
Article Not peer-reviewed version

Hybrid AI-Analytical Modeling of Droplet

Dynamics on Inclined Heterogeneous

Surfaces

Andreas D. Demou * and Nikos Savva

Posted Date: 22 March 2024

doi: 10.20944/preprints202403.1375.v1

Keywords: wetting hydrodynamics; droplet transport; reduced-order modeling; machine learning; Fourier

neural operator

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.



Article

Hybrid AI-Analytical Modeling of Droplet Dynamics
on Inclined Heterogeneous Surfaces

Andreas D. Demou 1,* and Nikos Savva 1,2,*
1 Computation-Based Science and Technology Research Center, The Cyprus Institute, Aglantzia,

Nicosia 2121, Cyprus
2 Department of Mathematics and Statistics, University of Cyprus, Aglantzia, Nicosia 2109, Cyprus
* Correspondence: a.demou@cyi.ac.cy (A.D.D.); savva.nikos@ucy.ac.cy (N.S.)

Abstract: This work presents a novel approach for the study of the movement of droplets on inclined
surfaces under the influence of gravity and chemical heterogeneities. The developed numerical
methodology uses data-driven modeling to extend the applicability limits of an analytically derived
reduced-order model for the contact line velocity. More specifically, while the reduced-order model is
able to capture the effects of the chemical heterogeneities to a satisfactory degree, it does not account
for gravity. To alleviate this shortcoming, datasets generated from direct numerical simulations are
used to train a data-driven model for the contact line velocity, which is based on the Fourier neural
operator and corrects the reduced-order model predictions to match the reference solutions. This
hybrid surrogate model, which comprises of both analytical and data-driven components, is then
integrated in time to simulate the droplet movement, offering a speedup of five orders of magnitude
compared to direct numerical simulations. The performance of this hybrid model is quantified and
assessed in different wetting scenarios, by considering various inclination angles and values for the
Bond number, demonstrating the accuracy of the predictions as long as the adopted parameters lie
within the ranges considered in the training dataset.

Keywords: wetting hydrodynamics; droplet transport; reduced-order modeling; machine learning;
Fourier neural operator

1. Introduction

The motion of droplets is a phenomenon that most people encounter in their everyday lives,
either in the form of vapor condensation on a cold window, water spilling on leaves during the
watering of plants, etc. It is also a phenomenon that is relevant to many applications; from microfluidic
lab-on-a-chip devices that can process a large number of microscopic chemical or biological samples [1],
to coating and 3D printing [2]. For these reasons, there is a great need to understand and control
droplet motion in these and many other applications [see 3, for a review].

From a modeling perspective, the most intricate aspect of a moving droplet is the description
of the multiscale physical processes affecting the contact line dynamics, which originate from the
molecular interactions at the nanoscale. The contact line is defined as the line on the periphery of
a droplet, separating the solid, liquid and gas phases. The associated local contact angle is the angle
formed between the solid-liquid and the liquid-gas interfaces and is typically dictated by the chemistry
of the surface and may exhibit spatial variations and features due to unavoidable randomness on a
natural surface or deterministic by surface design. A solid surface is considered hydrophilic when a
fully equilibrated droplet assumes angles that are smaller than 90◦, and hydrophobic when these are
larger than 90◦. When the droplet is in motion, what we observe macroscopically is that the apparent
contact angle is different from the local one, causing the displacement of the contact line. In surfaces
with no hysteresis effects, the droplet reaches equilibrium when both the local and apparent contact
angles along the contact line match.

The focus of this study is the modeling of droplet motion on inclined, chemically heterogeneous
surfaces. This specific setting is very relevant to water harvesting, with numerous examples in nature
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and relevant bio-inspired applications [4]. Droplets are typically observed to remain stationary on
the inclined surface up to a critical inclination angle, beyond which the droplet moves downhill as
it is able to overcome the surface heterogeneities be they natural or artificial. For larger inclination
angles, instabilities may develop, leading to the formation of cusps and even droplet breakup [5,6]. The
impact of structured surface heterogeneities has also attracted interest in recent years, especially with
the advent of specialized surface fabrication technologies. Several experimental studies focused on
uncovering the influence of heterogeneous features on the critical inclination angle and the subsequent
dynamic sliding behaviour [7–12]. Going even further, Varagnolo et al. [13] studied the influence of
the shape of the hydrophobic regions, suggesting practical criteria for surface designing in order to
tune the static and dynamic behavior of droplets. In more “exotic” applications, researchers were
able to make droplets run uphill either with a heterogeneity gradient opposing the gravity field [14],
or with vibrations [15]. Moreover, approaches based on mathematical modelling and analyses were
also utilized to study idealized geometries, typically adopting simplifying assumptions [16,17] which
limited their applicability in more realistic scenarios.

Thus, numerical modelling emerges as an attractive alternative approach to go past the limitations
of analytical results and mitigate the need for specialized equipment for accurate experiments.
Numerical studies, however, also adopt different approaches. For example, lubrication-type models
that are derived as approximations of the Navier–Stokes equations and apply for small contact
angles and negligible inertia, have been employed to study droplets on inclined surfaces, with or
without chemical heterogeneities [18–21]. Moreover, Afkhami et al. [22] conducted direct numerical
simulations (DNS) to study forced dewetting, comparing their results against Cox’s contact line velocity
model [23]. Relevant computational fluid dynamics (CFD) studies emerged, studying various wetting
hydrodynamic settings for realistic apparent contact angles [24–28]. Other numerical approaches
include Lattice–Boltzmann methods [29–31], phase-field methods [32,33], and to a lesser extend
molecular dynamics [34,35], and smooth particle hydrodynamics [36]. Even though these numerical
approaches offer a reliable alternative to costly experiments, they are typically associated with a high
computational cost and significant runtime.

The astounding uptake of data-driven methods in science and engineering has showcased the
potential to accelerate numerical solutions in different disciplines. Specifically for fluid dynamics [37],
common examples of enhancing the solution efficiency through data-driven methods include
turbulence modelling through Reynolds averaged Navier–Stokes and large eddy simulations [38,39]
and super-resolution, where coarse simulations are processed by data-driven models to infer the
solution to higher resolution grids [40–42]. Another promising approach is the construction of hybrid
surrogate models, which combine data-driven and reduced-order models. Characteristic examples
of this approach are two works that developed surrogate models for the prediction of the kinematics
of spherical particles [43] and bubbles [44], as well as the recent study by the present authors for the
dynamics of thin droplets on heterogeneous surfaces without gravity [45]. With this kind of hybrid
modelling, the data-driven component of the model learns to correct and extend the applicability of
an analytically derived reduced-order model using the full simulation data as a reference solution.
This approach demonstrated improved agreement with the reference solution compared to the base
reduced-order model, expanding its regime of applicability to tackle more complex scenarios, and also
exhibited better generalizability compared to fully data-driven models.

Specifically, the aforementioned study by Demou and Savva was a proof-of-concept study in
which a hybrid analytical/data-driven modelling approach was utilized for the first time in the context
of wetting hydrodynamics, which was based on training datasets that were efficiently generated for
lubrication-type models [45]. In the limit of thin droplets, the asymptotic theory of Lacey [46] applies,
which provides a reasonably accurate estimate for the normal component of the contact line velocity.
Although higher-order corrections to this result have been obtained via analytical means [47], this
study demonstrated that the data-driven route is also applicable, especially for cases where improving
upon a simplified low-order model becomes a formidable challenge. Within this approach, the hybrid
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model for the contact line velocity consists of the superposition of Lacey’s model and its data-driven
counterpart, which was then evolved using the method of lines with a standard ordinary differential
equation (ODE) solver. The model was shown to considerably shorten simulation times compared to a
full numerical simulation, and to be able to capture the dynamics accurately even for heterogeneity
profiles that were very different from the heterogeneity profiles seen during training.

The present work expands upon this modelling framework to describe the dynamics of droplets
that are driven by the interplay of chemical heterogeneities and the gravitational force, using (i) full
DNS datasets and (ii) a reduced-order model which is based on the theory of Cox [23] which does not
explicitly account for the effects of gravity, so that they are entirely accounted for by the data-driven
model. In Section 2, the mathematical and numerical framework used to generate the datasets and
train the data-driven model is described. This is followed by the presentation of the results of this
study, including the testing of the hybrid surrogate model in different settings in Section 3. Finally,
Section 4 concludes this study with a summary of the key results.

2. Governing Equations and Numerical Methods

The goal of this study is to train data-driven models to predict the droplet dynamics for a
system that is schematically shown in Figure 1. More specifically, a liquid droplet with density
ρ̂1 and viscosity µ̂1, which is surrounded by a gas phase with corresponding properties ρ̂2 and µ̂2

(hats denote dimensional quantities), slides under the influence of gravitational acceleration ĝ over
a chemically heterogeneous surface with inclination angle αi. The surface tension σ̂ of the two-fluid
interface, and the chemical character of the substrate, as expressed through the local contact angle
θ∗, influence the dynamic behaviour of the droplet and its shape. Considering the case set-up, the
relevant dimensionless groups are the Reynolds number Re = Ûre f L̂re f ρ̂1/µ̂1, characterizing the
relative influence of inertial over viscous effects, the capillary number Ca = µ̂1Ûre f /σ̂, characterizing
the relative influence of viscous over capillary effects, and the Bond number, Bo = ρ̂1 ĝL̂2

re f /σ̂, for

capturing the relative importance of gravity to surface tension. In these dimensionless groups, L̂re f
is the characteristic length scale taken to be the domain size, and Ûre f = (σ̂/(ρ̂1 L̂re f ))

1/2 is the
characteristic velocity scale.

To generate the training dataset, a number of DNS cases are run and the evolution of the contact
line is extracted under different conditions. In all cases, an initially hemispherical droplet of radius
0.125 was placed on a solid surface at the bottom of a 1 × 1 × 1 box, with open boundaries everywhere
else. The density and viscosity ratios between the two fluids were set to 0.1, and Reynolds and
Capillary numbers to Re = 0.1, Ca = 10. The surface inclination angle and the Bond number were
varied within αi ∈ [0, 80◦], and Bo ∈ [0, 5] respectively. Furthermore, the initial position of the droplet
and the heterogeneity profile on the inclined substrate were also varied, with more details provided
in Section 3. The following paragraphs provide a description of the mathematical and numerical
framework used to generate the datasets and train the data-driven models.
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Figure 1. Visualisation of a typical simulation setup, with an initially hemispherical droplet sitting on a
chemically heterogeneous inclined surface. Darker shaded regions on the surface are more hydrophobic
than lighter shaded regions.

2.1. Governing Equations for DNS

The governing equations for the wetting scenarios considered are the two-phase Navier–Stokes
equations, including the effects of surface tension and gravity. The two different fluids (resembling a
liquid and a gas) are differentiated with a colour function C(x, t) [48]. Considering that volume Ω1(t)
is occupied by fluid (1) and Ω2(t) by fluid (2), with boundaries ∂Ω1(t) and ∂Ω2(t), respectively, the
colour function is defined as

C(x, t) =

{
1 if x ∈ Ω1(t),

0 if x ∈ Ω2(t),
(1)

with the interface between the two fluids denoted by S(t) = ∂Ω1(t)
⋂

∂Ω2(t), which is the part of the
boundary that is common to both regions. The physical fluid properties in the whole domain can be
obtained as a weighted average between the fluid properties of each phase,

ψ(x, t) = C(x, t)ψ1 + (1 − C(x, t))ψ2, (2)

where ψ is the value of a relevant property in the entire domain and subscripts “1” and “2” indicate
the property values in each phase.

Within this setting, the governing equations are recast in dimensionless form as,

∇ · u =0, (3a)

∂C
∂t

+∇ · (Cu) =0, (3b)

∂ρu
∂t

+∇ · (ρuu) =−∇p +
1

Re
∇ ·

[
µ
(
∇u + (∇u)T

)]
+

1
Re Ca

κδ(x − xs)n̂ + Boρ sin(αi). (3c)

The density and viscosity are made dimensionless using the corresponding values of fluid (1), while the
pressure scale is taken as p̂re f = ρ̂1Û2

re f . The two-fluid interface is characterised by a unit normal vector
n̂, a delta function centered on the interface located at xs, δ(x − xs), and a local surface curvature κ.

The open source code Basilisk ([49–51]) is utilized to solve equations (3), subject to appropriate
boundary and initial conditions (described in Section 3). Basilisk specializes in solving partial
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differential equations on adaptive Cartesian meshes. The dynamics of the two-fluid interface
(Equation (3b)) is captured by a conservative, non-diffusive geometric volume-of-fluid method. The
chemical heterogeneities on the inclined substrate are expressed through the local contact angle, which
is implemented numerically using height functions [52,53]. The discretization of viscous forces follows
an implicit formulation, while the surface tension forces are modelled using the continuous surface
force method [54]. The resulting Poisson equation for the pressure is solved with a build-in iterative
multigrid solver. To further increase the efficiency of the solution, Basilisk provides the option of
using adaptive mesh refinement, based on customized criteria. In the context of the present study, it is
desired to maintain a higher spatial resolution in the vicinity of the two-fluid interface, compared to
less active regions. This leads to obtaining accurate solutions on a discretized domain with significantly
less grid nodes. The code was extensively validated in a variety of multiphase flow problems (see
http://basilisk.fr/) and is widely used in contact line studies (see, e.g., [27,55,56]).

2.2. Reduced-Order Model

In the limit of negligible inertia and small Ca, Cox developed an asymptotic model for the velocity
normal to the contact line ûcl [23], in the form

ûcl =
σ̂

µ̂1

 G (ϑ∗)− G (ϑ)

ln
(

λ

c0

)
+

Qo

g (ϑ)
− Qi

g (ϑ∗)

 (4a)

where ϑ and ϑ∗ are the apparent and local contact angles, respectively,

G(θ) =
∫ θ

0

dx
g(x)

, (4b)

and

g(x) =
2 sin(x)

[
q2 (x2 − sin2 x

)
+ 2q

(
x(π − x) + sin2 x

)
+
(
(π − x)2 − sin2 x

)]
q
(

x2 − sin2 x
)
(π − x + cos x sin x) +

(
(π − x)2 − sin2 x

)
(x − cos x sin x)

. (4c)

In Equation (4a), c0 is the azimuthally averaged droplet radius, and q = µ2/µ1 in Equation (4c) is
the viscosity ratio between the two fluids. In this formulation, ϑ is derived from the solution to the
Young–Laplace equation for specified contact line shape.

In Cox’s approach, ucl was based on an asymtptotic expansion into the vicinity of the contact
line by assuming a wedge-like geometry, with the details of the dynamics in the bulk of the droplet
and the dynamics of the entire flow field in the vicinity of the contact line being encoded by the
parameters Qo and Qi, respectively. These, in addition to the parameter λ, which corresponds to the
slip length, were fitted to the DNS data to best approximate the output of the simulations. To that end,
four preliminary simulations were carried out, describing the spreading of an initially hemispherical
droplet on homogeneous substrates with local contact angles of ϑ∗ = 45◦, 75◦, 105◦, and 135◦, which
span a broad spectrum of local contact angles. The simulations were conducted for 3 dimensionless
time units, within which the droplets spread on the substrate, but are still far from equilibrium so that
contact line velocities do not become vanishingly small. For carrying out the fitting of DNS data with
equation (4a), an explicit expression for ϑ is used (see Equation (A13)), and contact line snapshots were
collected at intervals of 0.1 dimensionless time units. Using least-squares fitting for the contact line
velocity, the values obtained were λ = 0.220, Qo = 1.94 and Qi = 0.537, with a mean relative deviation

∑N
i=1

∣∣∣(ucox
i − udns

i

)
/udns

i

∣∣∣ /N = 11.1%, where N = 120 is the total number of contact line snapshots
considered. These parameters were held constant for all tests presented in this study.

The only difficulty in using Equation (4) for chemically heterogeneous substrates is the calculation
of the apparent contact angles θ. To overcome this bottleneck, an approximation to the contact angle
model is obtained in Appendix A, see Equation (A16). This model is based on a perturbation expansion
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to the Young–Laplace equation, assuming a spherical and a circular contact line at leading order, and
it naturally deviates from the expected solution as the contact line deformation becomes larger (see
Figure A3 for the mean absolute error estimation). Nonetheless, due to the parameter ranges considered
in the present study (described in Section 3), contact line deformations are generally weak and the
approximate contact angle model yields sufficiently accurate results to be used for the training of the
data-driven models.

2.3. Data-Driven Method

The aim of the data-driven modeling procedure is to approximate a mapping GΘ between an
input and an output function space, i.e. O = GΘ [I ], where I is an instance of the input function space,
O is an instance of the output function space, and Θ are the model parameters. Kovachki et al. [57]
presented a formulation based on neural operators, approximating this mapping as,

GΘ = Q ◦ σ (WL +KL) ◦ · · · ◦ σ (W2 +K2) ◦ σ (W1 +K1) ◦ P . (5)

Within this approach, the input is first lifted to a higher parameter space with operator P . Then, a
local linear operator W1 and an integral kernel operator K1 are applied, followed by the activation
function σ. This last operation is applied L times with different Wn and Kn operators, before operator
Q projects the output back to the solution space. Choosing Fourier transforms to construct the integral
kernel operators, leads to the Fourier neural operator (FNO) architecture [58], where each σ (Wn +Kn)

operator called a Fourier layer, and

Kn Ĩ = F−1 [RnF
[
Ĩ
]]

. (6)

In the above expression, operator F transforms the input Ĩ to the Fourier space, where the weights of
the Fourier modes Rn are learned during training. Then, the inverse Fourier transform F−1 transforms
the result back to the physical space. Overall, the model parameters Θ consist of the elements of Q, P ,
Ri and Wi, for i = 1, . . . , L. Figure 2 shows a schematic representation of the FNO architecture, and
the interested reader is referred to the contribution by Li et al. [58] for more details.

Fourier layer 1 Fourier layer 2 · · · Fourier layer LIN OUT

Fourier Layer 2

input output

F F−1

σ+

W2

R2

P Q

Figure 2. Schematic representation of the FNO architecture as presented in [58]. Top panel: The
overall architecture. First, operator P lifts the input to a higher-dimensional space, followed by a series
of Fourier layers, before operator Q projects the output back to the solution space. Bottom panel:
Representation of a single Fourier layer. The input is passed through two parallel branches, before
merging together to apply the activation function σ. In the top branch, forward and inverse Fourier
transforms are applied to facilitate the learning of the weights Ri in the Fourier space. In the bottom
branch, a single local linear operator Wi is applied.

The role of FNO-based models in the present work is correcting Cox’s reduced-order model
presented in Section 2.2 in order to approximate the DNS solution. As previously mentioned, this
approach is an extension of a previous work by Demou and Savva [45] that developed a data-driven
workflow for wetting hydrodynamics in the limit of very small apparent contact angles, without
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gravity effects. In the referred study, the data-driven model provided higher order corrections to
the reduced-order model. These corrections were approximately independent from the chemical
heterogeneities on the substrate, leading to data-driven models were able to generalize well even
for cases with significantly different heterogeneity profiles. A different approach is required in the
present study because the droplets migrate mainly due to the gravity force, but their movement is
also affected by the presence of the chemical heterogeneities on the substrate. As the effects of gravity
are not incorporated in Cox’s reduced-order model, the developed data-driven model will focus on
correcting Cox’s predictions with respect to the gravity induced translation motion. Therefore, the
trained model will provide the correction to the first Fourier harmonic of the velocity normal to the
contact line (i.e. translational droplet motion) and will be combined with Cox’s reduced-order model
for the prediction of the higher Fourier harmonics (i.e. droplet spreading).

More specifically, the inputs to the data-driven model are the physical space representation
of the first Fourier harmonics of the apparent contact angle, F−1[F1[ϑ]](ϕ), the local contact angle,
F−1[F1[ϑ∗]](ϕ), which are essentially low-pass filters of ϑ(ϕ) and ϑ∗(ϕ), and the gravity component
which is approximately normal to the contact line, ĝ sin αi sin ϕ. All three inputs are functions of
the azimuthal angle, ϕ, that parametrizes the contact line in a moving coordinate system centred
at the centroid of the wetted area. The output of the model is expected to approximate the first
Fourier harmonic of the difference between the velocities normal to the contact line as predicted
by the DNS and the reduced-order model, uAI

cl ≈ F−1[F1[uDNS
cl − uCOX

cl ]](ϕ). The model is trained
with Ntot = Ntrain + Ntest contact line snapshots from the DNS cases, therefore the training error is
defined as,

Etrain =
1

Ntrain

Ntrain

∑
n=1

∥∥On
AI −On

ref

∥∥
2∥∥On

ref

∥∥
2

, (7)

where, OAI is the output of the data-driven model and Oref is the corresponding reference solution. The
testing error, Etest, is similarly estimated using Ntest samples. In all snapshots considered in the training
and testing datasets, the DNS solution and Cox reduced-order model prediction never exactly match.
Therefore, Oref, which quantifies their difference, never vanishes and the summands in Equation (7)
never diverge. This is even true for DNS snapshots for which the droplets are at equilibrium, since,
due to the estimation errors in the contact angle, ûcl does not vanish. Once the data-driven model
is successfully trained, the data-driven velocity predictions are added to the predictions of Cox’s
reduced-order model to form the hybrid contact line velocity model, uh

cl = uCOX
cl + uAI

cl . This hybrid
model is then used to evolve the solution in time using standard time integration schemes that are
typically adopted for the numerical solution of ODEs.

Many variations of the training procedure described above were tested in order to identify the best
available approach to model droplet dynamics on inclined heterogeneous surfaces. These preliminary
training approaches included (i) different forms of the loss function, (ii) different activation functions,
(iii) retaining more Fourier harmonics in the input and output of the AI model, (iv) including the
contact line shape and the gravity component normal to the inclined substrate as input to the AI model,
among other attempts. The training procedure described above emerged as the best approach that
balances both accuracy and robustness in predicting the future state of a moving droplet in the wide
range of tests presented in Section 3.

2.4. Error Measure Based on the Fréchet Distance

The accuracy of the developed model must be assessed on its ability to predict the contact line
position at a given time, a measure that is not provided by Equation (7) as it is based on the difference
between the predicted and reference contact line velocities. Therefore, a more relevant error measure
is utilized, defined at any specific time instance of a simulation as,

EFr(t) = dF (cAI(t), cDNS(t))
√

π

4ADNS(t)
. (8)
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Here, cAI(t) and cDNS(t) are the contact line positions as predicted by the AI and the DNS at time t
respectively, and dF(cAI(t), cDNS(t)) is the Fréchet distance, characterising the similarity between two
curves [59]. This similarity measure takes into account both the location and ordering of the points
along the curves. By normalizing the Fréchet distance with a characteristic diameter (derived from
the area ADNS of the wetted region), this error measure becomes equal to 100% for two externally
tangent circles of the same radius. In the following sections, the progress of the training and testing of
the data-driven models is quantified using Etrain and Etest (defined in Equation (7)), while the model
performance in accurately predicting the contact line position in representative demonstration cases is
quantified using EFr at specific times.

3. Results

3.1. Modeling Parameters

All DNS cases consider a single droplet moving on a chemically heterogeneous inclined surface,
in a setup that is illustrated in Figure 1. As mentioned in Section 2, the computational domain is
a 1 × 1 × 1 box, with the solid surface at the bottom and open boundaries everywhere else. An
initially hemispherical droplet of radius 0.125 was placed with the center of its contact line at some
random location (xc, yc) towards the middle upper half of the domain, where xc ∈ [0.45, 0.55] and
yc ∈ [0.2, 0.25]. The gravity field was given by g = g(sin αiŷ − cos αi ẑ), where ŷ and ẑ are the unit
vectors along the y- and z-directions, and αi ∈ [0, 80◦]. The density and viscosity ratios between the
two fluids are set to 0.1. Considering the scales introduced in Section 2.1, the adopted values for the
dimensionless groups are Re = 0.1, Ca = 10 and Bo ∈ [0, 5], where the Bond number varies randomly
to produce different values for g. These dimensionless groups were selected instead of the arguably
more physical choice of employing droplet-based dimensionless groups using, e.g., the initial droplet
radius and the contact line velocity as the length and velocity scales, leading to Red, Cad, and Bod,
because the contact line velocity is not available a priori. Scrutinizing the simulations, a typical contact
line velocity is in the order of 0.01, leading to droplet-based dimensionless groups in the order of
Red ∼ 10−3, Cad ∼ 0.1 and Bod ≲ 0.1. Considering the small Cad and Bod values, it is expected that
the droplets will assume weakly perturbed spherical cap shapes as they slide on the inclined surface,
such that the approximate contact angle model in Equation (A16) can provide reliable estimates.

The bottom surface assumes heterogeneity profiles generated by the multiparameter function

Θ(x, y) = π/2 + p1 tanh
[
p2 cos

(
p3 (x̃ sin p5 + ỹ cos p5)

)
cos
(

p4 x̃
)]

, (9)

where x̃ = x cos p6 − y sin p6 and ỹ = x sin p6 + y cos p6. Parameters p1, . . . , p6 are uniformly
distributed random numbers within the ranges,

p1 ∈ [0, π/36], p2 ∈ [−5, 5], p3, p4 ∈ [0, 20], p5 ∈ [−π/2,+π/2], p6 ∈ [−π,+π].

A similar function was also adopted in our previous study [45], validating that the rich distribution of
heterogeneity profiles enhances the diversity of the training samples that will be subsequently used
for the data-driven model training.

As mentioned in Section 2.1, the simulations were carried out with Basilisk, using a
Courant–Friedrichs–Lewy (CFL) criterion of CFL=0.8, and an adaptive Cartesian grid that is
dynamically modified in the visinity of the two-fluid interface. More specifically, the grid is locally
refined or coarsened in an octree structure, by monitoring the discretisation error of the indicator
function C, as estimated by wavelet transforms. The present study adopted maximum and minimum
grid spacing values of ∆xmax = 2−5 and ∆xmin = 2−8 respectively. To verify the accuracy of the
solutions with such a grid, Figure 3 shows a comparison against a higher resolution grid with
∆xmax = 2−6 and ∆xmin = 2−9. Even though the higher resolution simulations used 4 times more CPU
cores, the wall time was approximately 6 times longer compared to the lower resolution simulations.
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Nonetheless, the final solutions predicted with the two different grids are in satisfactory agreement,
with an error based on the Fréchet distance of 4.8% after 60 dimensionless time units. This small
deviation highlights the fact that, with ∆xmax = 2−5 and ∆xmin = 2−8 the available computational
resources can be efficiently utilised to generate a significant sample size, without a considerable adverse
effect on the solution accuracy.

𝑡 = 0

𝑡 = 30

𝑡 = 60

00.20.40.60.81.0

0

0.2

0.4

0.6

0.8

1.0
𝑥

𝑦

80◦

84◦

88◦

92◦

96◦

100◦

Figure 3. Comparison between coarse simulations on an adaptive Cartesian grid with ∆xmax = 2−5

and ∆xmin = 2−8 (red dashed lines) and finer simulations with ∆xmax = 2−6 and ∆xmin = 2−9 (black
lines), at different time instances. The errors based on the Fréchet distance are 2.4% at t = 30 and 4.8%
at t = 60. The background shading describes the heterogeneity profile on the substrate.

Overall, 160 DNS cases were carried out for an average duration of 50 dimensionless time units.
Cases that either reached the domain boundaries or got pinned on the heterogeneity patterns were
ended prematurely, while cases that still exhibited droplet movement far from the boundaries were
run beyond 50 time units. These simulations provided over 80,000 snapshots, taken at intervals of 0.1
dimensionless time units, to be used as training and testing samples. Each snapshot was post-processed
to extract the contact lines and parametrise them in terms of 128 uniformly distributed points along the
azimuthal direction ϕ. These contact line profiles were subsequently used to calculate: (i) the velocities
normal to the contact line uDNS

cl (ϕ, t) using finite differences, (ii) the local contact angles along the
contact line from Equation (9), i.e. ϑ∗(ϕ, t) = Θ(xcl(ϕ, t), ycl(ϕ, t)), and (iii) the apparent contact angles
ϑ(ϕ, t) from Equation (A16). Overall, each sample (corresponding to a snapshot in time) comprised of

• input data: [ϑ∗(ϕ), ϑ(ϕ), g sin αi sin ϕ], where the last term corresponds to the component of the
acceleration of gravity on the xy-plane which is approximately normal to the contact line, and

• target data: uDNS
cl (ϕ)− uCOX

cl (ϕ)

In total, 64,000 samples were used for training (i.e. 80% of the total sample size) and the remaining
16,000 for testing. The training lasted for 500 epochs, adopting a Rectified Linear Unit (ReLU) as
the activation function, a batch size of 20 samples, and an initial learning rate of 10−3, which was
halved every 50 epochs. Taking advantage of the use of Fourier transforms, the trained model was
structured to retain only the first Fourier harmonic which can be interpreted as providing corrections
to Cox’s reduced order model only for the translation motion of the droplet, as opposed to local
spreading which is expected to be captured by Cox’s model fairly accurately. The remaining FNO
hyperparameters, i.e. the width w of the channel space after the application of the lifting operator
P , and the number of Fourier layers FL (see Figure 2), were tuned after a series of preliminary
experiments, considering values w = {32, 64, 128, 256} and FL = {1, 2, 4, 8}. Table 1 presents the
testing errors Etest for all these preliminary trained models, revealing that the values w = 64 and
FL = 8, lead to the best performing model, with 173,121 learning parameters. Adopting the best
performing set of hyperparameters, Figure 4 shows the evolution of the training and testing errors as a
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function of the training epochs, considering two different sample sizes. The final testing error for the
smaller sample size is 16.4%, approximately 1.5% larger than the larger sample size. This observation
suggests that further increasing the sample size will only have a small impact on the model accuracy.
Admittedly, such testing errors may appear relatively large in the context of data-driven surrogate
models. Nonetheless, the role of this data-driven model is to correcting an existing reduced-order
model which, in some cases, provides predictions that are close to the target solution, with very small
correction margins and, therefore, large relative errors.

Table 1. Test errors for the different FNO-related hyper-parameters, namely the width w of the channel
space after the application of the lifting operator P , and the number of Fourier layers FL (see Figure 2).
The lowest testing error is highlighted with gray background.

w FL = 1 FL = 2 FL = 4 FL = 8

32 0.203 0.183 0.164 0.153
64 0.203 0.182 0.165 0.149

128 0.204 0.174 0.164 0.151
256 0.205 0.169 0.163 0.152

0 100 200 300 400 500
0.1

0.2

0.4

0.6

0.8
1.0

epoch

𝐸

𝑁train = 64, 000
𝑁test = 16, 000
𝑁train = 32, 000
𝑁test = 8, 000

Figure 4. Training and testing errors as a function of the number of epochs. Two different sample sizes
are considered, with Ntot = 40, 000 (red lines; Ntrain = 32, 000 and Ntest = 8, 000) and Ntot = 80, 000
(black lines; Ntrain = 64, 000 and Ntest = 16, 000). Dashed and solid curves show the training errors
Etrain and testing errors Etest, respectively.

Figure 5, shows the velocity contributions from the reduced-order model and the data-driven
model, as well as a comparison between the overall model prediction and the reference DNS solutions
for two cases, considering the same Bond number but different inclination angles. For reference, the
droplet trajectories for these two cases and heterogeneity profile are depicted in Figure 8(a) and (c). As
clearly shown, in these two cases the reduced-order model cannot predict the large-scale translational
motion of the droplet, as explained in Section 2.3. This observation provided the motivation to combine
the reduced-order model, which describes the spreading motion relatively accurately, with an AI
model that focuses on the translational motion and does not interfere with spreading. As expected, the
reference contact line velocities in the large inclination angle case are significantly larger than the small
inclination angle case, requiring the AI contribution to bridge the gap between reduced-order model
and the DNS solution. In both cases, the predictions of the overall model follow the DNS solution
closely, which can be used in a method-of-lines time integration procedure to predict the droplet
position in time. Within this framework, the whole numerical integration takes a few seconds on a
typical laptop computer, as opposed to days of runtime on high-performance computing resources for
the corresponding DNS run, amounting to a speedup of at least five orders of magnitude.
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Figure 5. Azimuthal distribution of different velocity components under (a) Bo=5 and αi = 40◦, and
(b) Bo=5 and αi = 80◦. The trajectory followed by the droplet and the heterogeneity profile used in
these cases are depicted in Figure 8(a) and (c) respectively. The distributions presented in this figure
correspond to t = 5. The predicted solution (red line) is calculated by summing the reduced order
model prediction (blue line) and the AI model prediction (red dashed line).

3.2. Tests

To assess the accuracy of the hybrid surrogate model in different wetting scenarios, this section
presents a series of test cases adopting heterogeneities that were not encountered during training. First,
Figure 6 shows comparisons between the hybrid surrogate model predictions and the corresponding
DNS solutions for different heterogeneity profiles, considering αi = 60◦ and Bo = 5. Figure 6(a)
uses a homogeneous profile with Θ(x, y) = 80◦, while panels (b) and (c) of the same figure assume
profiles that are defined by specific parameter choices in Equation (9). For the homogeneous case,
Cox’s reduced-order model plays a minor role in the contact line velocity prediction since the contact
line quickly assumes a constant shape and the droplet descends with constant speed throughout the
simulation. Hence, to a large extend, the movement of the droplet is described by the AI component of
the hybrid model. The hybrid surrogate model results in a 2.9% Fréchet-based error, which attests to
the capability of the AI component to provide a reliable estimation of the translation motion of the
droplet, at least on simple homogeneous substrates. In Figure 6(b), the droplet experiences pinning
and depinning states as it moves over the horizontal striped features, altering the contact line shape
and the apparent contact angles, therefore the importance of Cox’s reduced-order model contribution
is elevated. Still, in this scenario the predictions of the hybrid surrogate model exhibit an error as low
as 4.8% compared to the reference DNS solution. Finally, Figure 6(c) exhibits a case where the droplet
is quickly pinned due to the configuration of the chemical heterogeneities, in which case the hybrid
surrogate model excellently reproduces the dynamics. It is worth noting that in all cases presented
in Figure 6, the trajectory of the centroid of the wetted area is accurately reproduced by the hybrid
surrogate model.
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Figure 6. Comparisons between the predictions of the hybrid surrogate model (red lines) and DNS
solutions (semi-transparent blue regions) at the final time step of the simulations t f = 60. The initial
conditions are also shown, centered approximately around (0.5, 0.2). The trajectories of the centroid
of the wetted area are shown with black and red-dashed lines for the DNS and the hybrid surrogate
model solutions respectively. The heterogeneity profile in (a) assumes a uniform value of 80◦. The
heterogeneity profiles in all other figures are described by Equation (9), with specific parameters,
{p1, . . . , p6}= (b) {π/36, 5, 10, 0, 0, 0}, and (c) {π/36, 5, 10, 10, 0, 0}. In all cases αi = 60◦ and Bo = 5.
The errors based on the Fréchet distance are (a) 2.9%,(b) 4.8%, and (c) 1.1%. The background follows
the same shading convention as Figure 3.

Figure 7 shows various droplet snapshots in time, for a wetting scenario with a more intricate
dynamical behavior, considering the same inclination angle and Bond number as before. The presence
of diagonal striped features influences the droplet descent on the inclined substrate, where the centroid
of the wetted area follows a curved trajectory. Initially, the droplet shifts to the left until the contact line
meets a more hydrophobic stripe (darker shaded) at the left side of the bubble, somewhere between
t = 10 and 20. Afterwards the droplet moves diagonally, following the stripes configuration until
t = 40 − 50, when the right part of the droplet lies completely on a more hydrophobic stripe. At that
point, the droplet movement aligns with the gravity force until it becomes diagonal once again. This
complicated movement, where the droplet is significantly influenced by both the gravity force and the
chemical heterogeneities, is accurately captured by the hybrid surrogate model, exhibiting an error of
only 4.3%, compared to DNS solution at the end of the simulation.
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Figure 7. Similar to Figure 6, with different panels corresponding to different time instances. The
heterogeneity profile adopted is described by Equation (9), with specific parameters, {p1, . . . , p6} =

{π/36, 2, 0, 10, 0,−π/6}. The error based on the Fréchet distance at the final time is 4.3%.

To quantify the sensitivity of the hybrid surrogate model on the characteristics of the gravity
force, Figure 8 shows comparisons against DNS solutions for different values of the inclination angle
and the Bond number. As expected, keeping a constant Bond number value of Bo = 5 and increasing
the inclination angle (panels (a)-(c)) increases the distance travelled by the droplet within the 80 time
units considered for the simulation. Similar to Figure 7, the centroid follows a curved trajectory,
guiding the droplet towards the left side, in accordance to the structure of the chemical heterogeneities.
Quantifying the agreement between predicted and reference solutions, the errors based on the Fréchet
distance increase from 8.2% at αi = 40◦ to 16.6% at αi = 60◦ and remain relatively unaffected to 14.1%
at αi = 80◦. Furthermore, Figure 8(d)-(f ) shows cases considering a fixed inclination angle αi = 60◦

and a varying Bond number. For the lowest Bond number, the droplet barely moves and soon gets
pinned on the heterogeneity features. By increasing the Bond number, the droplet is able to overcome
the heterogeneity barriers and induce a downhill sliding motion, with a corresponding increase of
the Fréchet-based error, noting a maximum error of 25.6% for the largest Bond number considered.
A major reason behind this significant error is the that Bo = 8 is outside the Bond number ranges
used to train this model and, therefore, the data-driven model is trying to extrapolate beyond the
training distribution. Another source of error is that the increasing Bond number can be thought of as
an equivalent increase in g, something that influences the three-dimensional droplet shape and has
an impact on the assumption of a weakly perturbed spherical cap used to develop the approximate
contact angle model in Equation (A16). Overall, the errors of the hybrid surrogate model increase with
increasing inclination angle and Bond numbers, while the model exhibits a satisfactory performance
as long as the adopted parameters are within the ranges considered during training.
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Figure 8. Similar to Figure 6, with different panels corresponding to different values of the inclination
angle αi and Bond number Bo. The comparison is documented at t = 80, except panel (f ) where t = 40
is used. The heterogeneity profile adopted is described by Equation (9), with specific parameters,
{p1, . . . , p6} = {π/72, 2, 5, 10, π/4, π/3}. The errors based on the Fréchet distance are (a) 8.2%,(b)
16.6%, (c) 14.1%, (d) 5.1%, (e) 7.6%, and (f ) 25.6%.

4. Conclusions

In this study, a new approach was proposed to model droplet dynamics on inclined, chemically
heterogeneous surfaces, a type of process that, up to this point, could only be simulated through
DNS. The proposed approach is a hybrid surrogate model for the contact line velocity, comprising
of both analytically derived reduced-order model and data-driven components. The reduced-order
model by Cox, coupled to a developed approximate model for the apparent contact angle, is able to
model the effects of the chemical heterogeneities, but it does not include the effects of gravity. To
complement the reduced-order model, the data-driven component was trained to capture the effects of
gravity by modeling the large-scale translation motion of the droplet, using DNS datasets. In this way,
the hybrid surrogate model is able to extend the applicability of the reduced-order model by Cox to
gravity-driven droplet scenarios. As the hybrid surrogate model predicts the contact line velocities,
the predictions are integrated in time (similar to an ODE solver) to simulate the droplet movement
much more efficiently compared to the corresponding DNS.

To assess the performance of the hybrid surrogate model a number of different wetting scenarios
were considered. The model was found to accurately capture the droplet movement on different
heterogeneity profiles that are within the distribution used during the training phase. Nonetheless, the
hybrid model exhibited increased errors as the inclination angle and the Bond number increased, but a
reasonable agreement was observed as long as the model did not extrapolated to scenarios that were
outside the training distribution.

This approach can be further refined to improve its accuracy and generalizability in the near
future. For example, the approximate model for the calculation of the apparent contact angle can be
replaced by the full calculation of the Young–Laplace equation (e.g. by using Surface Evolver [60]), but
doing so is likely to add a substantial computational overhead. In a similar manner, we may separately
improve the current contact angle approximation with an another data-driven model in order to better
match the Young–Laplace solution. The improved hybrid surrogate model can then be extended to
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other settings of specific engineering interest. As an example, incorporating phase change dynamics in
the form of evaporation and condensation, can prove beneficial in a range of industrial applications
such as desalination [61], water harvesting [62], biomedical applications [63], printing, coating and
cooling [64], among others.
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Abbreviations

The following abbreviations are used in this manuscript:

ReLU rectified linear unit
PDE partial differential equation
ODE ordinary differential equation
CFD computational fluid dynamics
DNS direct numerical simulations
FNO Fourier neural operator
CFL Courant–Friedrichs–Lewy
AI artificial intelligence

Appendix A. Derivation of an Approximation to the Apparent Angle

Assume a droplet of volume v that rests on a horizontal surface that is pinned along a nearly
circular contact line and in the absence of gravity. Its free surface is described by F(r, θ, ϕ) = 0 as a
perturbation from a spherical cap of radius a, namely

F(r, θ, ϕ) = r − f (θ, ϕ) = 0, with f (θ, ϕ) = a + ϵ f̃ (θ, ϕ), (A1)

which is cast in the spherical coordinate system (r, θ, ϕ). Here, r is the radial distance, 0 ≤ θ ≤ π is the
polar angle and 0 ≤ ϕ < 2π the azimuthal angle. The parameter ϵ ≪ 1 is treated as an order parameter
for the purpose of developing the perturbative scheme to determine the function f̃ (θ, ϕ), which is
then set to unity with the understanding the smallness of ϵ is absorbed in f̃ itself. The perturbation
expansion is applied to the Young–Laplace equation, which reads (in dimensionless units)

∇ · n̂ = p0, (A2)
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where n̂ = ∇F/|∇F| is the unit outward normal and p0 is a dimensionless pressure scaled by surface
tension, which is determined by the volume of the droplet. Plugging equation (A1) in equation (A2),
and matching powers of ϵ, O(1) terms require p0 = 2/a, whereas O(ϵ) terms require that f̃ satisfies

2 f̃ +
∂2 f̃
∂θ2 + cot θ

∂ f̃
∂θ

+
1

sin2 θ

∂2 f̃
∂ϕ2 = 0. (A3)

This is a linear partial differential equation, and its solution may be obtained via separation of variables
in terms of the following eigenfunction expansion

f̃ (θ, ϕ) = ∑
m

′
am tanm θ

2
(cos θ + m) eimϕ, (A4)

where am are complex coefficients to be determined. Here the summation with a prime is taken for
m ≥ 1 and with its imaginary part discarded, so that f̃ captures only non-spherically symmetric
perturbations. Determining the leading radius a and the constants am requires imposing the associated
boundary conditions. These require that the the droplet rests on the plane lifted by a distance ℓ

from the origin along the vertical axis. The plane intersects F(r, θ, ϕ) = 0 along the curve of the
contact line, whose representation in spherical coordinates is parametrized in terms of ϕ so that
( f (θc(ϕ), ϕ), θc(ϕ), ϕ). Thus, θc, ℓ and f and the contact line shape R(ϕ) are related through (see
Figure A1)

f (θc(ϕ), ϕ) sin θc(ϕ) = R(ϕ) (A5)

f (θc(ϕ), ϕ) cos θc(ϕ) = ℓ, (A6)

where both R(ϕ) and θc(ϕ) are assumed to be constant at leading order in ϵ, so that

R(ϕ) = c0 + ϵ ∑
m

′
cmeimϕ (A7)

and θc = θ̄c + ϵθ̃c. Combining the latter with equation (A6), and matching O(1) and O(ϵ) terms gives

cos θ̄c =
ℓ

a
, (A8)

and

θ̃c =
cot θ̄c

a ∑
m

′
am tanm θ̄c

2
(
cos θ̄c + m

)
eimϕ, (A9)

respectively. Likewise, substituting equations (A7) and (A9) in equation (A5), allows us to obtain ℓ, a
and am in terms of the contact line harmonics and θ̄c, namely

ℓ = c0 cot θ̄c, a =
c0

sin θ̄c
, am =

cm sin θ̄c

tanm θ̄c

2
(
cos θ̄c + m

) . (A10)

Hence, using Equations (A10), f̃ is specified in terms of the harmonics of the contact line and θ̄c, which
corresponds to the average apparent contact angle and it is the same as that of a spherical cap of base
radius c0, formed out of a sphere of radius a.
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Figure A1. Schematic of a droplet of a nearly circular contact line resting on a plane, which is lifted by
a distance ℓ along the vertical axis. The surface of the droplet is described by r = f (θ, ϕ); the position
vector in spherical coordinates of a point along the contact line, R(ϕ), is given by ( f (θc(ϕ), ϕ), θc(ϕ), ϕ).

To determine θ̄c, we consider the volume of the droplet, which satisfies

v =
∫ 2π

0

∫ θc(ϕ)

0

∫ f (θ,ϕ)

ℓ/ cos θ
r2 sin θ dr dθ dϕ

=
πc3

0

3 sin3 θ̄c

(
1 − cos θ̄c

)2 (2 + cos θ̄c
)
+ O(ϵ2). (A11)

In order to determine θ̄c for given c0 and v, we write the right-hand-side of equation (A11) in terms of
tan(θ̄c/2)

6v
πc3

0
= tan

θ̄c

2

(
3 + tan2 θ̄c

2

)
. (A12)

We observe that tan(θ̄c/2) satisfies a depressed cubic equation. Its only physically relevant solution
may be obtained explicitly resulting into a closed form expression for θ̄c,

θ̄c = 2 arctan

[
2 sinh

(
1
3

arcsinh
3v

πc3
0

)]
. (A13)

The derivation of the approximation to the apparent contact angle, ϑ, follows from

cos ϑ = n̂ · ẑ = cos θc − sin θcnθ , (A14)

where nθ = −ϵc−1
0 ∂ f̃ /∂θ + O(ϵ2) is the θ-component of n̂. Since θc = θ̄c + ϵθ̃c, ϑ may be cast as

ϑ = θ̄c + ϵ

(
θ̃c −

1
c0

∂ f̃
∂θ

(θ̄c, ϕ)

)
+ O(ϵ2). (A15)

By evaluating this expression, the following approximation to the apparent contact angle may be
obtained, which retains the linear terms in the non-axisymmetric components of the contact line,

ϑ ≈ θ̄c + ∑
m

′ cm

c0

(
sin2 θ̄c

m + cos θ̄c
+ cos θ̄c sin θ̄c − m

)
eimϕ, (A16)

where we set ϵ = 1 assuming that its smallness is absorbed within the smallness of the ratios cm/c0.
It should be noted that the denominator m + cos θ̄c can become zero only when we simultaneously
have m = 1 and cos θ̄c ≡ −1, namely for non-wetting droplets, where the radius of the contact
line diminishes.The approximation in Equation (A16) also reveals its limits of applicability; in the
large-m limit, the correction is dominated by the mcmeimϕ/c0 terms, which scale with the derivative of
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R−1∂R/∂ϕ. Hence, for this approximation to hold, in addition to having nearly circular contact lines
|cm| ≪ |c0|, we must also have weakly varying ones, i.e. we must have m|cm| ≪ |c0|.
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Figure A2. Comparison between the contact angle approximation given by Equation (A16) and
reference results obtained by Surface Evolver (SE) [60], considering a droplet of dimensionless volume
v = 2π/3 and contact line shapes of the form r = 1 + w1 sin(m1ϕ) + w2 cos(m2ϕ). (a) w1 = 0.15,
w2 = 0.1, m1 = 2 and m2 = 3, with a mean absolute error of 1.8◦. (b) w1 = w2 = 0.1, m1 = 7 and
m2 = 5, with a mean absolute error of 4.4◦.

2 4 6 8
0

4

8

12

16

𝑚

m
ea

n
ab

s.
er

ro
r(

◦ )

𝑤 = 0.05
𝑤 = 0.10
𝑤 = 0.15

0

5%

10%

15%

m
ea

n
re

l.
er

ro
r

Figure A3. Mean absolute and relative errors as a function of the wavenumber m, for different
amplitudes w, considering droplets of dimensionless volume v = 2π/3 and contact line shapes of the
form r = 1 + w sin(mϕ) + w cos(mϕ).

Figure A2 shows comparisons between the approximate contact angle calculated by
Equation (A16) and reference solutions obtained using the surface evolver (SE) [60]. SE is a code that
calculates the minimal energy surfaces in the presence of constraints and other physical effects such as
gravity. It therefore provides an accurate estimation of the apparent contact angle, at a computational
cost that is much larger compared to the approximate contact angle calculated by Equation (A16).
Considering different contact line shapes of the form r = 1 + w1 sin(m1ϕ) + w2 cos(m2ϕ), the figure
clearly shows that the approximation is not only affected by the amplitude of the perturbation (w1

and w2), but also its wavenumber (m1 and m2). This deviation is quantified in Figure A3, where the
mean absolute error and mean relative error (considering a mean contact angle of 90◦) are presented in
terms of the perturbation amplitude and wavenumber, where w1 = w2 = w and m1 = m2 = m.
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