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Abstract: This work (in two parts) will review the recently developed predictive modeling
methodology called “4-BERRU-PM” and its applicability to energy systems as exemplified by an
illustrative application to the Polyethylene-Reflected Plutonium (acronym: PERP) OECD/NEA
reactor physics benchmark. The acronym 4t-BERRU-PM designates the “Fourth-Order Best-
Estimate Results with Reduced Uncertainties Predictive Modeling” methodology, which yields
best-estimate results with reduced uncertainties for the first fourth-order moments (mean values,
covariance, skewness, and kurtosis) of the optimally predicted posterior distribution of model
results and calibrated model parameters. The 4"-BERRU-PM uses the Maximum Entropy (MaxEnt)
principle to incorporate fourth-order experimental and computational information, including
fourth (and higher) order sensitivities of computed model responses to model parameters, thus
incorporating, as particular cases, the results previously predicted by the second-order predictive
modeling methodology 2n-BERRU-PM, and vastly generalizing the results produced by extant data
assimilation and data adjustment procedures. The 4-BERRU-PM methodology encompasses the
scopes of high-order sensitivity analysis (SA), uncertainty quantification (UQ), data assimilation
(DA) and model calibration (MC). The application of the 4"-BERRU-PM methodology to energy
systems is illustrated by means of the above-mentioned OECD/NEA reactor physics benchmark,
which is modeled using the neutron transport Boltzmann equation involving 21976 imprecisely
known parameters, the solution of which is representative of “large-scale computations.” The model
result (“response”) of interest is the leakage of neutrons through the outer surface of this spherical
benchmark, which can be computed numerically and measured experimentally. Part 1 of this work
illustrates the impact of high-order sensitivities, in conjunction with parameter standard deviations
of various magnitudes, on the determination of the expected value and variance of the computed
response in terms of the first four moments of the distribution of the uncertain model parameters.
Part 2 of this work will illustrate the capabilities of the 4"-BERRU-PM methodology for combining
computational and experimental information, up to and including forth-order sensitivities and
distributional moments, for producing best-estimate values for the predicted responses and model
parameters while reducing their accompanying uncertainties.

Keywords: predictive modeling; sensitivity analysis; uncertainty quantification; data assimilation;
model calibration; reducing predicted uncertainties

1. Introduction

This work briefly reviews the “4-Order Best-Estimate Results with Reduced Uncertainties
Predictive Modeling” (abbreviated as “4-BERRU-PM”) methodology developed recently by Cacuci
[1] and illustrates its application to energy systems by considering the Polyethylene-Reflected
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Plutonium (acronym: PERP) OECD/NEA reactor physics benchmark [2]. The 4"-BERRU-PM uses the
Maximum Entropy (MaxEnt) Principle [3] to combine sensitivities and moments (up to and including
fourth-order) of the distribution of model parameters and model responses (i.e., results of interest)
which stem from model computations and imprecisely known external experimental measurements.
Using this high-order computational and experimental information, the 4"-BERRU-PM methodology
yields the 4t-order MaxEnt joint posterior distribution of model parameters and responses. In
particular, this posterior distribution yields best-estimate results for the optimally predicted
moments (up to and including fourth-order) of the best-estimate predicted model parameters
(“model calibration”) and predicted responses. The 4-BERRU-PM methodology encompasses the
scopes of high-order sensitivity analysis (SA), uncertainty quantification (UQ), data assimilation (DA)
and model calibration (MC). The 4"-BERRU-PM methodology is currently peerless and includes, as
particular cases, the results delivered by the second-order “2rd-BERRU-PM” predictive modeling
methodology developed by Cacuci [4,5], while vastly generalizing the extant data adjustment [6,7]
and data assimilation methodologies [8-12].

The fundamental importance of the new results provided by the 4h-BERRU-PM methodology
will be highlighted in this work by applying this predictive modeling methodology to the
Polyethylene-Reflected Plutonium OECD/NEA reactor physics benchmark [2]. As has been detailed
by Cacuci and Fang [13], the numerical modeling of the PERP benchmark is performed by using the
neutron transport Boltzmann equation, involving 21976 imprecisely known parameters. The
response (i.e., result) of interest for this benchmark is the total leakage of neutrons through the
benchmark’s outer surface. The computation of high-order sensitivities of the leakage response with
respect to the benchmark’s parameters is representative of “large-scale computations” and has been
accomplished by applying the high-order adjoint sensitivity analysis methodology developed by
Cacuci [14,15], which overcomes the curse of dimensionality [16] in sensitivity analysis.

Section 2 of this work reviews the mathematical forms of the “input information” that needs to
be extracted from the computational model to be incorporated into the 4-BERRU-PM methodology.
Extracting this information requires performing a “4™-order sensitivity analysis” (4"-SA) and a “4%-
order uncertainty quantification” (4%-UQ) of the computational model by propagating the first four
moments (including the means, variances, skewness, kurtosis) of the distribution of model
parameters using the response sensitivities (from first- to fourth-order) to obtain the requisite
moments (from first to fourth) of the distribution of computed responses. This Section also discusses
briefly the computational issues required to alleviate the impact of the ”curse of dimensionality” [16])
when computing such 4%-order sensitivities and uncertainties for energy systems.

Section 3 presents the application of the mathematical concepts reviewed in Section 2 to the
PERP reactor physics benchmark, illustrating the effect of the high-order sensitivities on the expected
value and variance of the computed model response, when considering: (i) parameters that are
known with “high precision” having uniform standard deviations of 2%; (ii) parameters known with
“medium precision” having uniform standard deviations of 5%; and (iii) parameters known with
“low precision” having uniform standard deviations of 10%, respectively. Section 4 concludes this
work by discussing the impact of the combination of parameter uncertainties with high-order
sensitivities on the uncertainties in the computed model, and also prepares the ground for the
continuation, in the accompanying Part 2 [17], of the application of the 4-BERRU-PM methodology
for obtaining predicted best-estimate mean value, standard deviation, skewness, and kurtosis for the
neutron leakage response of the PERP benchmark.

2. Model Sensitivity and Uncertainty Analysis Input for the Fourth-Order Maximum Entropy
Based Predictive Modeling Methodology (4th-BERRU-PM): Review and Applicability to Energy
Systems

The 4t-BERRU-PM methodology uses as “input” the first four moments of the unknown
distributions of the responses computed using a mathematical/computational model, which are
combined using the maximum entropy principle with the first four moments of the distribution of
measured responses. The moments of the distribution of the computed model responses are obtained
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by combining the moments of the distribution of model parameters with the sensitivities of the model
responses with respect to the model parameters. Thus, the moments of the distribution of the
computed model responses are obtained by performing (simultaneously or sequentially) a 4t-order
sensitivity  analysis and a 4%-order wuncertainty analysis of the underlying
mathematical/computational model.

The mathematical expressions of the moments of the computed responses are obtained in terms
of the moments of the distribution of model parameters by expanding formally each response in a
Taylor-series around the nominal or mean parameter values and subsequently using this series,
within its radius of convergence, for obtaining expressions of the moments of the respective responses
in terms of the moments of the model parameters and the response sensitivities (i.e., derivatives) with
respect to the model parameters. General expressions, up to sixth-order sensitivities, for the moments
of computed responses can be found in the book by Cacuci [14], which generalizes the expressions
originally obtained by Tukey [18]. In particular, the following fourth-order Taylor-series expansion

of aresponse, denoted as T, (@), as a function of the parameters @ = (a;, ..., )T , where TP denotes

the total number of parameters under consideration, is used within the 4"-BERRU-PM methodology
to compute the various moments of the distribution of the leakage response in the phase-space of the
benchmark’s total cross section (parameters):
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In Eq. (1), the notation { }. indicates that the functional derivatives within the braces are

computed at the known expected/nominal parameter values, which are denoted as o (using the

superscript “0”); the corresponding column vector of nominal parameter values is denoted as

a’ = (af,...,a?P)' . The quantity &, comprises all quantifiable errors in the representation of the

computed response f (@) as a function of the model parameters o= (e, ..., o )T. Vector and

matrices will be denoted using bold letters while the dagger “ t ” will be used to denote
“transposition.” The symbol “ £ ” will be used to denote “is defined as” or “is by definition equal to.”
The radius/domain of convergence of the series in Eq. (1) determines the largest values of the

parameter variations da; which are admissible before the respective series becomes divergent. In

turn, these maximum admissible parameter variations limit the largest parameter
covariances/standard deviations which are acceptable for using the Taylor-expansion for computing
moments of the distribution of computed responses.

2.1. Input to 4»-BERRU-PM Methodology: 4th-Order Sensitivity and Uncertainty Analysis of Model
Responses to Model Parameters

The moments of the computed model responses are obtained by using the Taylor-series
expansion shown in Eq. (1) of a response in terms of parameter variations. The expression of these
computed response moments up to sixth-order in moments and the parameter distribution and
sensitivities can be found in the book by Cacuci [14]. The 4"-BERRU-PM methodology incorporates
computed response moments up to fourth-order, as provided below.

(i) The expected value, denoted as E,(K ), of a computed response I, (a), for k=1...,TR; the

vector E,(r) of the computed responses is  defined as  follows:

r)é[Ec(l’l),...,Ec(rk),...,Ec(rTR )]T . Up to, and including, the fourth-order response
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sensitivities to parameters, the expected value of a computed response has the following
expression obtained by integrating formally Eq. (1) over the unknown distribution of

parameters:
1R 1P Gr(a 1l IR TP o )
E e t,
c(rk ( ) ;;{60:60{ } K +6;JZ(21{60:60¢ oa } v
(2)
TP TP TP TP 64|’k (a) Y

In Eq. (2), the moments up to and including fourth-order of the unknown distribution of model
parameters are assumed to be known. These moments are as follows: (a) the covariances of two model
parameters, «; and «;, are denoted as ¢j, i,j=1...,TP, where TP denotes the total number of

parameters under consideration; the parameter covariance matrix is denoted as C,, = [CI’J’ ]TP - (D)

the triple-correlations of three model parameters «;, «;, and «,, are denoted as tj, , where

I,J,(=1...,TP; (c) the quadruple-correlations of four model parameters «;, «;, «,, and «,, are

denoted as dj,,, where i, j,(,m=1...,TP.

(i) The correlation, denoted as Cor(ozi N ) , between a parameter «; and a computed response r,,
for i=1...,TP and k=1...,TR; the correlation matrix between parameters and computed
responses is denoted as C:, £[cor(a;, k)] . Up to, and including, the fourth-order response

TPxTR

sensitivities to parameters, the correlation between a parameter and a computed response has
the following expression:

Cor(ai,rk)=i{%} ij _ii{g;;ﬂ)} ij

j=1 j=1 =1
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+= ZZZ{ } G + -
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(iii) The covariances, denoted as cov(rk, ) between two computed responses r, and r,, for
k,l=1,...,TR; the covariance matrix of computed responses is denoted as C;, = [cov(rk g )]TMR

. Up to and including the fourth-order response sensitivities to parameters, the covariance
between two computed responses has the following expression:
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(iv) The triple correlations among three responses, r,, r, and r , k,(,m=1..,TR, which are
denoted as 4 (r,r,,r,) . Up to and including the fourth- order response sensitivities to

parameters, these triple correlations among three responses have the following expression:
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(v) The quadruple-correlations among four responses, ,, r,, r, and r,, for k,/,mn=1..TR,
which are denoted as 4, (K. T,.1,,T, ). Up to and including the fourth-order response sensitivities

to parameters, these quadruple correlations among computed responses have the following

expression:
EEEE | or (a)orn(a)or, (a)or (a "
ainnn)-SEEEEOAOROR) o 0
i=1l j=1 p=1v=1 j u v o0

(vi) The expressions of the triple and quadruple correlations among parameters and responses are
provided by Cacuci [14]; they will not be reproduced here because they are considered to be
negligible by comparison to the other terms used within the 4"-BERRU-PM methodology.

2.2. Applicability of the 4th-Order Sensitivity and Uncertainty Analysis to Enerqy Systems

The expressions of the moments of the distribution of computed responses provided in Egs. (2)—
(6) involve combinations of sensitivities of responses with respect to model parameters and moments
of the distribution of parameters. Consequently, the computation of these moments is tantamount to
performing both a “4t-order sensitivity analysis” (since one needs to compute the respective
sensitivities) as well as a “4™-order uncertainty analysis” (since one determines the respective
moments of the distribution of the computed response in the phase-space of the model’s parameters)
of the computational model under consideration. In principle, sensitivity and uncertainty analyses
can be performed by using either deterministic or statistical methods. The statistical methods
construct an approximate response distribution (often called “response surface”) in the parameters’
space by performing many “forward” computations using the model with altered parameter values,
and subsequently use scatter plots, regression, rank transformation, correlations, and/or so-called
“partial correlation analysis” in order to identify approximate expectation values, variances and
covariances for the responses. These statistical quantities are subsequently used to construct
quantities that play the role of (approximate) first-order response sensitivities. Thus, statistical
methods commence with “uncertainty analysis” and subsequently attempt an approximate
“sensitivity analysis” of the approximately computed model “response surface”. Statistical methods
for uncertainty and sensitivity analysis are reviewed in the book edited by Saltarelli et al. [19].
Although statistical methods for uncertainty and sensitivity analysis are conceptually easy to
implement, they are subject to the curse of dimensionality [16] and cannot compute any sensitivity
exactly. Also, since the response sensitivities and parameter uncertainties are inseparably
amalgamated within the results produced by statistical methods, improvements in parameter
uncertainties cannot be directly propagated to improve response uncertainties; rather, the entire set
of simulations and statistical post-processing must be repeated anew. On the other hand, the
computation by conventional deterministic methods of the n"-order sensitivities (i.e., functional
derivatives of a response with respect to the TP -parameters on which it depends) would also require
at least O(TP”) large-scale computations, so these methods also suffer from the curse of

dimensionality in sensitivity analysis.

Currently, the only methodologies that enable the exact and efficient computation of arbitrarily
high-order sensitivities while overcoming the curse of dimensionality are the “nt-order
Comprehensive Adjoint Sensitivity Analysis Methodology for Response-Coupled Forward/Adjoint
Linear Systems” (n"-CASAM-L) conceived by Cacuci [14] and the “n*-order Comprehensive Adjoint
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Sensitivity Analysis Methodology for Nonlinear Systems” (n"-CASAM-N) conceived by Cacuci [15].
These methods are applicable to compute exactly and efficiently arbitrarily-high order sensitivities
of responses with respect to parameters for mathematical/computational models of any energy
system. The higher the order of computed sensitivities, the higher the efficiency of the n*-CASAM-L
or n"-CASAM-N methodologies by comparison to any other method. For example, as has been
illustrated by Cacuci and Fang [13] and as will be discussed in Section 3, below, the most important
sensitivities of the PERP leakage response are with respect to the 180 uncertain total microscopic cross
sections. For these sensitivities, the nth-CASAM-L needs a single “large-scale” adjoint computation to
obtain all of the 180 first-order sensitivities exactly, by comparison to needing 360 large-scale
computations to obtain them inexactly, using finite differences. Similarly, the n"™-CASAM-L needs
2,075,341 large-scale computations to obtain the 45,212,895 distinct 4t-order sensitivities exactly,
while using finite differences would require 723,404,160 large-scale computations to obtain them
approximately.

3. [llustrative High-Order Uncertainty Analysis of the PERP Reactor Physics Benchmark

The Polyethylene-Reflected Plutonium (acronym: PERP) reactor physics benchmark [2] is a one-
dimensional spherical subcritical nuclear system driven by a source of spontaneous fission neutrons.
The computational model of the polyethylene PERP benchmark used in this work is the same as has
been presented by Cacuci and Fang [13]. For convenience, the main features of this model are
summarized in the Appendix. As discussed in the Appendix, this benchmark comprises 21976
imprecisely known model parameters. The result (“response”) of interest for this benchmark is the
total leakage of neutrons through the benchmark’s outer surface. Since the correlations between these
parameters are unavailable, they will be considered to be uncorrelated and normally distributed, in
accordance with the principle of Maximum Entropy of considering the least biased distribution based
on the available information. Since the parameters are considered to be uncorrelated, the off-diagonal
terms of C,

a

vanish, i.e., ¢ =0 when i# j, while the diagonal terms are the variances of the
respective parameters, denoted as ¢, for i=1...,TP. Since the parameters are considered to be
normally distributed, their third-order (triple) correlations vanish, i.e., t = cor (ai VO, 0 ) =0 forall
i, j,k=1...,TP . Furthermore, the only nonzero fourth-order (quadruple) correlation is the kurtosis
of each individual parameter, which will be denoted as q, i=1...,TP, which is related to the
variance of the respective uncorrelated parameter as follows: g =3¢, where ¢/ denotes the
variance (i.e., standard deviation squared) of the parameter ¢;; all other quadruple correlations
vanish, i.e, o, =0 if i=jzk=/(.

The comprehensive computation of response sensitivities with respect to the model parameters,
up to and including fourth-order sensitivities, was performed by Cacuci and Fang [13], where it was
shown that the most important parameters are the 180 group-averaged microscopic total cross
sections. As has been discussed in the forgoing, these parameters are considered to be uncorrelated;
therefore, only the unmixed sensitivities are influential. The largest unmixed sensitivities occur for
isotope 6 ('H). Table 1, below, presents a comparison of the values of the unmixed relative
sensitivities, from first-order through fourth-order, for isotope 6 (*H). Sensitivities that have absolute
values larger than unity are presented in bold characters. As shown in Table 1, the largest absolute
values for the 1st-, 2nd-) 3rd- and 4™-order unmixed relative sensitivities all occur for the lowest-energy

group (g = 30; thermal neutrons), which are significantly larger than the values of the sensitivities in

other energy groups. Notably, the largest 4"-order unmixed relative sensitivity attains a very large

=30 _g=30 _g=30 __g=30
ok 0k o)

value: S® (af 1Ors 1006 1006 )= 2.720x10°. By comparison, the largest values for the 1st-, 2nd-

and 3r-order unmixed relative sensitivities are: $®(0%%)=-9.366, S (05, 0%¥)=4.296x10°

and SO (%%, 05", 0%%)=-2.966x10*, respectively.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 25 March 2024

Table 1. Comparison of the unmixed relative sensitivities, s® (0'36) ,

d0i:10.20944/preprints202403.1485.v1

(2) ] ]
S (at,G’at,ES) ’

s® (0'36 NS 0'36) ,and S (0'36 10610061 O ) ,9=1,...,30, for isotope 6 ('H).

g Ist-order 2rd-order 3rd-order 4t-order

1 -8.471 x 106 7.636 x 107 6.322 x 108 1.460 x 107
2 -2.060 x 105 2.280 x 10-¢ 4.516 x 108 4.956 x 107
3 -6.810 x 105 9.021 x 106 -4.677 x 107 2.245 x 10-¢
4 -3.932 x 10 6.673 x 10 -8.758 x 106 2.039 x 10>
5 -2.449 x 103 5.549 x 10 -1.216 x 10 2.142 x 10
6 -9.342 x 103 2,935 x 107 -1.123 x 103 1.553 x 10-3
7 ~7.589 x 102 3.949 x 102 —2.690 x 102 3.513 x 102
8 -9.115 x 102 5.604 x 102 —4.380 x 102 5.536 x 102
9 -1.358 x 10! 1.014 x 10 -9.758 x 102 1.416 x 10
10 -1.659 x 10! 1.428 x 10 -1.604 x 10! 2.582 x 101
11 -1.899 x 10! 1.849 x 10 —2.385 x 10! 4.233 x 101
12 -4.446 x 10! 6.620 x 10 -1.373 x 10° 3.815 x 10°
13 -5.266 x 10! 9.782 x 101 -2.590 x 10° 9.015 x 100
14 -5.772 x 10! 1.262 x 100 -3.991 x 10° 1.650 x 101
15 -5.820 x 10 1.391 x 100 -4.581 x 10° 2.208 x 101
16 -1.164 x 10° 4.460 x 100 -2.530 x 10! 1.890 x 102
17 -1.173 x 10° 4.853 x 100 -2.991 x 10! 2.432 x 102
18 -1.141 x 10° 4.828 x 100 -3.049 x 10" 2.543 x 102
19 -1.094 x 10° 4.619 x 100 -2.913 x 10! 2.428 x 102
20 -1.033 x 10° 4.284 x 100 -2.655 x 10! 2.175 x 102
21 -9.692 x 10! 3.937 x 100 -2.388 x 10! 1.915 x 102
22 -8.917 x 10! 3.515 x 100 -2.069 x 10! 1.609 x 102
23 -8.262 x 10! 3.177 x 100 -1.823 x 10! 1.382 x 102
24 -7.495 x 101 2.792 x 100 -1.552 x 10! 1.140 x 102
25 ~7.087 x 10! 2.604 x 100 -1.427 x 101 1.033 x 102
26 -6.529 x 10! 2.349 x 109 -1.260 x 10* 8.932 x 101
27 -5.845 x 10! 2.039 x 100 -1.061 x 10" 7.288 x 101
28 -5.474 x 10 1.885 x 100 -9.678 x 10° 6.565 x 10!
29 -5.439 x 10! 1.891 x 100 -9.800 x 10° 6.705 x 101
30 -9.366 x 10° 4.296 x 102 -2.966 x 10* 2.720 x 106

The effects of various values for the standard deviations for the parameters, which are
considered to be uncorrelated and normally distributed, will be illustrated in Subsections 3.1-3.3,
below, for parameters that are known with “high precision” (having uniform standard deviations of
2%); parameters known with “medium precision” (having uniform standard deviations of 5%); and
parameters known with “low precision” (having uniform standard deviations of 10%), respectively.

3.1.”High Precision” Parameters, Having Uniform Relative Standard Deviations

As has been discussed by Cacuci and Fang [13], when the uncorrelated and normally-distributed
parameters are assumed to have uniform relative standard deviations of 3%, the convergence “ratio-
test” of the 3rd-order term with respect to the 2nd-order term of the Taylor series is 0.58, while the ratio
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of the 4th-order term with respect to the 3r4-order term of the Taylor series is 0.68. Both of these results
are below 1.00, which implies that for uniform relative standard deviations of 3% or less, the Taylor-
series expansion of the computed response in terms of the model parameters shown in Eq. (1) is
expected to be convergent. Figure 1 depicts the magnitudes of the higher-order contributions to the
expected value, E(L"), of the computed leakage response, while Figure 2 depicts the magnitudes of
the higher-order contributions to the variance, var(L) , of the computed leakage response, for
parameters that are assumed to have uniform relative standard deviations of 2% (which is smaller
than 3%). The numerical results depicted in Figures 1 and 2 indicate that the contributions of the
increasingly higher-order terms to the expected value, E(L°), and the variance, var(L"), of the
computed leakage response become increasingly smaller (as the order of the respective terms
increases), thus confirming the expectation that the underlying Taylor-series is convergent. For
practical purposes, therefore, the contributions from terms involving sensitivities of order five and
higher become negligible by comparison to the contributions from the terms comprising the
sensitivities of first-through fourth-order to E(L°) and var(L"), respectively, when the uncorrelated

and normally-distributed parameters have uniform relative standard deviations SD =2%.

2.5 x 10°
o E(Lf
2 2.0x10° &)
3
= 15x 108
>
B 10x 106
g 5
S 50x10
L
0.0 x 10° : . : -
r [E(L)]? [E(LH)™

Figure 1. Contributions to the expected value, E(L°), of the computed leakage response from
parameters having uniform relative standard deviations SD=2%: (i) zeroth-order: L°; (ii) second-
order: [E(L)]?; (iii) fourth-order: [E(L°)]*; (iv) the odd-order contributions are null.

4.0x 101 ¢ var(L")

% 30x101 1

RS

8 20x101 |

S c\(2)

= [var(L")]

S 10x10t [var(L°)]“
0.0 x 10° - .

[var(Z*)]"" [var(L )]

Figure 2. Contributions to the variance, var(L®), of the computed leakage response from parameters
having uniform relative standard deviations SD=2%: (i) first-order: [var(L*)]”; (ii) second-order:
[var(L)]®; (iii) third-order: [var(L°)]®; (iv) fourth-order: [var(L°)].

3.2.”Medium Precision” Parameters, Having Uniform Relative Standard Deviations
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For uniform relative standard deviations of 5% for the uncorrelated and normally-distributed
model parameters, it has been shown by Cacuci and Fang [13] that the ratio of the 3'd-order term with
respect to the 2nd-order term of the Taylor series is 0.97<1.00, but the ratio of the 4th-order term with
respect to the 3rd-order term of the Taylor series is 1.13>1.00. These ratios indicate that relative
standard deviations of 5% for the model parameters are outside of the radius of convergence of the

Taylor-series presented in Eq. (1). These indications are confirmed by the results depicted in Figures
3 and 4, below.

6 __
& 8.0 x 10 E()
=
o 6.0x10% +
=
S
S 4.0x10° T
Q
b
S 20x10° ¢
Ll
0.0 x 10° I } - }
r [E(LHP [E(LH]™

Figure 3. Contributions to the expected value, E(L°), of the computed leakage response from
parameters having uniform relative standard deviations SD =5%: (i) zeroth-order: L°; (ii) second-
order: [E(L%)]?; (iii) fourth-order: [E(L)]“); (iv) the odd-order contributions are null.

6.0 x 1013 T var(L%)
(:'\c/ 4.0 x 108 T [Var(LC)](4)
S
S 20x108 1
(3]
> [var(L)] 2)

0.0 x 100 +=——— "=

[var(L°)]™" [var(L°)]"”

Figure 4. Contributions to the variance, var(L®), of the computed leakage response from parameters
having uniform relative standard deviations SD=5%: (i) first-order: [var(L")]”; (ii) second-order:
[var(L)]®; (iii) third-order: [var(L)]®; (iv) fourth-order: [var(L*)].

The results depicted in Figure 3 indicate that the contributions to E(L) stemming from
second-order sensitivities are smaller than those stemming from the zeroth-order term, L°, but the
contributions to E(L°) stemming from fourth-order sensitivities are larger than those stemming

from the zeroth- and second-order terms. This oscillatory behavior with increasing amplitudes is
indicative of the divergence of the Taylor-series underlying the computation of the expected value,
E(L") . The results depicted in Figure 4 for the variance, var(L"), of the computed leakage response

indicate that the contributions to var(L") increase as the order of the contributing terms increase,

thus underscoring the divergent nature of the underlying Taylor-series when the parameters have
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uniform relative standard deviations of 5%. On the other hand, relative standard deviation of 5% are
often encountered in measurements of total cross sections, which highlights the need for computing
the second and higher-order response sensitivities in order to investigate the convergence properties
of the Taylor-series that underlies the determination of the statistics (expected values, variance, etc.)
of the distribution of computed responses in the phase-space of imprecisely known model
parameters.

3.3. Low Precision” parameters, Having Uniform Relative Standard Deviations

When considering uniform relative standard deviations of 10% for the uncorrelated and
normally-distributed parameters (total cross sections), it has been shown by Cacuci and Fang [13]
that the ratio of the 3rd-order term with respect to the 2nd-order term of the Taylor series is 1.93; the
ratio of the 4th-order term with respect to the 3rd-order term of the Taylor series is 2.26. Both of these
results are larger than 1.00, indicating that the Taylor-series presented in Eq. (1) would be divergent
if used for parameters having standard deviations of 10%. The divergence of the Taylor-series for
such parameter standard deviations is underscored by the corresponding results depicted in Figure
5 for the expected value, E(L"), of the computed leakage response, which clearly indicate the

massive increase of the contributions to E(L°) as the order of the retained terms increases. The

conclusion that the Taylor-series expansion is divergent and should therefore not be used for
parameters with uniform relative standard deviations SD =10% is reinforced by the corresponding
results depicted in Figure 6 for the variance, var(L®), of the computed leakage response. Figure 6 also

highlights that the contributions to var(L") increase massively as the order of the retained terms

increases.
8.0x 10° + ,
@ E(L)
=
> 6.0x10° 1
=
S
5 40x10° 1
Q
(&)
;i 2.0x10% |
L
0.0 x 10° ; . :
L [E(L)]? [E(LHY

Figure 5. Contributions to the expected value, E(L°), of the computed leakage response from
parameters having uniform relative standard deviations SD =10%: (i) zeroth-order: L°; (ii) second-
order: [E(L)]?; (iii) fourth-order: [E(L%)]*; (iv) the odd-order contributions are null.
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4.0 % 10%° T
var(I¢
% 3.0x10% + ik
(:C/ cy1(4)
§ 20 X 1015 1 [Var(L )]
[4+1
S 1.0x10% ¢
[var(L* )]
0.0 x 10° :
[var(Z)]" [var(Z)]"”)

Figure 6. Contributions to the variance, var(L®), of the computed leakage response from parameters
having uniform relative standard deviations SD =10%: (i) first-order: [var(L°)]”; (ii) second-order:
[var(L)]®; (iii) third-order: [var(L)]®; (iv) fourth-order: [var(L*)]’.

4. Concluding Discussion

This work has reviewed the fourth-order “sensitivity analysis” and “uncertainty quantification”
aspects of computational models, the results of which are used as “input” into the 4"-BERRU-PM
methodology. The impact of combinations of sensitivities of increasingly higher order and various
values for the standard deviations of the model’s parameters has been illustrated by using the PERP
reactor physics benchmark. This benchmark is modeled by the neutron transport equation
comprising 21,976 model parameters and is therefore representative of “large-scale” computational
models of energy systems. It has been shown that the series-expansion representation of the expected
value and variance of the computed leakage response is convergent and hence produces reliable
results for normally-distributed parameters having uniform relative standard deviations of 2%. On
the other hand, the series-expansion representations of the expected value and variance, respectively,
become divergent for parameters having uniform relative standard deviations of 5%. This divergence
becomes massive for parameters having uniform relative standard deviations of 10%.

In the accompanying Part 2 [17], the results obtained in this work will be combined, using the
maximum entropy principle within the 4h-BERRU-PM methodology, with the first four moments of
the distribution of measured responses to obtain the best-estimate predicted mean value, standard
deviation, skewness, and kurtosis for the neutron leakage response of the PERP benchmark, thereby
illustrating the applicability of the 4t-BERRU-PM methodology to improve the predictability and
accuracy of models of energy systems.
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Appendix A: Computational Model of the PERP Benchmark

The Polyethylene-Reflected Plutonium (acronym: PERP) reactor physics benchmark [2] is a one-
dimensional spherical subcritical nuclear system driven by a source of spontaneous fission neutrons.
The result (“response”) of interest for this benchmark is the neutron leakage out of the external
surface of this benchmark. The computational model used for determining the neutron distribution
within the benchmark and for determining the sensitivities (up to fourth-order) of the neutron
leakage response with respect to the benchmark’s uncertain parameters has been presented in detail
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in the book by Cacuci and Fang [13]. The PERP benchmark comprises an inner sphere (designated as
“material 1”) which is surrounded by a spherical shell (designated as “material 2”). The inner sphere
of the PERP benchmark contains a-phase plutonium which acts as the source of particles; it has a
radius 1, =3.794 cm. This inner sphere is surrounded by a spherical shell reflector made of

polyethylene of thickness 3.81 cm; the radius of the outer shell containing polyethylene is r,=7.604
cm. Table A1, below, specifies the constitutive materials of the PERP benchmark.

Table A1l. Dimensions and Composition of the PERP Benchmark.

Materials Isotopes Welg.ht Density Zones
Fraction (g/cm?)
Isotope 1 (*°Pu) 9.3804 x 10! Material 1 is
240 -2 1
Material 1 Isotope 2 (**°Pu) 5.9411 x 10 as&gne.d to zone
(plutonium metal) Isotope 3 (¥Ga) 1.5152 x 103 19.6 1, which has a
p radius of 3.794
Isotope 4 ("'Ga) 1.0346 x 103
cm.
Material 2 is
Isotope 5 (12C) 8.5630 x 10! .
assigned to zone
Material 2 2.’ which }.1as an
(polyethylene) 0.95 inner radius of
polyetiy Isotope 6 (*H) 1.4370 x 101 3.794 cm and an
outer radius of
7.604 cm.

The neutron flux distribution within the PERP benchmark has been computed by using the
deterministic software package PARTISN [20], which solves the standard multigroup approximation
of the transport equation for the group-fluxes ¢°(r,Q), which can be written as follows:

BY (a)e? (r,Q)=Q%(a;r), 9g=1..G, (A1)
9 (r,Q)=0,reS, @n<0, g=1..G, (A2)
where:
BY (a)¢? (1,Q) 2 Q:Vo® (r,Q)+2¢ (r)e® (r,Q)
G
D |20 (r. ) e’ (r,Q')dQ’
gz—:li[, ( o' (r. ) (A3)
G ’ '
-2 (N [ ()] (e (r.@)de,
9'=1l4,
Ny .
Q% (o5r) 2D AN, FFvT Ii EEwdE e “*sinhJbE,g=1..,G; (A4)
i=1 0
with
3p &b
Ioé ﬂ:. i g4 (A5)

In Egs. (A4) and (A5), the subscript “i” denotes the number of nuclides within the spontaneous
fission source.

Mathematically, the total neutron leakage from the PERP sphere, which is denoted as L(a), will

depend on all model parameters (indirectly, through the neutron flux) and it is defined, as follows:
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L () £ IdVIdE I dQQ-ns(r-r,)e(r,E,Q)= IdSi I dQ Q-ne?(r,Q). (A6)
% 0 Qn>0 S, 9=1Qn>0

The PARTISN [20] computations used the MENDF71X library [21] which comprises 618-group

cross sections. These cross-sections were collapsed to G =30 energy groups, with group boundaries,

E?, as presented in Table A2. The MENDEF71X library [21] uses ENDF/B-VIIL.1 nuclear data [22]. The

group boundaries, E?, are user-defined and are therefore considered to be perfectly-well known

parameters.
Table A2. Energy group structure, in [MeV], for PERP Benchmark computations.
g 1 2 3 4 5 6
EY 1.50x101 1.35x10! 1.20x101 1.00x101 7.79x100 6.07x100
Eo 1.70x101 1.50x10! 1.35%101 1.20x10! 1.00x10? 7.79x100
g 7 8 9 10 11 12
= 3.68x100 2.87x100 2.23x100 1.74x100 1.35x100 8.23x101
go? 6.07x 100 3.68x100 2.87x100 2.23x100 1.74x100 1.35x100
g 13 14 15 16 17 18
E’ 5.00x10! 3.03x10! 1.84x101 6.76x102 2.48x102 9.12x10-3
Eo? 8.23x10! 5.00x10" 3.03x10! 1.84x10" 6.76x102 2.48x102
g 19 20 21 22 23 24
EY 3.35x103 1.24x10-3 4.54x10+ 1.67x10+ 6.14x10-5 2.26x10-°
ES 9.12x10-3 3.35x10-3 1.24x1073 4.54x10+ 1.67x10+ 6.14x10-5
g 25 26 27 28 29 30
E‘ 8.32x10-¢ 3.06x10-¢ 1.13x10-6 4.14x107 1.52x107 1.39x10-10
go? 2.26x10-° 8.32x10-¢ 3.06x10-¢ 1.13x10-6 4.14x107 1.52x10-7

The source of neutrons in the PERP benchmark is provided by the spontaneous fissions
stemming from 2Pu (Isotope 1) and 2Pu (Isotope 2); there are no delayed neutron or (a,n) sources.

The spontaneous fission source has been computed using the code SOURCES4C [23]. For an actinide
nuclide k, where k=12 for the PERP benchmark, the spontaneous source depends on the

following 12 model parameters: the decay constant 4,, the atom density N, ,, the average number

k,m”
of neutrons per spontaneous fission v, the spontaneous fission branching ratio F", and the two
parameters a, and b, used in a Watt’s fission spectrum to approximate the spontaneous fission
neutron spectrum. The nominal values of these parameters (except for N, ) are available from a
library file contained in SOURCES4C [23], while the nominal values for N, are specified from the

PERP benchmark. These imprecisely known source parameters also contribute to the accuracy of the
neutron transport calculation.

PARTISN [20] uses the discrete-ordinates approximation to discretize the angular variable in the
first and second terms on the right-side of Eq. (A4), and it uses a finite-moments expansion in
spherical harmonics to approximate the angular variable in the third and fourth terms on the right
side of Eq. (A4). The specific computations in this work were performed while using a P Legendre
expansion of the scattering cross section, an angular quadrature of S5, and a fine-mesh spacing of
0.005 cm (comprising 759 meshes for the plutonium sphere of radius of 3.794 cm, and 762 meshes for
the polyethylene shell of thickness of 3.81 cm). It is convenient to retain the continuous representation
in the angular and radial variables since the spatial and angular discretization parameters are
considered to be perfectly well known. The various quantities in Eqgs. (Al)-(A5) have their usual
meanings for the standard form of the multigroup neutron transport equation, as follows:
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9412
1. Using the notation employed in PARTISN [20], the quantity go"l’(l’,Q)éJ.EEH2 o(r,E,Q)dE

denotes the “group-flux” for group ¢, and is the unknown state-function obtained by solving
Egs. (Al) and (A2).

2. The spontaneous-fission isotopes in the PERP benchmark are “isotope 1” (¥*Pu) and “isotope 2”
(#Pu). The quantity N, denotes the total number of spontaneous-fission isotopes; for the PERP

benchmark, N; =2. The spontaneous fission neutron spectra of 2Pu and, respectively, 29Pu,

are approximated by Watt’s fission spectra, each spectrum using two evaluated parameters,
denoted as a, and b,, respectively. The decay constant for actinide nuclide k is denoted as

A, while F denotes the fraction of decays that are spontaneous fission (the “spontaneous
fission branching fraction”).

3. The quantity N, denotes the atom density of isotope i in material m; i=1,..,1, m=1..,M,
where | denotes the total number of isotopes, and M denotes the total number of materials.
The computation of N, = uses the following well-known expression:

LW N,

Nimé&, A
: A (A7)

where p, denotes the mass density of material m, m=1,..,M ; w, denotes the weight fraction of
isotope i in material m; A denotes the atomic weight of isotope i, i=1..,1; N, denotes the

Avogadro’s number. For the PERP benchmark, 1 =6 and M =2, but since the respective isotopes
are all distinct (i.e., are not repeated) in the PERP benchmark’s distinct materials, as specified in Table
Al, it follows that only the following isotopic number densities exist for this benchmark:
NNy Ng NG NG, N,

110 772,10 T U310 T R4 15,20
4. The quantity X?7° (r,ﬂ -Q) represents the scattering transfer cross section from energy group
g, 9'=1..,G into energy group ¢, g =1,...,G . The transfer cross sections is computed in terms of

the | t-order Legendre coefficients o ;°

o~ (of the Legendre-expanded microscopic scattering cross

section from energy group g’ into energy group ¢, forisotope i), which are tabulated parameters,
using the following finite-order expansion:

M=2
2I7(r, Q)= Z 2300 (r, ),
m=1
1=6 ISCT =3

I 00(r, Q) ZN,m Z 21+ e8P (Q-Q), m=12,

s,Li

(A8)

where ISCT =3 denotes the order of the respective finite expansion in Legendre polynomial. The
variable r will henceforth no longer appear in the arguments of the various cross sections since the
cross-sections for every material are treated in the PARTISN [20] computations as being space-
independent within the respective material.

5.  The total cross section X} for energy group ¢, g=1..,G, and material m, is computed for the
PERP benchmark using the following expression:

Z ztm’ tg,m :iNi‘mo'fi = iNi,m O-?,i +U§i +iasg,|zg,} ,m=12, (A9)

g'=1
where of;, and o}, denote, respectively, the tabulated group microscopic fission and neutron

capture cross sections for group g, g =1,...,G . Other nuclear reactions, including (n,2n) and (n,3n)

reactions, are not present in this benchmark. The expressions in Egs. (A8) and (A9) indicate that the
zeroth-order (i.e., 1=0) scattering cross sections must be separately considered from the higher
order (i.e., |>1)scattering cross sections, since the former contribute to the total cross sections, while
the latter do not.
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6. PARTISN [20] computes the quantity (VZf )g using the quantities (vo)fvi , which are provided
in data files for each isotope i, and energy group ¢, as follows:
M=2 1=

(2 =202 i (=2 (o) m=12 (a10

m=1 i=!

o

5N

For the purposes of sensitivity analysis, the quantity v, which denotes the number of neutrons that

were produced per fission by isotope i and energy group ¢, can be obtained by using the relation
ve =(vaf )Ig /cr,gyi , where the isotopic fission cross sections of; are available in data files for

computing reaction rates.
7. The quantity x° denotes the fission spectrum in energy group @ ;itis defined in PARTISN [20] as

a space-independent quantity, as follows:

Zlig Nim i("af )Ig fe

— i G
= : . with Y 70 =1, (A11)

g
Z Ni i(wyf )Ig £ o

where # denotes the isotopic fission spectrum in group ¢, while f? denotes the corresponding

spectrum weighting function.
8. The vector a, which appears in the expression of the Boltzmann-operator B°(a), represents the

“vector of imprecisely known model parameters,” comprising 21,976 components, which are
presented in Table A3, below.

Table A3. Summary of imprecisely known parameters for the PERP benchmark.

Symbol Parameter Name Number of Parameters
Multigroup microscopic total cross section 180
oy . .
’ for isotope i and energy group ¢ fori=1,..6; g=1..,30
Multigroup microscopic scattering cross 21,600
o sect.ion ffor | -th order Legend,re‘ t for1 =0, ' 3iol. 6
expansion, from energy group ¢ . into 9.9'=1...30
energy group @, for isotope i
o Multigroup microscopic fission cross . 60
' section i and energy group ¢ fori=12; g=1..,30
] Average number of neutrons per fission 60
V.
' for isotope i and energy group ¢ fori=12; g=1,..,30
. Fission spectrum for isotope i and energy 60
Zi ; .
group ¢ fori=12; g=1...,30
q Source parameters 4, 4,;F",F,"; 10
’ 8,81, b, v
N Isotopic number density for isotope iand 6
o material m NppiNogiNagoNgy o Ng o N,
J, Total number of parameters: 21,976

In view of Eq. (A9), the total cross section Ef — X7 (t) is characterized by the following vectors

of uncertain parameters:
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i i
Né[nv-"’an] é[Nu’Nzl''\131!'\141"\|521Nez:l v 4, =6, (A12)
i il
St —[t1 b, A[ ti=1’ t. - 1G| = O-I?i""’atl,izl""’o-fizl:| ' (A13)
i=1..1;,90=1..G; J,, =1xG.

In Egs. (A12) and (A13), the dagger “+” denotes “transposition”, o, denotes the microscopic

total cross section for isotope i and energy group g, N, denotes the respective isotopic number

density, and J, denotes the total number of isotopic number densities in the model.
In view of Eq. (A8), the scattering cross section T¢ % (Q'+Q)— 79 (5;Q'+Q) is characterized

by the following vector of uncertain parameters:

U . . . . f
A A g'=1-g=1 g'=G—g=1 g'=1->g=2 g'—g G—-G
o, —[Sl,...,SJﬁ] —I:O-SJ:(),i:]_ s O ot o T ol ""'O-s,ISCT,i:|:| ,

(A14)
1=0,...,1SCT;i=1..,1; 9,g' =1,..,G; J, =(GxG)x | x(ISCT +1).

In view of Eq. (A10), the quantity (V%) —)[vZf (f)]g in the fission integral

I (VZ)? @° (r,Q')dQ’ depends on the following vector of uncertain parameters:
4

G, é[Gi,izl’O-f,izl""’GfG,izll""G?,i""’O-%,i:Nf ,...,O'?Yi:Nf} , (A15)
i=1..,N,; g=1...G; J_, =GxN,.

:
vé[vilzl,vf:l,...,vi(il,...,vig,...,Vil:N' Vi, } A16)

21, e fJO'+JV]T,i:1,...,Nf; 9=1..G;J, =GxN,,

and where o}; denotes the microscopic fission cross section for isotope i and energy group g,
v denotes the average number of neutrons per fission for isotope i and energy group g,and N;

denotes the total number of fissionable isotopes.
The fission spectrum is considered to depend on the following vector of uncertain parameters:

A = - .
PE[ 2 2 v A 2 2, | 1 =1 NG 921,65 3, =GN, (A17)

£,

im? i

In view of Eq. (All), the quantities x° depend, in turn, on the parameters y’, N
(vo-f ) but these latter dependences can be taken into account by applying the chain rule to the 1s-

order sensitivities dL/dy? , after these sensitivities have been obtained.
In view of Eq. (A4), the source Q°(r)— Q°(q;N) depends on the following vector of uncertain

parameters:

qé[/ﬁ/i FSF FSF a, azvbl b VSF sp]fl J =10 (A18)

q

In view of Egs. (A12)—(A18), the model parameters characterizing the PERP benchmark can all
be considered to be the components of the “vector of model parameters” o which is defined below:

e [al,...,aja ]T 2[o,;0,;0, ;v;p;q;N]T N S B VPV (A19)
Thus, the PERP benchmark comprises a total of

Ja=(IxG)+(G><G)><Ix(ISCT+1)+2(G><Nf)+Gfo+10+6=21,976. imprecisely known (i.e.,

uncertain) model parameters, as summarized in Table A3. Although the numerical model of the PERP
benchmark comprises 21,976 uncertain parameters, only 7,477 parameters have nonzero nominal values,
as follows: 180 group-averaged total microscopic cross sections, 7,101 non-zero group-averaged
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scattering microscopic cross sections (the other scattering cross sections, of which there are 21,600 in
total, are zero); 120 fission process parameters; 60 fission spectrum parameters; 10 parameters
describing the experiment’s nuclear sources; and 6 isotopic number densities.

The nominal value of total leakage, computed by using Eq. (A6) at the nominal parameter values
(which are denoted using the usual notation @’ is L(uo) =1.7648x10° neutrons/sec. Figure Al,

below, depicts the histogram plot of the leakage for each energy group for the PERP benchmark.
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Figure Al. Histogram plot of the energy-dependent leakage for the PERP benchmark.
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