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Abstract: Sharding shows great potential for extending efficiency of blockchain. The current
challenge facing sharded blockchain technology lies in addressing the extended transaction
confirmation times caused by isolated states between shards and unbalanced transaction allocation
strategies. These factors contribute to an increase in cross-shard transactions and disproportionate
shard workload, ultimately resulting in indefinite confirmation delays for cross-shard transactions.
A critical priority for sharded blockchain systems is to conduct a comprehensive qualitative analysis
to better understand and mitigate the prolonged transaction confirmation times. We introduce a
Product-Form Queue Network (PFQN) model to address the transaction confirmation time problem
in sharded blockchains and incorporate a new confirmation queue to more accurately simulate the
actual transaction confirmation process in the blockchain. In addition, we provide a detailed
quantitative analysis of the relationship between network load and consensus efficiency in sharded
blockchains, offering a meaningful perspective for achieving robustness and efficiency in sharded
blockchains. This research not only contributes to addressing the scalability issues in sharded
blockchains but also offers a new perspective for future research directions.

Keywords: blockchain sharding; transaction confirmation time; cross-shard transactions; product-
form queue network

1. Introduction
1.1. Research Background

Sharding is a promising approach for improving blockchain scalability by dividing the network
into smaller partitions, each processing a subset of transactions (TXs), thereby enhancing transaction
throughput. Sharded blockchains are constructed from these three paradigms: network sharding,
transaction sharding, and state sharding[1]. Network sharding forms the basis of other paradigms,
creating partitions that handle distinct TXs sets according to the transaction sharding policy. State
sharding aims to distribute the blockchain's states evenly across all shards. They therefore split the
work related to network, computation, and storage across the blockchain systems. Currently, state
sharding remains mostly theoretical. Representative sharding solutions include Elastico[2],
Omniledger[3], RapidChain[4], and Monoxide[5], based on either Unspent Transaction Output
(UTXO) or account/balance transaction models.

As a state replication machine, blockchain requires cross-shard transactions to unify parts of the
state across different state shards. Therefore, sharding technology has been introduced as a method
for cross-shard transactions. A cross-shard transaction refers to a transaction (TX) involving accounts
or UTXOs on multiple shards. Because cross-shard transactions require verification of the correctness
of the shard state being sent, they are more complex and time-consuming than single-shard
transactions. A study by Rapidchain pointed out that as the number of shards increases, almost all
TXs become cross-shard [4]. Therefore, reducing the number and delay of cross-shard transactions is
key to improving the scalability of shard blockchains[6,7].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Transaction confirmation time is mainly completed by consensus within shards and cross-shards
consensus between shards. In sharded blockchains, transactions are first submitted to the relevant
shard. Each shard has its independent verification process and input, so transaction confirmation
time varies depending on the shard's consensus mechanism. This paper discusses consensus
mechanisms similar to Monoxide (Proof of Work, i.e., PoOW, Relay for cross-shard transaction).

1.2. Related Works

Compared to the extensive research on sharding and blockchain, the literature exploring the
application of queueing theory in analyzing blockchain characteristics is relatively limited. Still, some
inspiring lines of research can be found in the literature.

In terms of applying queueing theory to blockchain, [8] took significant steps forward. They
used the GI/M/1 queue model with batch-service for single-chain system analysis. This work helped
point out what's important in how blockchain systems perform, such as the average number of
transactions and the duration of confirmation times. Then, [9] integrates machine learning with
queueing theory to enhance the understanding of confirmation times for transactions in single-chain
systems. This research introduces a novel machine learning methodology for sorting transactions and
applies queueing theory to assess delays.

In the context of PoW, [10] used established a model for sharded blockchain using product-
form network queue (PFQN) and derived the maximum throughput of the sharded blockchain.
[11,12] used an M/GB/1 queue model with batch service to analyze the transaction confirmation time
in the Bitcoin system.

1.3. Motivation and challenge

Brokerchain[13] found that in Monoxide, 80,000 TXs are unevenly distributed across shards,
with most TXs being cross-shard as the number of shards increases. This can cause infinite TX
confirmation delays when the recipient account of a cross-shard TX is congested, which violates the
principle of Timeliness as defined in [14], where it is expected that a correct process will eventually
write a valid transaction to its ledger. Another motivation stems from [10], who did not discuss the
confirmation delay of a sharded blockchain. Moreover, because the cross-shard technique is
introduced to sharded system, hence heterogeneity between shards and traditional blockchain, the
theory in [11,12] is not applicable to sharded blockchain. This constitutes one of the motivations for
our study that these studies still lack a qualitative analysis of the confirmation time model for sharded
blockchain. Addressing this issue is crucial for the scalability of sharded blockchain, a predominant
direction in blockchain development, by quantitatively characterizing the transaction-confirmation
process. In this paper, we present the following contributions:

1. We decouple the input of the sharded blockchain through the Product-Form Queue
Network (PFQN) and solve the transactions at different stages to obtain the average expected value
of transaction confirmation time applicable to the sharded blockchain.

2. We additionally consider the transaction confirmation process on the main chain, and add
a new confirmation queue F after the PFQN model, making the model more in line with the actual
transaction confirmation situation in the blockchain.

3. We utilize the PFQN model to assess the impact of quantum-resistant technologies on
sharded blockchain transaction times, enhancing security against quantum threats.

In the following sections, we provide a brief explanation of why we choose to use the PFQN
model and give an overview of how the PFQN model operates in Chapter 2. Subsequently, in Chapter
3, we introduce the PFQN model in detail and extend it to derive the transaction processing
confirmation time in the system. Following that, we simulate the blockchain environment and
analyze the impact of various parameters on transaction confirmation time.
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2. Materials and Methods
2.1. Why PFQN?

The PFQN model is particularly suited for analyzing sharded blockchain systems for several
reasons, which relate directly to the characteristics and demands of sharded environments:

Product-form Steady-state Distribution: This characteristic means that the steady-state
probabilities of the network can be factored into a product of simpler functions, each corresponding
to a component of the network. In the context of sharded blockchains, this property is highly
beneficial because it simplifies the analysis of complex systems. Sharded blockchains, by nature, are
decentralized systems split into multiple shards (sub-networks), each processing its own set of
transactions independently. The product-form characteristic allows for the analysis of each shard as
an individual entity while still understanding its part in the greater system's dynamics.

Quasi-Reversibility: Quasi-Reversibility means that the queues within the network maintain
certain independence in terms of arrivals and departures. In sharded blockchain systems, this mirrors
the operational independence of shards: each shard processes transactions independently but
contributes to the overall system's throughput and latency. Quasi-reversibility making it easier to
predict overall system performance based on individual shard behaviors.

Scalability and Decomposition: PFQN allows for the scalable analysis of networks, which aligns
with the scalable nature of sharded blockchains. As blockchain systems grow and add more shards,
the complexity increases. The PFQN model supports this scalability by enabling a modular approach
to system analysis — each shard can be modeled separately but within the same framework, aiding
in understanding the overall impact of scalability on system performance.

Throughput and Latency Analysis: One of the key performance metrics for sharded blockchains
is throughput (the number of transactions processed per time unit) and latency (the time taken for a
transaction to be confirmed). The PFQN model is particularly adept at analyzing these metrics due
to its focus on network queues and service processes. By applying PFQN to sharded blockchains,
researchers can derive maximum throughput and expected latency, providing valuable insights into
system efficiency and performance.

The PFQN model addresses the complexities of interacting shards more effectively than the
GI/M/1 or M/G/1 models, which focus on simpler, single-chain systems. PFQN's effectiveness for
sharded blockchains, shown in studies like [10], stems from its ability to model and analyze multiple
shards, providing insights into throughput and inter-shard dynamics beyond single-queue analysis.

2.2. Blockchain Setting

In this work, we adopt the prior settings similar to [7], treating the Nakamoto consensus family
as the intra-shard consensus mechanism, with cross-shard transactions employing the relay method.

In shard-based transaction methods like Relay, the source shard verifies the input account's
balance before TX relays to the output shard. Relay checks cross-shard transaction accounts in blocks
against transaction amounts. The cross-shard verification is termed the Availability Certificate (AC)
from [15] (Definition 32). In our PFQN model, AC will also be referred to as a cross-queue signal in
the following text.

2.3. Model Assumption

Our PFQN model is composed of a series of nonlinear QNs, with each QN queue consisting of
a network queue and a consensus queue, as depicted in Figure 1. To ensure the model's accuracy and
practicality, it is founded on a series of detailed assumptions that concern key aspects such as the
arrival process and service mechanisms.

In our model, we assume the size of intra- shard transactions and ACs is independent of the
number of their destination shard fields. This assumption might even be quite close to reality. In
many instances, the bulk of a TX's size is occupied by the private signature of its sender, e.g., Bitcoin
before the BIP1412 update [16]. It's reasonable to say that each transaction produces the same size for
the shard.
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We assume that the arrival of transactions to the network queue follows an independent Poisson
process. In many existing projects, transactions are allocated to shards based on sender addresses
[7,17]. As a result, transactions generated by accounts are uniformly distributed across each shard.
Given this, we assume that the rate at which transactions arrive at each shard is equal.

With transaction propagation and transaction arrival processes addressed, we can now begin to
consider the processing capacity of the network queue. For network queues, due to the interaction
with a shared medium in distributed systems, they are viewed as processor-sharing (PS) queues. This
approach captures parallel information verification, thus leading to the classification of QN as
M/GB/1/PS queues. Similar assumptions have been adopted in previous work [10], where, under this
assumption, by employing symmetric service rules (such as processor sharing in network queues),
the quasi-reversibility (QR) property of queues is maintained even with non-exponential service time
distributions. Processor sharing is a method of servicing multiple customers simultaneously by
evenly distributing service capacity to all current jobs. This principle helps maintain QR by ensuring
that the service mechanism remains unbiased and symmetrical, allowing for the independence
between arrivals, services, and departures required by QR, despite deviations from the exponential
service time assumption.

After a transaction is processed by the network queue, each transaction routed by the network
queue will leave the network queue and join the miner's mempool (consensus queue) after
verification. Considering the exponential service distribution characteristic of PoW mining, as
highlighted in previous studies [18,19], consensus queues are modeled as M/M/1/FCFS. This
modeling approach takes into account the stochastic nature of mining and transaction processing
within blockchain networks, where the service time for transactions (i.e., the time taken to mine a
block and validate transactions) follows an exponential distribution.

The PFQN's structure is set as open, where customers can leave the QN after receiving service
and move to another QN, according to predefined routing rules. This structural assumption allows
us to observe and analyze the dynamics of customer flow and the overall performance of the network.

2.4. Model and Derivation
2.4.1. PEQN Model

This discussion succinctly review how a transaction is confirmed in a sharded blockchain. A
user-signed transaction is sent to a queue in a particular shard network, and the transaction is
allocated to a specific shard based on certain rules (such as the hash value of the transaction). Once
assigned to the corresponding shard, it enters the transaction pool maintained by the nodes of that
shard, waiting to be selected for packaging into a block. Miners or validators in the shard select
transactions from the pool and package them into a new block. This process occurs simultaneously
across the network's various shards. Within each shard, a consensus mechanism is used to verify and
confirm the new block. If a transaction involves cross-shard operations, it is first confirmed in the
source shard. Subsequently, the transaction is relayed to other shards, and upon receiving the
transaction information, the target shard verifies, executes, and confirms it.

In our nonlinear queueing networks, there are three distinct types of entities: regular customers,
negative signals, and positive signals corresponding to customers.

There are five types of entity flows within PFQN, represented by ¢, ¢, s, s;and c; .

The customer 's' represents a block component, and we refer to s here as a mini block, which
contains only one transaction. A mini-block can represent a confirmed transaction and AC. We
consider mini-block instead of the block because mini-block can simplify the process of the
coordinator extracting transactions from the block to generate a corresponding AC. Customer c
represents a transaction type customer, which in the context of blockchain is a regular user-signed
transaction.

To simulate batch service in blockchain, we introduce ¢; and s;". If an ¢; arrives at an empty
queue, it will disappear. However, if an ¢; arrives at a queue with n customers, it will cause the
customer at position 1 to leave with probability 8(l, n)such that Y=} 6(l,n) = 1. A higher-positioned
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c will fill the vacancy, triggering another c; at the output of the queue. s;” will trigger s;", at the
output of the queue while adding an s to the queue.

¢y stands for cross-queue signal, and k in ¢; is the phase of the current signal. Stages are
introduced to represent the number of shards yet to be visited by the signal. By replacing the concept
of target sets in signals with stages, the probabilistic routing method models the process of cross-
shard transaction transfer.

In Chapter 2, we have already made preliminary assumptions about the consensus queue P and
the network queue N, which explain the distribution followed by the arrival and service processes of
entities.

However, we still need to further explain the representation of arrival rates and the interactions
between entities across queues. It is important to note that the arrival mechanism of entities in queue
] is the same as that in its network queue N. Therefore, to simplify the discussion, we will no longer
differentiate between the entity arrival processes in these two types of queues. In subsequent
discussions, descriptions of entity arrivals may be used interchangeably, aiming to refer to this
common arrival mechanism.

To facilitate the distinction between user-initiated transactions and relay's transaction arrival
rate we use the symbol 4, to represent the arrival rate of new customers in queue J. Here, 1 is a
subset of a, specifically denoting the rate at which new user-generated transactions arrive at queue
J,ie., 4;. The arrival rates for queue J are represented by af, af,, and aj, respectively.

After leaving a queue, each entity can change its type through network routing. For example, an
entity u departing from queue ] can become a v-type entity heading for queue J* with probability
75,75+ The only requirement for routing probabilities is that ¥, ¥, 7, = 1.

Next, we will use two simple examples to explain how a regular customer (a user-signed
transaction) and a cross-queue signal (a cross-shard transaction) are processed and transmitted
within the PFQN. For the regular signal, we consider the propagation process of a signal within a
single queue. For cross-queue signals, we will explore how a signal propagates through multiple
queue systems, including the behavior of signals as they transfer between different queues. By
describing the transfer process of signals in a single queue, we obtain an accurate description of the
arrival rate of transactions to a queue in PFQN.

The way a regular customer operates in a queue can represent the confirmation process of a
transaction within a shard. Customer c is first created by the client and propagated through the
network to the shard's network queue N. Then it enters N at rate Anc. N distributes c to the nodes in
the shard at a service rate un.. Miners received ¢ will add c to their transaction memory pool,
representing c entering the shard's consensus queue P. The service rate e represents the service rate
of the transaction in the network. Since pne is large in reality, the service time can be negligible.
Therefore, we can simply see c entering queue P at rate Ar..

When c reaches the end of P, as illustrated in Figure 1, the transaction first arrives at queue N
and then reaches queue P at an extremely fast service rate. At this point, ¢ is converted into signal s,
represented by 75 N the signal then triggers a new s in N, transforming at the end of N to ¢;, Here,

iis equal to b-1 (0 <i<b), where b represents the size of a block, that is, the number of transactions a
block can contain. When c¢; arrives at P, it will then cause the disappearance of the other c.
Eventually, this process will remove b transactions from the node's mempool P, corresponding to a
batch processing in the blockchain.

To satisfy quasi-reversibility, queues that receive positive signals must emit additional positive
signals when empty. Therefore, we require network queues to emit positive signals whenever they
do not contain block components. Following the approach in [10] to maintain the QR property, we
adopt a probabilistic method to decide whether to retain the departing positive signals or route them
out of the network. By multiplying by the reciprocal of a service rate, we adjust the emission rate of
positive signals as the queue transitions between different occupancy states, especially when the
queue is empty. This adjustment compensates for the current load rate by emitting positive signals
that maintain the QR property.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1173.v1

To ensure QR, ang, must be multiplied by py? to adjust the rate of ap;- However, to ensure
that multiplying ang by pys does not deviate from the original scenario, we need to set TNE s =
Ppns and 7 1 — pys. In terms of service processes, uy represents the service rate of all entities
in N. The utilization rate of queue N is represented as pys = %, which can be a combination of

multiple category utilization rates. The total number of negative signals generated remains constant,
so the queue is not affected by this setting.

u

Z (R-';’,J + a}—’mﬂ)

k=L M AT

v
;(Rf',:' + C‘.JFCM)
Mj
000
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Figure 1. Queue Network (QN) structure in PFQN.

We can derive the flow equations of the queueing network. Due to the symmetric architecture,
we only need the equation of a shard, including the consensus queue and its related network queue.
For i =1,..,b — 1, the flow equation of the consensus queue is:

®pc = PNcMnc 1

— 51 —
Ap- = An+ Tyt p- = Ayt
Pe; Pns Nsipy NsipqPe; Nsitq (2)

The cross-queue signals mainly include the generation and transfer stages. When the positive
signal s; arrives at N, the newly generated s is converted into a k-stage cross-queue signal ¢; at a
certain rate, routing it to other queues besides itself. Once ¢ arrives and is processed, it continues
to be routed as c;_,to other queues, excluding itself, until k equals 0. Considering shards j and j' as
examples, where J'#], ',JEM, M = {1, 2, ..., M} as the set of all queues representing shards. For k =
0,1,.., U, and for all stagesk>U, « JE = 0, where U is the maximum stage that the signal can reach.



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1173.v1

Given that the newly generated signal has the potential to impact a maximum of either M-1 or dmax
(indicating the maximum destination that a signal can reach in one stage.) shards, it follows that U =
min(M-1, dmax) - 1.We can obtain the overall arrival rate of cross-shard signals at shard ] in stage k:

+ k -1_+
ajck = /16[](] + Z (R]r'] + p]’Ca]’Ck+1r]IC}:—+1r]g'k) (3)
J'em,j'#]

The three terms in af, represent the arrival rate of ¢ in shard J, each term being one of the
sources of ¢ : the first term is the client-generated c arriving at shard J at rate Ad[k] by P it
transforming into ¢;, d [.] is the Dirac function defined on the discrete domain. The second term is
the signal c¢; generated by completing the block component service in other shards J’; the third term
. . , . + -1 . . 1.
is the signal ¢ routed from shard J' to shard J with rate O o1 et gt Prlc 18 multiplied to
prevent the additional departure rate.

The discussion will now focus more closely on the second and third items. During the generation
stage, we need to consider the probability that a block component contains a cross-shard signal, as
well as the probability of a cross-shard signal being at a certain stage. We need to differentiate
between AC and TX in block component ‘s’ to identify which components can be transformed into
cross-queue signals. For this, we use s;,d = 1,...,dmax to represent the ACs with d destinations.
We define:

dmax
k
R]’] = p]'s“]'srj's,]g'k = Pyisty’s Z Pro(s = s4) 7"]’s,];rd 4)
d=k+1
as the rate at which the network queue of shard J” generates block s at rate p;/;u;r; and transforms it

into ¢ to be routed to shard J at rate 7,/ J&,- The term 7o ,+ represents the probability of routing

to other shards andzg’:,‘jﬁl Pro(s = s;) represents the probability that a block component contains a

cross-queue signal of a certain stage. We know that all customers in a network queue are comprised

of both newly issued “customers” by clients and “signals” routed from other shards. Hence, the

probability that a block component generates a signal can be derived as the ratio of the rate of newly

issued TXs (i.e., AD[d]) to the rate of all other customers in the network queue, i.e., Yv_, ajf, - Thus:
AD[d]

le(]=0 a]+Ck

To obtain the routing probabilities 1,7, Ity the first step is to find the number of distinct shards

Pr(s=sy) =

other than the source shard that a multi-destination TX points to. The number of sets with i (i < d)
distinct shards other than the originating shard in the destination fields of s4 are

R
N(lMl'd'l)_(IMl—i—l)!{i+1}
Where
d+1)_ 1 i1 o p(i+1>, a1
{i+1}_(i+1)! p=o (1) p (i+1-p)

is the second kind of Stirling number which is the number of ways to partition a set of d+1 objects
into i+1 non-empty subsets. Therefore, routing probability Ty I, is obtained by dividing N(M, d, i)
by M? possible destination sets for sa.

Owing to the population dynamics within the target shards, aside from the source shard, where
the newly emerged signal may be directed, it necessitates the division of pyspuys by |M| — 1. Given
the symmetrical and identical nature of the queues within M, pu;s = pjspys, Consequently,
pjsiyscan be simplistically represented as py,u;s. By incorporating these equations into equation (4),
we derive:

dmax
Rk = Pustns A Z {4+ N ppg [1z51 (M| - 2)
VUMl =18, afy, o et 2 mM|e

During the transfer stage, consider ¢;” and aj;, as the multi-stage positive signals and their

k=01..,0 )

respective arrival rates, where i represents the stage. When a ¢;* enters the network queue, it not only
adds a class ¢ customer to the queue but also the newly triggered signal is routed as c; ;. If the stage
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of the signal is 1, then the signal is routed as a regular class ¢ customer. Due to uniformly distributed
routing probabilities, it can be routed to any of the other M — 1 shards with equal probability.
+
py e
1+ — -1+ Jc N _ T Ck+a
p/’Ca/’Ckﬂr/’CI:chl‘: - ‘D/’Ca/’CkH (M — 1) T M-=1 (6)
Due to the symmetricity structure and flow of each shard, each shard equally hosts the same
rate of multi-destination TXs as others. Hence, both rates in the summation of equation (3) are
independent of their originating queues. Therefore, we can simply replace the subscript ]’ with J in
aj,,, and rewriteitas ay,,, , then we replace equation (3) with equation (5), and obtain:
e, = A8[k] + (M — DR + af, ., 7
where Ry, is the rate at which the transactions are processed. Starting to solve (7) from k=U

down to k=0, we can obtain the total input rate of combined-flow customers to a network queue as

A
Ve
Aau = Zy=0Ne, = 7 ~pr
Up
®)
d+1 o (M —z
1+ 3 (k+1) ngﬁil {k + z}D[d]%

2.4.2. Derivation of Transaction Confirmation Delay

By PFQN we decouple the input model of the sharded blockchain, and we sum entities ¢ in
different stages to obtain the average expected value of transactions applicable to the sharded
blockchain. However, obtaining a description of a queue's transaction flow is not sufficient to
determine the transaction confirmation time for a queue. By utilizing the formula described in [12]
for the confirmation time of transactions in a single queue and combining it with the decoupled
transaction entities, we have derived the expected confirmation time required for a cross-shard
transaction.

We defined the block generation time E(S) as the time interval between consecutive block-
confirmation time points. We also regard a block-generation time as a service time. Let Si denote the
ith block-generation time. Similar to numerous studies [11,12,20,21], we consider the block generation
time of PoW to follow an exponential distribution. Therefore, we define the block-generation time, S,
as adhering to the exponential distribution, described by the following formulation:

G(x) =1-ef*,

It is assumed that the sequence {Si} consists of independent and identically distributed (i.i.d.)
random variables, each characterized by the distribution function G(x). Let g(x) denote the
probability density function of G(x). The mean block-generation time E[S] is given by

E[S] =j xg(x)dx.
0

Els] ==, E[S=%
f f?

Let {(x) denote the hazard rate of S, which is given by {(x) = 99

1-G(x)
T denotes the transaction confirmation time, i.e., the time interval between when the user issues
a transaction and when a block containing the transaction is generated [15] (Definition 26). Let Num(t)

denote the number of entities c in P at time t, and X(t) denote the elapsed service time at t. We define
B, (x,t) = %Pr {Num(t) =n,X(t) <x}, B,(x)= ,{LT,P”(X’ t). Given Little's theorem, we know that
the long-term average number of customers (E(N), or expected transaction volume) is equal to the
long-term effective arrival rate (A, or the speed at which transactions arrive at the system) times the
average waiting time of customers in the system (E(T), or transaction confirmation delay). The
average transaction confirmation time can be given by E[T] = %

We next introduce the entity concept into an important formula [12] (Theorem 1) to find the
entity confirmation time.
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1

ElT)e = 5020 — 78D *

©)

b
(Z Bi [b(b — 1) +{(b + 1)b — k(k — )IAE[S] + (b — kK)A2E[S?]]
k=1

_A{b(b — 1) — 22E[S2]})
B = f P (¢ ()dx

Pi represents the probability that P has k-1 entities during the entire system runtime. This
reveals the entities' confirmation time when Z‘,lc’zoa,tckE [S] £ b, the system is stable. In a system
comprising M queues, each conforming to a quasi-reversible M/M/1 queue model, the composite
arrival process at an individual queue retains the characteristics of a Poisson process. This holds
under the condition that each customer, upon service completion, has a probability r of being routed
to any other queue in the system, with each of these queues having an equal probability of ﬁ of

receiving the customer. Recall that an entity with k stage arrives at P according to a uniform Poisson
process with rate ay,, across all queues. So we apply this theorem to a synthetic flow queue P with
Zi-0Qxe, satisfying Poisson distribution.

However, applying (7) directly to (9) will only give the expected time E[T], for a ¢; to be
processed. Recall that our goal is to get the expected time for a TX, so this does not meet our
expectations. Knowing that E[T], is the average expected time for ¢ to complete the service in queue
P or the average expected time for ¢ to accept the service and transform into ¢;_;, we can obtain
the expected service time for a transaction to accept service in the QN queue:

E[T]process = Zlgzoa;ckkE[T]e (10)

(10) reveals that new arrivals are multiplied by their numbers in the target fields. Since it needs
to be executed sequentially k times in different shards. According to the definition of eventual
sharded blockchain in [15] (Definition 29), a transaction or block does not confirm instantly, and
several blocks at the end of a blockchain must be added to obtain stable states. Therefore, E[T],.qcess
cannot represent the expected delay of transaction confirmation, because PFQN was designed
according to PoW consensus within the shard and the cross-shard consensus relay method, so it
should meet the definition of Eventual sharded blockchain. Although the PFQN model is very
applicable to eventual sharded blockchain, the model still needs to introduce a new queue to simulate
the confirmation time of transactions in the shard's main chain.

We additionally considered the stabilizing process of transactions on the main chain by adding
anew confirmation queue F at the end of queue N, which is more consistent with the actual situation
of transactions being confirmed on the blockchain. F is an M/M/1 queue, i.e., both arrival and service
processes follow a Poisson distribution, as shown in Figure 2 The arrival rate 1 of queue F includes
two entities, s§ and si from queue N. It is obvious that Az = py+ .The confirmation queue F
processes block component s with a service rate up. The average processing and waiting time of the

block component, which is also the confirmation time of the transaction on the main chain, can be
obtained through the waiting time formula T = ﬁ
F~F

ZP.,(M — 1)Rf,we get

. Substituting s = pyt = o, = 2 +

1
11
up— A — Zl[c]=1(M - 1)R]k ()
By (10) and (11), the time from a transaction being issued to being fully confirmed, E[T], can be

TF=

calculated as
1

U —A— 25:1(1‘/1 - 1)R/k

E[T] = E[T]process +Tp = lecjzoaxl-ckkE[T]e +
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TnhF = 1—py

T =1
NS$'JS

TFS,U =1 '

Queue J

Figure 2. Queue Network structure with confirmation queue.

3. Results

We simulate the sharded blockchain as a PFQN queue. When pairs are in the stationary state,
we analyze the impact of different variables on shard A. To analyze A, we need to first obtain the
initial values of different parameters, D(d) as the distribution law of the transaction set Txs;. We give
the following definition:

D(d) =[Py, ., Py, -, Pymax], 1 < d < dmax
Txsy

"~ Txs
Because of the need to carry out Y%_, k®, piecewise selection, it is equivalent to carrying out

Ye_, kd, ii.d. random experiments, and the number of times each piecewise is selected is subject to

da

binomial distribution Bin (Zﬁzl kcbk,%). According to the central limit theorem, the binomial

distribution can be approximated by a normal distribution when the number of trials is large enough.
In the Bitcoin and Ethereum marketplaces, we know that the number of transactions is large enough,
so we assume that D(d) is normally distributed. The expectation and variance of the binomial

XNUM TXNym(M-1)
M 7 M2

distribution gives us D(d) obeying N &

) ). Here, we assume that dmax is a

constant, and in practical UTXO scenarios, each transaction usually involves a finite number of inputs
and outputs. For example, a standard Bitcoin transaction typically contains 2.26 UTXOs with a small
difference, possibly around 1, as shown in [22] (Table 1). We set the number of shards as 5, the
utilization rate gp as 0.995, block b containing 5 transactions each time, and the maximum degree of
the transaction dmax as 2.
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Table 1. Summary of Application Research of Queuing Theory in Blockchain Model Analysis.

Refere Methodology Focus Area Key Findings Contribu.tions to the
nce Field
[8] GI/M/1 queue Transaction  Developed a queueing Introduced an
with batch-  confirmation in theory model for  analytical approach for
service Single-chain blockchain systems,  blockchain queueing
systems identifying average systems

transaction numbers
and confirmation times

[91 M/G/1 for delay  Transaction Proposed a machine Enhanced
characterizatio confirmationin learning framework for  understanding of
n, Machine Single-chain transaction blockchain delays and
learning for systems classification and transaction
transaction queueing theory for confirmation dynamics
classification delays
[10] PFQN Sharded Established a model for  Introduced a new
blockchain  sharded blockchain and model for analyzing
efficiency derived maximum sharded blockchain
throughput performance

[11,12] M/G/1 queue Transaction Analyzed transaction Applied queue theory
with batch ~ confirmation time confirmation time in to understand Bitcoin's
service in Bitcoin Bitcoin using queue  transaction dynamics
theory

Lambda vs. rho_p Lambda vs. d_max
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Figure 3. (a) Impact of utilization gp on arrival rate A; (b) impact of transaction degree dmax on
arrival rate A.
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Figure 5. Effect of A and E(S) on E(T).

In our experiment, we utilize BlockEmulator [23] to simulate real transaction confirmation
latency in sharded blockchain systems. This decision is based on BlockEmulator's sophisticated
ability to replicate the complex operations and network conditions of sharded blockchains accurately.
Its detailed emulation of transaction processing, consensus mechanisms, and inter-shard
communication provides a realistic environment to measure and analyze TX confirmation latency.
Additionally, its capability to mimic real-world network scenarios, including packet transmission
and bandwidth constraints, ensures that our latency measurements reflect practical blockchain
conditions. This makes BlockEmulator an essential tool for our research, offering valuable insights
into optimizing transaction efficiency and scalability in sharded blockchain architectures.

In our study, we ensure that each shard queue remains stable, meaning that for Aall, the
expected service time E[S] is less than the arrival rate A. Figure 6 illustrates the transaction latency in
a simulated sharded blockchain environment under real transaction conditions, with 100,000
Ethereum transactions injected at a constant rate. The simulations were performed with different
numbers of shards, specifically 2, 4, 50, and 100, while maintaining the number of nodes within each
shard at four. The figure compares the transaction delays within the sharded blockchain with the
expected delays across different numbers of shards.
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Figure 6. Theoretical model of PFQN and simulated data of block emulator.

4. Discussion
4.1. PFQN and Sharded Blockchain Simulation

In the exploration of sharded blockchain systems, our study identifies critical parameters
influencing system throughput A and overall performance. Notably, Figure 3(a) elucidates the
positive relationship between the participation rate gp and system throughput A, signifying that
enhanced participation in the blockchain network correlates with increased throughput.

Conversely, Figure 3(b) presents a contrasting scenario where an increase in the number of
shards involved in a transaction inversely affects system throughput. This decline is attributable to
the augmented coordination costs inherent in managing multiple shards.

Further complications arise as delineated in Figure 4(a), where augmenting the number of
resources or shards correspondingly diminishes A attainable by a single shard. This decrement
underscores the dilutive effect of resource distribution across an expanded set of shards, implicating
the importance of resource allocation efficiency. Conversely, Figure 4(b) illustrates a logarithmic
increase in system throughput A as the transaction size (b) processed per consensus round is
amplified. This suggests that while larger transactions impose more significant processing demands,
their integration into consensus rounds significantly boosts throughput.

Our investigation extends to the system performance metrics, E(T) and E(S), as depicted in
Figure 5. An increase in the system performance index A exhibits a concomitant rise in E(T), indicating
a positive correlation between system throughput and the expected time for transaction processing
or consensus attainment. This positive association may stem from the enhanced complexities or
delays engendered by elevated transaction rates or consensus challenges as throughput escalates.

Similarly, the correlation between E(S) and transaction confirmation time illuminates the impact
of block production timelines on transaction latency. An elongation in block generation duration
necessitates that transactions endure extended confirmation periods, awaiting the endorsement of
succeeding blocks. Therefore, optimizing both A and E(S) emerges as paramount in facilitating rapid
transaction confirmation.

Nevertheless, Figure 6 unveils discrepancies potentially ascribable to the transaction allocation
process within the sharded architecture. The deviations observed could emanate from the challenges
inherent in replicating an idealized uniform arrival flow and constant service rate within a dynamic,
real-world environment. In summation, our findings advocate for a balanced approach to sharded
blockchain design, where the imperative to optimize throughput and security is counterbalanced by
the necessities of efficient resource utilization and strategic transaction size management.
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4.2. Security Analysis

In our research, we focus on the transaction latency of sharded blockchains, in particular
simulating the transaction confirmation process through the PFQN model. PFQN as a tool for
analyzing the transaction confirmation process, could theoretically be used to evaluate scenarios that
contain quantum resistance mechanisms. Assuming that quantum-resistant digital signature and
encryption algorithms are implemented in a sharded blockchain, we can use the PFQN model to
simulate and quantify the potential impact of these quantum-resistant measures on transaction
confirmation times.

4.2.1. Prior Research on Quantum-Safe Blockchain

With the advancement of quantum computing, there is an increasing challenge to the security
of blockchain technology, particularly the vulnerability of traditional blockchains to quantum
algorithms. Consequently, we have integrated various research findings into model modules to study
the transaction confirmation time of PFQN in the context of quantum computing.

Existing studies [25] have ensured security through three main aspects: data, transmission, and
verification. Specifically, qBitcoin utilizes quantum transmission technology, employing quantum
teleportation for currency transmission. This ensures that once the currency is sent, the sender cannot
retain the original currency data, effectively preventing double-spending issues. Furthermore,
gBitcoin employs quantum digital signatures to verify transactions, requiring other participants to
validate the signatures, thus maintaining compatibility with the principles of peer-to-peer (P2P) cash
systems. In terms of data transmission, qBitcoin uses the Quantum Key Distribution (QKD) protocol
to share private keys with the receiver.

Regarding data transmission and verification, certain study [26] have utilized quantum one-way
functions based on the Quantum State Computational Distinguishability (QSCD) problem to design
quantum asymmetric encryption algorithms, ensuring the security of the verification process. This
method effectively prevents eavesdropping, forgery, denial, and interception attacks. Additionally,
witness nodes selected through the DPoSB (Delegated Proof of Stake based on node behavior and
Borda count) mechanism are responsible for verifying transaction signatures. [27] have also analyzed
two lattice-based post-quantum encryption schemes.

4.2.2. Attack Models and Assumptions

Assuming that an adversary possesses a super quantum computer with over 1,000 error-
corrected qubits and low decoherence times, it could feasibly compute 10712 true random numbers
per second using Grover and Shor algorithms, surpassing current classical methods.

In the context of quantum computers, the security of blockchain is under a double threat [28,29].
On the one hand, the acceleration of Grover's algorithm [30] on the search problem may cause some
operations in the blockchain network to occur faster than expected. On the other hand, Shor's
algorithm [31] has potential damage to the traditional encryption method, which may lead to the
security of the private key is no longer guaranteed. We demonstrate security in the malicious attacker
model in Table 2, according to the Shor and Grover algorithm.

Table 2. Attack scheme.

Affected Blockchai
Attack Type ected DIOCKERAMN  Attack Purpose Means of Attack
Component
Block To replace the
Blockchain Historical existing blockchain Using Grover's algorithm to
Replacement e
Records rewrite historical calculate nonces
Attack
records.
Signature . . . . .
Transaction and To tamper with or Using Shor's algorithm to break
Forgery

Attack Message Signatures forge transactions public key encryption systems
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First, we discuss the utilization of the Grover algorithm for executing a single block replacement
attack within Bitcoin. As mentioned, for Bitcoin, the Grover algorithm reduces the number of
attempts required to find a valid block from 2%* to about 232,

In such an attack scenario, assume there is a quantum computer capable of executing one trillion
(10'%) attempts per second. Theoretically, this machine could complete 23? attempts per second.
Therefore, under ideal conditions, it could find a Bitcoin block in 0.0043 seconds. If this quantum
computer is used to execute a block replacement attack, it could replace six blocks in 0.0258 seconds.
Once the length of the attacker's private chain exceeds the official chain, the network's nodes will
accept this private chain according to the principle of the longest chain, resulting in the original
blockchain being overwritten. This would allow attackers to rewrite transaction history, potentially
leading to double-spending attacks.

For an ongoing transaction 'c', if it is included in the block replaced by the attackers, this
transaction might disappear from the blockchain because the attackers may not include it in their
reconstructed blockchain. This means a transaction might never be confirmed due to the attack.
Meanwhile, since the attacked shard transaction becomes invalid, all transactions involving this
cross-shard might fail to be completed.

Existing strategies to counter this attack involve adjusting the difficulty level to make it hard for
quantum computers to compute, introducing problems due to computational power imbalance.
Another strategy is to adopt a reputation model, introducing a penalty mechanism, which promptly
replaces block producers when a block replacement attack occurs, punishing malicious nodes.
Regardless, the solutions include improvements to the consensus mechanism and adjustments to
difficulty, modifying the block generation mechanism.

For the signature forgery attack, we focus on the verification of the protocol, rather than the
whole protocol covering transmission, data processing and verification. The reason for this is that the
transport and data processing steps are heavily dependent on the specific protocol code and data
format, and their complexity is beyond the scope of this article. On the contrary, the verification link
covers the integrated application of cryptographic algorithms and is the core of blockchain security
under signature forgery attack. In this study, the encryption algorithms adopted in the verification
phase will be explored in detail, and in particular, their computational complexity against signature
forgery attack will be evaluated as a basis for measuring their security metrics. With this focus, we
provide a methodology for assessing the overall security of a system without delving into the specific
details of the protocol.

We discuss in this section the following two encryption algorithms post-quantum encryption
algorithms integrated into PFQN.

We first measure the security performance of the blockchain by the computational complexity
of the encryption algorithm and reflect it in the expected transaction time. Computational Complexity
We use the National Institute of Standards and Technology (NIST) security levels to measure how
hard an encryption algorithm is to break. NIST is rigorously working to analyze, test, and validate
post-quantum algorithms and is expected to release a draft standard by 2023. We can see the
encryption difficulty corresponding to different NIST levels through the Table 3. We then refer to the
NIST level of post-quantum encryption algorithms in the paper [32,33].

Table 3. NIST level.

NIST level Encryption Standard
AES 128

SHA3-256
AES192

SHA3-384
AES256

U &= WO N =
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Table 4. Cryptographic algorithm and corresponding difficulty.

Private Public

. Approximate
. Cryptographic Key Key  NIST ore
Algorithm Category Algorithm Length Length Level Probab111t§.r of
Compromise
(bytes) (bytes)
YSTAL-
Post-quantum C ,S . 1952 4000 3 27192
. . Dilithium3
encryption algorithm FALCON 1793 2305 5 =256
Classi RSA 3072 3072 1 27128
assie ECDSA 256 512 1 2128

Theorem 5 (proof provided in the Appendix A) is proposed for the analysis of the security lower
bound. In the theorem, the parameter h relates to the safety parameter of the encryption algorithm,
representing the probability that the encryption algorithm can be successfully attacked through
signature forgery. |P;| represents the total length of transactions processed by the ith shard, with the
expected confirmation time denoted as E[T], recalling that U denotes the maximum number of shards
a single transaction can involve.

Theorem 5: As long as the cross-shard protocol of the verified sharded blockchain protocol satisfies atomicity
and P; < ﬁ, for Vi € M, then the blockchain protocol satisfies consistency.

Then, we map the security coefficient h to the computational complexity of the encryption
algorithm and analyze the security of the PFQN model under the same configuration. We define
security as the expected number of rounds a shard blockchain system can safely process transactions
before the first occurrence of a security vulnerability or unsafe transaction caused by quantum
computational capabilities, in the face of attacks based on Shor's algorithm.

In the context of quantum computing, to ensure PFQN maintains the same level of security as
Bitcoin, we only need to set the € in the proof of Theorem5to 27?8 | and h as the number of times
a quantum computer needs to compute the encryption algorithm. Then, we can use Theorem 5 to
calculate the expected upper bound of the total number of secure transactions for the PFQN model
integrated with the encryption algorithm under the NIST framework for shard blockchains. Finally,
assuming that the service rate y, of the consensus queue P is linearly related to the performance of
the encryption algorithm [33] (see Table 5), from formula (8), it is known that A,; is also linearly
related to u,. We can calculate the expected total time for all transactions in the shard blockchain
under the guarantee of security.

Table 5. Cryptographic algorithm and corresponding difficulty.

Expected Encryption
M f
Signatures/s  Verifications/s ax Sa. € Time Per Transaction
Transactions
_ 21
C.YST.AL 6,506.33 17,561.33 ~ i 0.000154
Dilithium3 U
85
FALCON 1,446.52 9,782.67 ~ 27 0.000691

In the context of quantum attacks, these expected upper bounds signify the maximum number
of transactions that can theoretically be executed safely. Taking into account the time for each
transaction, we can infer that, within these security limits, a system using the CRYSTAL-Dilithium3
algorithm could process a large number of transactions and blocks very rapidly. However, due to its
lower upper limit, if it is to be used in a shard blockchain, stronger security parameters must be
employed to enhance the algorithm's resistance to quantum attacks, thereby increasing the upper
limit of secure transactions. This approach may sacrifice some performance, as stronger security
parameters typically result in larger signature sizes and longer processing times. Conversely, the
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FALCON algorithm has a longer processing time for individual transactions, and its optimization
goals should focus on improving algorithm performance. Recall from Figure 5, as u decreases, E(S)
causes E(T) to increase exponentially.

5. Conclusions

In this paper, we introduce the PFQN model to solve confirmation latency in sharded
blockchains. Our analysis highlighted the interplay between network load, consensus efficiency, and
security in sharded blockchains, providing insights for enhancing their robustness and efficiency.
This work not only addresses scalability but also paves the way for future research, with plans to test
our model in various scenarios.
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Nomenclature

Description of parameters

Parameter Description
M Set of queues
A Customer input rate per shard
d Total number of destination fields in a TX
DI[d] The probability distribution for 'd'
b Maximum number of TXs allowed in a block
c Regular customer
o K stages cross-shard signal
s Block components
e The arrival rate of customer type e to queue J
ajs, The arrival rate of positive signal s; to queue J
af, The arrival rate of cross—shar]d positive signal c;"to queue
U Maximum stage achievable for signal ¢;*
The service completion rate for a receipt in network
R]kr J queue J' leading to a stage k signal ¢ for network queue
J
Uye Service rate for customer type e in a standard queue J
p The utilization factor incurred by customer type e on a
Je

typical queue J
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Appendix A

Before we begin our proof, we need to introduce the definition of blockchain security by
referring to previous research [15,24]. In order to prevent readers from confusing the related concepts
in PFQN, it is necessary here to prove security with a new set of symbols.

Beginning with the identification of key parameters in the security definition: u represents the
ratio of honest blocks in the shard chain, k is identified as the safety coefficient in the state machine
replication protocol.

Definition 1 (A Secure Sharding Blockchain). Let (4,Z) be an adversary and environment pair
w.r.t. a sharding consensus protocol II. Ty, denotes the time for a sharding blockchain protocol to
start up, including the production of genesis blocks and initial committees. Tjjyeness denotes the
transaction confirmation delay parameter, i.e., the time required to commit a transaction. We say II
is secure w.r.t. (4,Z) with parameters Tiar, Tiveness if the following properties hold with an
overwhelming probability:

Definition 2 (Consistency). Consistency includes the following two properties:

Common prefix inside a shard: For any two honest nodes i,j € shards; where S € [1,M], node i
outputs LOG; to Z at time t, and node j outputs LOG; to Z at time t’, it holds that either LOG; <
LOG; or LOG; < LOG;.

No conflict between shards: For any two honest nodes i € shardy,j € shardys where s,s’ €
[1,m] and s # s’, node i outputs LOG; to Z at time t, and node j outputs LOG; to Z at time t'.
For any transaction tx; € LOG; and tx, € LOG; where tx; # tx,, it holds that tx; and tx, don't
conflict with each other, i.e., there is no input that belongs to tx; and tx, simultaneously.

- ((tx1 € LOG; A tx, € LOG;) V (tx; € LOG; A tx, € Locj))

Definition 3 (Liveness). For any honest node from any shard, if it receives a transaction tx at time
to = Tinitiar from Z, then at time ty + Tjiyeness , tX must be accepted or rejected.

Definition 4 (Persistence). Parameterized by k € N ("depth" parameter), if in a certain round an
honest party reports a shard that contains a transaction TX in a block at least k blocks away from the
end of the shard's ledger (such transaction will be called "stable"), then whenever TX is reported by
any honest party it will be in the same position in the shard's ledger.

Assumption 1: In the following discussion, the consensus protocol in each shard has been proved to be secure,
i.e., it meets the definition of A Secure Sharding Blockchain (see Appendix A for a detailed definition).

Assumption 2: We assume that each shard in the blockchain network maintains a majority of honest nodes,
i.e. a proportion for each shard.

For the basic assumptions of the security analysis, we propose:
Lemma 3: Without cross-shard TX, every shard can achieve security.

Proof of Lemma 3: Based on Assumption 1 and 2, each shard is a-honest, that is, honest majority. The
security aspects of Persistence, Liveness, and Consistency depend on the parameters u, network
condition, and k, which has been satisfied by Assumption 1. Even if Q; is large, it will not affect
network condition. The safety coefficient k is met due to 4 = 1 — a [4 Theorem 1] by the consensus
algorithm within the shard. Based on our assumption that invalid relay transactions will not affect
other shards, each shard can run independently, thus ensuring its security.

Theorem 4. Even in the worst case, as long as P;U < % is satisfied, persistency and liveness can be guaranteed

with a very high probability.
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Proof of Theorem 4: Persistency depends on two factors: the probability that stable transactions
become invalid and the probability that confirmed cross-shard transactions are revoked. These two
factors only depend on the common prefix property of the shard consensus mechanism. Based on
Definition 2, the blockchain protocol has been proof atomic for cross-shard TX that invalidating relay
TX will not affect other shards, thus satisfying the common prefix property. It is assumed that the
common prefix is satisfied with a probability of 1 —p (overwhelmingly in the "depth" security
parameter k). The p value is a very small probability value under a normal operating blockchain
protocol. We know that there may be less than U shards involved in a transaction. Therefore, the
probability that a single cross-shard transaction valid is bigger than (1 — p)V. Here, we assume that
U is a constant, in practical scenarios, each transaction typically involves a limited number of inputs
and outputs, or UTXOs. Consequently, we can regard U as a constant. In the worst case, all
transactions in P; are cross-shard transactions, which follow the binomial distribution B(|P;]|, (1 —
p)V), we can get the probability that all transactions in P;(t) are valid: Prob(x = |P;|) = (1 —p)!FilY,
to find 1 — Prob(x = P;) < ¢, consider its Taylor expansion: (1 —x)" =1 —nx + LiGED PV
PUPU—-1)

(1-p)"¥ ~1-PUp+ > p’

Then the probability that the transaction is invalidated is:

PUPU-1) , N PUMPU-1D)(PU—-2) ,
p p

2 6

1 —Prob(x = P;) = P;Up —

Consider the following inequality:
PUMPU-1) , PUPU-DPU-2) ,
- 2 6 p°<e€

P Up

Where p satisfies the condition 0 <p < he, and c is a known positive constant, he is the
probability of error that the blockchain protocol can tolerate. Our goal is to determine an upper bound
on n such that the above inequality holds for all p and € values that satisfy the given conditions.

By substituting p = he and simplifying, we get:

PL-U(PL-ZU -1) (hey? + P,U(P,U — 61)(PiU -2)

P;,Uhe — (he)® < e

Moreover, € is a positive number that can take any value close to zero. we can conclude the
upper bound: P,U < %

Therefore, to ensure that the above inequality holds for all p and e values that meet the
conditions, P;U must be less than ﬁ From the above corollary, we can know that persistency is
satisfied. Similarly, liveness is satisfied within each shard. Moreover, this means that cross-shard
transactions also satisfy liveness. Specifically, as long as the chain quality and chain growth are
ensured within each shard, both active and relay transactions will eventually be included in the shard
transaction ledger.

Theorem 5: As long as the cross-shard protocol of the verified sharded blockchain protocol satisfies atomicity
and P;U < % for Vi € M, then the blockchain protocol satisfies consistency.

Proof of Theorem 5: It is known that the cross-shard protocol satisfies atomicity, then the adversary
cannot validate two conflicting transactions across different shards. When P;U < %, the liveness and
persistence of all shards can be guaranteed by Theorem 1, and a cross-shard transaction is "stable"
with probability 1 — pY when all associated shards are accepted. Therefore, the adversary cannot
revert the chain of a shard and double-spend an input of the cross-shard transaction because
consistency holds with high probability, given persistence holds with high probability.
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