Pre prints.org

Article Not peer-reviewed version

Towards A Distributed Digital Twin
Framework for Predictive Maintenance
in Manufacturing Systems

Ibrahim Abdullahi” , Stefano Longo , Mohammad Samie

Posted Date: 22 March 2024
doi: 10.20944/preprints202403.1357v1

Keywords: Digital Twins; Predictive Maintenance; Wind Turbines; Fog Computing; Machine Learning; Internet
of Things

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.




Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2024 d0i:10.20944/preprints202403.1357.v1

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article
Towards a Distributed Digital Twin Framework for

Predictive Maintenance in Manufacturing Systems

Ibrahim Abdullahi *, Stefano Longo and Mohammed Samie

Integrated Vehicle Management Center, Cranfield University, Bedford MK43 0AL, UK
* Correspondence: Ibrahim.abdullahi@cranfield.ac.uk

Abstract: This study uses a wind turbine case study to showcase an architecture for implementing
a distributed digital twin in which all important aspects of a predictive maintenance solution in a
DT use a fog computing paradigm, and the typical predictive maintenance DT is improved to offer
better asset utilization and management through real time condition monitoring, predictive
analytics, and health management of selected components of Wind turbines in a wind farm.. Digital
twin (DT) is a technology that sits at the intersection of Internet of Things, Cloud Computing and
Software Engineering to provide a suitable tool for replicating physical objects in the digital space.
This can facilitate the implementation of asset management in manufacturing systems through
predictive maintenance solutions leveraged by Machine Learning (ML). With DTs, a solution
architecture can easily use data and software to implement asset management solutions such as
Condition Monitoring and Predictive Maintenance using acquired sensor data from physical objects
and computing capabilities in the digital space. While DT offers a good solution, it is an emerging
technology that could be improved with better standards, architectural framework, and
implementation methodologies. Researchers in both academia and industry have showcased DT
implementations with different levels of success. However, DTs remain limited in standards and
architectures that offer efficient predictive maintenance solutions with real time sensor data, and
intelligent DT capabilities. An appropriate feedback mechanism is also needed to improve asset
management operations.

Keywords: digital twins; predictive maintenance; wind turbines; fog computing; machine learning

1. Introduction

From this Bloomberg news headline [1] and others alike, wind turbines failure is an expensive
challenge facing the wind energy industry across US and Europe. While research on predictive
maintenance of wind turbines has gained traction, standardizing the application of technologies such
as Digital Twins offers benefits that could better manage manufacturing assets. This research work
builds on existing research on predictive maintenance by providing a distributed DT framework to
improve predictive maintenance in manufacturing assets.

Since the emergence of Industry 4.0, Digital Twins (DT) appears to be one of the leading
technologies towards digital transformation, especially in manufacturing 4.0. While there are several
attempts to define DT, there is still no standardized and widely acceptable definition of it. A
description of DT that is good enough to deter the usual misconceptions was described in [2], in
which the authors differentiated a DT to having a two-way automatic data flow between the physical
and digital object, rather than a manual or semi-automatic two-way data flow which is more aligned
with a digital model and a digital shadow. Clarifying misconceptions such as labelling a DT as merely
a simulation (i.e. A Digital model) can inform researchers of the potential of using DTs beyond a
limited application domain but leveraging it for extending other technologies. This is why DT
frameworks and standards such as the one in this work are relevant. The description of DT in [2]
highlights the relevance of a two-way automated feedback necessary for utilizing “intelligent DTs”.
An intelligent DT, in this context, can be described as a Digital Twin solution that monitors an asset
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in real-time, predicts its future behavior and reacts to potential issues by analyzing the best
operational control mechanisms needed to handle the potential failure or at least reduce its impact.
Researchers in [3,4] have shown that more than 85% of DT in industrial sectors are for manufacturing
asset, and [4] went further to highlight that, from 2019 onwards, more than 90% of DT applications
are in Maintenance, followed by Prognostics & Health Management (PHM) and then other process
optimizations. In terms of maintenance, predictive maintenance is the leading type of maintenance
preferred by industries [4], because of its potential to save cost, time, and resources by anticipating
downtimes and avoiding them way ahead of time.

A concise systematic literature review on predictive maintenance was done in [5], where the
authors answered key questions having extensively carried out a literature review with aligned
research questions in using DTs for predictive maintenance. With 10 research questions and 42
primary studies reviewed, this work identified a challenge of computational burden and lack of
reference architectures in using DTs for predictive maintenance. This work builds on some of these
gaps, challenges, and existing work to cater for the need for digital twin framework that can improve
predictive maintenance of an Industrial Internet of Things (IloT) asset. The literature review section
analyses this in detail.

While wind turbines are generally considered part of the energy sector, and specifically the
renewable energy sub-sector, some of its key components like the gearbox, generator etc. are
considered as products of the manufacturing sector. The maintenance of wind turbines, based on
their complex engineering design, is expensive, as they can be onshore or offshore. This makes the
Operation and Maintenance (O&M), as well as data gathering, connectivity and remote monitoring
tasks intensive. Whether in a small wind farm with a few wind turbines or a large wind farm with a
few thousand wind turbines that generate gigawatts of electricity, maintenance is a key aspect of the
success of wind energy.

This paper explores the requirements of developing a predictive maintenance DT using a
distributed architecture to address limitations of existing DT implementations found in literature,
with regards to standards and reference architectures, computational latency, accuracy, and
prediction feedback loop in real time scenarios. The proposed framework aims to adopt a software
engineering approach such as Object-Oriented Concepts and Software Development Life Cycle
(SDLC) [6], and a distributed cloud computing paradigm - Fog Computing [7]. The ISO 23247
standard for Digital twins in manufacturing [8] is used to guide the development of the framework.
Overall, this framework contributes the benefits of improved real-time monitoring and accuracy of
applying a distributed architecture to enhance the effectiveness of a PHM solution.

The remainder of this paper is organized as follows. Section 2 discusses the literature review on
DT and predictive maintenance along with DT architectures in the context of this work. Section 3
establishes the theoretical framework of our proposed system architectural framework. Section 4
explains the methodology of implementing the key technology aspects considered in the framework.
Section 5 describes the experimental set up, dataset and selection of key components of the wind
turbines. Section 6 discusses the results, and section 7 concludes the paper with a highlight of future
work.

2. Literature Review

This work explored some essential papers in the literature review to identify the research gap.
Exploring the use and application of DTs for predictive maintenance can be a broad area to cover.
This is because many works in literature have discussed the topic in part. In this work, we explore
some relevant research outputs that have discussed Some research outputs that have focused on a
“predictive maintenance digital twin” or implemented the technology associated with digital twin
and predictive maintenance. The key question we attempt to answer is of how a distributed digital twin
framework can improve the efficiency of predictive maintenance of a manufacturing asset. To breakdown
these questions, we aim to answer the following.

e  How can digital twins support real-time predictive maintenance?
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e  What benefits will a digital twin framework implemented based on a standardized framework
offer to a predictive maintenance solution in IIoT?

¢  How can this proposed digital twin framework be extended to act as an intelligent digital twin
with a prediction feedback loop?

This section reviews literature and the key technologies towards answering these questions.

2.1. Digital Twins and Predictive Maintenance

Digital Twins’ two-way automatic data flow [4] makes it suitable for Predictive Maintenance
(PdM). Several authors adopted the DT term from its initial introduction by Michael Grieves [9],
along with NASA’s broad definition and adoption of the term [10], seeing at as “an integrated
multiphysics, multiscale, probabilistic simulation of an as-built vehicle or system that uses the best available
physical models, sensor updates, fleet history, etc., to mirror the life of its corresponding flying twin”.
However, like NASA’s adoption of DT, many authors derive a definition based on the specific use
case their work covers. From the review of literature [11], a DT can be simply put as a replication of
a physical object in the digital space, with a connection that links them with data synchronization
and status updates. As mentioned earlier, in this work, we perceive DT as a copy of the physical asset
that has access to its operating data and is hosted in a computational platform that can use the data
for PAM (utilizing data, algorithm and platform).

Predictive maintenance on the other hand was described in [4], as a prognosis that uses all the
information surrounding a system to predict its remaining life or when it is likely to fail. Developing
a predictive maintenance model can be a model driven approach based on analytical, physical, or
numerical models or it can be a data-driven approach based on data obtained from sensors. Both
PdM approaches have been explored highly in Manufacturing 4.0 and have been agreed to be
computationally expensive [4]. The data driven approach of predictive maintenance relies on Internet
of Things (IoT) to gather sensor readings from assets to use them in the digital space (computational
platform). This work leverages the Industrial Internet of Things (IIoT) concept and thus uses the data
driven approach to implement the proposed distributed digital twin PdM solution based on sensor
data acquired from wind turbines. However, the digital twin framework presented in this paper here
can serve as a basis for utilizing physics-based model driven approaches, by the provision of the
system architecture with computational platform capable of handling simulations.

The authors in [12] developed a predictive digital twin for offshore wind turbines in which they
used prophet algorithm as a time series prediction model. The DT in [12] was developed in Unity3D
to have a visual sense of the operating conditions of the wind turbines using the OPC-Unified
Architecture (OPC-UA) as the data communications protocol that streams live data to the DT. [12]
used vibration and temperature data for their model and the choice of prophet model was to factor
in seasonality. The Root Mean Square (RMS) achieved showed they were able to predict failure before
it occurred. The authors [12] suggested the DT feedback was based on the ability of a user to forecast
future failure from the DT. The implemented DT in this work, our framework supports an “intelligent
DT” that enhances two-way feedback.

Work by [13], implemented a PdM solution based on SCADA data of the generator and gearbox
of wind turbines using three algorithms; XGBoost, Long Short-Term Memory (LSTM) and Multiple
Linear Regression (MLR). The authors evaluated the algorithm performance using R-squared, RMSE,
MAE and MAPE, and used Statistical Process Chart (SPC) to detect anomalous behavior. In the
results of [13], the models predicted failure up to six days before its occurrence, with LSTM
outperforming XGBoost for the generator and vice-versa for the gearbox. There was no DT or any
feedback mechanism in this work [13]. Another work by [14], applied a data-driven approach
(decision trees) with a focus on the data pre-processing using hyper-parameter tuning to detect
failures from five components of a wind turbine, mainly the generator, hydraulic, generator bearing,
transformer and gearbox. They showed how a good pre-processing strategy in data-driven models
can outperform a model-driven approach for PAM.

This paper [15] introduced a cyber-physical CPS architecture for PAM with several modules for
condition monitoring, data augmentation and ML/DL which supports an intelligent decision-making
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strategy for fault prediction with good KPIL The architecture [15] used both MQTT as a
communications protocol and OPC/UA for industrial automations.

On the distributed Digital Twin Concept, work by [16] presented the concept of “loTwins”, in
which the authors argue that the best strategy for implementing DT is to deploy them close to the
data sources to leverage IoT gateway on edge nodes and use the cloud for heavier computational task
such as Machine Learning Model training. In their reference architecture, the authors outline how the
edge-fog-cloud paradigm can allow a distributed DT to leverage the needed layers of computing and
interfaces that are suitable for real-time applications. A similar concept was introduced in our earlier
work [17].

Considering reference architectures for DT, work by [18] used the ISO 23247 to develop a DT for
additive manufacturing that resolved interoperability and integration issues in real time decision
making and control. Work by [18] utilized the ISO23247 to develop a data mapping approach called
“EXPRESS Schema” that uses the edge for data modelling of a DT of a machine tool.

A further review in [19] of unit level DT for manufacturing components explored the current
stage of research into the application of DT at the unit level to foster real-time control. The output in
[19] is an extensive analysis that clearly shows a gap in the need for adopting standards, handling
hardware and software requirements as well as a mechanism for DT to Physical Twin (PT) feedback.
An abstract of [19] is shown in Figure 1. The highlighted gaps directly align with the output of this
paper.

Leading Cloud Technology providers like IBM, Microsoft, and AWS, have outlined DT reference
architectures owing to the need of significant connectivity and computing power to run and manage
DTs at scale [20].

Out of the reviewed works, it has been observed from literature that few attempts have been
made to showcase DT implementation for predictive maintenance as a manufacturing industry
solution. As such this work will go further to present a DT framework that attempts to cover these
gaps [19,21], summarized in Figure 1.

lloT Based Prediction Methodologies Digital Twin: Research Gaps
...................... Data & Model
""" Needs for DT:
o&: * Fromework
Standardization

¢ Hordware & software
requirements for DT
U Dlﬁﬁa\ to Phyelcal Twin
Feedvack
* Twinning Rates scope
* Integrated software

Fromework
* etc

_____________

Figure 1. Predictive DT Models and associated Gaps in IIoT.
2.2. Computing Infrastructure for Digital Twins

2.2.1. Cloud, Fog, and Edge Computing

¢ Cloud computing refers to the to the on-demand delivery of computing services over the
internet [22-24], and this computing services that range from computing, storage, networking,
and other tools make the cloud a suitable platform for the deployment of DTs.

e Fog computing is an extension of the cloud, introduced by Cisco in 2012 [7], as a concept that
brings computing power closer to the data sources, thereby reducing latency and improving
other computational benefits.
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e Edge Computingis like the fog computing concept. It deals with the ability for Internet of Things
(IoT) devices distributed in remote locations to process data at the “edge” of the network [25]

To highlight the difference with context, Edge computing is usually distinctively recognized
when this processing is done by billions of IoT devices, and when dedicated local servers, in millions
are involved, it is termed fog computing [25]. Cisco [7] describes the fog-edge computing architecture
as “decentralizing a computing infrastructure by extending the cloud through the placement of nodes
strategically between the cloud and edge devices.”

As discussed in the distributed DT paper “loTwins” [16], a DT implementation can utilize the
edge-fog-paradigm to leverage both hardware and software services to deploy DTs of manufacturing
asset for seamless and efficient monitoring and application of data-driven ML solutions or model-
driven simulation of physical assets. In this section we primarily look at related attempts and
technologies of the key aspects of the overall distributed DT architecture of edge-fog-cloud.

An earlier approach to the use of fog computing for real-time DT applications in [26], has shown
the benefits of reducing response times when the DT is deployed in the fog node rather than the
cloud. Another paper in [27] introduces a fog computing extension to the MQTT IoT communication
protocol for Industry 4.0 applications. By placing the MQTT broker at the fog layer, the approach
enhanced data processing efficiency and reduced communication demands. In this work [27], the fog
layer serves for prediction, acts as a gateway, and offloads complex processing tasks from the Cloud
to minimize latency and operational costs. The authors [27] validated the architecture through energy
consumption analysis and simulations, demonstrating its benefits compared to the traditional MQTT
scheme in handling real-time data challenges posed by constrained IoT devices.

2.2.2. IIoT Protocols and Middleware

Digital Twins require a middleware protocol that serves as the connection between the physical
entity and the digital entity. Many IoT applications leverage the use of such IoT protocols for
communication with any other systems locally or remotely. The ISO 23247 outlines this under part 4
(Networking View) which handles information exchange and protocols [8] [28].

From Literature, we have identified the most used IIoT protocols with regards to Digital Twins
[5] or Fog Computing architectures to be MQTT, OPC UA, AMQP, and CoAP among others like DDS,
MTConnect, MODBUS etc. Among these we review these protocols in our experiments and adopted
MQTT for it light weight and easy set up.

2.2.3. Microservices and DT Platforms

In terms of software stack for digital twin deployment, microservices are an important
consideration with cloud computing platforms. For this work, an exploration of microservices and
middleware deployment platforms suitable for our distributed DT framework was done, focusing on
open-source technologies. It was observed that not many researchers have explored this area.
However, work by [29], documented microservices, middleware and technologies suitable for DTs
in smart manufacturing.

The major consideration for the use of such microservices platforms is the ability to containerize
applications or modules of the DT applications in a virtualized environment. While in fog computing,
the typical architecture involves the use of physical servers close to the data sources, it is possible to
use the cloud or local hardware as a platform that distributes and splits the DT into modules that can
be packaged in layers within a virtualized environment known as containers.

Table 1. Microservices for DT Architecture.

Concept Description Tool

o Utilizing microservices architecture for loosely coupled, [29] Docker [30],
Containerization
capabilities oriented and packaged deployment software. Kubernetes
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Platforms supporting connectivity middleware, device, [29] Eclipse
DT Middleware and data integration. Kapua, Eclipse
Kura, Eclipse Ditto
[31]
[29] Apache
Kafka, Apache
Flink, Apache
Spark [31], Apache

Hadoop

Real time/Batch ~ Technologies supporting processing data with compute

stream processing capabilities in batch or real-time

Docker was considered among the options because of the nature of the project and experiments
making it easier for the deployment of the DT modules.

2.3. Digital Twin Architecture

Existing DT architectures mostly adopt a centralized deployment strategy as, while some works
show the importance of edge and fog computing in DT deployments. For instance, works like [17]
[26] showed using edge or fog as an improvement in response time while [18] showed using edge
computing for enhancement of data modelling for a machine tool DT. In this work we approach the
distributed DT for the case study of predictive maintenance with a hybrid architecture utilizing both
the edge-fog-cloud depending on the specific layer requirements. The closest to this approach was
found in [16]. Another work on distributed DT was found in [32], where the authors align the
activities of the production shop floor with physical layer and edge-cloud collaboration layer with
local and global DT tasks handling real time manufacturing data. This work [32] also recommended
microservices as a way to support modular development.

The key advantage to distribute DT is classifying a smart manufacturing system into unit,
system, or systems of systems [6,19], or similarly, it is usually labelled as local, system, and global
DTs [32]. This framework is designed to accommodate the need for data collection from lower levels
(sub-components of the manufacturing systems) and preprocessing and processing of all data from
a component or production line and the overall manufacturing system/shop floor is modelled in the
global DT. Different approaches to the deployment of DT are usually adopted depending on the
requirements of the system. In the methodology described by [6] and extended in Figure 2, for the
context of PdM, the relationship between the three layers of DT can be summarized as shown in
Figure 2.

The design of a DT architecture can adopt typical SDLC approaches. This work [33], for instance
utilized the ISO/IEC 1588/42010 to guide the development stages as well as establish the concept of
components and their relationships. As a PHM tool, DTs need to solve some of the challenges of
implementing PHM such as the lack of real-time assessment of Remaining Useful Life (RUL) in an
interoperable and decoupled approach [34]. To achieve lightweight and seamless integration, an edge
digital twin was explored in [35].
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Figure 2. High-level Hierarchy of a DT Solution.

As introduced in our earlier work [17], this framework of splitting DT based on components
aligns directly with the edge-fog-cloud architecture. The work in [36] presents a framework with local
and global nodes to enhance manufacturing decision-making. Local nodes include equipment's
digital twins and a predictive model based on machine learning, aiding in improved decisions.
Various tools enable condition-based maintenance and fault detection. The local DT, enriched with
machine learning, contributes to overall prognostics and health management. The global node
aggregates data, interacts with Manufacturing Execution Systems (MES) for accuracy, and facilitates
scheduling and optimization based on data from the global DT, MES, and performance indices. While
some of these approaches show good results, work by [37], evaluated this systematically by showing
most architectures neglecting modularity in terms of plug and play and other non-functional qualities
outlined in 15023247 [8].

In terms of using the distributed DT concept to improve prognostics in PdM applications, it is
ideal to design a framework that considers the hardware and software requirements, standards, and
prediction feedback loop [4,17]. The solution architecture introduced in [17] is leveraged in this work
to achieve the results of improving prognostics of wind turbines.

The major contribution envisioned by adopting this hybrid architecture is summarized below.

e Edge/IoT Device Layer: The lower layer deals with unit level DT, acquiring data from individual
components such as the gearbox and pre-processing it through data cleaning and transmission
to the upper layer.

e Fog Layer: The middle layer handles the system level monitoring and feedback mechanism on
prediction from the ML algorithms in real-time. This is the layer where the middleware and
microservices of the DT are also utilized.

¢  Cloud Layer: This layer deals with monitoring of global level - systems of systems, for example
the whole wind farm in our case study, training and retraining using historical data.

In Section III, the theoretical framework of the layers is discussed in detail.
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Figure 3. Distributed DT Architecture.

2.4. Reseacrh Gap

From the review of literature, it was identified that a comprehensive Digital Twin for predictive
maintenance in IloT require the key technologies in Figure 4, and need key metrics to perform
effectively. In terms of metrics, it mostly depends on the application used. However, Our proposed
solution aims to cover the following metrics and extract a framework from the necessary key
technologies for the predictive DT solution based on ISO 23247 [8].

Performance Metrics:

e  Prediction feedback loop (DT to PT)
e Accuracy
¢  Computational Latency

Cloud
‘ Internet of Computing; |
Things (loT) Edge/Fog

Machine
Learning

Digital Twin Framework

Figure 4. Key Technologies for DT Framework.

This framework also seeks to showcase the benefits of the proposed solution architecture in the
scenario of handling multiple components, in our use-case, multiple wind turbines in a wind farm.
Each wind turbine has a collection of components that are key to its performance and whose health
will be monitored in real time.

Another contribution of this framework is validating it with the scaling constraint (to multiple
wind turbines) which has not been explored in literature.
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3. Theoretical Framework

The theoretical framework of the proposed predictive maintenance DT builds on the discussed
concept of distributed DT for enhanced asset management using the edge-fog-cloud deployment
strategy. This is validated with experiments and results which are presented in section IV.

3.1. Hypothesis

The proposed digital twin framework, which integrates cloud computing, fog, and edge
computing, as well as relevant middleware and IloT protocols, will demonstrate superior
performance in terms of computational cost, response time, and accuracy compared to traditional
centralized cloud-based DT architectures.

This hypothesis assumes that the proposed framework will outperform traditional centralized
cloud-based DT architectures, which have certain limitations in terms of computational cost and
response time due to their reliance on a centralized infrastructure. The hypothesis also assumes that
the proposed framework will provide accurate predictions for the maintenance needs of industrial
components by leveraging IIoT protocols and edge computing capabilities with the constraint of
handling multiple assets in real-time.

3.2. Architectural Framework

3.2.1. Layer 1: Edge Devices Layer

The first layer is the physical asset layer, which includes the industrial asset, sensors, and data
acquisition devices. The sensors collect data from the physical asset and send it to the second layer.

e Data Acquisition Sub-Layer: This layer is responsible for collecting and pre-processing real-
time data from sensors and IoT devices.

¢  Sensors and Actuators Sub-Layer: Along with sensors that collect data, the actuators that will
receive control commands from the upper layers are also in this layer.

3.2.2. Layer 2: Fog Computing Layer

The second layer is the data processing layer, which includes the fog computing nodes. This
layer processes the data collected from the sensors and generates insights into the condition of the
physical asset responsible for storing and processing large volumes of data, while the fog computing
nodes are responsible for processing data at the edge of the network, closer to the physical asset. The
fog computing nodes are responsible for processing data in real-time and providing fast responses to
the physical asset.

e Data Storage Layer: This layer is responsible for storing the pre-processed data in a distributed
data store such as Hadoop Distributed File System (HDEFES), Cassandra, MongoDB, or influx DB,
as they all support distributed processing. However, we selected influx DB because it supports
real time seamlessly.

e Data Processing Layer: This layer is responsible for processing the pre-processed data to
generate insights that can be used to train the predictive maintenance model. This layer can be
implemented using technologies such as Apache Spark, Flink, or Hadoop MapReduce.

e Feedback Loop Layer: This layer is responsible for capturing feedback from the Dt to the
physical twin and using it to improve the predictive maintenance model. This layer can be
implemented using technologies such as Apache NiFi or StreamSets.

3.2.3. Layer 3: Cloud Computing Layer

The third layer is the application layer, which includes the digital twin and the predictive
maintenance algorithms. The digital twin is a virtual replica of the physical asset, which is used to
simulate its behavior and predict its performance. The predictive maintenance algorithms use the
data collected from the physical asset and the digital twin to predict when maintenance is required
and to optimize the maintenance schedule.
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¢  Machine Learning Layer: This layer is responsible for training the predictive maintenance
model using the insights generated by the data processing layer. This layer can be implemented
using technologies such as Scikit-learn, TensorFlow and PyTorch. Depending on the ML model
implemented, these ML packages were used for the predictive maintenance algorithms.

e Model Deployment Layer: This layer is responsible for deploying the trained model in a
distributed environment to make real-time predictions. This layer can be implemented using
technologies such as Kubernetes, Docker Swarm, or Apache Mesos. However, to support our
architectural framework and experimental platform, we used docker at the fog and cloud layer
to deploy the ML models.

3.3. Framework Standardization

The ISO 23247 standard framework is a 4-part framework that outlines a framework for digital
twins in Manufacturing. This work explored the relevance of using the ISO 23247 [8] towards
standardizing the framework. In a sequence of steps, all components and layers of the architectural
framework were implemented using ISO 23247 as a guide. Similar approaches from [6] [18] [28] were
adopted and extended. The ISO 23247-2 highlights the reference architecture in 4 sections, which
decomposes and links to all other parts of the ISO 23247 framework.

e  Observable Manufacturing Element (OME) domain: Context for the physical twin (each wind
turbine component) which is the basis of the DT. This interacts with DT interfaces for data
collection and device control — feedback mechanism.

e Data Collection and Device Control Domain: This connects the physical twin (OME) to its unit
DT through sensor data collection, synchronization, and actuating feedback to regulate
operational conditions with decisions from the DT.

e  Core Domain: This domain handles all DT services from analytics and simulations to feedback
and user interaction.

e  User Domain: This is the application layer through which users access the DT and see results
through visualizations and other functionalities.

Figure 5 describes a mapping of the ISO 23247 reference architecture [8] [28] to the presented
case study of wind turbines predictive maintenance distributed DT, and how it links to the layers of
the framework. This is an excerpt that guides the proposed framework in this study from the more
detailed functional view of the ISO 23247 reference model for manufacturing.

The procedure adopted in the overall utilization of the standards outlined in the ISO 23247 can
be described as a bottom-up approach as follows:

e  Selection of Standards for sensor interfaces, data collection and processing

e  Selection of interfaces for device control and handling of feedback from DT to PT.

e  Selection of Communication protocols and middleware

e  Selection of technology stack for representation of DTs such as JSON, DTDL and other software
implementation frameworks.

e  Selection of deployment platforms based on specific data and processing requirements.

e  Selection of functional services platform for visualization interaction with users via ERP, CAD,
CAM or others.
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Figure 5. ISO 23247 Reference Architecture Mapping.

4. Methodology

This section breaks down the methodology used to achieve the framework. In summary, Figure
5 and 6 gives an overview of the methodology used to implement the DT solution. From Figure 6, the
“SS_Cloud” highlighted in blue denotes operations done in the cloud layer by the System of Systems
DT module, the “S_Fog” highlighted in Green denotes the operations done in the fog layer by the
Systems DT modules and finally the “U_Edge” highlighted in Yellow denotes operations done at the
edge/IoT devices layer by the Unit DT module.

4.1. System Architecture

The proposed architecture of using a distributed paradigm with edge/fog nodes implemented
using raspberry pi devices. The raspberry pi is connected via Wi-Fi to a “Cloud” PC.
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Figure 6. Block Diagram of Predictive DT Solution.
L Components: The components were selected based on a review by NREL showing the most

failure prone components of a wind turbine. This was used to select two of the components
for this work. These are the Generator as system DT and its sub-components as unit DTs and
Gearbox as system DT and its sub-components as unit DTs.

II. Software Architecture: The Digital Twin was developed using the Digital Twin Definition
Language (DTDL) and C# Object Oriented Programming concepts to replicate the
relationship between entities, and the operations of the DT such as the Predictive
Maintenance model, alerts, and fault classification algorithms for feedback operations. Figure
7 describes the modelling approach [38].
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Gearbox
Windfarm_ID Rotor
Gear_Oil_Temp_Avg [°C] Location
!
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Figure 7. Data Model for Wind Turbine DT based on EDP Dataset.
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4.2. Metrics

These are key metrics evaluated to showcase the performance and benefits of the system. A point
of emphasis is the fact that the proposed framework focuses on providing a solution that can enhance
the deployment of digital twins in IIoT which can improve the efficiency of asset management. The
key metrics being recorded in the experiments are.

L Accuracy of the model to support PHM with respect to the real time scenarios of turbine
operation.

II. Prediction feedback loop (DT to PT): How the computational platform whether edge or cloud
supports the overall aim of the framework: data collection, pre-processing, and prediction
feedback.

I Computational Latency: Time it takes for model run and feedback.

For the above metrics, the implemented predictive maintenance algorithms were monitored to
evaluate their performance in the DT environment. Insights are aimed at answering the question
“How best Digital Twins can be developed to achieve higher efficiency.”. This Questions are mainly:
e  Does the Distributed DT framework improve the effectiveness of a predictive maintenance

solution?

e Does applying the standardization for DT show relevant improvement to the PHM solution?

4.3. Software

The relevant predictive maintenance models identified in literature have been implemented and
used as a benchmark.2 More algorithms are being developed. The DT Software uses the DTDL with
communication interfaces that serve as middleware. These were implemented in the solution
leveraging TCP/IP; Telegraf and Mosquitto MQTT broker. The software script for feedback
mechanism is implemented in python. The simulation of WT components in software is based on the
acquisition of sensor data, publish/subscribe leveraging MQTT and data queries from the real time
database - influx DB. This follows the model described in Figure 8.

Feedback

Q mechanism
Physical Twin | >] Digital Twin \ _______________ .
! E Model 1

i - |
\ ' ML
A @ influxdb ' @Mode/? ]
TO6AS. .. .. ST T T T N\ P } : :
<<pubiish>%" | B ! :
s <<subscribe>> | : :

TO7. A0 - ALV e ,i\ < >
et . Sy ... ‘ . ' H ) i
Telegraf Agent * e Realtime | ML '
TN /l\ Database | @ Model n |

TO1 43N, 4

<<Data Streaming>>

Figure 8. Overview of System Architecture with Middleware/Streaming.

4.3.1. Machine Learning Algorithms

As identified in literature, some of the machine learning algorithms used for the data driven
predictive maintenance approach, and which have shown good results [13] were implemented. In all
algorithms used, the input and output variables were adopted from works in literature [13] described
in Table 2.

The algorithms are described below.

e  Multiple Linear Regression (MLR): This algorithm uses scikit learn to model the relationship
between the inputs and the output by fitting a linear equation.

¢  Long Short-Term Memory (LSTM): This is a version of Recurrent Neural Network (RNNs) that
makes its predictions by using the order sequence of data to learn the termly dependencies of
data. This is why it is suitable for IoT timeseries predictions.
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*  XGBoost: This algorithm uses decision trees for gradient boosting and works by combining
weaker learners to create a stronger learner . It is considered one of the best algorithms for time

series predictions and hence why it is suitable for IoT data.

Table 2. Selected Components for Predictive Maintenance Model.

Component Inputs Output Ref
Nacelle Temperature
Rotor Speed
Gearbox Active Power Gearbox Bearing Temperature
Ambient Temperature [13]
Gearbox oil temperature

Nacelle Temperature Generator Bearing Temperature
Active Power
Generator Generator speed
Generator stator temperature [13]

The application of the model pre-processing and processing through the utilization of the Digital
Twin data is outlined in Algorithm 1.

Algorithm 1:

Data: All turbines dataset, sensor data from components

Result: Predicting future trends

Start: Load 75% of each turbine’s dataset as historical data to Realtime DB
foreach xicaptured by sensors do

if xi € timeout then

| Delete

end

if xi € loss data then

| xi=xi+10r xi1

end

if xi< 0 or xi is null then

[ xi=0

end

if turbine_power xi<= 0 and wind_speed (wi) > cut-in-speed (3.5) then
[ xi=0

end

end

e Identify variables of interest for each component and assign them as input and output
variables.

e Split historical data into 80% train set and 20% test set.

e  Forecast the future trend using MLR, XGBoost, LSTM, SVM, RandomForest (then select best

model)

Furthermore, the post-processing is achieved by using Statistical Process Control (SPC) to find
deviations that indicate an anomaly in the normal wind turbine operation. This is described in
Algorithm 2.
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Algorithm 2:

foreach xiin test set and Realtime dataset do

/[calculate deviation:
deviations = actual - predicted

end
MovingRange = | deviationsi— deviationsi1|
Sigma = MovingRange/1.128
UpperControlLimit = 3 * Sigma
LowerControlLimit = -3 * Sigma
foreach deviation in deviations do

if deviation > UpperControlLimit do

| AnomalyDetected = True
ActivateFeedbackMechanism()

else

| AnomalyDetected = False

| ContinueMonitoring()
End

4.3.1. Feature Extraction

To further understand the effect of each of the variables to the performance or health of each
component, feature importance ranking was performed as a form of sensitivity analysis used to rank
the variables based on the influence to the machine learning models. This helped us in identifying
the key sub-components to focus on for the feedback mechanism. This was a form of validation from
the literature that supported this methodology as outlined in Table 2 above.

4.3.2. Prediction Feedback

This serves as the script that coordinates the feedback on prediction of failure. The relevant sub-
components are regulated through simulations to handle the effect of their current behavior to the
health of the component being monitored by the Digital Twin. These components are identified by
the sensitivity analysis as described 4.3.1 above. This Can be described by Algorithm 3.

Algorithm 3:

Function ActivateFeedbackMechanism():

foreach variable V in sensitive_variables do

if V> UpperControlLimit do

| Adjust V using actuators to bring it below UpperControlLimit
else if V < LowerControlLimit do

| Adjust V using actuators to bring it above LowerControlLimit
end if

end for

End Function

4.4. Data Platform

The datasets serve as sources of data from the components. Influx DB is used as the real time
database that streams data. Each turbine out of the 4 turbines has a bucket in influx DB. In one
instance, these buckets hold 75% of the data (that is 18months worth of 10 min readings) and the
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remaining 25% is used for real time streaming and prediction by the DT. This was reconfigured in
different instances of the experiments to model and understand the behavior. For easier analysis due
to time constraint, each 10-minute reading is streamed every second.

4.5. Connectivity Middleware

The experiment set up was implemented with Wi-fi as the network connection, connectivity,
MQTT and Telegraf as middleware and this is between the raspberry pi at the edge and the fog/cloud

pc.

4.6. Functional Requirement

This is the final phase of the experiment set up that provides an interface to the Digital Twin to
highlight its performance using a simple application such as a Web Platform. The functional services
which relate to the User Entity section of the ISO 23247 is beyond the scope of this work. The Digital
Twin proposed in this work also serves as the Core Entity of the ISO 23247 reference architecture,
and this handles the management and monitoring of the Predictive maintenance DT. A description
of how the machine learning model, as well as the simulations were handled by the DT can be
summarized by Algorithm 4.

Algorithm 4:

Initialize:

Load pretrained_machine_learning_model
Repeat Forever:
Wait for 24 hours
Gather Real-time Data:
| Collect real-time data from sensors.
| pre-process data
| standardize features.
| Predict using pretrained_machine_learning_model
| find anomaly.
| Monitor components and activate feedback if needed.
Update Forecast:
Store predicted values in a batch as the forecast for the next 24 hours.
If 7 days have passed since last retraining;
Gather Training Data:
| Collect historical data from the past 7 days.
| standardize features.
Retrain Model:
Train a new machine learning model using the training data.

Update pretrained_machine_learning_model:

| pretrained_machine_learning_model = new_trained_model
End if
End Repeat

5. Experiment Set Up
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The experiment for the solution was achieved using some hardware and software along with a
dataset from EDP [39]. The overall setup is described in Figure 9, which is an implementation of the
solution architecture introduced in Figure 3 [17].

L Edge IoT Devices: This layer is equipped with raspberry 3 devices (64-bit @ 1.4GHz 1GB
SDRAM) that simulates “sensors” which publish real-time sensor data using MQTT brokers,
from each wind turbine component, and receive feedback from the upper layers DT.

II. Fog Nodes Layer: This layer is equipped with a fog node serve/pc (Lenovo IdeaCentre Mini
PC 1.5GHz 4GB RAM 128 SSD). This aggregates the components for each turbine using
containerized microservices, Docker, that pushes the real-time sensor readings to influx DB
buckets in the fog (batch data streaming point will be good here) for short term storage and
the cloud for longer term storage. This layer also hosts the system DT (DT for each turbine).
The script, described in Algorithm 3, that regulates the components behavior once faults are
predicted is also hosted in this layer. Both batch and real-time data collected from the sensors
are processed in this layer. All the activities highlighted later in the feedback section relates
to this layer.

L Cloud Layer: This layer is equipped with a higher computational capacity, using a PC (Intel
Core i5 CPU @ 3.30GHz 8.00GB RAM 64-bit OS). This layer hosts the Global DT, training
and testing set of all the ML models for each component, periodically retrains the models as
more data and faults are identified over time using the longer-term historical data in the
influx DB.

Cloud-PC:
- Long term data historical data of 4 turbines (T06,T07,T09,T11)
- influx DB buckets for each turbine

- python script for model retraining [ 4 . a |
- Receive data from fog devices for longer term analytics ——
- Global Digital Twin -

\ 4

System of Systems DT;
Wind Farm

Fog Nodes:

- sensor data subscribe

- real-time sensor data pre-processing

- Short term data storage

- predictive maintenance inference and feedback

- Component DT; Gearbox > Generator

-influx DB bucket

- Docker containers for DT Modules

- Deployed pretrained model for daily health prediction

Systems DT,
_& Wind Turbines
docker docker script for feedback

Edge IoT: [ Middleware: MQTT

¢

- realtime sensor data
- actuator
- predictive maintenance inference/feedback

- sensor data publish - - o UnitDT,
| 1 Wind Turbine Components
! ' Gearbox, Generator, Rotor.

Turbine T01 Turbine T06 Turbine T07 Turbine T11

Figure 9. Experiment Setup based on solution architecture.

A closer look at the overall workflow from the experiment is described in Figure 9.
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Figure 10. Functional Application of Experiment.

6. Result

The result of this work follows the earlier work done in literature as bench marks [13] [12] [15].
This is to showcase the relevance of the distributed digital twin framework, as well as applying
standards towards improving asset management in manufacturing systems — specifically predictive
maintenance of wind turbines in a wind farm. This section starts with highlighting the failure logs
outlined in the dataset [39] used for the experiments in Table 3. Followed by an analysis on the
performance of the implemented models in two scenarios — (1) adopting a cloud centralized strategy
and (2) applying the distributed DT framework as a strategy that enhances real-time feedback
leveraging the Distributed DT. This will be followed by the impact of the distributed framework in
enhancing two-way feedback leveraging the fog layer of the framework.

Table 3. Actual Failure Logs from EDP Dataset.

Turbine Component Timestamp Failure Type

T06 GEARBOX 2017-10-17T08:38 Gearbox bearings damaged
HYDRAULIC_GROUP 2017-08-19T09:47 Oil leakage in Hub

T07 GENERATOR 2017-08-21T14:47 Generator damaged

GENERATOR_BEARING  2017-08-20T06:08 Generator bearings damaged

HYDRAULIC_GROUP 2017-06-17T11:35 Oil leakage in Hub
HYDRAULIC_GROUP 2017-10-19T10:11 Oil leakage in Hub

T11 HYDRAULIC_GROUP 2017-04-26T18:06 error in the brake circuit
HYDRAULIC_GROUP 2017-09-12T15 error in the brake circuit

6.1. Model Pre-Processing

For all the Machine Learning Models outlined in section IV (c), the first stage after loading the
historical data from the specified influxdb bucket of each wind turbine hosted in the cloud-PC, is to
pre-process the data by cleaning and removing outliers based on Algorithm 1. This is followed by the
identification of the specific inputs and output needed for each component as outlined in Table 2.

Once the data is cleaned, and made reasonable for a WT operation scenario, it is then split into
training and test set. The data was split into 70% train set and 30% test set for each year 2016 and
2017, separately.

6.2. Model Processing

The pre-processing stage was followed by the processing of each of the models for each of the
components. In the processing stage, parameters for each of the models are configured before training
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is done. For instance, the architecture of the LSTM model for the gearbox is different from that of the
Generator. This is one of the functions of the DT in accommodating each component and model based
on its specific requirements. While all the implementations share similarity, this feature is important
in making the DT handle each component with more detail, with a dedicated mode/DT for enhanced
accuracy. Table 4, gives a summary of the performance, in terms of accuracy of all the components
categorized by Turbine, Year of Operation, Component and Algorithm used.

Table 4. Result Metrics.

MLR LSTM XGBoost
T 1 Y 2_ 2_ 2.
urbine € PMSE MAE N RMSE MAE N RMSE MAE R
Score Score Score
2016
0.93 0.68 0.97 1.15 0.86 0.99 0.75 0.53 0.98
(Gear)
To1 2016 (Gen) 391 3.25 0.90 3.86 3.10 0.90 3.98 3.17 0.90
2017 1.01 0.74 097 0.85 0.64 0098 0.79 0.56 0.98
(Gear)
2017 (Gen) 4.28 3.17 0.89 4.04 2.94 0.90 3.83 2.77 091
2016 0.96 0.72 097 1.21 091 099 0.78 0.56 0.98
(Gear)
T06 2016 (Gen) 2.99 2.01 0.92 3.19 2.26 091 3.36 2.44 0.90
2017 1.07 0.81 0.97 0.84 0.61 0.98 0.86 0.61 0.98
(Gear)
2017 (Gen)  3.63 226 0.89 3.89 238 0.85 3.63 2.2 0.87
2016 1.04 0.74 0.96 1.15 0.86 0.99 0.81 0.57 0.98
(Gear)
To7 2016 (Gen)  2.55 2.04 095 2.49 196 0.95 2.60 2.05 095
2017 1.03 0.76 0.96 0.86 0.65 0.97 0.79 0.56 0.98
(Gear)
2017 (Gen) 3.59 3.11 0.92 4.87 4.42 0.80 3.83 2.77 091
2016 1.16 0.87 0.96 1.12 0.80 0.99 0.86 0.62 098
(Gear)
T11 2016 (Gen) 3.30 2.61 0.89 3.45 2.68 0.88 3.31 2.62 0.89
2017 1.22 0.92 0.96 1.02 0.76 0.97 0.87 0.64 0.98
(Gear)

2017 (Gen)  3.75 295 0.90 3.43 2.82 091 3.46 2.80 0.90

6.2.1. Gearbox

From the result metrics, a closer look at the initial accuracy metrics for the gearbox component
overall training and testing, each year done individually, it was observed that the models for both
Turbines T01 and T06, taken as an example, behaved similarly where there was an increase in RMSE
and MAE from the 2016 to the 2017 data, and in both cases, MLR and XGBoost outperforming LSTM.
However, an interesting point to note is that for LSTM, there was a decrease in RMSE and LSTM
between 2016 and 2017 with that of 2017 having better performance significantly. This showcases the
relevance of LSTM as a deep learning approach that supports termly dependencies, suggesting that
for this case study, seasonality, in terms of the four quarters/seasons of the year, needs to be
considered. This is due to atmospheric and weather conditions that affect temperature, wind, and
other environmental factors.

This finding highlights the point that the training and testing of the model need not be a standard
ratio in all cases, as such the distributed DT having short term and long-term storage in the fog and
cloud layers respectively, allows for handling this requirement.
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6.2.2. Generator

For the Generator bearing component, the results show a different pattern. Firstly, the RMSE
and MAE which indicate how far off or close the predictions are to the actual values of the Generator
bearing temperature, are higher because the Generator bearing operates at a higher temperature than
the Gearbox bearing. This was also easily identified by the DT. In terms of the accuracy metrics, the
results show that LSTM and XGBoost outperformed MLR in TO1 while XGBoost and MLR
outperformed LSTM in T06.

6.2.3. Further Analysis

From analyzing results from the behavior of all the turbines T01, T06, T07 and T11, across both
years and all the models, it was found that the gearbox has more susceptibility to the seasonality
factor than to the Generator. This is also due to the fact for a gear type Wind Turbine, which is the
case in this study, the gearbox is closer to the inputs which transfers the mechanical energy to the
generator as output [40]. For the models, while RMSE and MSE were used for accuracy, the lower the
values the better the accuracy. However, the R-Squared score which is between 0 and 1 remains
within the same range for all components and having higher values (close to 1) indicates the models
performed well.

Comparison of Accuracy for T01, Gearbox (2016 vs. 2017) comparison of Accuracy for T08, Gearbax (2018 vs. 2017)

-
.
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Comparison of Accuracy for T01, Generator (2016 vs. 2017) Comparison of Accuracy for T06, Generator (2016 vs. 2017)

e

ASSAAEA]

and Compones
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Figure 11. TO1 and T06 - 2016 vs 2017 Accuracy Comparison by Component.

Additionally, while one algorithm performs well for a certain component, another algorithm
may perform better for another component as can be seen in the plots in figures a, b c in the plots.
This fact supports this work’s proposal on why the distributed DT framework is relevant as a tool for
suitable experimentation and PHM fine tuning. Further discussion on this is in discussion 7 of this

paper.

6.3. Model Post-processing

The next stage in our methodology when the models are trained and tested is to select the most
performing algorithm among the tested algorithms. As mentioned in the previous section, while all
algorithms performed well, the best algorithm to work with is subject to the component and often,
the training period due to the seasonality observed in the wind turbines behavior. However,
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considering all the above, for the purpose of these experiments, it was observed that among all the
algorithms, XGBoost performed best, in most cases. As such for the stage of post processing - failure
prediction and feedback, XGBoost was adopted, and the next stage of the methodology was achieved.
Figures 12 and 13 shows the actual vs predicted of Turbine T06 - Gearbox and T07 - Generator
towards the time of failure of the components.

Actual vs Predicted Gearbox Temperature (11th-18th Oct 2017)

e — Actual
65 1 —— Predicted

60 1

55 1

Gearbox Temperature (Avg)

50 - ‘

45

2017-10-11 2017-10-12 2017-10-13 2017-10-14 2017-10-15 2017-10-16 2017-10-17 2017-10-18 2017-10-19
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Figure 12. T06 Gearbox 2017 Actual vs Predicted.

TO7:Actual vs Predicted Generator Temperature (10th-22th Aug 2017)

90 1 —— Actual
——— Predicted

70 - \”1‘1 I
60 - , | “'H Lwa 1‘

50 A

Gearbox Temperature (Avg)

T T T T T
2017-08-11 2017-08-13 2017-08-15 2017-08-17 2017-08-19
Timestamp

Figure 13. TO7 Generator 2017 Actual vs Predicted.

6.3.1. Failure Prediction - Gearbox

After prediction with the acceptable algorithm and accuracy, the next stage was to apply the
statistical process control formula as outlined in Algorithm 2. The failure data from Table 3 was used
to lookout for failures in the wind turbine operation around the specified date when the component
fails. An alert was configured in the DT to monitor the threshold and pick up a deviation which will
be the point of failure prediction. Figure 14, shows how a failure in the Turbine T06's gearbox which
happened at time 2017-10-17 08:38 was picked up a week before from 2017-10-11 00:30.
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6.3.2. Failure Prediction - Generator

Similarly for the generator, once prediction of the operations of the generator is done, the
deviations are detected and SPC applied to predict failure. However, the generator uses a higher
lower and upper control limit due to its behavior. Failure was predicted by the DT since on 2017-08-
10 00:00 with multiple alerts, which were almost two weeks before the actual failure occurred as

highlighted in Table 3.
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Figure 14. SPC for T06 Gearbox Failure Prediction alerts
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Figure 15. SPC for T07 Generator Failure Prediction alerts

6.4. Prediction Feedback Loop

This section highlights the implementation of the prediction feedback loop from the Digital Twin
to the Physical Twin (PT). The major aim of this metric in our framework is to highlight the relevance
of the Distributed DT in accommodating the requirements for a modular DT that handles the
feedback from the moment a failure is predicted by the overall Global model in the Cloud layer. The
DT node specific to the component will then activate a model that evaluates how a behavior change
in the operation of the component can improve the remaining performance (time) before failure. This
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is envisioned to optimize the utilization of the asset. Figure 20 below shows how this Distributed DT
handled the failure of T07 and T06 as indicated from their failure in 6.3.1 and 6.3.2 above.

6.4.1. Pre-Failure Assessment

To achieve the prediction feedback loop, the DT module handling each component must triage
the deviations from the moment of failure prediction and perform some predictive modelling on
them. In our case study from the EDP [39] dataset, taking turbine T06 2017_Gearbox as an example,
the prediction shown in Figure 14 was on the 12th of October 2017 08:38, However actual deviations
that indicated a potential issue with the Gearbox started occurring two weeks before the failure, since
on 5th of October 2017 at 12:07. Figures 16, 17 and 18 shows the behavior of the gearbox temperature
in a weekly snapshot up to 1 month before failure. It can be observed that with this 1 month before
failure, the first two weeks (20th Sep to 4th Oct 2017) appear to be normal, with their SPC within the
acceptable range while the second two weeks (4th Oct to 18th Oct 2017) show the deviations that
predicted failure.
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Figure 16. T06_Gear Control Chart 20t Sep to 27t Sep 2017.
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Figure 17. TO6_Gear Control Chart 27th Sep to 4th Oct 2017.
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Shewhart Control Chart
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Figure 18. T06_Gear Control Chart 4th Oct to 11th Oct 2017.

As seen in figure 14 from 6.3.1, which shows the behavior for 11th to 18th October, in which our
actual failure was recorded on 17th October at 8:38.

6.4.2. Feedback

Having established that our model detected deviations from normal operation since on 5th
October 2017 at 12:07 , we now show how the feedback mechanism as described in Algorithm 3,
simulated the DT to PT two-way feedback by modelling the regulation of some components.

To achieve the feedback simulation, it was necessary for the DT module to identify the top, most
important features from the latest model run. Figure 19 shows how the Gearbox Oil temperature,
Rotor RPM and Nacelle temperature had the most influence to the gearbox temperature model
prediction. This was achieved by simply identifying the variables with the highest absolute
coefficients on the regression model’s output givenby ;y = b0 + b1x1 + b2x2 + --- bnxn

Where y is the predicted output (Gearbox temperature) , b0 is the intercept and b1, b2 ... bn are
the coefficients associated with each input feature (X1, x2 ... Xn) i.e Gearbox oil temperature, rotor
RPM e.t.c.

Feature Importance Ranking

Rtr_RPM_Avg

Gear_Oil_Temp_Avg

Nac_Temp_Avg

Amb_Temp_Avg

Prod_LatestAvg_TotActPwr

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
Feature Importance

Figure 19. Feature importance ranking for T06 Gearbox.

Based on this we selected the top 3 features that are most sensitive to the gearbox behavior and
implemented feedback simulations based on this.
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Figure 20, shows the behavior of the gearbox after the simulation where the feedback loop
handled the failure by identifying the components most sensitive to the original model that predicted
the failure and reducing them by 30%.

Shewhart Control Chart

|
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L

Deviation

|
ES
L

-6

—— Deviations
=== UCL
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-84

10-15 12 10-16 00 10-16 12 10-17 00 10-17 12 10-18 00 10-18 12 10-19 00
Time

Figure 20. SPC Chart Controlled Operations using DT Feedback Mechanism — 30% Reduction
Example.
6.4.3. Accuracy

From the metrics of the performance of the model during the feedback runs of the model, we
compare the actual T06_2017_Gear performance metrics and that of the feedback run performance in
terms of RMSE, MAE and R-Squared.

Table 5. Accuracy of Model during feedback run.

MLR XGBoost
Turbi Y -
urbine ear RMSE MAE R2.Score RMSE MAE 2
Score
T06 2017 (Gear) 099 071 0.96 098 063 096
To7 2017 (Gen) 329  3.02 0.87 364 243 089

Comparison of Accuracy for T0O6, Gearbox (2017 vs. 2017_Feedback)

4 8  —e— MLRRMSE (2017)
L] —a— MLR MAE (2017)
—&— MLR R2-Score (2017)
09 —e— XGBoost RMSE (2017)
—m— XGBoost MAE (2017)
L4 —&— XGBoost R2-Score (2017)
-@- MLR RMSE (2017_feedback)
-m- MLR MAE (2017_feedback)
=_MLR R2-Score (2017_feedback)
—-®- XGBoost _feedback)
-m- XGBoost MAE (2017_feedback)
—-&- XGBoost R2-Score (2017_feedback)

Accuracy

08

or

Year and Component

Figure 21. Accuracy of Model before and during feedback run.
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This comparison shows that despite the splitting of the DT where each module handles a
component in the fog in the constrained real time requirement of handling the failure is acceptable
and offers an improvement.

7. Discussion

This work presented a framework that supports the implementation of a distributed digital twin
capable of improving PHM in an IloT enabled manufacturing setting such as wind turbines. From
the architectural framework, methodology and results, it is evident that this presented DT framework
can also help both in real-life PHM solutions as well as in experimentation. In the framework,
different components operational readings were collected in real time using sensors simulation, then
based on historical and real-time data from the DT, different machine learning techniques were
applied to predict potential issues and failure of a component. In terms of the versatility of the
architecture, it supported, for example which algorithm is more suitable for which component, as
well as which model was best in handling seasonality.

For instance, when we applied LSTM for the gearbox and generator of the turbines, it was noted
that both components behaved differently in terms of the accuracy of the predictions when
parameters of the LSTM architecture are fine-tuned differently.

The potential benefit of adopting this framework is such that the DT can seamlessly allow
researchers, engineers, and operations team to simulate and apply the best model and parameter
fitting, whether for model training, testing or even in real-time as the DT framework supports the
prediction feedback loop. The concept of Intelligent DT in this framework suggests that the DT could
automatically evaluate these reconfigurations and feedback based on the behavior of or the
component being managed, and in real time.

For architectural considerations, while the Global DT handles the model training and retraining
in the cloud layer, the feedback handling model/PHM solution configurations is handled in the Fog
and Edge layers. This shows the relevance of the distributed DT framework presented in this study.

Finally, with failure predictions achieved at least two weeks in advance, the DT predicted the
behavior of the gearbox temperature based on some selected variables and the feedback mechanism
attempts to handle this by regulating the deviations and controlling the identified components to stay
within threshold, potentially extending the usage before failure of the asset. This shows that the
proposed architecture supports our objective of handling PHM issues in real-time. As with PHM, the
application Subject Matter Expertise (SME) to evaluate, monitor and improve the models will be an
iterative process. As such, this feedback loop in the fog layer can automatically simulate several
scenarios in real-time(e.g. running many variations of the sliced model) and instantly selecting the
best control strategy to improve performance, for example, this could be to reduce RPM by 20%
instead of by 30%, or which component to regulate from the sensitivity analysis outcome.

8. Conclusion and Future Work

This study presented a distributed digital framework towards improving asset management of
wind turbines as a case study for applying a more standardized framework within IIoT where
predictive maintenance and DT can be key technologies for achieving improved business outcomes.
The framework showed the utilization of the distributed DT architecture to apply a prediction
feedback loop from the DT to the PT, improve accuracy by predicting failures as early as possible and
remediating them with higher accuracy (model performance) and the provision of a computational
platform that offers better computational performance in terms of latency to satisfy real time
requirements in the solution. While the concepts have shown how the strategy achieves this, more
study needs to be performed in exploring the machine learning techniques performance peculiarities
with respect to predictive maintenance.

Further work in this study seeks to investigate the relevance and benefits of the framework in
supporting transfer learning for integration of newer components within an existing IloT
infrastructure, among other important ML techniques that support asset management in IIoT.
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