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Abstract: Parkinson’s Disease (PD) is a neurodegenerative and progressive disease that impacts the nerve cells
in the brain and varies from person to person. The exact cause of PD is still unknown, and the diagnosis of
PD does not include a specific objective test with certainty. Although deep learning has made great progress in
medical neuroimaging analysis, these methods are very susceptible to biases present in neuroimaging datasets.
An innovative decorrelated deep learning technique is introduced to mitigate class bias and scanner bias while
simultaneously focusing on finding distinguishing characteristics in resting-state functional MRI (rs-fMRI) data,
which assist in recognizing the PD with good accuracy. The decorrelation function reduces the non-linear
correlation between features and bias in order to learn bias-invariant features. The Parkinson’s Progression
Markers Initiative (PPMI) dataset, referred to as a single scanner imbalanced dataset in this study used to
validate our method. The imbalanced dataset problem affects the performance of the deep learning framework
by overfitting to the majority class. To resolve this problem, we propose a new Decorrelated Convolutional
Neural Networks (DcCNN) framework by applying decorrelation-based optimization to Convolutional Neural
Networks(CNN). An analysis of evaluation metrics comparisons shows that integrating the decorrelation function
boosts the performance of PD recognition by removing class bias. Specifically, our DcCNN model performs
significantly better than existing traditional approaches to tackle the imbalance problem. Finally, the same
framework can be extended to create scanner invariant features without significantly impacting the performance
of a model. The obtained dataset is a multi-scanner dataset which leads to scanner bias due to the differences in
acquisition protocols and scanners. The multi-scanner dataset is a combination of two datasets, namely PPMI and
FTLDNI - frontotemporal lobar degeneration neuroimaging initiative (NIFD) dataset. The results of t-distributed
stochastic neighbor embedding (t-SNE) and scanner classification accuracy of our proposed Feature Extraction-
DcCNN (FE-DcCNN) model validated the effective removal of scanner bias. Our method achieves an average
accuracy of 77.80% on a multi-scanner dataset for differentiating PD from healthy control, which is superior to the

DcCNN model trained on a single scanner imbalanced dataset.

Keywords: class bias; DcCNN; decorrelation; deep learning; FE-DcCNN; invariant features; parkinson’s disease;
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1. Introduction

Parkinson’s disease (PD) is characterized by the lack of dopamine transmitters due to the degen-
eration of melanin cells in the pars compacta (posterior part) of the substantia nigra, and PD patients
show several cognitive deficits which include executive functioning, visuospatial abilities, and memory
loss. The symptoms of PD include shaking, slow movements, walking problems, behavioral problems,
speech problems, etc. Diagnosis of PD generally includes assessment of behavior, neuroimaging,
physical, biological sampling, and clinical data. The false-positive rate for PD is higher in the early
stage and high at the final diagnostic stage. In the past few years, studies in neuroimaging modalities
have provided more profound and valuable insights into the underlying mechanism of PD.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Parkinson’s disease remains the second most common neurodegenerative disorder. But still, there
is an unknown factor in the cause of PD, which makes PD a very important area of study. Motor
symptoms, along with cognitive impairment, are also found as common disabling symptoms in PD.
The mechanism underlying cognitive dysfunction PD remains ambiguous, unlike motor symptoms.
Many studies have been conducted on PD using clinical and biomarker data. Most of them are driven
by hypotheses and hand-crafted feature extraction methods which are based on pathology-related
background knowledge. Recently, neuroimaging has been considered an important information source
for neurodegenerative disease. Hence, it has also arisen considerable interest from the PD community.
Diagnosing Parkinson’s disease based on diagnostic tests and radiologists’ reading on neuro-images is
oftentimes prone to mistakes. So there is a gray area in the PD diagnosing research field where the
unknown cause of PD, no precise test for PD, and a high misdiagnosis rate is present. There is a need
for highly accurate and reliable results. This research may be of use to the medical community in a
screening setting and to understand how and why PD develops and search for solutions to stop or
avoid the progression of the disease.

Currently, no specific test exists to diagnose Parkinson’s disease. There are a few diagnostics tests
that Physicians use to diagnose Parkinson’s disease based on medical history, review of signs and
symptoms, physical examination, blood test, and neuroimaging tests. As PD progresses, it becomes
harder to prevent or slow the changes through medication. For this reason, in 2016, experts developed
new criteria [1]. These include three steps. The first step includes accessing the probability based on
the age that the diagnosis will be PD. In the second step, physicians access the information based on
variables such as whether the person is male or female, environmental risks, caffeine use and smoking,
genetic factors, family history, or genetic test. Sometimes findings based on these results of scans and
other diagnostic tests show early signs and symptoms, which include constipation, loss of a sense of
smell, and difficulty with movement. The third and final step consists of calculating the outcome by
multiplying all the factors together and then comparing this total likelihood ratio with a threshold
measure. If the comparison indicates a total likelihood ratio higher than 80 percent that PD is present,
the physicians will diagnose that patient with the early stages of PD. Most commonly, a patient with a
75-80 percent total likelihood will have symptoms that may or may not relate to PD, e.g., constipation
and depression, whereas a patient with a 95-97 percent total likelihood will have symptoms that
are closely related to PD, e.g., Rapid eye movement (REM) sleep behavior disorder where a person
experiences sudden and rapid movements and vocalizations during vivid dreams.

Deaths caused by PD have increased significantly over the years. The diagnosis of PD used in
hospitals relies mainly on a combination of different diagnostic tests and symptoms assessment. It is
still difficult to make an accurate prediction of PD. Neuroimaging data such as Magnetic Resonance
Imaging (MRI), Resting-State Functional Magnetic Resonance Imaging (rs-fMRI), Single-photon emis-
sion tomography (SPECT), Dopamine transporter imaging (DAT), 123I-ioflupane-SPECT (DaTscan),
Diffusion tensor imaging (DTI), A positron emission tomography (PET), Computed tomography (CT)
scans can be used to diagnose PD. However, CT scans and MRI images sometimes do not show patterns
in images to distinguish PD from a healthy patient. Whereas SPECT is a commonly used method
but suffers from high cost and time issues and requires injection of radioactive material. Radiologists
generally use one of these neuroimages to diagnose PD disease, but it is proven to be more prone to
mistakes. Recent research and studies have shown that DTI and rs-fMRI can be used to predict PD
and are found to be promising methods for the diagnosis of PD. But in order to capture DTI images,
the patient will have to remain still for a longer period, i.e., half an hour. Since DTT is a relatively new
technique, it is difficult to find hospitals equipped with DTI scanners.

Current existing methodologies such as [2,3] do not use rs-fMRI using CNN to detect PD. There-
fore, the processing of rs-fMRI with a single scanner and multi-scanner settings using CNN techniques
to diagnose PD is not yet explored. This novel research study will evaluate the prediction of PD on
noninvasive and comparatively less expensive neuroimaging data such as rs-fMRI in a single scanner
and multi-scanner settings using a model that uses the convolutional neural network. Since available
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neuroimaging data is limited and the majority of the data is class imbalanced, this study will also
provide a novel decorrelation-based deep learning fusion approach to mitigate class bias. Further,
we will also explore the use of multi-scanner rs-fMRI data, which is obtained by combining different
datasets from different scanners not only to balance the dataset but also to increase the size of the
dataset and to improve the performance of the model. But this leads to an undesirable increase in
variance caused by scanner and acquisition protocol differences, including scanner upgrade, scanner
drift, and gradient nonlinearities. The same framework of decorrelation-based deep learning is used
to produce features that are invariant to scanner and acquisition protocol while still capable of not
impacting the performance of the PD recognition task.

The rest of this paper is structured as follows: Section 2 briefly reviews the related work, whereas
section 3 provides a brief description of the proposed methodologies, involved PD datasets, and
preprocessing techniques; section 4 reports the results and comparison with existing methodologies
and section 5 discusses the performance of our proposed method for the PD detection. Lastly, section 6
concludes the research and provides opportunities for future work.

2. Prior Work

Two centuries ago, James Parkinson presented the first medical description of Parkinson’s disease
in 1817. Today, Parkinson’s disease is the second most common neurodegenerative disorder. The
pathophysiology of Parkinson’s disease (PD) is the study of the functional processes that occur in a PD
which is only partially understood. Currently, what we know about PD is that the loss of neurons in the
Substantia Nigra pars compacta part of the brain and the presence of Lewy bodies leads to the loss of
dopamine (a neurotransmitter). This damaged neurotransmitter ultimately prevents normal function in
the basal ganglia, which causes the motor symptoms of PD and cognitive impairment. Common motor
symptoms observed in PD include tremors, slowness, stiffness, rigidity, swallowing problems, balance
problems, unpredictable movements, difficulty initiating or controlling movement, cramping, and
speech problems. Cognitive issues, such as short-term memory loss, difficulty following complicated
instructions, or a loss of multitasking ability, may also occur in PD patients. Some people will have
several symptoms, whereas others will have only a few. It has been observed that deaths caused by
PD have increased significantly over the years. This is mainly because PD is difficult to diagnose
and can be caused by a combination of environmental, genetic, or lifestyle factors. Male gender, gait
disorder, and absent rest tremor are generally associated with poorer long-term survival. According to
NIH, approximately 50,000 to 60,000 Americans are diagnosed with PD each year. Because of a lack of
knowledge regarding which symptoms develop and how severely and quickly symptoms develop,
and since the symptoms of Parkinson’s vary from patient to patient and often overlap with other
medical conditions, PD is misdiagnosed as up to 30 percent of the time. It has been observed that
misdiagnosis of PD is very common. So there is a need for an automated diagnostic tool.

2.1. Pathology Driven Hypothesis

In the past few years, several studies have been done to explore the connection between clinical,
biological, and imaging data to achieve an accurate diagnosis and early detection of PD. Most of these
studies are driven by pathology or the underlying biology of PD and use hypotheses. According to [4,5],
the a-Synuclein protein, which is a major component of Lewy pathology, accumulates and originates
from cells in the gut and transmits to the brain via a vague nerve in the patient with Parkinson’s
disease. The authors performed this study on a mouse model and supported the Braak hypothesis.
This research might help to prevent or halt PD progression by blocking the vagal transmission pathway
in an early stage. From a genetic contribution point of view, a paper published by [6] suggests that
protein products of genes help to identify the functionality of PD whereas [7] have investigated the
use of a-Synuclein protein as a biomarker for PD using hypothesis testing with around 85% specificity
and 52% sensitivity. In [8] the paper, an innovative approach, such as the use of sebum to diagnose
PD was used since a change in skin microflora, and skin physiology can cause a change in odor in PD



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2024 d0i:10.20944/preprints202403.1349.v1

40f22

patients. The results (AUC 78%) to support this theory were achieved by collecting sebum samples
from the participant’s upper back and using a combination of data processing techniques, such as
olfactogram and chromatogram, and performing partial least-squares-discriminant analysis on this
preprocessed data. The main limitation of this study is the smaller sample size. There are quite a few
studies conducted to diagnose PD by using neuroimaging and clinical data.

Several papers such as [9-14] have suggested the use of DTI metrics can provide distinguishing
features to detect PD or be used as imaging biomarkers for PD. In recent years, there have been studies
[15,16] in rs-fMRI, which is a fast-developing research field and helps in revealing cognitive dysfunction
or increasing motor connectivity for early PD detection. All these studies perform hypothesis testing
such as t-test, two-way mixed model ANOVA, comprehensive meta-analysis, etc., to find significant
group differences between PD and control healthy groups. The cross-sectional study [17] claimed that
serotonergic pathology plays a vital early role in the progression of PD. This study provided evidence
that loss in serotonin function is observed in the very early stages of PD by using PET and SPECT
scans. To access molecular, clinical, and structural pathology, PET imaging was used. ANOVA and
t-test were used for comparisons between the groups and suggested that serotonergic malfunction
precedes the development of other PD symptoms, such as motor, and is related to the dopaminergic
deficit by using the Braak staging scheme.

2.2. Data-Driven Models

Data-driven approaches, such as deep learning and machine learning, are different than conven-
tional statistical analyses. DaTscan SPECT image analysis with the one-layer artificial neural network
is developed to classify PD versus normal with around 94% accuracy [18]. Machine learning-based
approaches such as a support vector machine [19], a Naive Bayes classifier [20], and a boosted logistic
regression model [2] were also used for PD classification using rs-fMRI data, but it was tested on very
small datasets.

To overcome the drawback of feature-engineering or hand-crafted features, a few deep learning
techniques have been deployed in the past decade. [21] used SPECT data to detect PD over normal
using deep 3D CNN architecture which achieved around 96%, far higher than human evaluation
accuracy, and could be used for the SWEDD group. Another study in deep learning is carried out
by [22] using graph convolutional deep networks (GCN) to fuse multiple modalities of MRI and DTI
to detect PD cases and achieved around 95% AUC. In this study, a Brain Geometry graph (BGG)
is obtained from the Region of Interest of MRI and Brain Connectivity Graphs (BCGs) from the
tractography of DTI and used as input to GCN to explore spatial and frequency spectrum information.
Laplacian and Fourier transform-based graph convolution are performed on BGG and BCGs, and then
the multi-view pooling is done to aggregate multi-view outputs of GCNs together. The authors also
used pairwise matching between outputs of multi-view GCN to increase the amount of data. In the
final step, a fully connected softmax network is used for classification by using pairwise matching
layer output. [23] performed PD diagnosis using a 3D Convolutional Neural Network(3D CNN) deep
learning framework on 3D MRI and patient personal information such as age and gender. This work is
primarily compared with [24,25] work for performance comparison. The main goal of this pilot study
is to integrate feature extraction and model learning into one framework to improve performance.
Skull stripping by using the Brain Extraction Technique (BET) with Statistical Parametric Mapping
(SPM) algorithms were used to remove non-cerebral tissue in order to improve the speed and accuracy
of this study. Flipping of the right and left hemispheres was done in the data augmentation process. In
their study, the authors claimed that using age alone in logistic regression to predict PD achieved 72%
accuracy. The authors also performed image occlusion analysis to study important parts of the brain in
PD diagnosis and suggested those parts are the Basal Ganglia and Substantia Nigra, along with the
Superior Parietal part on the right hemisphere of the brain. Their proposed approach achieved 100%
accuracy in distinguishing PD from healthy. The limitation of this study is that methodology has been
tested on a small sample size dataset.
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In the [15] paper, the authors suggested that rs-fMRI can differentiate patients with early PD
from healthy controls. Their study primarily consists of calculating connectivity scores based on
three regions of interest such as the caudate, putamen, and pallidum. This paper also recommended
the use of rs-fMRI as a biomarker for early PD detection. Recently, rs-fMRI data was used in the
early diagnosis of PD using a long short-term memory (LSTM) model by [3]. This model achieved
around 72% accuracy with a small size of a dataset consisting of only 84 subjects. All the above studies
are performed using identical data acquisition conditions and on a single scanner at the same site.
However, larger multi-scanner and multi-site data are required to achieve higher generalization by
building a more robust model. There are a few multi-site research [26-28] which are based on fMRI.
These studies are focused on controlling scanner variations, but these studies are performed using
very small datasets and not for PD diagnosis. In addition to these studies, the ComBat harmonization
approach [29] is also used for fMRI-derived connectivity measures in a multi-site study but can be
used only on image-derived values and predefined relationships. Deep learning methods with the
attention-based channel are used on large multi-site resting-state fMRI datasets without explicitly
applying any scanner bias mitigation method [30] to generalize models to multi-site datasets. The
federated learning approach [31] with two domain adaptation techniques, such as a mixture of experts
domain adaptation to reduce the effect of a new domain on the global model and adversarial domain
alignment to reduce the discrepancy between the source and target domains, are used to resolve
domain shift issue observed in multi-site fMRI datasets.

There have been many methods proposed for classifying PD using machine learning and deep
learning. However, class imbalance and scanner bias remain issues in PD classification. Moreover, a
minimal amount of previous research has used rs-fMRI to classify PD based on data-driven models.
To the best of our knowledge, the proposed approach is the first to use a convolutional neural network
and convolutional-gated recurrent unit-convolutional neural network (ConvGRU-CNN) to identify
Parkinson’s disease using Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) data and
patient information such as age and gender. Furthermore, a simple and effective distance correlation
technique was used for the first time to address class imbalance and scanner bias issues in neuroimaging
data which allows us to generalize the proposed model to larger multi-site and multi-scanner settings.

3. Materials and Methods

Deep learning techniques in the medical domain have received increasing interest due to their
ability of accurately performing tasks and for extracting meaningful features in neuroimaging datasets.
However, the performance of the deep learning models is impacted by the imbalanced and multi-
scanner datasets issues. Imbalanced datasets exhibit skewed class distributions, whereas multi-scanner
datasets exhibit data bias or confounding effects due to variance caused by differences in scanner and
acquisition protocols. In this study, we aim to resolve two issues associated with rs-fMRI datasets of
PD.

1. The dataset is highly imbalanced, which introduces a class bias issue. Hence, deep learning
models trained on this dataset are biased towards the majority class. In our study, the majority
class is PD patients.

2. Inorder to improve the performance of deep learning, the datasets from two different scanners
and different studies and sites are combined. But this leads to scanner-variant features, and hence
model predictions are dependent on a scanner.

Our proposed method focuses on using distance correlation in the objective function to mitigate
bias toward majority class and scanner dependencies from features learned by deep learning. In this
method, we improve the classification performance on the imbalanced dataset by decorrelating class
bias from learned features by model. Scanner dependencies on model performance are mitigated
by decorrelating scanner configuration information from learned features to create scanner-invariant
features. The proposed method is simple yet more effective and can be applied to the mitigation of a
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wide range of data bias, confounders, class bias, or a combination of all bias issues, as shown in our
previous work [32]. The proposed DcCNN framework in this study, on the other hand, is specifically
designed to address scanner dependency and imbalance issues that are common in large clinical trials
involving neuroimaging data. The proposed DcCNN model framework is shown in Figure 1. The
framework mainly consists of three steps: data preprocessing, balancing the dataset using different
sampling techniques and adding a new dataset, and classification using DcCNN. Finally, the model is
evaluated using different evaluation metrics and t-distributed stochastic neighbor embedding (t-SNE)
plots.

rs-fRMI Input Data

Data Augmentation and

rs-fMRI Data Transformation .
Balancing

Decorrelated Deep Learning

Model Architecture Training

Performance

Validation/Testing Evaluation

Figure 1. General Framework of the proposed method for classification of Parkinson’s Disease.

3.1. Decorrelated Convolutional Neural Networks

Decorrelated Convolutional Neural Networks (DcCNN) are implemented by applying the decor-
relation loss function to CNN architectures. We propose our DcCNN architecture as in Figure 2. We can
use one or combinations of any layer outputs and concatenate them as features for the decorrelation
function depending on the complexity of the task. Distance correlation is used as a decorrelation
function.

Distance correlation calculates the association between two arbitrary dimension variables using
the distances. In our proposed approach, By, is the bias variable. F; _, is features extracted from
DNN, and p is the total number of samples. The distance correlation is the square root of:

& if VZ B.B V2 FE)>0
DCZ(B,F) = VZ(B,B)VZ(F,F) 1 ( s ) ( P ) (1)
0 else 0

where DC(B, F) is bounded between 0 and 1. DC(B, F) = 0 only if the variables B and F are
independent. v?(B, F) is the distance covariance between a pair of variables, and v?(B, B), v*(F,F) is
the distance variance as defined in [33]. The distance covariance is normalized by the distance variances.
The Pearson correlation coefficient [34] measures only linear dependencies but features extracted from
CNN can have non-linear dependencies and hence distance correlation is more preferable since it
measures not only linear but also non-linear dependencies between two random variables.
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Figure 2. Proposed DcCNN architecture. Red dashed lines denote the output of convolutional layers /,

which are combined together to represent learned features. Green dashed lines indicate the start of
the learning process, where backward arrows show back-propagation using their respective gradient
values, while forward arrows show forward paths with updated parameters. Network parameters are
updated as per the objective function.

In our study, we use the squared distance correlation. Class weights are also used in the distance
correlation loss function in some of the models to tackle the imbalance problem of scanner data. This
function is minimized to reduce the distance correlation between features learned by the networks and
the biases. This means that we want to find parameters of the network such that F features have a
minimal distance correlation with the B bias variable. The decorrelation function term is added to the
standard objective function for optimization.

3.2. Mitigation of Class Bias

Previous research work has shown that imbalanced datasets have a negative impact on the
performance of CNNs due to bias towards the majority class. The PPMI dataset used in this study is
highly imbalanced, and hence learning discriminating boundaries between Parkinson’s Disease (PD)
subjects and healthy control subjects could be more challenging. Our DcCNN models introduce the
idea of using the decorrelation loss function along with a data sampling technique to address the class
bias problem in deep learning due to an imbalanced dataset.

3.2.1. PPMI Dataset and Preprocessing

The PPMI dataset consists of around 183 subjects with follow-up visits. This dataset includes
164 PD patients and 19 healthy control subjects. The demographic information and box plot for the
PPMI dataset is shown in Table 1 and Figure 3, respectively. The time required to collect the rs-fMRI
data for each subject is around 8 min 4 sec. During data collection, subjects are instructed to minimize
all movements as well as to rest quietly with eyes open with a clear mind during the scan. They also
instructed to not to fall asleep during this process. For a few subjects, data has been collected up to 1 to
3 years. In this study, imaging data associated with follow-ups are considered independent since they
were scanned at different points in time. The size of each rs-fMRI slice is 68 x 66, and these images
are grayscale. A total of 40 axial slices are captured for each subject. The scanner used to collect this
dataset is the Tesla scanner manufactured by Siemens Medical Solutions. Functional scans are acquired
using EPI sequence (Field Strength=3.0 tesla; Flip Angle=80.0 degree; Matrix X=476.0 pixels; Matrix
Y=462.0 pixels; Mfg Model=TrioTim; Pixel Spacing X=3.2941 mm; Pixel Spacing Y=3.2941 mm; Pulse
Sequence=EP; Volumes=210.0 time series ; Slice Thickness=3.2999 mm; TE=25.0 ms; TR=2400.0 ms).
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Table 1. Demographic information of Two datasets, PPMI and NIFD.

Datasets Total Subjects Group Subjects Gender Subjects Meanof Age SDof Age Minof Age Maxof Age

PPMI 183 PD 164 Male 111 62.55 10.53 38.6 79.3
Female 53 59.65 9.36 41.2 76.9
Control 19 Male 15 65.98 9.04 48.1 83.1
Female 4 59.95 12.1 44.6 74.2
NIFD 215 Control 215 Male 129 62.6 8.45 36 82
Female 86 65.9 7.95 47 85
PD Control NIFD Control
BoxPlot BoxPlot Bkt

Ag
EY 80
Age
50 T
L L
| }»-H:|

Figure 3. The boxplot of Age for Male and Female for PPMI and NIFD Datasets.

The preprocessing of rs-fMRI is done using FSL v6.0 [35]. An FSL-BET extraction tool [36] is used
to extract brain regions and remove skull and neck voxels. Motion correction is performed with the
help of the FSL-MCFLIRT toolbox [37] to remove motion artifacts introduced by head movement over
time. Spatial smoothing of each volume is implemented using a gaussian kernel of 5 mm full width
at half maximum to reduce noise without reducing the true underlying signal. High-pass temporal
filtering with a cut-off frequency of 0.01 HZ (sigma = 90 seconds) is also applied to remove low-level
noise. Since the first ten slices and the last five slices of each subject contains no functional information,
they are removed. The end results of this prepossessing for each subject are 66 x 66 PNG images with
25 slices and 210 volumes. The dataset is trained, validated, and tested using 70%, 15%, and 15% of
the dataset, respectively. To improve the generalization ability of DcCNN models, data augmentation
methods such as random rotation, random translation, and elastic deformations [38] are applied to the
training dataset, which helps to make the model shift, rotation, and deformation invariant.

Since the number the subjects are less and to minimize the overfitting issue, we use each slice
and volume as independent 2D images. Table 2 provides the number of 2D images in the PPMI
datasets before oversampling, which clearly indicates an imbalanced dataset since the number of
images for PD subjects is more as compared to healthy subjects. In order to resolve the class imbalance
problem, different data oversampling techniques such as Random over-sampling (ROS), Synthetic
Minority Over-Sampling Technique (SMOTE), and Stratified sampling are used. ROS [39] is a simple
method in which samples from the monitory class are randomly increased by making exact copies
of existing samples, whereas SMOTE synthetically creates new minority samples by interpolating
between minority class samples [40] to balance class distribution. Disproportionate or Balanced
Stratified Sampling is a sampling technique that randomly divides the data into different strata in such
a way that it samples more data from the minority class samples to balance the samples in the strata [41].
The total number of 2D rs-fMRI images after applying oversampling techniques is shown in Table 2.
We also implement CNN as a feature extraction technique before applying data sampling methods to
evaluate the performance of the model on a class-imbalanced dataset [42]. A simple method, such as
the weighted cross-entropy loss function, is also implemented to boost the performance of the DcCNN
model by providing more emphasis on the minority class. Our proposed method is a fusion model
(Oversampling + Weighted loss + Decorrelation Loss) which applies oversampling technique and
includes weighted cross-entropy along with a decorrelation loss function to mitigate class bias.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2024 d0i:10.20944/preprints202403.1349.v1

9 of 22

Table 2. Class Distribution of PPMI training dataset Before and After Oversampling.

Class Number of Images
Before OverSampling After OverSampling
PD 818,790 818,790
Control 90,930 818,790

3.2.2. Decorrelation and Weighted Loss in Objective Function

The models tend to predict most images and subjects as PD patients due to class bias. This class
bias is mainly caused by the higher number of PD patients compared to healthy control subjects.
In order to represent the class bias condition quantitatively and to use it as a bias variable in the
decorrelation function, we use a dummy bias variable based on discrete uniform distribution. PD
patients group will have a wider discrete uniform distribution than the healthy control group, which
means the dummy variable would bias the classification results towards PD patients and create class
bias. Minimizing the distance correlation between this dummy bias variable and features will result in
balanced true positive and true negative rates.

We introduce the objective function, which consists of three main functions, namely, weighted
cross entropy, decorrelation function, and regularizer L2 loss function to mitigate class bias, and is
defined as:

J(0) = min Lk (Y, Y) + ADC*(B, F) +[0] |2 2)

Lwcg in Equation 2 represents the weighted binary cross-entropy, and Y and Y are true and
classifier outputs, respectively. The weighted binary cross-entropy simply uses class weights to place
more emphasis on minority class so that model learns equally from both classes. The decorrelation
function is DC?(B, F) where B is the dummy class bias variable and F is features extracted from the
model. The A in the objective function is a hyperparameter that determines the relative importance of
the decorrelation function in relation to the weighted cross-entropy loss function. The last term ||6]|, is
a regularizer L2 loss function in the objective function for weight decay purposes which helps to avoid
overfitting issues. Optimizing the decorrelation function along with the weighted cross-entropy loss
helps to mitigate class bias.

3.2.3. Experimental Setup

The DcCNN model is built by applying decorrelation-based optimization to customized CNN
architecture and is trained from scratch. It consists of stacks of 3 convolutional and max-pooling
layers with ReLU activation and batch normalization layer, two fully connected layers, and SoftMax
as the classifier. These three convolutional layers have 32, 64, and 128 filters, respectively. We use a
random oversampling technique to have an equal number of samples between two classes, i.e., PD
and healthy control. We use the root means square propagation (RMSprop) optimizer for optimization
and weighted cross-entropy and decorrelation function with A = 0.2 as the loss function, as mentioned
in the subsection 3.2.2. Mini-batch size of 4000 and an exponential cyclical learning policy[43] which
increases and decreases the learning rate by an exponential factor during the training is used. We
observe that an exponential decaying learning rate leads to better generalization. For the decorrelation
loss function, we use the outputs of fully connected layers and the softmax layer as features F. For the
evaluation of the DcCNN model, we use different evaluation metrics such as sensitivity, specificity,
precision, and balanced accuracy (BC) calculated from the confusion matrix.

All models in this study are implemented in python using the TensorFlow platform [44] and
cuDNN library [45] on a Linux instance. These experiments are conducted on the AWS Deep Learning
AMIs [46] to accelerate deep learning in the cloud using an Amazon EC2 P2 Instance. We use eight high-
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speed GPUs, parallel processing cores, and single and double-precision floating-point performance to
train the dataset using deep learning. This helps to speed up the training processes.

3.3. Mitigation of Scanner Dependencies

A large and balanced neuroimaging dataset is important for deep learning and to improve its
generalization ability. Hence, combining all available data from different sites and different scanners
plays a vital part in achieving high performance. But it leads to an increase in variance due to differences
in acquisition protocols and scanners. This includes scanner upgrades, scanner manufacturers, scanner
strength, etc. We combine PPMI and healthy control subjects from the NIFD dataset to balance the
dataset and improve the performance of deep learning to detect PD. The idea behind the proposed
DcCNN models is to decorrelate the scanner information and features extracted from models to create
scanner-invariant features. Three different variations of DcCNN models such as DcCNN, feature
extraction + DcCNN(FE-DcCNN), which extracts features from scanner classifier and use it as bias
variable in DcCNN, and decorrelated convolutional-gated recurrent unit DcCNN (ConvGRU-DcCNN)
which performs temporal processing are proposed to mitigate the scanner dependencies.

3.3.1. NIFD Datasets and Preprocessing

We use only rs-fMRI data for healthy controls from the NIFD dataset, and this dataset consists
of 215 healthy control subjects with follow-up visits. Just like the PPMI dataset, the demographic
information and box plot for the NIFD dataset is shown in Table 1 and Figure 3, respectively. We can
see that there is no significant difference in age distribution between PPMI and NIFD datasets. The size
of the rs-fMRI slice is 92 x 92, and the slices are grayscale. A total of 36 axial slices are captured for each
subject. The scanner used to collect this dataset is the Tesla scanner manufactured by Siemens Medical
Solutions. Functional scans are acquired using EPI sequence (Field Strength=3.0 tesla; Flip Angle=80.0
degree; Matrix X=552.0 pixels; Matrix Y=552.0 pixels; Mfg Model=TrioTim; Pixel Spacing X=2.5 mm;
Pixel Spacing Y=2.5 mm; Pulse Sequence=EP; Volumes=240.0 time series ; Slice Thickness=3.0 mm;
TE=27.0 ms; TR=2000.0 ms). As we can see, the scanner manufacturer for the NIFD dataset is the same
as the PPMI dataset. However, scanner configurations such as TE, TR, slice thickness, voxel size, and
the total number of slices and volumes are different. This might introduce the variance related to
scanners which will ultimately mask the discriminating features between PD and healthy controls. The
rs-fMRI data were preprocessed using the same library and steps as the PPMI dataset. Since the first
five slices and the last six slices of each subject contains no functional information in the NIFD dataset,
they are removed. In order to have the same and fixed size as the PPMI dataset, we also deleted the
first 30 volumes in the NIFD dataset. So the preprocessed NIFD dataset has 66 x 66 PNG images with
25 slices and 210 volumes for each subject. The NIFD dataset is also divided into 70% training, 15%
validation, and 15% testing dataset. After combing the PPMI and NIFD datasets, a total of 2346750
images were produced, and the class distribution of the combined dataset is provided in Table 3.

Table 3. Class Distribution of Combined PPMI and NIFD datasets.

Class Number of Images

Training Validation Testing

PD 813,750 141,750 189,000
Control 819,000 178,500 204,750

3.3.2. Decorrelation in Objective Function

Deep learning models are extremely sensitive to non-biological variabilities, such as acquisition
and scanner settings in the field of neuroimaging data. One of the important problems in large clinical
trials is the scanner dependencies/bias. To deal with the scanner dependencies issue, we introduce
three types of scanner bias variables which contain: (i) scanner voxel size, i.e., slice thickness and pixel
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spacing [47], (ii) features extracted from scanner classifier, and (iii) temporal standard deviation to
represent scanner-to-scanner variability [28].

The models are trained with a combination of cross entropy loss L(Y, Y), the decorrelation loss
DC?, ,..;(B, F), and the regularizer L2 Loss |||, functions. This objective function can be expressed
as:

](6) = Hbin)‘lL(Y/?) +/\2IDC§ontml(B/P) + ||6||2 3)
where L is the softmax cross-entropy loss and |||, is regularizer L2 loss function. The decor-
2 v (B, F) where B is the scanner bias variable, and F is features extracted
from the model, and subscript control indicates the decorrelation function is only applied to control
subjects since the healthy control subjects had been scanned using both the scanners with different
acquisition protocols, i.e., present in PPMI as well as NIFD datasets whereas PD subjects had been
scanned using only one scanner out of two scanners, i.e., present in only PPMI dataset. This will help
models to remove scanner-related information than removing the main task, i.e., PD detection-related
information. The A and A, in the objective function are hyperparameters that control the trade-off
between the cross-entropy loss function and the decorrelation function. Since the number of healthy
controls in the PPMI dataset is less compared to NIFD dataset, higher class weights are assigned to
PPMI controls than NIFD controls to make decorrelation loss for PPMI controls larger than NIFD
controls. This will help models to decorrelate features equally from both scanners and ultimately to
resolve imbalanced scanner data problems for healthy controls.

relation function is DC

3.3.3. Experimental Setup

We train three different DcCNN models with different architectures and scanner bias variables.
The first model, abbreviated as DcCNN, has the same architecture as the DcCNN model used to
mitigate class bias except for changes in the objective function to mitigate scanner dependencies, and
there are three stack convolutional layers with 32,16, and 16 filters and followed by two hidden layers
with 40 and 100 neurons. We train DcCNN with a mini-batch size of 4000 and an exponential cyclical
leaning policy using an RMSProp optimizer for optimization with a decay of 0.005. Hyperparameters
Ay = 0.5 for cross-entropy loss and A, = 5.0 for decorrelation function are used to control the trade-off
between two loss functions as mentioned in subsection 3.3.2. The output of the first convolutional
layer and fully connected layers are used as feature F, whereas slice thickness and pixel spacing are
considered as scanner information and used as scanner bias variable B.

The second model (FE-DcCNN) has two models. The first model is built to predict the scanner,
which we refer it as Feature Extraction(FE) model. The dataset used to train this model consists of
only healthy control subjects from PPMI and NIFD datasets. Once the training is done, features are
extracted from the FE model and used as a scanner bias variable in the second, i.e., the DcCNN model.
Both FE and DcCNN models have the same architecture and the same training dataset. These models
have five stacks of convolution, batch normalization, and max-pooling layers with ReLU activation, as
shown in Figure 4 followed by two fully connected layers with 40 and 100 neurons. Both models use
32,16, 16, 8, and 8 filters to extract discriminative features for the detection of PD. The output of the
fifth convolutional layer in the FE model is used as scanner bias variable B, whereas the outputs of the
fifth convolutional layer, along with fully connected layers in the DcCNN model, are used as feature
F. The hyperparameters used in objective function are A; = 0.05 and A, = 0.95. We have used the
dropout of 0.2 in the first four convolutional layers to reduce the overfitting problem in the model, and
the rest of the training configuration is the same as the first model DcCNN.
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Figure 4. The architecture of the FE-DcCNN model.

To make use of temporal information present in rs-fMRI, we implement the third model (ConvGRU-
DcCNN) as shown in Figure 5. ConvGRU-DcCNN performs temporal processing first and uses a 3D
image of size 66 x 66 x 210 as the input. Since we have to use temporal information for this model, we
have to convert 2D images to 3D images, and that produces a total of 11175 images, including 5450 PD
and 5725 healthy control PNG samples. The core architecture consists of convolutional gated recurrent
operations (convGRU)[48] as the first layer and followed by the DcCNN architecture. ConvGRU is
used to perform temporal processing. The DcCNN part consists of three convolutional layers with
filters 16, 32, and 32, followed by two fully connected layers with 1000 and 500 neurons. The model is
trained using an Adam optimizer with a mini-batch size of 256 and a learning rate (Ir) scheduler with
an initial Ir of 0.001 with a decay of 0.5. In addition to this, an optimizer weight decay of 0.005 is used.
We use Ay = 0.2 and A, = 0.6 in objective function. For decorrrelation loss, we use the output of the
second convolutional layer and first fully connected layer as features F, whereas temporal standard
deviation (temporal fluctuations) is used as scanner bias B.
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Figure 5. The architecture of the ConvGRU-DcCNN model.
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4. Results

In order to access whether DcCNN models perform better to mitigate class bias and scanner
bias, we apply our method and baseline model to the single scanner imbalanced PPMI dataset and
combination of multi-scanner PPMI and NIFD datasets, respectively.

Single Scanner Imbalanced Dataset

We access the performance of DcCNN to classify PD on PPMI imbalanced dataset. Our proposed
fusion method aims to mitigate class bias. In order to show that DcCNN reduces the statistical
dependence between features and class bias variables, we plot the distance correlation against iterations
as shown in Figure 6. The plot shows that distance correlation decreases as the iteration increases
for our fusion model as opposed to the oversampling method. We compare our fusion model with
different CNN models and existing data-sampling techniques. The baseline model is a simple CNN
model and has the same architecture as DcCNN, where no data-sampling technique and class bias
mitigation methods are applied. The existing data-sampling techniques, [49] such as smote and
oversampling, are implemented to address the class imbalance issue. We have also compared our
model with a fusion of different combinations of existing class bias mitigation techniques, such as a
fusion of oversampling and weighted loss functions, a fusion of feature extraction (FE) and smote, and
stratified sampling.

—OVer-
4 sampling
0180 ——Cur Method

0.0800

Distance Correlation

0.0600

0.0400

0.0200

0.00

0.000 1.000k 2.000k 3.000k 4.000k 5.000k
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Figure 6. Distance correlation between learned features and class bias for the imbalanced dataset.

The results of the holdout testing dataset for each method are displayed in Table 4 and the
performance of imbalanced classification is measured specifically by sensitivity, specificity, precision,
and balanced accuracy (BA). As we can see from the results, our proposed fusion method significantly
increases balanced accuracy as compared to other methods. This, therefore, suggests that by using the
decorrelation function along with oversampling technique and weighted loss function creates features
that are invariant to class bias. The precision and specificity are higher for our fusion model compared
to other methods. Lower sensitivity and higher specificity for our fusion model indicate that model
prediction is not biased towards the majority class, i.e., PD subjects, whereas higher sensitivity and
lower specificity for methods such as baseline, smote, FE+smote, stratified sampling, and oversampling
indicate model prediction is highly biased towards PD class. The lower values of specificity for these
model clearly demonstrates that the classification of control subjects are almost based on random
chance. For all these existing models, we notice that the weighted loss function helps the model
to improve balanced accuracy. Figure 7 shows the confusion matrix of the baseline model and our
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proposed DcCNN model to classify slices into the PD and healthy controls. The confusion matrix for
the baseline model clearly indicates that all subjects are classified as PD due to the presence of class
bias, while our proposed model classifies both classes almost equally by mitigating this class bias.
Figure 8 illustrates the ROC curve of different methods. From this graph, we observe the superior
performance of our fusion DcCNN model over traditional data-sampling methods. In both balanced
accuracy and ROC metrics, our DcCNN fusion method clearly outperforms other methods.

Table 4. Performance Evaluation of PD Classification for imbalanced PPMI Dataset using different

methods.
Methods Sensitivity Specificity Precision BA
Baseline 100.00% 0.01% 90.00%  50.01%
Smote 94.60% 8.60% 90.30%  51.60%
FE + Smote 93.60% 4.70% 89.80%  49.15%
Stratified 95.60% 4.50% 90.00%  50.05%
Oversampling 71.20% 34.90% 90.80%  53.05%
Oversampling + weighted loss 49.00% 59.20% 91.50%  54.10%
Our method 58.47% 60.37% 93.07% 59.42%

Predicted Predicted

Control

PD
- -

PD Control

PD

189000

PD

Truth
Truth

Control
Control

(a) Baseline (b) Our method
Figure 7. Confusion matrix of baseline and our method(ROS + weighted loss + DcCNN) with two
classes for imbalanced PPMI testing dataset(Slice-level PD recognition).
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Figure 8. ROC curves of different methods for imbalanced dataset. The X-axis represents the False
Positive Rate, and Y-axis represents the True Positive Rate.
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Due to a few labeled rs-fMRI images available at the subject level in the PPMI dataset, we train
the models at the slice level, which increase the data and avoid overfitting issue. The above reported
results are for the slice-level classification. Since in the medical field, subject-level PD classification
is important, we propose a global subject-level classification by using a max-wins voting strategy.
In this strategy, all slices for each subject are classified, and then the class with the maximum votes
for a given subject determines the global subject classification. This will allow to classify and assign
PD or healthy control labels to a given subject. As shown in Table 5, applying the max-wins voting
strategy for subject-level classification significantly improved accuracy by correcting a small number
of misclassified slices. Our fusion DcCNN model achieves a subject-level balanced accuracy of 67%
after applying a max-wins voting strategy.

Table 5. Sensitivity(%), Specificity(%), Precision(%), and Balanced accuracies(%) of slicewise and
subjectwise PD recognition for imbalanced PPMI testing dataset. Results are mean across three
initializations with a 95% confidence interval.

Methods Sensitivity = Specificity =~ Precision BA
Slice-level 58.47+0.05 60.37+0.08 93.07£0.01 59.42+0.03
Subject-level  66.67+0.08 66.67£0.20 95.13+£0.03  66.67+0.10

Multi-Scanner Datasets

A DcCNN, an FE-DcCNN, and a ConvGRU-DcCNN are the three main models presented in this
subsection to create features that are invariant to scanner and acquisition protocols while maintaining
the performance of PD classification. This will reduce the influence of the scanner on model predictions.
We compare our proposed models with baseline models. In a similar way to the previous imbalanced
dataset experiment, baseline models such as CNN and ConvGRU-CNN share the same architecture
as DcCNN and ConvGRU-DcCNN, respectively, without any scanner bias mitigation methods being
incorporated. Figure 9 shows that statistical dependence between learned features and scanner bias
decreases as iteration increases for ConvGRU-DcCNN as opposed to the baseline ConvGRU-CNN
model. The purpose of this plot is to observe the trend rather than to show the true difference
between the distance correlation values of the ConvGRU-DcCNN model and the baseline model since
weights have been assigned to calculate the decorrelation function used in ConvGRU-DcCNN versus
the baseline model. We also evaluate the performance of scanner bias mitigation techniques using
accuracy, scanner classification accuracy, and error rate for each dataset/scanner (since each dataset
represents one scanner). The scanner classification accuracy indicates the scanner information present
in features that influence the decision of model prediction.
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Figure 9. Decorrelation between learned features and scanner bias for baseline ConvGRU-CNN and
ConvGRU-DcCNN models.

Table 6 presents the performance of different types of DcCNN models on a multi-scanner testing
dataset. As expected, the scanner classification accuracy for baseline models is 100% which means
models make predictions based on features that are dependent on the scanner and not on the main task
of PD recognition. With the FE model, the scanner classification was performed using only healthy
control groups, and scanner-relevant features were extracted for the FE-DcCNN model to use as
scanner bias variables. FE model results in an accuracy of 92.6% at the slice level and 100% at the
subject level. All three types of DcCNN models reduce the scanner classification accuracy compared to
baseline models indicating that DcCNN reduces scanner dependencies fairly with a slight reduction
in accuracy. Accuracy for baseline models is high due to the fact that all PD subjects in the dataset
had been scanned on one scanner, and the majority of the healthy control subjects had been scanned
on another scanner. Thus, it makes the task more harder, and we can see a reduction in accuracy
for DcCNN when compared with baseline models. Hence, for our multi-scanner dataset, we can
say that raw classification accuracy is not only a consideration. The error rates for both datasets (i.e.,
both scanners) increase for DcCNN models indicating scanner bias removal is performed. ConvGRU-
DcCNN model performs poorer compared to the DcCNN and FE-DcCNN models in terms of accuracy,
possibly because it removes information related to the main task while reducing scanner dependencies.
The ConvGRU-DcCNN performs poorly, most likely due to four factors: removal of PD-relevant
features, decorrelation penalization leading to a negative influence on predictive accuracy, reduction
in data size, and inclusion of PD information in scanner bias variable. DcCNN and FE-DcCNN models
have similar accuracy while substantially decreasing the scanner dependencies.

Finally, these above results are further supported by t-distributed stochastic neighbor embedding
(t-SNE) visualizations of the learned fully connected layer features as shown in Figure 10. Since only
healthy control subjects had been scanned using both scanners and present in both datasets, we plot
tSNE visualization for the healthy control group. We observe that the baseline models, such as CNN
and ConvGRU-CNN, have a clear association with the scanner since the PPMI dataset is grouped on
the right side, while the NIFD dataset is grouped on the left side of Figure 10a. But scanner features
become jointly embedded for DcCNN, FE-DcCNN, and ConvGRU-DcCNN models, which indicate
no apparent bias towards the scanner. This suggests that our proposed DcCNN models successfully
create features that are invariant with respect to scanners without compromising the performance of
PD classification. For the FE-DcCNN model, data points in Figure 10b are largely indistinguishable
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across all two scanners compared to the DcCNN model in Figure 10c. This can also be confirmed by
scanner classification accuracy for FE-DcCNN is lower than the DcCNN model. Similar to FE-DcCNN,
the features learned by the ConvGRU-DcCNN model spread uniformly across all scanners, indicating
successful mitigation of scanner dependencies, but the ConvGRU-DcCNN model results in a drastic
loss in accuracy, indicating the removal of information related to the main task.
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Figure 10. tSNE plot of the learned fully connected layer features for healthy control data. The yellow
color indicates the NIFD dataset scanner, and the purple color indicates the PPMI dataset scanner.
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Table 6. Performance Evaluation of Baseline Models and DcCNN models using PPMI and NIFD
datasets.

Scanner

Models Accuracy Classification EIFD PPMI
rror rate  Error rate
Accuracy
Baseline Models:
CNN 94.70% 100.00% 0.00 0.00
ConvGRU-CNN 94.70% 100.00% 0.00 0.00
Our Models:
DcCNN 80.47% 83.10% 0.25 0.06
FE-DcCNN 77.80% 80.43% 0.30 0.17
ConvGRU-DcCNN 65.77% 63.13% 0.46 0.28

For subject-level classification, we use the same max-wins voting strategy as defined for a single
scanner imbalanced dataset. The above-reported results for multi-scanner datasets are for the subject-
level classification. The evaluation metrics for slice-level and subject-level classification are summarized
in Table 7. All these results show that the FE-DcCNN model not only successfully mitigates the scanner
bias but also achieves high performance in comparison with DcCNN and ConvGRU-DcCNN models,
respectively. FE-DcCNN model achieves a subject-level accuracy of 78% after applying a max-wins
voting strategy and scanner classification accuracy of 80%.

Table 7. Sensitivity(%), Specificity(%), Precision(%), F1(%), and accuracies(%) of slicewise and subject-
wise PD recognition for PPMI and NIFD testing Datasets. Results are mean across three initializations
with a 95% confidence interval.

Models Methods Sensitivity  Specificity =~ Precision F1 Accuracy

DeCNN Slicewise 76.87+0.06  78.00+0.08  76.90+0.05 76.60+0.01 77.47+0.02

Subjectwise  79.63+0.09  81.20+0.10  80.43+0.06  79.57+0.03  80.47+0.03

FE-DcCNN Slicewise 83.40+0.14 71.00+0.06 = 72.70+0.02  77.20+0.05 76.95+0.03

Subjectwise  80.53+0.16 ~ 75.20+0.05  75.03+0.01  77.13+0.07 77.80+0.05

ConvGRU-DcCNN  JHCCWISe/ ) 571003 58135001  62.00£0.002  67.50£0.01  65.770.01
Subjectwise

5. Discussion

This study presents a decorrelation-based bias mitigation technique that can be applied to deep
learning architectures such as CNN, ConvGRU, and fusion methods to mitigate not only class bias
but also scanner bias by creating class and scanner invariant features. We have demonstrated that
our decorrelation technique can be applied to any architecture and provides a high level of flexibility.
The hyperparameter A > 0 plays a vital role in deciding the importance of decorrelation and regular
loss function. When A = 0, it means it is a baseline model with no bias mitigation technique applied.
Extreme high values of A will cause unstable training and poor classification performance. Hence,
finding optimal values for hyperparameters A is crucial and can be achieved by trying different values
of A. We notice that increasing the batch size improves the stability of the decorrelation function during
training. In addition, it provides unbiased estimates of distance covariance when the batch size is
larger. Similar to hyperparameter A, we experience that finding the optimal combination of the output
of layers as feature F helps in improving the performance of the bias mitigation technique. The choice
of feature F depends on the type of bias mitigation technique and model architecture. As stated in our
previous work [32], the bias variable B should provide more precise bias-relevant information.

The rs-fMRI original imaging data is organized in 4D matrices, which contain spatial as well
as temporal information. Due to high dimensionality and small dataset size, deep learning models
face problems like overfitting when 4D data is used. This would only be solved by adding more
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data. However, 2D and 3D rs-fMRI data used in this study show the applicability of using this data
for PD classification while significantly mitigating the class and scanner bias. We also find that the
ConvGRU-DcCNN model almost exhibits similar performance with and without class weights for the
decorrelation function since using temporal information reduces the size of the dataset and, ultimately,
the imbalance ratio between PPMI controls and NIFD controls. Out of the three types of scanner bias
variables used to mitigate scanner bias, features extracted from the scanner classifier bias variable
provide more accurate scanner-relevant information since the FE-DcCNN model yields optimal results,
which reduces scanner dependence without removing much PD-specific information.

The results from the class bias mitigation study show that not only we are able to achieve high
performance than existing traditional approaches but also successfully mitigate bias towards the
majority class. We have also shown that the same decorrelation function technique can be used to
remove scanner dependencies. The scanner classification accuracy and tSNE plots confirm that scanner
dependencies have been reduced. Since existing harmonization and domain adaptation methods
approach scanner mitigation differently than our method, we do not directly compare them to our
method. Additionally, our proposed model differs from previous methods in that it is designed for
rs-fMRI data collected from a single scanner with identical acquisition protocols and a single site rather
than from multi-scanner and multi-site data. The presented method also suggests that combining
multi-scanner data and increasing the size of the dataset improve the performance of PD classification
compared to single scanner imbalanced data.

6. Conclusions

The performance of deep learning models is highly impacted by bias variability and class im-
balance present in data. We introduce a novel decorrelation approach, which reduces the distance
correlation between the features learned by deep learning models and biases. The main goal of this
approach is to mitigate scanner dependencies and class bias which will help the model to generalize to
multi-scanner and multi-center datasets. The proposed framework includes extensive data preprocess-
ing modules and decorrelated deep learning-based classifiers to distinguish PD patients from healthy
controls using rs-fMRI data. We evaluated our four different models on single scanner imbalanced
and multi-scanner datasets. On a single scanner imbalanced PPMI datasets, our proposed DcCNN
model significantly improves performance by alleviating bias toward the majority class, whereas our
proposed FE-DcCNN model produces scanner-invariant features without affecting accuracy much
on multi-scanner PPMI and NIFD datasets. Furthermore, the rs-fMRI dataset is used for the first
time to train CNN models for PD classification. These simple yet efficient proposed DcCNN models
perform better than previous approaches and baseline models to mitigate the bias and require fewer
hyperparameters to optimize. We additionally verify from the results that using a multi-scanner
and larger dataset results in significantly better performance when compared with a single scanner
imbalanced dataset. This study also demonstrated that subject-level classification results in an even
more robust model and improves accuracy using a max-wins voting strategy.

An immediate next step would be using advanced visualization techniques such as saliency
maps, DeepLIFT, and occlusion maps. A combination of these precise and detail-oriented visualization
techniques may help in characterizing fMRI biomarkers for PD. Our proposed models also demonstrate
the potential for predicting stages in the progression of PD, which could be addressed in future studies.
Additional future direction works also include collecting a larger dataset and more information
related to patients along with individual rs-fMRI slices and temporal information to achieve higher
accuracy and reliability. A larger dataset and increased computation complexity will also enhance the
overall performance of 4D-DcCNN models by taking advantage of using the inherent spatial-temporal
information in 4D rs-fMRI data. Moreover, it would be interesting to investigate how by applying the
proposed decorrelation approach to pre-trained models and to different types of data variations and
biases would impact performance.
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Abbreviations

The following abbreviations are used in this manuscript:

PD Parkinson’s Disease

rs-fMRI resting-state functional MRI

CNN Convolutional Neural Networks

DcCNN Decorrelated Convolutional Neural Networks

PPMI Parkinson’s Progression Markers Initiative

NIFD FTLDNI - frontotemporal lobar degeneration neuroimaging initiative
t-SNE t-distributed stochastic neighbor embedding

t-SNE t-distributed stochastic neighbor embedding

FE-DcCNN  Feature Extraction-DcCNN

References

1. Postuma, R.B.; Berg, D.; Adler, C.H.; Bloem, B.R.; Chan, P; Deuschl, G.; Gasser, T.; Goetz, C.G.; Halliday, G.;
Joseph, L.; others. The new definition and diagnostic criteria of Parkinson’s disease. The Lancet Neurology
2016, 15, 546-548.

2. Rubbert, C.; Mathys, C.; Jockwitz, C.; Hartmann, C.J.; Eickhoff, S.B.; Hoffstaedter, F.; Caspers, S.; Eickhoff,
C.R; Sigl, B.; Teichert, N.A.; others. Machine-learning identifies Parkinson’s disease patients based on
resting-state between-network functional connectivity. The british journal of radiology 2019, 92, 20180886.

3. Guo, X,; Tinaz, S.; Dvornek, N.C. Early Disease Stage Characterization in Parkinson’s Disease from
Resting-state fMRI Data Using a Long Short-term Memory Network. arXiv preprint arXiv:2202.12715 2022.

4. Kim, S.; Kwon, S.H.; Kam, T.I; Panicker, N.; Karuppagounder, S.S.; Lee, S.; Lee, ] H.; Kim, W.R.; Kook, M.;
Foss, C.A.; Shen, C.; Lee, H.; Kulkarni, S.; Pasricha, PJ.; Lee, G.; Pomper, M.G.; Dawson, V.L.; Dawson,
T.M.; Ko, H.S. Transneuronal Propagation of Pathologic a-Synuclein from the Gut to the Brain Models
Parkinson’s Disease. Neuron 2019, pp. 1-15. doi:10.1016/j.neuron.2019.05.035.

5. Braak, H.; Del Tredici, K.; Riib, U.; De Vos, R.A; Steur, E.N.].; Braak, E. Staging of brain pathology related
to sporadic Parkinson’s disease. Neurobiology of aging 2003, 24, 197-211.

6. Beilina, A.; Cookson, M.R. Genes associated with Parkinson’s disease: regulation of autophagy and beyond.
Journal of neurochemistry 2016, 139, 91-107.

7. El-Agnaf, O.M.; Salem, S.A.; Paleologou, K.E.; Curran, M.D.; Gibson, M.].; Court, J.A.; Schlossmacher,
M.G.; Allsop, D. Detection of oligomeric forms of a-synuclein protein in human plasma as a potential
biomarker for Parkinson’s disease. The FASEB journal 2006, 20, 419-425.

8. Trivedi, D.K,; Sinclair, E.; Xu, Y.; Sarkar, D.; Walton-Doyle, C.; Liscio, C.; Banks, P.; Milne, J.; Silverdale,
M.; Kunath, T.; others. Discovery of volatile biomarkers of Parkinson’s disease from sebum. ACS Central
Science 2019.

9. Son, S.J.; Kim, M.; Park, H. Imaging analysis of Parkinson’s disease patients using SPECT and tractography.
Scientific reports 2016, 6, 38070.

10.  Cochrane, C.J.; Ebmeier, K.P. Diffusion tensor imaging in parkinsonian syndromes: a systematic review
and meta-analysis. Neurology 2013, 80, 857-864.
11. Atkinson-Clement, C.; Pinto, S.; Eusebio, A.; Coulon, O. Diffusion tensor imaging in Parkinson’s disease:

Review and meta-analysis. Neurolmage: Clinical 2017, 16, 98-110.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2024 d0i:10.20944/preprints202403.1349.v1

21 of 22

12. Vaillancourt, D.; Spraker, M.; Prodoehl, J.; Abraham, I.; Corcos, D.; Zhou, X.; Comella, C.; Little, D. High-
resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology 2009,
72,1378-1384.

13. Zheng, Z.; Shemmassian, S.; Wijekoon, C.; Kim, W.; Bookheimer, S.Y.; Pouratian, N. DTI correlates of
distinct cognitive impairments in Parkinson’s disease. Human brain mapping 2014, 35, 1325-1333.

14. Saeed, U.; Compagnone, ]J.; Aviv, R.IL; Strafella, A.P; Black, S.E.; Lang, A.E.; Masellis, M. Imaging biomark-
ers in Parkinson’s disease and Parkinsonian syndromes: current and emerging concepts. Translational
neurodegeneration 2017, 6, 8.

15. Rolinski, M.; Szewczyk-Krolikowski, K.; Menke, R.A.; Filippini, N.; Heise, V.; Zamboni, G.; Wilcock, G.;
Talbot, K.; Hu, M.; Mackay, C. Resting State Fmri Discerns Early Parkinson’s From Controls. ] Neurol
Neurosurg Psychiatry 2014, 85, ed—e4.

16. Li, K;; Su, W,; Li, SH.; Jin, Y.; Chen, H.B. Resting State fMRI: A Valuable Tool for Studying Cognitive
Dysfunction in PD. Parkinson’s Disease 2018, 2018.

17. Wilson, H.; Dervenoulas, G.; Pagano, G.; Koros, C.; Yousaf, T.; Picillo, M.; Polychronis, S.; Simitsi, A.;
Giordano, B.; Chappell, Z.; others. Serotonergic pathology and disease burden in the premotor and motor
phase of A53T a-synuclein parkinsonism: a cross-sectional study. The Lancet Neurology 2019.

18.  Zhang, Y.C.; Kagen, A.C. Machine learning interface for medical image analysis. Journal of digital imaging
2017, 30, 615-621.

19. Shi, D.; Zhang, H.; Wang, G.; Wang, S.; Yao, X.; Li, Y.; Guo, Q.; Zheng, S.; Ren, K. Machine Learning for
Detecting Parkinson’s Disease by Resting-State Functional Magnetic Resonance Imaging: A Multicenter
Radiomics Analysis. Frontiers in aging neuroscience 2022, 14, 806828.

20. Jiji, W.; Rajesh, A.; Lakshmi, M.M. Diagnosis of Parkinson’s Disease Using EEG and fMRI 2022.

21. Choi, H.; Ha, S.; Im, HJ.; Paek, S.H.; Lee, D.S. Refining diagnosis of Parkinson’s disease with deep
learning-based interpretation of dopamine transporter imaging. Neurolmage: Clinical 2017, 16, 586-594.

22. Zhang, X.; He, L.; Chen, K.; Luo, Y.; Zhou, J.; Wang, E. Multi-View Graph Convolutional Network and Its
Applications on Neuroimage Analysis for Parkinson’s Disease. arXiv preprint arXiv:1805.08801 2018.

23. Esmaeilzadeh, S.; Yang, Y.; Adeli, E. End-to-End Parkinson Disease Diagnosis using Brain MR-Images by
3D-CNN. arXiv preprint arXiv:1806.05233 2018.

24, Ahmed, M.N.; Farag, A.A. Two-stage neural network for volume segmentation of medical images.
Proceedings of International Conference on Neural Networks (ICNN’97). IEEE, 1997, Vol. 3, pp. 1373-1378.
25.  Gil, D.; Manuel, D.J. Diagnosing Parkinson by using artificial neural networks and support vector machines.

Global Journal of Computer Science and Technology 2009, 9.

26. Stocker, T.; Schneider, F,; Klein, M.; Habel, U.; Kellermann, T.; Zilles, K.; Shah, N.J. Automated quality
assurance routines for fMRI data applied to a multicenter study. Human brain mapping 2005, 25, 237-246.

27. Friedman, L.; Glover, G.H.; Krenz, D.; Magnotta, V.; BIRN, T.F. Reducing inter-scanner variability of
activation in a multicenter fMRI study: role of smoothness equalization. Neuroimage 2006, 32, 1656-1668.

28. Friedman, L.; Glover, G.H.; Consortium, F.; others. Reducing interscanner variability of activation in a
multicenter fMRI study: controlling for signal-to-fluctuation-noise-ratio (SFNR) differences. Neuroimage
2006, 33, 471-481.

29. Yu, M,; Linn, K.A.; Cook, P.A.; Phillips, M.L.; McInnis, M.; Fava, M.; Trivedi, M.H.; Weissman, M.M.;
Shinohara, R.T.; Sheline, Y.I. Statistical harmonization corrects site effects in functional connectivity
measurements from multi-site fMRI data. Human brain mapping 2018, 39, 4213-4227.

30. Zhang, T,; Li, C,; Li, P; Peng, Y.; Kang, X,; Jiang, C.; Li, F.; Zhu, X.; Yao, D.; Biswal, B.; others. Separated
channel attention convolutional neural network (SC-CNN-attention) to identify ADHD in multi-site
rs-fMRI dataset. Entropy 2020, 22, 893.

31. Li, X;; Gu, Y.;; Dvornek, N.; Staib, L.H.; Ventola, P.; Duncan, J.S. Multi-site fMRI analysis using privacy-
preserving federated learning and domain adaptation: ABIDE results. Medical Image Analysis 2020,
65,101765.

32. Patil, P.; Purcell, K. Decorrelation-Based Deep Learning for Bias Mitigation. Future Internet 2022, 14, 110.

33. Székely, G.J.; Rizzo, M.L.; Bakirov, N.K. Measuring and testing dependence by correlation of distances.
The annals of statistics 2007, 35, 2769-2794.

34. Lee Rodgers, J.; Nicewander, W.A. Thirteen ways to look at the correlation coefficient. The American
Statistician 1988, 42, 59-66.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 22 March 2024 d0i:10.20944/preprints202403.1349.v1

22 of 22

35. Smith, S.M.; Jenkinson, M.; Woolrich, M.W.; Beckmann, C.E; Behrens, T.E.; Johansen-Berg, H.; Bannister,
PR.; De Luca, M.; Drobnjak, I; Flitney, D.E.; others. Advances in functional and structural MR image
analysis and implementation as FSL. Neuroimage 2004, 23, S208-5219.

36.  Smith, S.M. Fast robust automated brain extraction. Human brain mapping 2002, 17, 143-155.

37. Jenkinson, M.; Bannister, P.; Brady, M.; Smith, S. Improved optimization for the robust and accurate linear
registration and motion correction of brain images. Neuroimage 2002, 17, 825-841.

38. Ronneberger, O.; Fischer, P; Brox, T. U-net: Convolutional networks for biomedical image segmentation.
International Conference on Medical image computing and computer-assisted intervention. Springer, 2015,
pp- 234-241.

39. Batista, G.E.; Prati, R.C.; Monard, M.C. A study of the behavior of several methods for balancing machine
learning training data. ACM SIGKDD explorations newsletter 2004, 6, 20—-29.

40. Chawla, N.V.; Bowyer, KW.,; Hall, L.O.; Kegelmeyer, W.P. SMOTE: synthetic minority over-sampling
technique. Journal of artificial intelligence research 2002, 16, 321-357.

41. Saleema, J.; Bhagawathi, N.; Monica, S.; Shenoy, P.D.; Venugopal, K.; Patnaik, L.M. Cancer prognosis
prediction using balanced stratified sampling. arXiv preprint arXiv:1403.2950 2014.

42, Salekshahrezaee, Z.; Leevy, ]J.L.; Khoshgoftaar, TM. Feature extraction for class imbalance using a
convolutional autoencoder and data sampling. 2021 IEEE 33rd International Conference on Tools with
Artificial Intelligence (ICTAI). IEEE, 2021, pp. 217-223.

43. Smith, L.N. Cyclical learning rates for training neural networks. 2017 IEEE winter conference on
applications of computer vision (WACV). IEEE, 2017, pp. 464—472.

44, Abadi, M.; Agarwal, A.; Barham, P; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, ].; Devin,
M.; Ghemawat, S.; Goodfellow, I.; Harp, A.; Irving, G.; Isard, M.; Jia, Y.; Jozefowicz, R.; Kaiser, L.; Kudlur,
M.; Levenberg, J.; Mané, D.; Monga, R.; Moore, S.; Murray, D.; Olah, C.; Schuster, M.; Shlens, ].; Steiner,
B.; Sutskever, I.; Talwar, K.; Tucker, P.; Vanhoucke, V.; Vasudevan, V.; Viégas, F; Vinyals, O.; Warden, P.;
Wattenberg, M.; Wicke, M.; Yu, Y.; Zheng, X. TensorFlow: Large-Scale Machine Learning on Heterogeneous
Systems, 2015. Software available from tensorflow.org.

45. Chetlur, S.; Woolley, C.; Vandermersch, P.; Cohen, J.; Tran, J.; Catanzaro, B.; Shelhamer, E. cudnn: Efficient
primitives for deep learning. arXiv preprint arXiv:1410.0759 2014.

46. Deep learning ami - Developer Guide.

47. Shafig-ul Hassan, M.; Zhang, G.G.; Latifi, K.; Ullah, G.; Hunt, D.C.; Balagurunathan, Y.; Abdalah, M.A.;
Schabath, M.B.; Goldgof, D.G.; Mackin, D.; others. Intrinsic dependencies of CT radiomic features on voxel
size and number of gray levels. Medical physics 2017, 44, 1050-1062.

48. Bengs, M.; Gessert, N.; Schlaefer, A. 4d spatio-temporal deep learning with 4d fmri data for autism
spectrum disorder classification. arXiv preprint arXiv:2004.10165 2020.

49. Leevy, J.L.; Khoshgoftaar, T.M.; Bauder, R.A.; Seliya, N. A survey on addressing high-class imbalance in
big data. Journal of Big Data 2018, 5, 1-30.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.



