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Abstract: Fundus image registration plays a crucial role in the clinical evaluation of ocular diseases, such as

diabetic retinopathy and macular degeneration, necessitating meticulous monitoring. The alignment of multiple

fundus images enables the longitudinal analysis of patient progression, widening the visual scope, or augmenting

resolution for detailed examinations. Currently, prevalent methodologies rely on feature-based approaches for

fundus registration. However, certain methods exhibit high feature point density, posing challenges in matching

due to point similarity. This study introduces a novel fundus image registration technique integrating U-Net for

the extraction of feature points employing FIVES for its training and evaluation, a novel and large dataset for blood

vessels segmentation, prioritizing point distribution over abundance. Subsequently, the method employs medial

axis transform and pattern detection to obtain feature points characterized by the Fast Retina Keypoint (FREAK)

descriptor, facilitating matching for transformation matrix computation. Assessment of the vessel segmentation

achieves 0.7559 for Intersection Over Union (IoU), while evaluation on the Fundus Image Registration Dataset

(FIRE) demonstrates the method’s comparative performance against existing methods, yielding a registration

error of 0.596 for area under the curve, refining similar earlier methods and suggesting promising performance

comparable to prior methodologies.

Keywords: fundus image registration; feature extraction; blood vessels segmentation; feature matching; enhanced

vascular bifurcations mapping

1. Introduction

The retina constitutes an integral component of the human visual system, responsible for the
conversion of optical stimuli into neuroelectric signals that undergo subsequent processing within
the brain. Among the various modalities for assessing the retina, fundus imaging stands as the
predominant method, playing a pivotal role in the evaluation of diverse ocular pathologies, including
diabetic retinopathy, age-related macular degeneration, and glaucoma, among others [1]. While
individual fundus images offer a direct means of retinal assessment, the augmentation of this process
through the integration of multiple fundus images and subsequent image registration emerges as
a substantive approach. This method assumes significance in its ability to complement singular
assessments, providing a more comprehensive evaluation that aids physicians in the discernment and
diagnosis of retinal diseases [2].

Fundus image registration constitutes the systematic alignment of images sharing overlapping
regions, relying on established correspondences between them. The detection of such correspondences
serves as the essence of feature-based fundus registration, leading to diverse applications within the
field of retinal analysis [3,4]. Foremost among these applications lie longitudinal studies, crucial in
inspecting fundus images captured at disparate temporal intervals to exhibit morphological alterations
within ocular structures due to evolving pathologies. Concurrently, image mosaicking emerges as an
essential application, seeking to broaden the visual scope by harmonizing multiple fundus images from
distinct viewpoints. Given the intrinsic limitation of fundus images, typically confined to a 45° field of
view, comprehensive retinal assessments demand the analysis of multiple perspectives—a laborious
and intricate undertaking for healthcare practitioners [5]. While wide-angle fundus photography
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offers an alternative with a potential field of view that surpasses 100° [6], its adoption remains limited
owing to requisites such as pupil dilation and the exorbitant cost of specialized fundus cameras,
particularly impeding accessibility for patients residing in rural areas [7]. Analogously, the pursuit of
Super-Resolution of Fundus Images relies on registration techniques to align multiple low-resolution
images obtained from cost-effective, portable fundus imaging devices often deployed in telemedicine
initiatives [8]. Through the synthesis of these marginally varied images, resolution enhancement
ensues, culminating in augmented visual acuity and the retrieval of clinically significant details
previously obscured.

Various techniques have been developed for registering fundus images, some focusing on initial
blood vessel detection in the images. For instance, while the Straightforward Bifurcation Pattern-Based
Fundus Image Registration method (SBP-FIR) outlined in [9] relies on pixel-wise segmentation, the
approach presented in [10] specifically utilizes the Frangi filter [11] for detecting tubular structures in
fundus images. These methods employ thresholding-based segmentation and feature-based segmenta-
tion using filtering techniques, respectively. While these approaches offer advantages in terms of ease
of implementation, simplicity, and, in the case of filtering-based methods, improved noise robustness,
this study employs deep learning-based segmentation. This choice is due to its higher accuracy and
particularly its adaptability to diverse datasets and the reduced dependency on threshold selection.

This paper introduces an algorithm designed for registering pairs of fundus images. In contrast
to prior methodologies that used thresholding-based segmentation and Frangi filter [9–11] as the
foundation for blood vessel delineation in fundus images, this approach initiates with the utilization
of U-Net [12] to identify the specific region of interest within the image. The primary advantage of
employing U-Net over the Frangi filter for defining this region in the fundus image arises from U-Net’s
autonomy in sensitivity parameter settings and the execution time, since the entire segmentation
process is performed more efficiently. The necessity of configuring sensitivity parameters for the
Frangi filter restricts its adaptability in generalization and complex structure detection, while U-
Net segmentation methods exhibit proficiency in learning intricate features without such constraints.
Furthermore, the incorporation of U-Net in the segmentation process ensures the accurate identification
of bifurcation regions, a guarantee that is occasionally lacking in the application of the Frangi filter [13].
The process begins with the utilization of U-Net [12] to identify a specific region of interest within
the image (i.e. the blood vessels). A subsequent thinning process and pattern detection take place,
and feature points are characterized using the Fast Retina Keypoint (FREAK) descriptor [14]. Feature
matching is executed, and the removal of outliers and computation of the similarity transformation
are achieved through Random Sample Consensus (RANSAC) [15]. Ultimately, a seamless image is
generated via a blending process. This method not only endeavors to enhance registration precision
but also aims to diminish execution time, a critical factor in introducing new methodologies into
clinical practice for computer-aided diagnosis. This study evaluates both segmentation results and
registration accuracy, yielding an Intersection over Union (IoU) score of 0.7559 on the Fundus Image
Vessel Segmentation (FIVES) dataset [16] and an Area Under the Curve (AUC) of 0.596 on the Fundus
Image Registration Dataset (FIRE) dataset [17]. It competes with complex methods and notably reduces
the execution time by half compared to one of the top methods in registration accuracy, while still
maintaining competitive performance in certain categories.

This paper’s central contribution lies in the novel integration of U-Net, FREAK descriptor, and
RANSAC within the domain of fundus image registration, aiming to refine similar earlier methods.
Departing from traditional approaches relying on thresholding-based segmentation or Frangi filter
applications, this method introduces a paradigm by initiating the region-of-interest identification
through U-Net [12]. Subsequent feature extraction results in a more evenly distributed feature point
layout across fundus images compared to other state-of-the-art extractors. Despite exhibiting slightly
lower accuracy in certain aspects compared to other methodologies, this technique significantly reduces
execution time. The method’s evaluation across diverse datasets, including the FIVES dataset [16]
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and the FIRE dataset [17], emphasizes its competitive performance against complex methods while
significantly reducing computational load.

This paper is structured as follows: Section 2 provides a comprehensive review of relevant
studies within the field. Following this, Section 3 delineates the proposed approach for fundus image
registration. Section 4 delves into a thorough examination of the experimental outcomes derived
from the application of the proposed technique. Subsequently, discussion is presented in Section 5.
Ultimately, Section 6 serves as the conclusion of this paper.

2. Related Work

In the extensive body of literature pertaining to fundus imaging, a multitude of methodologies
for both registering and stitching fundus images have been advanced and documented. While the
Scale-Invariant Feature Transform (SIFT) [18] stands as a cornerstone among robust and extensively
adopted methods in image processing, the task of identifying corresponding points in fundus images
presents challenges, particularly in scenarios involving fluctuating illumination or when confronted
with two surfaces exhibiting similar intensity levels. This difficulty of its application in registering
fundus image pairs arises from SIFT’s reliance solely on gray information for features extraction,
thereby complicating the differentiation between such visually analogous conditions.

Nonetheless, some works have partially or entirely made use of this descriptor. For instance, the
SIFT descriptor was employed in [19] to describe feature points that correspond to bifurcations over
fundus images and subsequently, after feature matching and false match removal, Voronoi diagram
is used to create mosaic images. However, the application and evaluation are limited to this task,
putting aside tasks like longitudinal study and super-resolution imaging. This work was evaluated on
the Fundus Image Registration Dataset (FIRE) dataset [17], which was also employed in [20], being
the latter one of the top leaders in registration on this dataset. This approach integrates blood vessel
bifurcations and the SIFT detector as feature points, initializing the initial estimation of camera pose
through RANSAC employing a spherical eye model, ensuring precise results. Subsequent steps involve
parameter estimation for an ellipsoidal eye model and further refinement of the camera pose. While
commendable for its precision, a discernible drawback emerges in its approach to feature detection,
employing dual feature detectors, thereby augmenting the amount of feature points. As a consequence,
this amplifies the computational complexity during matching and registration, therefore elongating
processing durations. On the other hand, while these researches are feature-based methods, Gong et
al. in [21] affirm that registration based on intensity surpasses the performance of methods reliant
on feature-point registration. In this intensity-based registration approach, dimensionality reduction
serves as a pivotal technique employed to transpose disordered input images into a space characterized
by lower dimensions. Leveraging this reduced dimensional representation, efficient recognition of
global correspondences within images becomes feasible. In the context of contiguous image pairs,
their approach involves optimizing the Mutual Information metric for registration purposes. The
subsequent step involves the synthesis of panoramas through image blending.

Regarding works that have completely excluded the use of SIFT, numerous feature-based registra-
tion methodologies relying only on landmark identification along blood vessels have been proposed
to register pairs of fundus images. In the study referenced as [22], a Convolutional Neural Network
(CNN) trained on the Digital Retinal Images for Vessel Extraction (DRIVE) dataset is employed for
detecting vascular crossovers and bifurcations, utilizing the U-Net architecture. This specific U-Net
architecture is tailored for predicting a heatmap identifying landmarks crucial for subsequent determi-
nation. Similarly, the utilization of the Deep Retinal Image Understanding network (DRIU) alongside
pre-trained VGG-16, as delineated in [23], entails a preliminary stage of blood vessel segmentation
to facilitate subsequent feature detection. Furthermore, alternative methodologies disengaged from
deep learning have directed attention to blood vessels as a focal area of interest for ascertaining feature
points conducive to fundus registration. For example, the study detailed in [24] executed blood vessel
segmentation through fundamental morphological operations and curvature evaluation. Likewise, in
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the work explicated by [25], the vessel tree served as a focal region for feature extraction, harnessing
bifurcations extracted from the segmented vessel tree and incorporating a Bayesian approach as a
matching algorithm. A straightforward mosaicking of fundus images methodology is presented in [26],
in which utilizing a CNN model, their approach segments vascular structures within fundus images,
specifically targeting the detection of vascular bifurcations. These bifurcations are subsequently ex-
tracted as feature points upon the vascular mask and subsequently the estimation of transformation
parameters for the purpose of image stitching is stablished among these vascular bifurcations. While
the effectiveness of this method was evaluated across a limited set of eyes, the primary limitation of
this study lies in its absence of comparison with other methods to support its performance.

The investigation into bifurcations and crossovers in fundus images has been essential, particularly
in the accurate identification of blood vessel issues and clot localization, crucial for precise medical
intervention [27]. These points of junction are integral in understanding blood flow variations and
pressure dynamics within the vessels [28]. In [27], a meticulous approach involved segmenting patches
of 21×21 pixels along vessel structures obtained from binary segmentations. These patches became
the training data for a Res18 convolutional neural network, aiming to discern these features. Despite a
modest dataset of 40 images from the DRIVE database (30 for training, 10 for testing), the patch-based
method generated an extensive sample pool of over 100,000 patches, ensuring a robust learning process.
Moreover, similar techniques were employed in other studies like Patwari et al. [29] and others [30,31],
utilizing methods such as morphological skeletonization, image enhancement through histogram
equalization, and the extraction of bifurcation points from blood vessel skeletons, thereby augmenting
the comprehension of vessel structures and their features.

It is noticeable that several methods in fundus image analysis focus on blood vessel segmentation
to detect bifurcation points. Similarly, as seen in [26], this paper’s method emphasizes segmenting
blood vessels to identify feature points within the segmentation map. Several studies concentrate
on employing Convolutional Neural Networks (CNNs) for this purpose. For instance, Dharmawan
et al. [32] proposed a modified U-Net [12] for patch-based segmentation, reducing downsampling
operations and adding dropout layers between consecutive convolutional layers. They trained this
network using cross-entropy loss on datasets such as DRIVE [33], STARE [34], and HRF [35]. In
contrast, [36] introduces ResWnet, altering the U-Net structure by minimizing downsampling layers
to two and implementing an encoding-decoding-encoding-decoding structure. ResWnet enhances
feature retention and semantic extraction by utilizing skip connections and residual blocks, improving
sensitivity across various vessel scales, evaluated on DRIVE and STARE databases. Moreover, [37]
presents DRNet, a method using U-Net inspiration and a deep dense residual network structure.
DRNet creatively merges feature maps across blocks, aiding spatial reconstruction, and introduces
DropBlock to address overfitting concerns. Each method showcases innovations in vessel segmentation
approaches for fundus image analysis.

Diverging from some prior research approaches, this study primarily focuses on aligning fundus
images through a sequential process. Initially, it employs the traditional U-Net architecture [12]
for segmenting blood vessels, utilizing the Fundus Image Vessel Segmentation (FIVES) dataset [16].
This novel dataset boasts a substantial collection of annotated fundus images, reportedly offering
superior accuracy in labeling compared to other publicly available datasets intended for blood vessel
segmentation in fundus images. The detection of bifurcations occurs along the blood vessel skeleton to
establish the geometric relationship between the images. Subsequently, an image blending technique
is applied to generate the final aligned result.

3. Proposed Method

This section introduces the conceptual framework of the proposed method. The central objective
of this paper involve developing a feature-based fundus image registration technique, leveraging
bifurcations and crossovers situated along the morphological skeleton of blood vessel segmentation as
feature points. The SBP-FIR method outlined in [9] exhibited promising performance in registering
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pairs of fundus images. This proposal employed a pixel-wise segmentation method to initially define
a region of interest over blood vessels, commonly used for detecting bifurcations and crossovers
in fundus images [27–31]. After skeletonization, a pattern detection process was utilized to locate
bifurcations and crossovers, followed by their characterization using Histogram of Oriented Gradients
(HOG). This characterization facilitated establishing a geometric relationship between the fundus
images, ultimately enabling image warping and blending for registration purposes. Illustrated in Fig-
ure 1, the proposed method unfolds across four principal stages: feature extraction, feature matching,
computation of the transformation matrix and subsequent image warping, concluding with image
blending. Unlike the approach in [9], this method utilizes a deep learning-based technique for blood
vessel segmentation. The primary objective is to enhance segmentation accuracy while concurrently
reducing processing time, complemented by the utilization of the FREAK descriptor.

3.1. Flowchart Description

Figure 1 presents an outline of the proposed method. Initially, a pair of color fundus images
constitutes the input. Feature point extraction prioritizes the blood vessels area. Blood vessels
segmentation follows on the original fundus images, succeeded by thinning or skeletonization to
detect bifurcation patterns in the thinned images. Subsequently, descriptors represent feature points
in each image, facilitating their matching for identification of shared points between the source and
target images. Once the relationship between points in the source and target images is established,
a transformation matrix is computed and applied to warp the source image. Finally, a blending
process ensures seamlessness in the resulting image, mitigating visible seams due to potential exposure
variations in the overlapped regions.

The revised method demonstrates significant advancements compared to its predecessor [9],
primarily attributed to a shift in the segmentation approach and feature extraction techniques. Transi-
tioning from a pixel-wise segmentation method to leveraging U-Net for blood vessel segmentation
markedly heightens accuracy [38] and accelerates processing times. This adoption of deep learning
enhances segmentation precision and optimizes computational demands. Additionally, employing
the FREAK descriptor in feature extraction replaces the Histogram of Oriented Gradients (HOG)
descriptor, aiming to accelerate the process without compromising accuracy [39]. Moreover, refining
the matching process by omitting certain verification methods from the previous approach increases
efficiency, allowing for faster registration while preserving potential matches. These strategic modifica-
tions collectively enhance the speed and precision of image registration, positioning the new method
as a significant improvement over its predecessor. Further elaboration on the method is provided in
subsequent sections.

Figure 1. The flowchart illustrating the proposed method delineates sequential stages for processing
both source and target images. Each step is accompanied by paired images, with stages shadowed in
the background indicating steps applied individually to images.

3.2. Feature Extraction

Methods in fundus image registration that utilize the entire image for alignment and determine
error based on similarity measures often struggle when aligning the complete fundus image surface [40].
In the proposed method for fundus image registration, detection of feature points is based on the
extraction of vessels from the fundus image. Therefore, a robust method for detecting the vascular
structure is required.
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For this, the preprocessing stage starts with extraction of green channel of the fundus image, since
this channel is the one having the greater contrast between blood vessels and background. Still, fundus
images tend to be dark, and for this reason, to improve brightness and contrast between blood vessels
and background, firstly gamma correction is applied, which is described by the Equation (1):

y = 255
( x

255

) 1
γ (1)

where x is the original pixel, y is the resultant pixel and γ is the gamma correction value. For the
proposed method, γ was set to γ = 1.5 [41]. By means of this process the tonal response of the
image is adjusted, and the darker areas of the fundus image are emphasized, while the brighter
ones are compressed. Subsequently, the preprocessing continues by applying the Contrast Limited
Adaptive Histogram Equalization (CLAHE) [42], which improves the visual quality of the fundus
image while avoiding artifacts that other traditional histogram equalization methods may produce.
The preprocessing steps are illustrated in Figure 2.

Figure 2. Preprocessing steps preceding blood vessel segmentation within the fundus image.

After preprocessing, the next stage in feature extraction for the fundus image is making segmen-
tation of blood vessels. For this, patch-based segmentation is performed with U-Net [12], since the
utilization of the entire image for both training and prediction strategies hinders U-net from attaining
satisfactory results in vessel segmentation [43]. The reason for avoiding traditional segmentation
methods arises from the evidence that deep learning-based segmentation methods many times are
better not only regarding time [44] but also in accuracy, in which deep learning approaches are even
better than human experts in retinal vessel segmentation [45].

Processing an entire high-resolution fundus image in one go can demand significant memory
resources, especially for deep learning models. Therefore, to diminish the memory usage demanded
during training or inference, patch-based segmentation is conducted. This type of segmentation
implies three basic steps: partitioning (dividing the fundus image into smaller patches), processing
(performing blood vessels segmentation) and aggregation (combining the segmented patches to
generate a final segmented output for the entire fundus image), and it entails some benefits, such as
the possibility of handling large images, enhancing the capture local context, robustness to variations,
data augmentation and generalization, among others.

The proposed methodology harnesses the classical U-Net architecture, structured with convolu-
tional blocks employing a downsampling schema facilitated by max pooling. Each block integrates
3 × 3 convolutional layers activated by Rectified Linear Units (ReLU), ensuring feature extraction
and representation. The upsampling component reverts the spatial resolution, preserving vital skip
connections, culminating in a concluding layer comprising 1 × 1 convolutional layers, culminating
with sigmoid activation. Tailored to the task of blood vessels segmentation within fundus images, this
approach performs a patch-based segmentation strategy using U-Net. The focus concentrates toward
bifurcation detection, thus the network undergoes exclusive training solely on patches containing
at least one bifurcation, steering the model to discern these essential points. Employing the FIVES
dataset [16]—a repository boasting 800 high-resolution color fundus images, meticulously annotated
at the pixel level—the network navigates its learning process.
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The training comprises distinct phases aimed at refining the model’s understanding. Initially,
2000 patches are deployed, employing a learning rate of 1 × 10−4 over 20 epochs. This foundational
training is followed by two fine-tuning stages, introducing entirely new patch imagery. The first
fine-tuning phase capitalizes on 2000 new patches, extending through 20 epochs with a reduced
learning rate of 3 × 10−5. Subsequently, the second fine-tuning phase intensifies the learning with
3000 patches, reduced to 5 epochs while refining towards a learning rate of 1 × 10−5. This intricate
approach endeavors to boost the U-Net model to delineate blood vessels while elevating its sensitivity
toward identifying crucial bifurcation points within fundus images, leveraging a sequenced training
methodology for optimal performance. Figure 3 shows the result of segmentation for patches and for
the entire image after aggregation step, producing the blood vessels segmentation mask.

Figure 3. (On the left side) Depicted are the original fundus images and the patches extracted after
preprocessing. (On the right side) Presented are the predictions of the preprocessed patches and the
final fundus image segmentation with composite result derived from integrating all the segmented
patches.

Next, the Zhang-Suen thinning algorithm [46] is utilized to perform thinning on the image, aimed
at extracting the center lines of blood vessels previously segmented by the U-Net model. This specific
algorithm functions by isolating the central pathways within a binary image, achieved through the
elimination of image contour points, retaining only those points that constitute the skeleton structure,
and preserving the bifurcation points within the skeleton of the fundus image blood vessels. Through
multiple iterations, the algorithm progressively refines and consolidates these skeletons to derive
the final representation of vascular centerlines. The outcome of applying this algorithm to the blood
vessels’ segmentation of a fundus image is visually depicted in Figure 4.
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Figure 4. Segmentation mask illustrating blood vessels within a fundus image alongside the outcome
post-application of the thinning algorithm to derive the vessel segmentation skeleton.

Finally, feature points are identified by analyzing patterns within the skeleton. Distinct orienta-
tions of T and Y-shaped patterns are established to detect these specific configurations of foreground
and background pixels within the vessel segmentation skeleton. The Hit-or-Miss transform, a binary
morphological operation utilizing two structuring elements (B1 and B2), is utilized to represent both
the foreground (i.e., the morphological skeleton of blood vessel segmentation) and the background of
the searched patterns. Equation (2) defines the bifurcation patterns observed across the skeleton image
(A):

A ⊛ B = (A ⊖ B1) ∩ (Ac ⊖ B2) (2)

Here, symbols ⊛, ⊖, and ∩ denote convolution, erosion, and intersection operators, respectively. B
combines structuring elements, where B1 signifies the pattern’s skeleton and B2 signifies its background.
Additionally, Ac denotes the complement of the skeleton image.

In this context, bifurcations are determined by identifying vessel pixels in their 8-neighborhood
that possess three non-adjacent vessel pixels. These specific patterns are visualized in Figure 5.

Figure 5. The structuring elements (top) illustrate the patterns (bottom) used to detect bifurcations
within the skeleton of fundus images.

3.3. Feature Matching

Once the feature points within the fundus image are identified, establishing the geometric rela-
tionship between images involves associating features from the source image with their counterparts
in the target image. Initially, bifurcation points undergo characterization via a feature descriptor to
identify their corresponding points in the other image. Given the limited texture in fundus images,
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predominantly dominated by the background, a robust feature descriptor becomes crucial. For this
purpose, the FREAK descriptor, known for its computational and storage efficiency, as well as its
efficacy in matching through Hamming distance [47], is employed due to its reliable accuracy and
robustness.

The FREAK descriptor draws inspiration from the human retina, aiming to replicate retinal
photoreceptors through pixels. To achieve this, the descriptor employs a configuration of partially over-
lapped receptive fields arranged in seven rings, each comprising six receptive fields. This arrangement
facilitates the construction of the descriptor.

Each receptive field is filtered using a Gaussian kernel with a standard deviation of σ = 3.0.
Combining these filtered receptive fields with the central feature point position results in a total of
43 receptive fields forming the descriptor, which are distributed as shown in Figure 6. In this specific
application, the distances from each of the 7 rings to the bifurcation point, arranged from the innermost
to the outermost, are 4, 6, 8, 13, 18, 26, and 33 pixels, with their respective radii being 1, 2, 3, 4, 6, 9,
13, and 18 pixels. These measurements are instrumental in determining the spatial arrangement and
relative positioning of the receptive fields concerning the bifurcation point within the descriptor’s
construction.

Figure 6. Receptive fields utilized to characterize each feature point within fundus images.

In initiating the construction of a descriptor using FREAK, the initial step involves calculating the
intensities of the receptive fields to ascertain the orientation, denoted as O, of the feature point. This
orientation determination follows Equation (3):

O =
1
M ∑

Po∈G

(
I
(

Pr1
o

)
− (I

(
Pr2

o

)) Pr1
o − Pr2

o
∥Pr1

o − Pr2
o ∥

(3)

where G is the set of all pairs used to compute the local gradient, which are show in Figure 7, M is the
number of pairs in G, and I(Po

r1) is the smoothed intensity of the perceptive field Po.
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Figure 7. Receptive field pairs employed for computing the orientation of feature points within fundus
images.

To compose the binary descriptor of every bifurcation, each of the 43 perceptive fields undergoes
comparison with the others, culminating in a comprehensive 903-bit descriptor. The determination of
each bit’s value follows Equation (4):

T(Pa) =

{
1 I

(
Pa

r1)− I
(

Pa
r2) > 0

0 otherwise
(4)

where the intensities I(Pa
r1) and I(Pa

r2) correspond to the centers of the smoothed receptive fields
within a pair. In prior research [14], it was noted that a 512-bit descriptor provided successful
performance. Consequently, a selection process is implemented to identify the most significant pairs.
This selection process involves learning, where the determination of the best pairs relies on their
correlation, denoted as ρ. For this particular application, a correlation threshold of −0.2 < ρ < 0.2 was
established.

Each feature point is paired with its corresponding nearest neighbor in the other image. In
contrast to an alternative approach [9], this proposed method omits the utilization of cross-checking
and the Second Nearest Neighbor (SNN) verification techniques. Although cross-checking offers
benefits by reducing false positives and improving match reliability, it runs the risk of discarding
potentially valid matches lacking mutual correspondence due to perspective differences, occlusion, or
scene variations between fundus images. Similarly, while SNN might also result in the exclusion of
valid matches, its efficacy relies on establishing a reliable threshold between the nearest and second
nearest neighbor. Additionally, both these verification methods escalate the computational load of the
feature matching process. Figure 8 illustrates on the top the resulting matches between two fundus
images, demonstrating the application of the previously described considerations in the matching
process.

3.4. Transformation Matrix Computation

The process of determining the geometric relationship between the images involves computing
the transformation matrix. Initially, RANSAC discriminates between inliers and outliers to derive this
transformation matrix. Traditionally, RANSAC randomly selects matches to compute a transformation
and subsequently determines the number of inliers and outliers for that specific transformation.
However, in this application, the random selection process is constrained, exclusively selecting pairs
with a distance greater than a predefined threshold—empirically set to 20 pixels in this context. This
restriction aims to mitigate the influence of localization error on registration error, as outlined in [9].
Figure 8 illustrates on the bottom the resulting inlier matches between the matches shown on the top,
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demonstrating the application of the previously described considerations in the RANSAC process for
separating inliers from outliers.

Figure 8. Matches acquired for a pair of fundus images using the nearest neighbor approach (top) and
matches identified as inliers following the application of RANSAC (bottom).

Some applications may opt for complex transformation models; however, the selection of an
optimal mapping primarily relies on the distinct pair of registered images [48]. Hence, considering
the advantages associated with a similarity transformation—comprising computational simplicity
and requiring minimal correspondences—this model becomes the choice for registering fundus image
pairs. This preference proves especially advantageous when faced with challenges inherent in fundus
images, such as obscured blood vessels due to disease progression, which restricts the availability of
adequate correspondences.

In longitudinal studies and super-resolution imaging involving fundus images, the primary focus
typically revolves around aligning images captured from similar or identical perspectives, resulting
in significant overlap between the images being registered. Unlike the complexities encountered in
fundus image mosaicking, where merging multiple images necessitates meticulous consideration of the
retina’s curvature and intricate structures, longitudinal studies and super-resolution tasks experience a
reduced impact of curvature during the registration process.

The substantial overlap inherent in these scenarios inherently mitigates the influence of the
retina’s curvature on the alignment process. With a high degree of overlap, the areas of interest
within the images display similar perspectives, minimizing the relevance of non-linear deformations
caused by the retina’s curvature. Consequently, the necessity for complex transformation models
that precisely address non-linear distortions diminishes in longitudinal studies and super-resolution
imaging. Instead, the focus shifts towards optimizing computational efficiency, preserving structural
integrity, and ensuring consistent and accurate alignment of overlapping regions. This emphasizes
the requirement for robust and efficient registration methods over intricate transformation models
catering to complex distortions. This adaptation simplifies the registration process, allowing for clearer
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interpretations and comparative analyses over time or across various image resolutions within these
specific applications of fundus imaging.

3.5. Image Blending

When aligning fundus images to a unified coordinate system, the blending process aims to create
a seamless image, eradicating visible image boundaries. Ideally, pixel intensities at corresponding
locations across different fundus images should match precisely. However, practical scenarios deviate
from this ideal state. Even after compensating for variations, certain issues persist, notably the visibility
of several fundus image edges attributed to factors such as vignetting, misregistration, and radial
distortion. In the realm of 2D image manipulation, the work of Burt and Adelson on multiband
blending [49] stands as a proven and effective method for mosaic creation, notably mitigating blurring
and ghosting artifacts.

This multiband blending method, often known as Laplacian pyramid blending, introduces a
technique to seamlessly merge images using a pyramid-based approach. The methodology revolves
around decomposing images into multiple levels or bands of varying spatial frequencies via a Laplacian
pyramid. Initially, the original fundus images undergo transformation into Laplacian pyramids,
comprising numerous layers that capture diverse scales of details, ranging from coarse to fine. The
blending process entails combining corresponding layers from these Laplacian pyramids extracted
from the fundus images to be merged. By weighting and merging these layers at each pyramid
level, starting from the coarsest to the finest details, the method gradually reconstructs the merged
image. This approach capitalizes on the frequency domain representation of images, facilitating a
smooth transition of low-frequency components from one image into the high-frequency components
of another, thereby achieving a seamless and artifact-free blend. Additionally, Laplacian pyramid
blending effectively mitigates common artifacts like blurring or ghosting, prevalent in conventional
blending methods, by retaining edge details and augmenting the visual quality of the resulting merged
image. The results derived from the application of this method to registered fundus images are
demonstrated in Section 4.5.

4. Experimental Results

In this section, an extensive evaluation of the proposed methodology is conducted through ex-
perimentation using a well-established public database. Initially, a detailed explanation behind the
choice of the specific databases for segmentation and registration evaluation is provided. Subsequently,
the evaluation criteria and metrics employed in the analysis of these two tasks are explicated. This
is followed by a comprehensive quantitative analysis of the segmentation process, alongside a com-
parison between the proposed approach for fundus image registration and existing methodologies.
Furthermore, notable instances showcasing successful outcomes achieved through the application of
the proposed method are presented.

4.1. Datasets

The first task to be performed in the fundus registration process corresponds to segmentation of
blood vessels from the fundus image. This is the core of feature extraction, and it is performed with
the traditional U-Net architecture, which is trained with the FIVES dataset.

This dataset consists of 800 fundus images, each with a resolution of 2048×2048 and a field of
view of 50°. Among these, 200 images are specifically designated for testing purposes. The images are
sourced from 573 patients, ranging in age from 4 to 83 years, and encompass various retinal diseases,
including Age-related Macular Degeneration (AMD), Diabetic Retinopathy (DR), and glaucoma,
alongside images depicting healthy retinas. The dataset ensures an equal distribution of images across
each disease category. Notably, the authors deliberately incorporated approximately 5% of images
considered to have poor readability by experienced ophthalmic doctors, aiming to simulate real clinical
scenarios. Table 1 provides a detailed overview of the FIVES dataset’s characteristics, alongside those
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of other datasets such as STARE, DRIVE, ARIA, and CHASEDB1, which were utilized for evaluating
the segmentation in the registration method employed in this study. Additionally, Figure 9 showcases
image examples from each category within the FIVES dataset, accompanied by their corresponding
ground-truth blood vessel segmentation masks.

Table 1. Summary of publicly available datasets used to evaluate the blood vessel segmentation
network for the fundus image registration task.

Dataset Year Number
of images Resolution Disease Annotators

STARE 2000 20 605×700 10 healthy, 10 diseases 2
DRIVE 2004 40 768×584 33 healthy, 7 DR 3

ARIA 2006 161 576×768 61 healthy, 59 DR, 23 AMD 2
CHASEDB1 2011 28 990×960 28 healthy 2

FIVES 2021 800 2048×2048 200 healthy, 200 AMD, 200 DR, 200 glaucoma Group

Figure 9. Images from the FIVES dataset utilized for both training and testing data during the
segmentation phase in the fundus image registration methodology, accompanied by their respective
ground-truth annotations.

This analysis relies exclusively on the Fundus Image Registration (FIRE) dataset for assessment.
The selection of this dataset is motivated by the limited availability of public databases explicitly
tailored for fundus image registration. Presently, there exist only four databases containing images
suitable for registration (e-ophtha [50], RODREP [51], VARIA [52], and FIRE [53]). Within these
datasets, FIRE notably stands out as the sole repository offering ground truth for registration, featuring
ten control points. This unique attribute enables quantitative evaluation of method performance and
facilitates meaningful comparisons with prior research.

The FIRE dataset encompasses 129 fundus images, each at a resolution of 2912×2912 and a field
of view spanning 45°, resulting in 134 image pairs. These images pertain to 39 patients, spanning
an age range from 19 to 67 years, distributed across three distinct classes, each serving a specific
registration purpose: category S for super resolution, category P for mosaicking, and category A for
longitudinal studies. Particularly, category A contains registrable pairs reflecting anatomical changes
like vessel tortuosity, microaneurysms, and cotton-wool spots. Table 2 offers an overview of the
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dataset’s characteristics, while Figure 10 visually represents the registrable image pairs, accompanied
by their respective ground-truth control points, segregated by category.

Table 2. Description of each category comprising the FIRE dataset.

Total image pairs Aproximate overlap Anatomical changes
Category S 71 >75% No
Category P 49 <75% No
Category A 14 >75% Yes

Figure 10. Fundus image pairs designated for registration within the FIRE dataset are classified into
three distinct categories, each accompanied by its corresponding annotated control points. These
control points are established based on the provided coordinates within the dataset, serving as the
ground truth.

4.2. Evaluation Metrics

The accuracy of the blood vessel segmentation process is assessed using the Intersection over
Union (IoU) metric, also referred to as the Jaccard Index. This metric quantifies the degree of overlap
between the predicted blood vessel mask and the ground truth mask, as outlined by Equation (5):

IoU =
predicted ∩ ground truth
predicted ∪ ground truth

(5)

where ∩ represents the intersection operation, denoting the common region where the predicted blood
vessels and ground truth masks overlap, while ∪ denotes the union operation, encompassing the
entirety of both masks, including their overlapping and non-overlapping areas.

The IoU metric serves as a fundamental measure in evaluating the performance of blood ves-
sel segmentation in fundus images, providing a precise quantitative assessment of their ability to
accurately delineate blood vessel structures.

Regarding feature points extraction, an assessment is conducted to quantify the uniformity of their
spatial distribution. This evaluation relies on entropy, a measure indicative of randomness or disorder
within the distribution. The computation of entropy involves dividing the images into fixed-size
bins and counting the points within each bin to derive a probability distribution. Subsequently, this
distribution is utilized to calculate the Shannon entropy, represented by equation (6):
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H(X) = − ∑
x∈X

p(x) log2 p(x) (6)

where H is the entropy and p(x) is the probability of finding a feature point in bin x. In this application,
the bin size was set to 32 × 32. In the context of feature point distribution, higher entropy values
denote a more uniform and evenly spread distribution, whereas reduced entropy values indicate a
clustered or biased distribution.

Enhancing spatial coverage of feature points in fundus image registration offers several advan-
tages. It makes the registration process more robust to deformations, rotations, scaling, or perspective
alterations. Moreover, well-distributed feature points diminish ambiguity in the matching process
and prove beneficial in scenarios where fundus image segments might be occluded or altered, such as
the case of longitudinal studies. This dispersion of feature points ensures the availability of reference
points for matching, even in affected or obscured areas of the image.

On the other hand, the fundus registration evaluation method follows the principles detailed
in [17], utilizing strategically positioned control points marked by experts across overlapping fundus
image pairs. Registration error is calculated as the mean distance between each control point in the
target image and its corresponding point in the source image post-registration. This evaluation was
performed across the entire dataset and separately for distinct categories.

To depict accuracy across various error thresholds, a 2D plot was constructed. The x-axis repre-
sents the error thresholds, while the y-axis depicts the percentage of image pairs successfully registered
at each threshold. Successful registration is achieved when the error falls below the specified threshold.
The resulting curve showcases the success rate concerning target accuracy, facilitating method compar-
ison and aiding in the selection of the most suitable approach based on specific accuracy requirements.
Furthermore, the curve provides a comprehensive assessment by evaluating the area under the curve
(AUC).

4.3. Segmentation Performance

Accurate segmentation of blood vessels in fundus images holds paramount importance in facili-
tating precise image registration. In this subsection, an evaluation of the blood vessel segmentation
performance attained through the proposed methodology is presented. Leveraging a robust segmenta-
tion framework, which incorporates U-Net architecture, this approach endeavors to delineate blood
vessel structures. Through a thorough evaluation using various metrics, including visual assessments
and numerical analyses, a detailed examination of the segmentation results is presented.

The U-Net model for blood vessel segmentation underwent multiple training iterations using dif-
ferent sets and variations. Initially, 1000 randomly selected patches from the green channel, untreated,
were trained for 20 epochs, yielding an IoU of 0.5152. Given the low IoU, the training was extended to
30 epochs, raising the IoU to 0.5436, accompanied by loss and accuracy scores of 0.1078 and 0.9670,
respectively, with similar validation results.

To enhance the segmentation quality, CLAHE was applied to the same 1000 patches, resulting
in an average IoU of 0.6165 after 20 epochs. Subsequently, 2000 preprocessed patches, emphasizing
bifurcation areas, were used, achieving an IoU of 0.7178 but displaying slightly reduced training and
validation scores for loss and accuracy. This experiment showcased improved IoU by focusing on
more extensive blood vessel areas during training. Figure 11 shows the accuracy and loss curves for
this experiment, crucial metrics for evaluating the model’s performance. These curves illustrate the
initial training phase before the fine-tuning phases.

Utilizing the weights from the most successful experiment, a fine-tuning stage commenced. The
first fine-tuning involving 2000 bifurcation-focused patches with added Gamma correction and CLAHE
enhanced the IoU to 0.7491 over 20 epochs, demonstrating better scores across all metrics. The second
fine-tuning with a lowered learning rate and additional patches resulted in an IoU of 0.7559 after 5
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epochs, maintaining competitive loss and accuracy values. This final fine-tuning, limited to 5 epochs,
showed no significant increase in IoU beyond this point.

Figure 11. The loss curve and accuracy curve generated during the initial phase of training for the
U-Net model in the blood vessels segmentation process within the fundus image registration method.

On the other hand, Figure 12 presents sample qualitative results of the segmentation stage, while
Table 3 shows the results in terms of IoU for the different datasets that were employed for the evaluation
of this segmentation network.

Figure 12. Example results for the segmentation with U-Net employed as part of the fundus image
registration method.

Table 3. Datasets utilized to evaluate the performance of the U-Net architecture in blood vessel
segmentation.

Dataset Number of Images Intersection over Union
STARE 20 0.5402
DRIVE 40 0.5602
ARIA 161 0.4532

CHASEDB1 28 0.6326
FIVES 200 0.7559
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The performance disparity between the U-Net model trained on the FIVES dataset and its
applicability to established fundus blood vessel segmentation datasets highlights the intricate chal-
lenges associated with model adaptability and generalization in medical image analysis. While
the model demonstrates commendable performance within the controlled parameters of the FIVES
dataset—characterized by unique imaging conditions and diverse pathology presentations—its trans-
lation to other datasets reveals multifaceted difficulties. Variations in dataset characteristics, encom-
passing differences in image quality, diverse pathologies, and demographic representations, present
inherent challenges for seamless model generalization. Additionally, discrepancies or inconsistencies
in annotation quality and precision across evaluation datasets pose significant obstacles, potentially
impacting the model’s adaptability. This is highlighted in [16], where according to their standards,
improper labeling from DRIVE dataset is shown. Furthermore, the U-Net model’s effectiveness within
the FIVES dataset could result from a degree of overfitting, where it has carefully adapted to the
specific unique features of that dataset during training, leading to reduced adaptability to the distinct
characteristics presented by evaluation datasets. These challenges emphasize the urgent requirement
for more comprehensive, diverse, and meticulously annotated datasets, representative of real-world
variability, to promote the development of robust and adaptable segmentation models in fundus image
analysis, mitigating issues related to dataset bias, annotation quality, domain shift, and overfitting.

Finally, quantitative evaluation of blood vessels segmentation within the FIRE dataset is not
feasible due to the absence of ground truth data for vessel segmentation. However, Figure 13 showcases
examples from each category of fundus images in the FIRE dataset, illustrating their respective
segmentations generated using the proposed method.

Figure 13. Example results for the segmentation with U-Net for different categories of FIRE dataset.

4.4. Feature Extraction and Feature Description

The assessment of feature extraction involves analyzing the spatial distribution across fundus
images, compared with methods like SIFT [18], Oriented FAST and Rotated BRIEF (ORB) [54] and
SBP-FIR [9]. Table 4 delineates the average detection of feature points within the FIRE dataset’s fundus
images for these methods and the proposed approach, alongside their corresponding mean entropy
values.
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Table 4. Comparison of mean feature point count and entropy values among ORB, SIFT, SBP-FIR and
the proposed method.

ORB SIFT SBP-FIR Proposed Method

Average number of feature points 241 164 125 222
Average entropy 5.6809 5.9600 6.4245 7.0137

From the findings in Table 4, it is evident that the proposed method achieves a balance in fea-
ture extraction. It consistently detects more features on average than SIFT but fewer than ORB, yet
it achieves a superior distribution across fundus images. In the context of image registration, an
abundance of feature points introduces drawbacks, including increased memory usage and increased
processing time due to the necessity of describing and matching more features, thus elevating compu-
tational complexity. Conversely, a scarcity of feature points limits method coverage and robustness,
potentially compromising the capture of sufficient information to endure deformations or viewpoint
changes. Moreover, a reduced number of feature points could amplify the impact of even a small
number of incorrect correspondences on alignment accuracy. Therefore, the objective in registering
fundus images is to achieve a balance, as demonstrated when comparing this method with other state-
of-the-art approaches like SIFT and ORB. An example of feature extraction for each of the methods
from Table 4 is shown in Figure 14.
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Figure 14. Examples showcasing feature extraction methodologies corresponding to each method
detailed in Table 4.

Finally, the FREAK feature description method illustrates the least correlated receptive fields, a
crucial aspect in reducing the descriptor to 512 bits. Figure 15 showcases the paired receptive fields
utilized in forming the descriptor across at least 50% of the fundus image pairs in the FIRE dataset.
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Figure 15. Receptive field pairs employed during the feature description stage of the FREAK descriptor,
illustrating those utilized in at least 50% of the feature points across the entire FIRE dataset.

The observation from Figure 15 reveals a distinct vertical pattern in the pairs utilized to form
the descriptor. This trend emerges from the rotational adjustment during the angle computation of
the points, demonstrating the FREAK descriptor’s ability to remain invariant despite rotations in the
pattern.

4.5. Registration Performance on the FIRE Dataset

This section explores the critical assessment of registration accuracy, a fundamental criterion in
evaluating the efficacy of the proposed fundus image registration methodology. The registration error,
a crucial metric reflecting the alignment quality between registered images, serves as a key indicator of
the method’s precision and reliability. This comprehensive analysis examines the registration success
across various thresholds, revealing the method’s robustness under different alignment conditions and
delineations. Complemented by visual representations showcasing registered images from distinct
categories within the FIRE dataset, this section presents an evaluation offering insights into the
method’s performance across a spectrum of alignment scenarios.

Figure 16 showcases the performance of different registration methods on the FIRE dataset,
analyzing accuracy individually for each category and overall. Additionally, Table 5 provides the area
under the curve (AUC) for all the compared methods, as well as information concerning execution
time and the transformation model employed in each approach.
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Figure 16. Evaluation of retinal image registration techniques on the FIRE dataset, encompassing the
outcomes of the proposed approach.

Table 5. Comparison of the Area Under the Curve (AUC) values for diverse fundus image registration
methods, along with their corresponding execution times in seconds and the respective transformation
models utilized.

Category
S

Category
P

Category
A FIRE Execution

Time
Transformation
Model

REMPE (H-M 17) [20] 0.958 0.542 0.660 0.773 198 Ellipsoid eye model
Harris-PIIFD [55] 0.900 0.090 0.443 0.553 13 Polynomial

GDB-ICP [56] 0.814 0.303 0.303 0.576 19 Quadratic
ED-DB-ICP [57] 0.604 0.441 0.497 0.553 44 Affine

SURF+WGTM [58] 0.835 0.061 0.069 0.472 – Quadratic
RIR-BS [59] 0.772 0.004 0.124 0.440 – Projective

EyeSLAM [60] 0.308 0.224 0.269 0.273 7 Rigid
ATS-RGM [61] 0.369 0.000 0.147 0.211 – Elastic

SBP-FIR [9] 0.835 0.127 0.360 0.526 – Similarity
Proposed Method 0.903 0.159 0.562 0.596 96 Similarity

Yang et al., as detailed in [56], developed a method targeting the registration of diverse scenes,
spanning natural landscapes, constructed environments, and medical imagery, including fundus
images. Their approach utilizes feature points like corners and face points. Notably, depending on the
specific image pairing under consideration, they leverage various transformation models, including
similarity, affine, homography, and quadratic models.

In a similar way, the work by Chen et al. [55] involves the utilization of corners identified through
a Harris detector as feature points for registration. Their methodology adapts different models based
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on the number of matches derived from the feature extraction, description, and matching processes,
while their descriptor relies on gradients, emphasizing the primary orientation of the points.

Other comparative studies, such as [57], draw inspiration from [56], refining the generation of
keypoint matches during initialization. This modification involves extracting Lowe keypoints from the
gradient magnitude image and augmenting the keypoint descriptor by incorporating global-shape con-
text through edge points. The aim is to address a limitation in [56], where its performance encounters
difficulties when handling image pairs exhibiting significant non-linear intensity differences.

In [59], a novel approach for fundus image registration is introduced, focusing on a new structural
feature. Unlike conventional methods relying on single bifurcation point angles, this method adopts a
structure-matching technique. It utilizes a master bifurcation point and its three connected neighbors
to form a distinctive vector, comprising normalized branching angle and length. This vector remains
consistent against common transformations, reducing ambiguity in matching and aiding in addressing
ill-posed matching scenarios. Its simplicity and effectiveness allow for standalone use or integration
with other methods, offering flexibility in hybrid or hierarchical schemes.

Figure 16 highlights notable disparities in outcomes across distinct categories. Categories S and
A, characterized by larger overlapping regions, naturally yield a higher volume of correspondences,
leading to enhanced matching performance. Conversely, category P poses challenges due to limited
potential matches confined to the overlapping area between fundus images. Similarly, category
A experiences potential match reductions owing to inherent morphological changes observed in
longitudinal studies.

Within category S, the GDB-ICP method showcases exceptional performance, with numerous
successful registrations and minimal registration errors. However, it achieves successful registration
for only 84.5% of the category. In contrast, the proposed method, alongside Harris-PIIFD and REMPE,
achieves a 100% success rate, demonstrating a higher tolerance for registration errors.

For category A, REMPE emerges as the leader, boasting a success rate of 92.85%. It’s followed
by Harris-PIIFD and the proposed method, achieving 78.57% and 71.42%, respectively. However, the
proposed method outperforms both alternatives in lower threshold scenarios.

Moving to category P, REMPE surpasses other methods, except for GDB-ICP, which outperforms
REMPE in registration error thresholds less than 10 pixels. In this context, the proposed method
registers a 51.02% success rate in category P, while GDB-ICP and REMPE achieve 34.69% and 95.91%,
respectively.

Table 5 offers a comprehensive analysis of the registration performance of these methods, en-
compassing the AUC metrics along with insights into the transformation model and execution time.
Notably, the REMPE model, despite its high success rate in registering fundus images, demonstrates
significantly slower execution times compared to the other approaches presented. Our proposed
method, while maintaining competitive performance with REMPE across certain categories, manages
to significantly reduce the execution time by over 50%, enhancing efficiency without compromising
efficacy. Figure 17 presents sample outcomes for each category within the FIRE dataset, displaying
accurate matches and the outcomes post-registration.
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Figure 17. Image pairs within the FIRE dataset showcase registration outcomes for super-resolution
imaging (top row), image mosaicking (central row), and longitudinal study (bottom row).

5. Discussion

This study focused on developing a novel fundus image registration method utilizing bifurcations
as feature points while employing a deep learning-based blood vessels segmentation approach. The
primary aim was to establish a geometric relationship between fundus images by extracting features,
facilitating their alignment. Additionally, the utility of FREAK as a keypoint descriptor within the
registration process was explored.

The findings from this investigation revealed several insights. Notably, the binary descriptor
FREAK demonstrated remarkable effectiveness in fundus images, despite their inherent limitations
in texture. Furthermore, the study highlighted a direct correlation between the quality of blood
vessel segmentation, achieved through U-Net, and the resulting accuracy in registration. Enhanced
segmentation directly contributed to superior registration accuracy, as evidenced by a qualitative
comparison of previous approaches [9,10].

This aligns with existing literature by showcasing that bifurcations obtained from blood vessel
segmentation using a similarity transformation can compete favorably with methods employing more
intricate feature extraction and models. These findings suggest that even simpler methods can yield
competitive results in fundus image registration.

The practical implications of this research are substantial. The marked reduction in the execution
time of the fundus image registration task brings it significantly closer to integration into clinical prac-
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tice. Moreover, the comprehensive evaluation performed in this study provides a robust benchmark
for future methodologies, aiding in determining their suitability for clinical adoption.

However, a notable limitation of this study is the utilization of different datasets for blood vessel
segmentation and subsequent registration evaluation. This limitation challenges establishing a direct
causal link between improved segmentation and subsequent registration accuracy. Future research
endeavors should prioritize the production and utilization of datasets encompassing both blood vessel
segmentation ground truth and control points for more cohesive and integrated evaluations.

In terms of future directions, exploring the feasibility of automatically selecting transformation
models based on the characteristics of fundus images emerges as a promising avenue. As the optimal
transformation model may vary across different fundus image types, developing adaptive models
could significantly enhance registration accuracy across diverse fundus images.

In conclusion, this study emphasizes the potential of simplified methods for effective fundus
image registration and reveals paths for future investigations aimed at refining registration techniques
for practical clinical application.

6. Conclusions and Future Work

This study unravels the potential of simplified yet robust fundus image registration techniques,
leveraging bifurcations derived from blood vessel segmentation. The noteworthy achievement in
reducing execution time marks a significant stride towards the practical integration of these method-
ologies into clinical workflows. Despite these advancements, the study confronts a critical limitation
rooted in the utilization of disparate datasets for segmentation and registration evaluation. This
juxtaposition hinders a complete demonstration of the causal link between improved segmentation
and registration accuracy. To address this, future investigations demand the creation of unified
datasets encompassing both ground truth segmentation and registration control points, enabling a
more comprehensive validation of these methodologies.

The future trajectory of research in this domain necessitates a dual focus. Firstly, refining registra-
tion algorithms to strike an optimal balance between reduced execution times and sustained accuracy
is paramount. This endeavor would propel the seamless adoption of these methodologies in clinical
practice. Secondly, the quest for defining precise accuracy benchmarks emerges as a pivotal undertak-
ing. Establishing these benchmarks is not only crucial for the validation but also for the subsequent
integration of these methodologies into clinical workflows. The absence of defined accuracy standards
poses a significant challenge in determining the readiness of these methods for real-world clinical
applications. Hence, future research must emphasize the delineation of these accuracy benchmarks to
streamline the validation and adoption of these techniques in clinical practice.
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