

computed response moments up to sixth-order in moments and the parameter distribution and 

sensitivities can be found in the book by Cacuci [14]. The 4th-BERRU-PM methodology incorporates 

computed response moments up to fourth-order, as provided below. 

(i) The expected value, denoted as ( )c kE r , of a computed response ( )kr α , for 1, ,k TR= ; the 

vector ( )cE r  of the computed responses is defined as follows: 

( ) ( ) ( ) ( )
†

1 ,..., ,...,c c c k c TRE r E r E r  E r . Up to, and including, the fourth-order response 
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sensitivities to parameters, the expected value of a computed response has the following 

expression obtained by integrating formally Eq. (1) over the unknown distribution of 

parameters: 
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In Eq. (2), the moments up to and including fourth-order of the unknown distribution of model 

parameters are assumed to be known. These moments are as follows: (a) the covariances of two model 

parameters, i  and j , are denoted as ijc , , 1, ,i j TP= , where TP  denotes the total number of 

parameters under consideration; the parameter covariance matrix is denoted as ij TP TP
c

 
  C ; (b) 

the triple-correlations of three model parameters i , j , and l , are denoted as ijt , where 

, , 1, ,i j TP= ; (c) the quadruple-correlations of four model parameters i , j ,  , and m , are 

denoted as ij mq , where , , , 1, ,i j m TP= .  

(ii) The correlation, denoted as ( )cor ,i kr , between a parameter i  and a computed response kr , 

for 1, ,i TP=  and 1, ,k TR= ; the correlation matrix between parameters and computed 

responses is denoted as ( )cor ,c

r i k TP TR
r 


  C . Up to, and including, the fourth-order response 

sensitivities to parameters, the correlation between a parameter and a computed response has 

the following expression: 
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(iii) The covariances, denoted as ( )cov ,kr r , between two computed responses kr  and r , for 

, 1,...,k TR= ; the covariance matrix of computed responses is denoted as ( )cov ,c

rr k TR TR
r r


  C

. Up to and including the fourth-order response sensitivities to parameters, the covariance 

between two computed responses has the following expression: 
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(iv) The triple correlations among three responses, kr , r  and mr , , , 1,...,k m TR= , which are 

denoted as ( )3 , ,k mr r r . Up to and including the fourth-order response sensitivities to 

parameters, these triple correlations among three responses have the following expression: 
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(v) The quadruple-correlations among four responses, kr , r , mr  and nr , for , , , 1,...,k m n TR= , 

which are denoted as ( )4 , , ,k m nr r r r . Up to and including the fourth-order response sensitivities 

to parameters, these quadruple correlations among computed responses have the following 

expression: 
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(vi) The expressions of the triple and quadruple correlations among parameters and responses are 

provided by Cacuci [14]; they will not be reproduced here because they are considered to be 

negligible by comparison to the other terms used within the 4th-BERRU-PM methodology. 

2.2. Applicability of the 4th-Order Sensitivity and Uncertainty Analysis to Energy Systems 

The expressions of the moments of the distribution of computed responses provided in Eqs. (2)‒

(6) involve combinations of sensitivities of responses with respect to model parameters and moments 

of the distribution of parameters. Consequently, the computation of these moments is tantamount to 

performing both a “4th-order sensitivity analysis” (since one needs to compute the respective 

sensitivities) as well as a “4th-order uncertainty analysis” (since one determines the respective 

moments of the distribution of the computed response in the phase-space of the model’s parameters) 

of the computational model under consideration. In principle, sensitivity and uncertainty analyses 

can be performed by using either deterministic or statistical methods. The statistical methods 

construct an approximate response distribution (often called “response surface”) in the parameters’ 

space by performing many “forward” computations using the model with altered parameter values, 

and subsequently use scatter plots, regression, rank transformation, correlations, and/or so-called 

“partial correlation analysis” in order to identify approximate expectation values, variances and 

covariances for the responses. These statistical quantities are subsequently used to construct 

quantities that play the role of (approximate) first-order response sensitivities. Thus, statistical 

methods commence with “uncertainty analysis” and subsequently attempt an approximate 

“sensitivity analysis” of the approximately computed model “response surface”. Statistical methods 

for uncertainty and sensitivity analysis are reviewed in the book edited by Saltarelli et al. [19]. 

Although statistical methods for uncertainty and sensitivity analysis are conceptually easy to 

implement, they are subject to the curse of dimensionality [16] and cannot compute any sensitivity 

exactly. Also, since the response sensitivities and parameter uncertainties are inseparably 

amalgamated within the results produced by statistical methods, improvements in parameter 

uncertainties cannot be directly propagated to improve response uncertainties; rather, the entire set 

of simulations and statistical post-processing must be repeated anew. On the other hand, the 

computation by conventional deterministic methods of the thn -order sensitivities (i.e., functional 

derivatives of a response with respect to the TP -parameters on which it depends) would also require 

at least ( )nO TP  large-scale computations, so these methods also suffer from the curse of 

dimensionality in sensitivity analysis. 

Currently, the only methodologies that enable the exact and efficient computation of arbitrarily 

high-order sensitivities while overcoming the curse of dimensionality are the “nth-order 

Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint 

Linear Systems” (nth-CASAM-L) conceived by Cacuci [14] and the “nth-order Comprehensive Adjoint 
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Sensitivity Analysis Methodology for Nonlinear Systems” (nth-CASAM-N) conceived by Cacuci [15]. 

These methods are applicable to compute exactly and efficiently arbitrarily-high order sensitivities 

of responses with respect to parameters for mathematical/computational models of any energy 

system. The higher the order of computed sensitivities, the higher the efficiency of the nth-CASAM-L 

or nth-CASAM-N methodologies by comparison to any other method. For example, as has been 

illustrated by Cacuci and Fang [13] and as will be discussed in Section 3, below, the most important 

sensitivities of the PERP leakage response are with respect to the 180 uncertain total microscopic cross 

sections. For these sensitivities, the nth-CASAM-L needs a single “large-scale” adjoint computation to 

obtain all of the 180 first-order sensitivities exactly, by comparison to needing 360 large-scale 

computations to obtain them inexactly, using finite differences. Similarly, the nth-CASAM-L needs 

2,075,341 large-scale computations to obtain the 45,212,895 distinct 4th-order sensitivities exactly, 

while using finite differences would require 723,404,160 large-scale computations to obtain them 

approximately.  

3. Illustrative High-Order Uncertainty Analysis of the PERP Reactor Physics Benchmark 

The Polyethylene-Reflected Plutonium (acronym: PERP) reactor physics benchmark [2] is a one-

dimensional spherical subcritical nuclear system driven by a source of spontaneous fission neutrons. 

The computational model of the polyethylene PERP benchmark used in this work is the same as has 

been presented by Cacuci and Fang [13]. For convenience, the main features of this model are 

summarized in the Appendix. As discussed in the Appendix, this benchmark comprises 21976 

imprecisely known model parameters. The result (“response”) of interest for this benchmark is the 

total leakage of neutrons through the benchmark’s outer surface. Since the correlations between these 

parameters are unavailable, they will be considered to be uncorrelated and normally distributed, in 

accordance with the principle of Maximum Entropy of considering the least biased distribution based 

on the available information. Since the parameters are considered to be uncorrelated, the off-diagonal 

terms of C  vanish, i.e., 0ijc =  when i j , while the diagonal terms are the variances of the 

respective parameters, denoted as ic , for 1, ,i TP= . Since the parameters are considered to be 

normally distributed, their third-order (triple) correlations vanish, i.e., ( ), , 0ijk i j kt cor    =  for all 

, , 1, ,i j k TP= . Furthermore, the only nonzero fourth-order (quadruple) correlation is the kurtosis 

of each individual parameter, which will be denoted as iq , 1, ,i TP= , which is related to the 

variance of the respective uncorrelated parameter as follows: 3i iq c = , where ic  denotes the 

variance (i.e., standard deviation squared) of the parameter i ; all other quadruple correlations 

vanish, i.e., 0ijkq =  if i j k   .  

The comprehensive computation of response sensitivities with respect to the model parameters, 

up to and including fourth-order sensitivities, was performed by Cacuci and Fang [13], where it was 

shown that the most important parameters are the 180 group-averaged microscopic total cross 

sections. As has been discussed in the forgoing, these parameters are considered to be uncorrelated; 

therefore, only the unmixed sensitivities are influential. The largest unmixed sensitivities occur for 

isotope 6 (1H). Table 1, below, presents a comparison of the values of the unmixed relative 

sensitivities, from first-order through fourth-order, for isotope 6 (1H). Sensitivities that have absolute 

values larger than unity are presented in bold characters. As shown in Table 1, the largest absolute 

values for the 1st-, 2nd-, 3rd- and 4th-order unmixed relative sensitivities all occur for the lowest-energy 

group (g = 30; thermal neutrons), which are significantly larger than the values of the sensitivities in 

other energy groups. Notably, the largest 4th-order unmixed relative sensitivity attains a very large 

value: ( )(4) 30 30 30 30 6

,6 ,6 ,6 ,6, , 2.720 10,g g g g

t t t tS    = = = = =  . By comparison, the largest values for the 1st-, 2nd- 

and 3rd-order unmixed relative sensitivities are: ( )(1) 30

,6 9.366g

tS  = = − , ( )(2) 30 30 2

,6 ,6 4.296 10,g g

t tS  = = =   

and ( )(3) 30 30 30 4

,6 ,6 ,6 2 6, .9 6 10,g g g

t t tS   = = = = −  , respectively. 
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Table 1. Comparison of the unmixed relative sensitivities, ( )(1)

,6

g

tS  , ( )(2)

,6 ,6,g g

t tS   , 

( )(3)

,6 ,6 ,6, ,g g g

t t tS    , and ( )(4)

,6 ,6 ,6 ,6, , ,g g g g

t t t tS     , 1,...,30g = , for isotope 6 (1H). 

g 1st-order 2nd-order 3rd-order 4th-order 

1 −8.471 × 10−6 7.636 × 10−7 6.322 × 10−8 1.460 × 10−7 

2 −2.060 × 10−5 2.280 × 10−6 4.516 × 10−8 4.956 × 10−7 

3 −6.810 × 10−5 9.021 × 10−6 −4.677 × 10−7 2.245 × 10−6 

4 −3.932 × 10−4 6.673 × 10−5 −8.758 × 10−6 2.039 × 10−5 

5 −2.449 × 10−3 5.549 × 10−4 −1.216 × 10−4 2.142 × 10−4 

6 −9.342 × 10−3 2.935 × 10−3 −1.123 × 10−3 1.553 × 10−3 

7 −7.589 × 10−2 3.949 × 10−2 −2.690 × 10−2 3.513 × 10−2 

8 −9.115 × 10−2 5.604 × 10−2 −4.380 × 10−2 5.536 × 10−2 

9 −1.358 × 10−1 1.014 × 10−1 −9.758 × 10−2 1.416 × 10−1 

10 −1.659 × 10−1 1.428 × 10−1 −1.604 × 10−1 2.582 × 10−1 

11 −1.899 × 10−1 1.849 × 10−1 −2.385 × 10−1 4.233 × 10−1 

12 −4.446 × 10−1 6.620 × 10−1 −1.373 × 100 3.815 × 100 

13 −5.266 × 10−1 9.782 × 10−1 −2.590 × 100 9.015 × 100 

14 −5.772 × 10−1 1.262 × 100 −3.991 × 100 1.650 × 101 

15 −5.820 × 10−1 1.391 × 100 −4.581 × 100 2.208 × 101 

16 −1.164 × 100 4.460 × 100 −2.530 × 101 1.890 × 102 

17 −1.173 × 100 4.853 × 100 −2.991 × 101 2.432 × 102 

18 −1.141 × 100 4.828 × 100 −3.049 × 101 2.543 × 102 

19 −1.094 × 100 4.619 × 100 −2.913 × 101 2.428 × 102 

20 −1.033 × 100 4.284 × 100 −2.655 × 101 2.175 × 102 

21 −9.692 × 10−1 3.937 × 100 −2.388 × 101 1.915 × 102 

22 −8.917 × 10−1 3.515 × 100 −2.069 × 101 1.609 × 102 

23 −8.262 × 10−1 3.177 × 100 −1.823 × 101 1.382 × 102 

24 −7.495 × 10−1 2.792 × 100 −1.552 × 101 1.140 × 102 

25 −7.087 × 10−1 2.604 × 100 −1.427 × 101 1.033 × 102 

26 −6.529 × 10−1 2.349 × 100 −1.260 × 101 8.932 × 101 

27 −5.845 × 10−1 2.039 × 100 −1.061 × 101 7.288 × 101 

28 −5.474 × 10−1 1.885 × 100 −9.678 × 100 6.565 × 101 

29 −5.439 × 10−1 1.891 × 100 −9.800 × 100 6.705 × 101 

30 −9.366 × 100 4.296 × 102 −2.966 × 104 2.720 × 106 

The effects of various values for the standard deviations for the parameters, which are 

considered to be uncorrelated and normally distributed, will be illustrated in Subsections 3.1‒3.3, 

below, for parameters that are known with “high precision” (having uniform standard deviations of 

2%); parameters known with “medium precision” (having uniform standard deviations of 5%); and 

parameters known with “low precision” (having uniform standard deviations of 10%), respectively. 

3.1.“High Precision” Parameters, Having Uniform Relative Standard Deviations   

As has been discussed by Cacuci and Fang [13], when the uncorrelated and normally-distributed 

parameters are assumed to have uniform relative standard deviations of 3%, the convergence “ratio-

test” of the 3rd-order term with respect to the 2nd-order term of the Taylor series is 0.58, while the ratio 
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of the 4th-order term with respect to the 3rd-order term of the Taylor series is 0.68. Both of these results 

are below 1.00, which implies that for uniform relative standard deviations of 3% or less, the Taylor-

series expansion of the computed response in terms of the model parameters shown in Eq. (1) is 

expected to be convergent. Figure 1 depicts the magnitudes of the higher-order contributions to the 

expected value, ( )cE L , of the computed leakage response, while Figure 2 depicts the magnitudes of 

the higher-order contributions to the variance, var( )cL , of the computed leakage response, for 

parameters that are assumed to have uniform relative standard deviations of 2% (which is smaller 

than 3%). The numerical results depicted in Figures 1 and 2 indicate that the contributions of the 

increasingly higher-order terms to the expected value, ( )cE L , and the variance, var( )cL , of the 

computed leakage response become increasingly smaller (as the order of the respective terms 

increases), thus confirming the expectation that the underlying Taylor-series is convergent. For 

practical purposes, therefore, the contributions from terms involving sensitivities of order five and 

higher become negligible by comparison to the contributions from the terms comprising the 

sensitivities of first-through fourth-order to ( )cE L  and var( )cL , respectively, when the uncorrelated 

and normally-distributed parameters have uniform relative standard deviations 2%SD = . 

 

Figure 1. Contributions to the expected value, ( )cE L , of the computed leakage response from 

parameters having uniform relative standard deviations 2%SD = : (i) zeroth-order: cL ; (ii) second-

order: (2)[ ( )]cE L ; (iii) fourth-order: (4)[ ( )]cE L ; (iv) the odd-order contributions are null. 

 

Figure 2. Contributions to the variance, var( )cL , of the computed leakage response from parameters 

having uniform relative standard deviations 2%SD = : (i) first-order: (1)[var( )]cL ; (ii) second-order: 
(2)[var( )]cL ; (iii) third-order: (3)[var( )]cL ; (iv) fourth-order: (4)[var( )]cL . 

3.2.“Medium Precision” Parameters, Having Uniform Relative Standard Deviations   
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For uniform relative standard deviations of 5% for the uncorrelated and normally-distributed 

model parameters, it has been shown by Cacuci and Fang [13] that the ratio of the 3rd-order term with 

respect to the 2nd-order term of the Taylor series is 0.97<1.00, but the ratio of the 4th-order term with 

respect to the 3rd-order term of the Taylor series is 1.13>1.00. These ratios indicate that relative 

standard deviations of 5% for the model parameters are outside of the radius of convergence of the 

Taylor-series presented in Eq. (1). These indications are confirmed by the results depicted in Figures 

3 and 4, below.  

 

Figure 3. Contributions to the expected value, ( )cE L , of the computed leakage response from 

parameters having uniform relative standard deviations 5%SD = : (i) zeroth-order: cL ; (ii) second-

order: (2)[ ( )]cE L ; (iii) fourth-order: (4)[ ( )]cE L ; (iv) the odd-order contributions are null. 

 

Figure 4. Contributions to the variance, var( )cL , of the computed leakage response from parameters 

having uniform relative standard deviations 5%SD = : (i) first-order: (1)[var( )]cL ; (ii) second-order: 
(2)[var( )]cL ; (iii) third-order: (3)[var( )]cL ; (iv) fourth-order: (4)[var( )]cL . 

The results depicted in Figure 3 indicate that the contributions to ( )cE L  stemming from 

second-order sensitivities are smaller than those stemming from the zeroth-order term, cL , but the 

contributions to ( )cE L  stemming from fourth-order sensitivities are larger than those stemming 

from the zeroth- and second-order terms. This oscillatory behavior with increasing amplitudes is 

indicative of the divergence of the Taylor-series underlying the computation of the expected value, 

( )cE L . The results depicted in Figure 4 for the variance, var( )cL , of the computed leakage response 

indicate that the contributions to var( )cL  increase as the order of the contributing terms increase, 

thus underscoring the divergent nature of the underlying Taylor-series when the parameters have 
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uniform relative standard deviations of 5%. On the other hand, relative standard deviation of 5% are 

often encountered in measurements of total cross sections, which highlights the need for computing 

the second and higher-order response sensitivities in order to investigate the convergence properties 

of the Taylor-series that underlies the determination of the statistics (expected values, variance, etc.) 

of the distribution of computed responses in the phase-space of imprecisely known model 

parameters. 

3.3. Low Precision” parameters, Having Uniform Relative Standard Deviations   

When considering uniform relative standard deviations of 10% for the uncorrelated and 

normally-distributed parameters (total cross sections), it has been shown by Cacuci and Fang [13] 

that the ratio of the 3rd-order term with respect to the 2nd-order term of the Taylor series is 1.93; the 

ratio of the 4th-order term with respect to the 3rd-order term of the Taylor series is 2.26. Both of these 

results are larger than 1.00, indicating that the Taylor-series presented in Eq. (1) would be divergent 

if used for parameters having standard deviations of 10%. The divergence of the Taylor-series for 

such parameter standard deviations is underscored by the corresponding results depicted in Figure 

5 for the expected value, ( )cE L , of the computed leakage response, which clearly indicate the 

massive increase of the contributions to ( )cE L  as the order of the retained terms increases. The 

conclusion that the Taylor-series expansion is divergent and should therefore not be used for 

parameters with uniform relative standard deviations 10%SD =  is reinforced by the corresponding 

results depicted in Figure 6 for the variance, var( )cL , of the computed leakage response. Figure 6 also 

highlights that the contributions to var( )cL  increase massively as the order of the retained terms 

increases. 

 

Figure 5. Contributions to the expected value, ( )cE L , of the computed leakage response from 

parameters having uniform relative standard deviations 10%SD = : (i) zeroth-order: cL ; (ii) second-

order: (2)[ ( )]cE L ; (iii) fourth-order: (4)[ ( )]cE L ; (iv) the odd-order contributions are null. 
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Figure 6. Contributions to the variance, var( )cL , of the computed leakage response from parameters 

having uniform relative standard deviations 10%SD = : (i) first-order: (1)[var( )]cL ; (ii) second-order: 
(2)[var( )]cL ; (iii) third-order: (3)[var( )]cL ; (iv) fourth-order: (4)[var( )]cL . 

4. Concluding Discussion 

This work has reviewed the fourth-order “sensitivity analysis” and “uncertainty quantification” 

aspects of computational models, the results of which are used as “input” into the 4th-BERRU-PM 

methodology. The impact of combinations of sensitivities of increasingly higher order and various 

values for the standard deviations of the model’s parameters has been illustrated by using the PERP 

reactor physics benchmark. This benchmark is modeled by the neutron transport equation 

comprising 21,976 model parameters and is therefore representative of “large-scale” computational 

models of energy systems. It has been shown that the series-expansion representation of the expected 

value and variance of the computed leakage response is convergent and hence produces reliable 

results for normally-distributed parameters having uniform relative standard deviations of 2%. On 

the other hand, the series-expansion representations of the expected value and variance, respectively, 

become divergent for parameters having uniform relative standard deviations of 5%. This divergence 

becomes massive for parameters having uniform relative standard deviations of 10%. 

In the accompanying Part 2 [17], the results obtained in this work will be combined, using the 

maximum entropy principle within the 4th-BERRU-PM methodology, with the first four moments of 

the distribution of measured responses to obtain the best-estimate predicted mean value, standard 

deviation, skewness, and kurtosis for the neutron leakage response of the PERP benchmark, thereby 

illustrating the applicability of the 4th-BERRU-PM methodology to improve the predictability and 

accuracy of models of energy systems.   
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Appendix A: Computational Model of the PERP Benchmark 

The Polyethylene-Reflected Plutonium (acronym: PERP) reactor physics benchmark [2] is a one-

dimensional spherical subcritical nuclear system driven by a source of spontaneous fission neutrons. 

The result (“response”) of interest for this benchmark is the neutron leakage out of the external 

surface of this benchmark. The computational model used for determining the neutron distribution 

within the benchmark and for determining the sensitivities (up to fourth-order) of the neutron 

leakage response with respect to the benchmark’s uncertain parameters has been presented in detail 
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in the book by Cacuci and Fang [13]. The PERP benchmark comprises an inner sphere (designated as 

“material 1”) which is surrounded by a spherical shell (designated as “material 2”). The inner sphere 

of the PERP benchmark contains α-phase plutonium which acts as the source of particles; it has a 

radius 1r =3.794 cm. This inner sphere is surrounded by a spherical shell reflector made of 

polyethylene of thickness 3.81 cm; the radius of the outer shell containing polyethylene is sr =7.604 

cm. Table A1, below, specifies the constitutive materials of the PERP benchmark. 

Table A1. Dimensions and Composition of the PERP Benchmark. 

Materials Isotopes 
Weight 

Fraction 

Density 

(g/cm3) 
Zones 

Material 1 

(plutonium metal) 

Isotope 1 (239Pu) 9.3804 × 10−1 

19.6 

Material 1 is 

assigned to zone 

1, which has a 

radius of 3.794 

cm. 

Isotope 2 (240Pu) 5.9411 × 10−2 

Isotope 3 (69Ga) 1.5152 × 10−3 

Isotope 4 (71Ga) 1.0346 × 10−3 

Material 2 

(polyethylene) 

Isotope 5 (12C) 8.5630 × 10−1 

0.95 

Material 2 is 

assigned to zone 

2, which has an 

inner radius of 

3.794 cm and an 

outer radius of 

7.604 cm. 

Isotope 6 (1H) 1.4370 × 10−1 

The neutron flux distribution within the PERP benchmark has been computed by using the 

deterministic software package PARTISN [20], which solves the standard multigroup approximation 

of the transport equation for the group-fluxes ( ),g r Ω , which can be written as follows:  

( ) ( ) ( ), ; , 1,..., ,g g gB r Q r g G = =α Ω α  (A1) 

( ), 0, , 0, 1,..., ,g

s s br r g GS =        =Ω Ω n  (A2) 

where: 

( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( ) ( )

1 4

1 4

, , ,

, ,

, ,

g g g g g

t

G
g g g

s

g

G
gg g

f
g

B r r r r

r r d

r r r d





  



  

 →

=

 

=

 + 

  − 

 − 

 

 

α Ω Ω Ω Ω

Ω Ω Ω Ω

Ω Ω

 
(A3) 

( )
1

/

,1

1 0

1
; sinh , 1,..., ;

f g

i

g

N
E

E ag SF SF

i i i i i
E

i

Q r N F dE e b E g G
I

 
+

−

=

= α  (A4) 

with 

3

0
4 .

2

i ia b

i ia b
eI


 (A5) 

In Eqs. (A4) and (A5), the subscript “ i ” denotes the number of nuclides within the spontaneous 

fission source. 

Mathematically, the total neutron leakage from the PERP sphere, which is denoted as ( )L α , will 

depend on all model parameters (indirectly, through the neutron flux) and it is defined, as follows: 
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( ) ( ) ( ) ( )
10 0 0

, , , .

b

G
g

s

gV S

L dV dE d r r r E dS d r  


=   

 − =     
Ω n Ω n

α ΩΩ n Ω ΩΩ n Ω  (A6) 

The PARTISN [20] computations used the MENDF71X library [21] which comprises 618-group 

cross sections. These cross-sections were collapsed to 30G =  energy groups, with group boundaries, 
gE , as presented in Table A2. The MENDF71X library [21] uses ENDF/B-VII.1 nuclear data [22]. The 

group boundaries, gE , are user-defined and are therefore considered to be perfectly-well known 

parameters. 

Table A2. Energy group structure, in [MeV], for PERP Benchmark computations. 

g 1 2 3 4 5 6 

gE  1.50×101 1.35×101 1.20×101 1.00×101 7.79×100 6.07×100 
1gE −  1.70×101 1.50×101 1.35×101 1.20×101 1.00×101 7.79×100 

g 7 8 9 10 11 12 

gE  3.68×100 2.87×100 2.23×100 1.74×100 1.35×100 8.23×10−1 
1gE −  6.07× 100 3.68×100 2.87×100 2.23×100 1.74×100 1.35×100 

g 13 14 15 16 17 18 

gE  5.00×10−1 3.03×10−1 1.84×10−1 6.76×10−2 2.48×10−2 9.12×10−3 
1gE −  8.23×10−1 5.00×10−1 3.03×10−1 1.84×10−1 6.76×10−2 2.48×10−2 

g 19 20 21 22 23 24 

gE  3.35×10−3 1.24×10−3 4.54×10−4 1.67×10−4 6.14×10−5 2.26×10−5 
1gE −  9.12×10−3 3.35×10−3 1.24×10−3 4.54×10−4 1.67×10−4 6.14×10−5 

g 25 26 27 28 29 30 

gE  8.32×10−6 3.06×10−6 1.13×10−6 4.14×10−7 1.52×10−7 1.39×10−10 
1gE −  2.26×10−5 8.32×10−6 3.06×10−6 1.13×10−6 4.14×10−7 1.52×10−7 

The source of neutrons in the PERP benchmark is provided by the spontaneous fissions 

stemming from 239Pu (Isotope 1) and 240Pu (Isotope 2); there are no delayed neutron or ( ),n  sources. 

The spontaneous fission source has been computed using the code SOURCES4C [23]. For an actinide 

nuclide k , where 1, 2k =  for the PERP benchmark, the spontaneous source depends on the 

following 12 model parameters: the decay constant k , the atom density ,k mN , the average number 

of neutrons per spontaneous fission SF

k , the spontaneous fission branching ratio SF

kF , and the two 

parameters ka  and kb  used in a Watt’s fission spectrum to approximate the spontaneous fission 

neutron spectrum. The nominal values of these parameters (except for ,k mN ) are available from a 

library file contained in SOURCES4C [23], while the nominal values for ,k mN  are specified from the 

PERP benchmark. These imprecisely known source parameters also contribute to the accuracy of the 

neutron transport calculation.  

PARTISN [20] uses the discrete-ordinates approximation to discretize the angular variable in the 

first and second terms on the right-side of Eq. (A4), and it uses a finite-moments expansion in 

spherical harmonics to approximate the angular variable in the third and fourth terms on the right 

side of Eq. (A4). The specific computations in this work were performed while using a P3 Legendre 

expansion of the scattering cross section, an angular quadrature of S256, and a fine-mesh spacing of 

0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 cm, and 762 meshes for 

the polyethylene shell of thickness of 3.81 cm). It is convenient to retain the continuous representation 

in the angular and radial variables since the spatial and angular discretization parameters are 

considered to be perfectly well known. The various quantities in Eqs. (A1)−(A5) have their usual 

meanings for the standard form of the multigroup neutron transport equation, as follows: 
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1. Using the notation employed in PARTISN [20], the quantity ( ) ( )
1 2

1 2
, , ,

g

g

E
g

E
r r E dE 

+

−Ω Ω  

denotes the “group-flux” for group g , and is the unknown state-function obtained by solving 

Eqs. (A1) and (A2). 

2. The spontaneous-fission isotopes in the PERP benchmark are “isotope 1” (239Pu) and “isotope 2” 

(240Pu). The quantity fN  denotes the total number of spontaneous-fission isotopes; for the PERP 

benchmark, 2fN = . The spontaneous fission neutron spectra of 239Pu and, respectively, 240Pu, 

are approximated by Watt’s fission spectra, each spectrum using two evaluated parameters, 

denoted as ka  and kb , respectively. The decay constant for actinide nuclide k  is denoted as 

k , while SF

kF  denotes the fraction of decays that are spontaneous fission (the “spontaneous 

fission branching fraction”). 

3. The quantity ,i mN  denotes the atom density of isotope i in material m; 1,..., Ii = , 1,...,m M= , 

where I  denotes the total number of isotopes, and M  denotes the total number of materials. 

The computation of ,i mN  uses the following well-known expression: 

,

, ,
m i m A

i m

i

w N
N

A


 (A7) 

where m  denotes the mass density of material m, 1,...,m M= ; ,i mw  denotes the weight fraction of 

isotope i in material m; iA  denotes the atomic weight of isotope i , 1,...,i I= ; AN  denotes the 

Avogadro’s number. For the PERP benchmark, 6I =  and 2M = , but since the respective isotopes 

are all distinct (i.e., are not repeated) in the PERP benchmark’s distinct materials, as specified in Table 

A1, it follows that only the following isotopic number densities exist for this benchmark: 

1,1 2,1 3,1 4,1 5,2 6,2, , , , ,N N N N N N . 

4. The quantity ( ),g g

s r
→  Ω Ω  represents the scattering transfer cross section from energy group 

', ' 1,...,g g G=  into energy group , 1,...,g g G= . The transfer cross sections is computed in terms of 

the l th-order Legendre coefficients , ,

g g

s l i
→  (of the Legendre-expanded microscopic scattering cross 

section from energy group g   into energy group g , for isotope i ), which are tabulated parameters, 

using the following finite-order expansion: 

( ) ( )

( ) ( ) ( )

,

6 3

, ,

1

2

, ,

0

1

, , ,

, 2 1 ( ) , 1,2,

g g g g

s s m

I ISCT
g

m

l

M

g g g

s m i m

i

l i

l

s

r r

r N l r P m

 → →

= =
 → →

= =

=

=

  = 

   +  =



 

Ω Ω Ω Ω

Ω Ω Ω Ω

 (A8) 

where 3ISCT =  denotes the order of the respective finite expansion in Legendre polynomial. The 

variable r  will henceforth no longer appear in the arguments of the various cross sections since the 

cross-sections for every material are treated in the PARTISN [20] computations as being space-

independent within the respective material. 

5. The total cross section g

t  for energy group , 1,...,g g G=   and material m , is computed for the 

PERP benchmark using the following expression: 

, , , , ,

1

0,

2

, , ,

1

, 1,2,;
g

M I I
g g g g g g

t t m t m

G
g g

t i f ii m i m

m i i

c i s l i mN N   
→

=

==

=


 
 =   = =   =

 
+ +     (A9) 

where ,

g

f i  and ,

g

c i  denote, respectively, the tabulated group microscopic fission and neutron 

capture cross sections for group , 1,...,g g G= . Other nuclear reactions, including (n,2n) and (n,3n) 

reactions, are not present in this benchmark. The expressions in Eqs. (A8) and (A9) indicate that the 

zeroth-order (i.e., 0l = ) scattering cross sections must be separately considered from the higher 

order (i.e., 1l  ) scattering cross sections, since the former contribute to the total cross sections, while 

the latter do not. 
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6. PARTISN [20] computes the quantity ( )
g

f  using the quantities ( )
,

g

if
 , which are provided 

in data files for each isotope i , and energy group g , as follows: 

( ) ( ) ( ) ( )
2 6

,

1 1

; , 1,2.
M I

gg g g

f f f i m fm m i
m i

N m   
= =

= =

 =   = =   (A10) 

For the purposes of sensitivity analysis, the quantity g

i , which denotes the number of neutrons that 

were produced per fission by isotope i  and energy group g , can be obtained by using the relation 

( ) ,

g
g g

i f ii f  = , where the isotopic fission cross sections ,

g

f i  are available in data files for 

computing reaction rates. 

7. The quantity g  denotes the fission spectrum in energy group g ; it is defined in PARTISN [20] as 

a space-independent quantity, as follows: 

( )

( )

,

1 1

1

,

1 1

, 1,

f

f

G
g

g g

i i m f i Gi
i gg g

i

g

N

G
g g

f

N

g

i m ii
i

N f

with

N f

 

 






= =

 =

= =

=

 


 

 (A11) 

where g

i  denotes the isotopic fission spectrum in group g , while g

if  denotes the corresponding 

spectrum weighting function. 

8. The vector α , which appears in the expression of the Boltzmann-operator ( )gB α , represents the 

“vector of imprecisely known model parameters,” comprising 21,976 components, which are 

presented in Table A3, below.  

Table A3. Summary of imprecisely known parameters for the PERP benchmark. 

Symbol Parameter Name Number of Parameters 

,

g

t i  
Multigroup microscopic total cross section 

for isotope i  and energy group g  

180 

1,...,6; 1,...,30for i g= =  

'

, ,

g g

s l i →  

Multigroup microscopic scattering cross 

section for l -th order Legendre 

expansion, from energy group g   into 

energy group g , for isotope i  

21,600 

0,...,3; 1,...,6;

, 1,...,30

for l i

g g

= =

 =
 

,

g

f i  
Multigroup microscopic fission cross 

section i  and energy group g  

60 

1, 2; 1,...,30for i g= =  

g

i  
Average number of neutrons per fission 

for isotope i  and energy group g  

60 

1, 2; 1,...,30for i g= =  

g

i  
Fission spectrum for isotope i and energy 

group g  

60 

1, 2; 1,...,30for i g= =  

jq  
Source parameters 1 2 1 2, ; , ;SF SFF F 

1 2 1 2 1 2, ; , ; ,SF SFa a b b    
10 

,i mN  
Isotopic number density for isotope i and 

material m  

6 

1,1 2,1 3,1 4,1 5,2 6,2, , , , ,N N N N N N  

J  Total number of parameters: 21,976 

In view of Eq. (A9), the total cross section ( )g g

t t →  t  is characterized by the following vectors 

of uncertain parameters: 
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† †

1 1,1 2,1 3,1 4,1 5,2 6,2,..., , , , , , , 6,
nJ nn n N N N N N N J =     N  (A12) 

†† 1 2 1

1 , 1 , 1 , 1 , , ,,..., , ,..., ,..., ,..., ,..., ,

1,..., ; 1,..., ; .

t

G g G

t J t i t i t i t i t i I t i I

t

t t

i I g G J I G





     = = = = =
     

= = = 

σ
 (A13) 

In Eqs. (A12) and (A13), the dagger “ † ” denotes “transposition”, ,

g

t i  denotes the microscopic 

total cross section for isotope i  and energy group g , ,i mN  denotes the respective isotopic number 

density, and nJ  denotes the total number of isotopic number densities in the model.  

In view of Eq. (A8), the scattering cross section ( ) ( );g g g g

s s

 → →  → Ω Ω s Ω Ω  is characterized 

by the following vector of uncertain parameters: 

( ) ( )

† †
' 1 1 ' 1 ' 1 2 '

1 , 0, 1 , 0, 1 , 0, 1 , , , ,,..., ,..., , , ..., ,..., ,

0,..., ; 1,..., ; , 1,..., ; 1 .

s

g g g G g g g g g G G

s J s l i s l i s l i s l i s ISCT i I

s

s s

l ISCT i I g g G J G G I ISCT





    = → = = → = = → = → →

= = = = = = =
     

= = = =    +

σ
 (A14) 

In view of Eq. (A10), the quantity ( ) ( )
gg

f f   →  f  in the fission integral 

( ) ( )
4

,
g g

f
r d



 
    Ω Ω  depends on the following vector of uncertain parameters: 

†
1 2 1

, 1 , 1 , 1 , , ,, ,..., ,..., ,..., ,..., ,

1,..., ; 1,..., ; .

f f

G g G

f f i f i f i f i f i N f i N

f f fi N g G J G N

     = = = = =
 
 

= = = 

σ
 (A15) 

†
1 2 1

1 1 1

†

1

, ,..., ,..., ,..., ,...,

,..., , 1,..., ; 1,..., ; ,

f f

f f

G g G

i i i i i N i N

J J J f ff f i N g G J G N
   

     = = = = =

+ +

 
 

= = =   

ν
 (A16) 

and where ,

g

f i  denotes the microscopic fission cross section for isotope i  and energy group g , 
g

i  denotes the average number of neutrons per fission for isotope i  and energy group g , and fN  

denotes the total number of fissionable isotopes. 

The fission spectrum is considered to depend on the following vector of uncertain parameters: 

†
1 2

1 1 1, ,..., ,..., ,..., , 1,..., ; 1,..., ; .
f

g g G g G

i i i i N f p fi N g G J G N    = =

= = =
  = = = 
 

p  (A17) 

In view of Eq. (A11), the quantities g  depend, in turn, on the parameters g

i , , ,i mN  g

if , 

( )
g

f i
 , but these latter dependences can be taken into account by applying the chain rule to the 1st-

order sensitivities gL   , after these sensitivities have been obtained. 

In view of Eq. (A4), the source ( ) ( );g gQ r Q→ q N  depends on the following vector of uncertain 

parameters: 

1 2 1 2 1 2 1

†

2 1 2 , 10., ; , ; , ; , ; ,SF SF SF SF

qF F a a b b J     = q  (A18) 

In view of Eqs. (A12)–(A18), the model parameters characterizing the PERP benchmark can all 

be considered to be the components of the “vector of model parameters” α  which is defined below: 

† †

1,..., ; ; ; ; ; ; , .J t s f t s f p q nJ J J J J J J J
       = + + + + + +     α σ σ σ ν p q N  (A19) 

Thus, the PERP benchmark comprises a total of 

( ) ( ) ( ) ( )1 2 10 6 21,976.f fJ I G G G I ISCT G N G N =  +    + +  +  + + =  imprecisely known (i.e., 

uncertain) model parameters, as summarized in Table A3. Although the numerical model of the PERP 

benchmark comprises 21,976 uncertain parameters, only 7,477 parameters have nonzero nominal values, 

as follows: 180 group-averaged total microscopic cross sections, 7,101 non-zero group-averaged 
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scattering microscopic cross sections (the other scattering cross sections, of which there are 21,600 in 

total, are zero); 120 fission process parameters; 60 fission spectrum parameters; 10 parameters 

describing the experiment’s nuclear sources; and 6 isotopic number densities. 

The nominal value of total leakage, computed by using Eq. (A6) at the nominal parameter values 

(which are denoted using the usual notation 0
α  is ( ) 60 1.7648 10L = α  neutrons/sec. Figure A1, 

below, depicts the histogram plot of the leakage for each energy group for the PERP benchmark.  

 

Figure A1. Histogram plot of the energy-dependent leakage for the PERP benchmark. 
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