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Abstract: Sharding shows great potential for extending efficiency of blockchain. The current 

challenge facing sharded blockchain technology lies in addressing the extended transaction 

confirmation times caused by isolated states between shards and unbalanced transaction allocation 

strategies. These factors contribute to an increase in cross-shard transactions and disproportionate 

shard workload, ultimately resulting in indefinite confirmation delays for cross-shard transactions. 

A critical priority for sharded blockchain systems is to conduct a comprehensive qualitative analysis 

to better understand and mitigate the prolonged transaction confirmation times. We introduce a 

Product-Form Queue Network (PFQN) model to address the transaction confirmation time problem 

in sharded blockchains and incorporate a new confirmation queue to more accurately simulate the 

actual transaction confirmation process in the blockchain. In addition, we provide a detailed 

quantitative analysis of the relationship between network load and consensus efficiency in sharded 

blockchains, offering a meaningful perspective for achieving robustness and efficiency in sharded 

blockchains. This research not only contributes to addressing the scalability issues in sharded 

blockchains but also offers a new perspective for future research directions. 

Keywords: blockchain sharding; transaction confirmation time; cross-shard transactions; product-

form queue network 

 

1. Introduction 

1.1. Research Background 

Sharding is a promising approach for improving blockchain scalability by dividing the network 

into smaller partitions, each processing a subset of transactions (TXs), thereby enhancing transaction 

throughput. Sharded blockchains are constructed from these three paradigms: network sharding, 

transaction sharding, and state sharding[1]. Network sharding forms the basis of other paradigms, 

creating partitions that handle distinct TXs sets according to the transaction sharding policy. State 

sharding aims to distribute the blockchain's states evenly across all shards. They therefore split the 

work related to network, computation, and storage across the blockchain systems. Currently, state 

sharding remains mostly theoretical. Representative sharding solutions include Elastico[2], 

Omniledger[3], RapidChain[4], and Monoxide[5], based on either Unspent Transaction Output 

(UTXO) or account/balance transaction models. 

As a state replication machine, blockchain requires cross-shard transactions to unify parts of the 

state across different state shards. Therefore, sharding technology has been introduced as a method 

for cross-shard transactions. A cross-shard transaction refers to a transaction (TX) involving accounts 

or UTXOs on multiple shards. Because cross-shard transactions require verification of the correctness 

of the shard state being sent, they are more complex and time-consuming than single-shard 

transactions. A study by Rapidchain pointed out that as the number of shards increases, almost all 

TXs become cross-shard [4]. Therefore, reducing the number and delay of cross-shard transactions is 

key to improving the scalability of shard blockchains[6,7]. 
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Transaction confirmation time is mainly completed by consensus within shards and cross-shards 

consensus between shards. In sharded blockchains, transactions are first submitted to the relevant 

shard. Each shard has its independent verification process and input, so transaction confirmation 

time varies depending on the shard's consensus mechanism. This paper discusses consensus 

mechanisms similar to Monoxide (Proof of Work, i.e., PoW, Relay for cross-shard transaction). 

1.2. Related Works 

Compared to the extensive research on sharding and blockchain, the literature exploring the 

application of queueing theory in analyzing blockchain characteristics is relatively limited. Still, some 

inspiring lines of research can be found in the literature.  

In terms of applying queueing theory to blockchain, [8] took significant steps forward. They 

used the GI/M/1 queue model with batch-service for single-chain system analysis. This work helped 

point out what's important in how blockchain systems perform, such as the average number of 

transactions and the duration of confirmation times. Then, [9] integrates machine learning with 

queueing theory to enhance the understanding of confirmation times for transactions in single-chain 

systems. This research introduces a novel machine learning methodology for sorting transactions and 

applies queueing theory to assess delays. 

 In the context of PoW, [10] used established a model for sharded blockchain using product-

form network queue (PFQN) and derived the maximum throughput of the sharded blockchain. 

[11,12] used an M/GB/1 queue model with batch service to analyze the transaction confirmation time 

in the Bitcoin system. 

1.3. Motivation and challenge 

Brokerchain[13] found that in Monoxide, 80,000 TXs are unevenly distributed across shards, 

with most TXs being cross-shard as the number of shards increases. This can cause infinite TX 

confirmation delays when the recipient account of a cross-shard TX is congested, which violates the 

principle of Timeliness as defined in [14], where it is expected that a correct process will eventually 

write a valid transaction to its ledger. Another motivation stems from [10], who did not discuss the 

confirmation delay of a sharded blockchain. Moreover, because the cross-shard technique is 

introduced to sharded system, hence heterogeneity between shards and traditional blockchain, the 

theory in [11,12] is not applicable to sharded blockchain. This constitutes one of the motivations for 

our study that these studies still lack a qualitative analysis of the confirmation time model for sharded 

blockchain. Addressing this issue is crucial for the scalability of sharded blockchain, a predominant 

direction in blockchain development, by quantitatively characterizing the transaction-confirmation 

process. In this paper, we present the following contributions: 

1. We decouple the input of the sharded blockchain through the Product-Form Queue 

Network (PFQN) and solve the transactions at different stages to obtain the average expected value 

of transaction confirmation time applicable to the sharded blockchain. 

2. We additionally consider the transaction confirmation process on the main chain, and add 

a new confirmation queue F after the PFQN model, making the model more in line with the actual 

transaction confirmation situation in the blockchain. 

3. We utilize the PFQN model to assess the impact of quantum-resistant technologies on 

sharded blockchain transaction times, enhancing security against quantum threats. 

In the following sections, we provide a brief explanation of why we choose to use the PFQN 

model and give an overview of how the PFQN model operates in Chapter 2. Subsequently, in Chapter 

3, we introduce the PFQN model in detail and extend it to derive the transaction processing 

confirmation time in the system. Following that, we simulate the blockchain environment and 

analyze the impact of various parameters on transaction confirmation time. 
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2. Materials and Methods 

2.1. Why PFQN? 

The PFQN model is particularly suited for analyzing sharded blockchain systems for several 

reasons, which relate directly to the characteristics and demands of sharded environments: 

Product-form Steady-state Distribution: This characteristic means that the steady-state 

probabilities of the network can be factored into a product of simpler functions, each corresponding 

to a component of the network. In the context of sharded blockchains, this property is highly 

beneficial because it simplifies the analysis of complex systems. Sharded blockchains, by nature, are 

decentralized systems split into multiple shards (sub-networks), each processing its own set of 

transactions independently. The product-form characteristic allows for the analysis of each shard as 

an individual entity while still understanding its part in the greater system's dynamics. 

Quasi-Reversibility: Quasi-Reversibility means that the queues within the network maintain 

certain independence in terms of arrivals and departures. In sharded blockchain systems, this mirrors 

the operational independence of shards: each shard processes transactions independently but 

contributes to the overall system's throughput and latency. Quasi-reversibility making it easier to 

predict overall system performance based on individual shard behaviors. 

Scalability and Decomposition: PFQN allows for the scalable analysis of networks, which aligns 

with the scalable nature of sharded blockchains. As blockchain systems grow and add more shards, 

the complexity increases. The PFQN model supports this scalability by enabling a modular approach 

to system analysis — each shard can be modeled separately but within the same framework, aiding 

in understanding the overall impact of scalability on system performance. 

Throughput and Latency Analysis: One of the key performance metrics for sharded blockchains 

is throughput (the number of transactions processed per time unit) and latency (the time taken for a 

transaction to be confirmed). The PFQN model is particularly adept at analyzing these metrics due 

to its focus on network queues and service processes. By applying PFQN to sharded blockchains, 

researchers can derive maximum throughput and expected latency, providing valuable insights into 

system efficiency and performance. 

The PFQN model addresses the complexities of interacting shards more effectively than the 

GI/M/1 or M/G/1 models, which focus on simpler, single-chain systems. PFQN's effectiveness for 

sharded blockchains, shown in studies like [10], stems from its ability to model and analyze multiple 

shards, providing insights into throughput and inter-shard dynamics beyond single-queue analysis. 

2.2. Blockchain Setting 

In this work, we adopt the prior settings similar to [7], treating the Nakamoto consensus family 

as the intra-shard consensus mechanism, with cross-shard transactions employing the relay method. 

In shard-based transaction methods like Relay, the source shard verifies the input account's 

balance before TX relays to the output shard. Relay checks cross-shard transaction accounts in blocks 

against transaction amounts. The cross-shard verification is termed the Availability Certificate (AC) 

from [15] (Definition 32). In our PFQN model, AC will also be referred to as a cross-queue signal in 

the following text.  

2.3. Model Assumption 

Our PFQN model is composed of a series of nonlinear QNs, with each QN queue consisting of 

a network queue and a consensus queue, as depicted in Figure 1. To ensure the model's accuracy and 

practicality, it is founded on a series of detailed assumptions that concern key aspects such as the 

arrival process and service mechanisms. 

In our model, we assume the size of intra- shard transactions and ACs is independent of the 

number of their destination shard fields. This assumption might even be quite close to reality. In 

many instances, the bulk of a TX's size is occupied by the private signature of its sender, e.g., Bitcoin 

before the BIP1412 update [16]. It's reasonable to say that each transaction produces the same size for 

the shard. 
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We assume that the arrival of transactions to the network queue follows an independent Poisson 

process. In many existing projects, transactions are allocated to shards based on sender addresses 

[7,17]. As a result, transactions generated by accounts are uniformly distributed across each shard. 

Given this, we assume that the rate at which transactions arrive at each shard is equal.  

With transaction propagation and transaction arrival processes addressed, we can now begin to 

consider the processing capacity of the network queue. For network queues, due to the interaction 

with a shared medium in distributed systems, they are viewed as processor-sharing (PS) queues. This 

approach captures parallel information verification, thus leading to the classification of QN as 

M/GB/1/PS queues. Similar assumptions have been adopted in previous work [10], where, under this 

assumption, by employing symmetric service rules (such as processor sharing in network queues), 

the quasi-reversibility (QR) property of queues is maintained even with non-exponential service time 

distributions. Processor sharing is a method of servicing multiple customers simultaneously by 

evenly distributing service capacity to all current jobs. This principle helps maintain QR by ensuring 

that the service mechanism remains unbiased and symmetrical, allowing for the independence 

between arrivals, services, and departures required by QR, despite deviations from the exponential 

service time assumption. 

After a transaction is processed by the network queue, each transaction routed by the network 

queue will leave the network queue and join the miner's mempool (consensus queue) after 

verification. Considering the exponential service distribution characteristic of PoW mining, as 

highlighted in previous studies [18,19], consensus queues are modeled as M/M/1/FCFS. This 

modeling approach takes into account the stochastic nature of mining and transaction processing 

within blockchain networks, where the service time for transactions (i.e., the time taken to mine a 

block and validate transactions) follows an exponential distribution. 

The PFQN's structure is set as open, where customers can leave the QN after receiving service 

and move to another QN, according to predefined routing rules. This structural assumption allows 

us to observe and analyze the dynamics of customer flow and the overall performance of the network. 

2.4. Model and Derivation 

2.4.1. PFQN Model 

This discussion succinctly review how a transaction is confirmed in a sharded blockchain. A 

user-signed transaction is sent to a queue in a particular shard network, and the transaction is 

allocated to a specific shard based on certain rules (such as the hash value of the transaction). Once 

assigned to the corresponding shard, it enters the transaction pool maintained by the nodes of that 

shard, waiting to be selected for packaging into a block. Miners or validators in the shard select 

transactions from the pool and package them into a new block. This process occurs simultaneously 

across the network's various shards. Within each shard, a consensus mechanism is used to verify and 

confirm the new block. If a transaction involves cross-shard operations, it is first confirmed in the 

source shard. Subsequently, the transaction is relayed to other shards, and upon receiving the 

transaction information, the target shard verifies, executes, and confirms it. 

In our nonlinear queueing networks, there are three distinct types of entities: regular customers, 

negative signals, and positive signals corresponding to customers. 

There are five types of entity flows within PFQN, represented by c, 𝑐𝑘
+, s, 𝑠𝑖

+and 𝑐𝑖
−.  

The customer 's' represents a block component, and we refer to s here as a mini block, which 

contains only one transaction. A mini-block can represent a confirmed transaction and AC. We 

consider mini-block instead of the block because mini-block can simplify the process of the 

coordinator extracting transactions from the block to generate a corresponding AC. Customer c 

represents a transaction type customer, which in the context of blockchain is a regular user-signed 

transaction. 

To simulate batch service in blockchain, we introduce 𝑐𝑖
− and 𝑠𝑖

+. If an 𝑐𝑖
− arrives at an empty 

queue, it will disappear. However, if an 𝑐𝑖
− arrives at a queue with n customers, it will cause the 

customer at position l to leave with probability 𝜃(𝑙, 𝑛)such that ∑ 𝜃(𝑙, 𝑛)𝑙=𝑛
𝑙=1 = 1. A higher-positioned 
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c will fill the vacancy, triggering another 𝑐𝑖
−at the output of the queue. 𝑠𝑖

+ will trigger 𝑠𝑖−1
+  at the 

output of the queue while adding an s to the queue. 

𝑐𝑘
+  stands for cross-queue signal, and k in 𝑐𝑘

+  is the phase of the current signal. Stages are 

introduced to represent the number of shards yet to be visited by the signal. By replacing the concept 

of target sets in signals with stages, the probabilistic routing method models the process of cross-

shard transaction transfer.  

In Chapter 2, we have already made preliminary assumptions about the consensus queue P and 

the network queue N, which explain the distribution followed by the arrival and service processes of 

entities.  

However, we still need to further explain the representation of arrival rates and the interactions 

between entities across queues. It is important to note that the arrival mechanism of entities in queue 

J is the same as that in its network queue N. Therefore, to simplify the discussion, we will no longer 

differentiate between the entity arrival processes in these two types of queues. In subsequent 

discussions, descriptions of entity arrivals may be used interchangeably, aiming to refer to this 

common arrival mechanism. 

To facilitate the distinction between user-initiated transactions and relay's transaction arrival 

rate we use the symbol 𝜆𝐽𝑐
 to represent the arrival rate of new customers in queue J. Here, 𝜆 is a 

subset of 𝛼, specifically denoting the rate at which new user-generated transactions arrive at queue 

J, i.e., 𝜆𝐽. The arrival rates for queue J are represented by 𝛼𝐽𝑐𝑖

+ , 𝛼𝐽𝑠𝑖

+ , and 𝛼𝐽𝑐𝑖

−  respectively.  

After leaving a queue, each entity can change its type through network routing. For example, an 

entity u departing from queue J can become a v-type entity heading for queue J’ with probability 

𝑟𝐽𝑢,𝐽𝑣
′ . The only requirement for routing probabilities is that ∑ ∑ 𝑟𝐽𝑢,𝐽𝑣

′𝑢𝑣 = 1. 

Next, we will use two simple examples to explain how a regular customer (a user-signed 

transaction) and a cross-queue signal (a cross-shard transaction) are processed and transmitted 

within the PFQN. For the regular signal, we consider the propagation process of a signal within a 

single queue. For cross-queue signals, we will explore how a signal propagates through multiple 

queue systems, including the behavior of signals as they transfer between different queues. By 

describing the transfer process of signals in a single queue, we obtain an accurate description of the 

arrival rate of transactions to a queue in PFQN. 

The way a regular customer operates in a queue can represent the confirmation process of a 

transaction within a shard. Customer c is first created by the client and propagated through the 

network to the shard's network queue N. Then it enters N at rate λNc. N distributes c to the nodes in 

the shard at a service rate μNc. Miners received c will add c to their transaction memory pool, 

representing c entering the shard's consensus queue P. The service rate μNc represents the service rate 

of the transaction in the network. Since μNc is large in reality, the service time can be negligible. 

Therefore, we can simply see c entering queue P at rate λPc.  

When c reaches the end of P, as illustrated in Figure 1, the transaction first arrives at queue N 

and then reaches queue P at an extremely fast service rate. At this point, c is converted into signal 𝑠𝑏
+, 

represented by 𝑟𝑃𝑐,𝑁𝑠𝑏
+ , the signal then triggers a new s in N, transforming at the end of N to 𝑐𝑖

−, Here, 

i is equal to b-1 (0  i < b), where b represents the size of a block, that is, the number of transactions a 

block can contain. When 𝑐𝑖
− arrives at P, it will then cause the disappearance of the other c. 

Eventually, this process will remove b transactions from the node's mempool P, corresponding to a 

batch processing in the blockchain. 

To satisfy quasi-reversibility, queues that receive positive signals must emit additional positive 

signals when empty. Therefore, we require network queues to emit positive signals whenever they 

do not contain block components. Following the approach in [10] to maintain the QR property, we 

adopt a probabilistic method to decide whether to retain the departing positive signals or route them 

out of the network. By multiplying by the reciprocal of a service rate, we adjust the emission rate of 

positive signals as the queue transitions between different occupancy states, especially when the 

queue is empty. This adjustment compensates for the current load rate by emitting positive signals 

that maintain the QR property. 
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To ensure QR, 𝛼𝑁𝑠𝑖
+  must be multiplied by 𝜌𝑁𝑠

−1 to adjust the rate of 𝛼𝑃𝑐𝑖
− . However, to ensure 

that multiplying 𝛼𝑁𝑠𝑖
+  by 𝜌𝑁𝑠

−1 does not deviate from the original scenario, we need to set 𝑟𝑁𝑠𝑖
+ ,𝑃𝑐𝑖−1

− =

𝜌𝑁𝑠 and 𝑟𝑁𝑠1
+ ,0 = 1 − 𝜌𝑁𝑠. In terms of service processes, 𝜇𝑁 represents the service rate of all entities 

in N. The utilization rate of queue N is represented as 𝜌𝑁𝑠 =
𝛼𝑁𝑠

𝜇𝑁
, which can be a combination of 

multiple category utilization rates. The total number of negative signals generated remains constant, 

so the queue is not affected by this setting.  

 

Figure 1. Queue Network (QN) structure in PFQN. 

We can derive the flow equations of the queueing network. Due to the symmetric architecture, 

we only need the equation of a shard, including the consensus queue and its related network queue. 

For 𝑖 = 1, … , 𝑏 − 1, the flow equation of the consensus queue is: 

𝛼𝑃𝑐 = 𝜌𝑁𝑐𝜇𝑁𝑐 (1) 

𝛼𝑃𝑐𝑖
− = 𝜌𝑁𝑠

−1𝛼𝑁𝑠𝑖+1
+ 𝑟𝑁𝑠𝑖+1

+ ,𝑃𝑐𝑖
− = 𝛼𝑁𝑠𝑖+1

+  (2) 

The cross-queue signals mainly include the generation and transfer stages. When the positive 

signal  𝑠𝑖
+ arrives at N, the newly generated s is converted into a k-stage cross-queue signal 𝑐𝑘

+ at a 

certain rate, routing it to other queues besides itself. Once 𝑐𝑘
+ arrives and is processed, it continues 

to be routed as 𝑐𝑘−1
+ to other queues, excluding itself, until k equals 0. Considering shards j and j' as 

examples, where J'≠J, J',J∈M, M = {1, 2, …, M} as the set of all queues representing shards. For k = 

0,1,..., U, and for all stages k > U，𝛼𝐽𝑐𝑘
+ =  0, where U is the maximum stage that the signal can reach. 
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Given that the newly generated signal has the potential to impact a maximum of either M-1 or dmax 

( indicating the maximum destination that a signal can reach in one stage.) shards, it follows that U = 

min(M-1, dmax) - 1.We can obtain the overall arrival rate of cross-shard signals at shard J in stage k: 

𝛼𝐽𝑐𝑘
+ = 𝜆𝛿[𝑘] + ∑ (𝑅𝐽′,𝐽

𝑘 + 𝜌𝐽′𝑐
−1𝛼𝐽′𝑐𝑘+1

+ 𝑟𝐽′𝑐𝑘+1
+ ,𝐽𝑐𝑘

+ )

𝐽′∈𝑀,𝐽′≠𝐽

 (3) 
 

The three terms in 𝛼𝐽𝑐𝑘
+  represent the arrival rate of 𝑐𝑘

+ in shard J, each term being one of the 

sources of  𝑐𝑘
+ : the first term is the client-generated c arriving at shard J at rate λδ[k] by P it 

transforming into 𝑐𝑘
+, δ [.] is the Dirac function defined on the discrete domain. The second term is 

the signal 𝑐𝑘
+ generated by completing the block component service in other shards J’; the third term 

is the signal 𝑐𝑘
+  routed from shard J’ to shard J with rate 𝛼𝐽′𝑐𝑘+1

+ 𝑟𝐽′𝑐𝑘+1
+ ,𝐽𝑐𝑘

+ . 𝜌𝐽′𝑐
−1  is multiplied to 

prevent the additional departure rate.   

The discussion will now focus more closely on the second and third items. During the generation 

stage, we need to consider the probability that a block component contains a cross-shard signal, as 

well as the probability of a cross-shard signal being at a certain stage. We need to differentiate 

between AC and TX in block component ‘s’ to identify which components can be transformed into 

cross-queue signals. For this, we use 𝑠𝑑 , 𝑑 =  1, … , 𝑑𝑚𝑎𝑥 to represent the ACs with d destinations. 

We define: 

𝑅𝐽′𝐽
𝑘 = 𝜌𝐽′𝑠𝜇𝐽′𝑠𝑟𝐽′𝑠,𝐽𝑐𝑘

+ = 𝜌𝐽′𝑠𝜇𝐽′𝑠 ∑ Pro(𝑠 = 𝑠𝑑)

𝑑𝑚𝑎𝑥

𝑑=𝑘+1

𝑟𝐽′𝑠,𝐽𝑐𝑑
+ (4) 

as the rate at which the network queue of shard J’ generates block s at rate 𝜌𝐽′𝑠𝜇𝐽′𝑠 and transforms it 

into 𝑐𝑘
+ to be routed to shard J at rate 𝑟𝐽′𝑠,𝐽𝑐𝑘

+ . The term 𝑟𝐽′𝑠,𝐽𝑐𝑑
+  represents the probability of routing 

to other shards and∑ Pro(𝑠 = 𝑠𝑑)𝑑𝑚𝑎𝑥
𝑑=𝑘+1  represents the probability that a block component contains a 

cross-queue signal of a certain stage. We know that all customers in a network queue are comprised 

of both newly issued “customers” by clients and “signals” routed from other shards. Hence, the 

probability that a block component generates a signal can be derived as the ratio of the rate of newly 

issued TXs (i.e., λD[d]) to the rate of all other customers in the network queue, i.e., ∑ 𝛼𝐽𝑐𝑘
+𝑈

𝑘=0   . Thus: 

𝑃𝑟 (𝑠 = 𝑠𝑑) =
𝜆𝐷[𝑑]

∑  𝑈
𝑘=0 𝛼𝐽𝑐𝑘

+  

To obtain the routing probabilities 𝑟𝐽′𝑠,𝐽𝑐𝑑
+ , the first step is to find the number of distinct shards 

other than the source shard that a multi-destination TX points to. The number of sets with i (i ≤ d) 

distinct shards other than the originating shard in the destination fields of sd are 

𝑁(|𝑀|, 𝑑, 𝑖) =
(|𝑀| − 1)!

(|𝑀| − 𝑖 − 1)!
{
𝑑 + 1
𝑖 + 1

} 

Where 

{
𝑑 + 1
𝑖 + 1

} =
1

(𝑖+1)!
∑  𝑖+1

𝑝=0 (−1)𝑝 (
𝑖 + 1

𝑝
) (𝑖 + 1 − 𝑝)𝑑+1  

is the second kind of Stirling number which is the number of ways to partition a set of d+1 objects 

into i+1 non-empty subsets. Therefore, routing probability 𝑟𝐽′𝑠,𝐽𝑐𝑑
+  is obtained by dividing 𝑁(𝑀, 𝑑, 𝑖) 

by 𝑀𝑑 possible destination sets for sd.  

Owing to the population dynamics within the target shards, aside from the source shard, where 

the newly emerged signal may be directed, it necessitates the division of 𝜌𝑁𝑠𝜇𝑁𝑠 by |𝑀| − 1. Given 

the symmetrical and identical nature of the queues within M, 𝜌𝐽′𝑠𝜇𝐽′𝑠 = 𝜌𝐽𝑠𝜇𝐽𝑠 , Consequently, 

𝜌𝐽′𝑠𝜇𝐽′𝑠can be simplistically represented as 𝜌𝐽𝑠𝜇𝐽𝑠. By incorporating these equations into equation (4), 

we derive: 

𝑅𝑁
𝑘 =

𝜌𝑁𝑠𝜇𝑁𝑠

|𝑀| − 1

𝜆

∑  𝑈
𝑘=0 𝛼𝑁𝑐𝑘

+ ∑  

𝑑𝑚𝑎𝑥

𝑑=𝑘+1

{
𝑑 + 1
𝑘 + 2

} 𝐷[𝑑]
∏  𝑘+1

𝑧=1 (|𝑀| − 𝑧)

|𝑀|𝑑
, 𝑘 =  0, 1, . . . , 𝑈 (5) 

During the transfer stage, consider 𝑐𝑖
+ and 𝛼𝐽𝑐𝑖

+  as the multi-stage positive signals and their 

respective arrival rates, where i represents the stage. When a 𝑐𝑖
+ enters the network queue, it not only 

adds a class c customer to the queue but also the newly triggered signal is routed as 𝑐𝑖−1
+ . If the stage 
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of the signal is 1, then the signal is routed as a regular class c customer. Due to uniformly distributed 

routing probabilities, it can be routed to any of the other M − 1 shards with equal probability.  

𝜌𝐽′𝑐
−1𝛼𝐽′𝑐𝑘+1

+ 𝑟𝐽′𝑐𝑘+1
+ ,𝑐𝑘

+ = 𝜌𝐽′𝑐
−1𝛼𝐽′𝑐𝑘+1

+ (
𝜌𝐽′𝑐

𝑀 − 1
) =

𝛼𝐽′𝑐𝑘+1

+

𝑀 − 1
, (6) 

Due to the symmetricity structure and flow of each shard, each shard equally hosts the same 

rate of multi-destination TXs as others. Hence, both rates in the summation of equation (3) are 

independent of their originating queues. Therefore, we can simply replace the subscript J′ with J in 

𝛼𝐽𝑐𝑘+1
+  and rewrite it as 𝛼𝑁𝑐𝑘+1

+ , then we replace equation (3) with equation (5), and obtain: 

𝛼𝑁𝑐𝑘
+ = 𝜆𝛿[𝑘] + (𝑀 − 1)𝑅𝑁

𝑘 + 𝛼𝑁𝑐𝑘+1
+ (7) 

where 𝑅𝑁𝑘
 is the rate at which the transactions are processed. Starting to solve (7) from k=U 

down to k=0, we can obtain the total input rate of combined-flow customers to a network queue as 

𝜆𝑎𝑙𝑙  

𝜆𝑎𝑙𝑙 = 𝛴𝑘=0
𝑈 𝛼𝑁𝑐𝑘

+ =
𝜌𝑃(1 − 𝜌𝑃

𝑏)

1 − 𝜌𝑃

∗

𝜇𝑃

1 + ∑  𝑈
𝑘=0 (𝑘 + 1) ∑  

𝑑𝑚𝑎𝑥
𝑑=𝑘+1 {

𝑑 + 1
𝑘 + 2

} 𝐷[𝑑]
∏  𝑘+1

𝑧=1 (𝑀 − 𝑧)
𝑀𝑑

(8) 

2.4.2. Derivation of Transaction Confirmation Delay 

By PFQN we decouple the input model of the sharded blockchain, and we sum entities c in 

different stages to obtain the average expected value of transactions applicable to the sharded 

blockchain. However, obtaining a description of a queue's transaction flow is not sufficient to 

determine the transaction confirmation time for a queue. By utilizing the formula described in [12] 

for the confirmation time of transactions in a single queue and combining it with the decoupled 

transaction entities, we have derived the expected confirmation time required for a cross-shard 

transaction. 

We defined the block generation time E(S) as the time interval between consecutive block-

confirmation time points. We also regard a block-generation time as a service time. Let Si denote the 

ith block-generation time. Similar to numerous studies [11,12,20,21], we consider the block generation 

time of PoW to follow an exponential distribution. Therefore, we define the block-generation time, S, 

as adhering to the exponential distribution, described by the following formulation: 

𝐺(𝑥) = 1 − 𝑒𝑓𝑥, 

It is assumed that the sequence {Si} consists of independent and identically distributed (i.i.d.) 

random variables, each characterized by the distribution function G(x). Let g(x) denote the 

probability density function of G(x). The mean block-generation time E[S] is given by 

𝐸[𝑆] = ∫ 𝑥𝑔(𝑥)𝑑𝑥
∞

0

. 

  𝐸[𝑆] =
1

𝑓
, 𝐸[𝑆2] =

2

𝑓2
 

Let ζ(x) denote the hazard rate of S, which is given by 𝜁(𝑥) =
𝑔(𝑥)

1−𝐺(𝑥)
.  

T denotes the transaction confirmation time, i.e., the time interval between when the user issues 

a transaction and when a block containing the transaction is generated [15] (Definition 26). Let Num(t) 

denote the number of entities c in P at time t, and X(t) denote the elapsed service time at t. We define 

𝑃𝑛(𝑥, 𝑡) =
d

d𝑥
Pr {𝑁𝑢𝑚(𝑡) = 𝑛, 𝑋(𝑡) ≤ 𝑥}，𝑃𝑛(𝑥) = 𝑙𝑖𝑚

𝑡→∞
 𝑃𝑛(𝑥, 𝑡). Given Little's theorem, we know that 

the long-term average number of customers (E(N), or expected transaction volume) is equal to the 

long-term effective arrival rate (λ, or the speed at which transactions arrive at the system) times the 

average waiting time of customers in the system (E(T), or transaction confirmation delay). The 

average transaction confirmation time can be given by 𝐸[𝑇] =
𝐸[𝑁]

𝜆
. 

We next introduce the entity concept into an important formula [12] (Theorem 1) to find the 

entity confirmation time.  
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𝐸[𝑇]𝑒 =
1

2𝜆2(𝑏 − 𝜆𝐸[𝑆])
∗ (9) 

(∑ 𝛽𝑘

𝑏

𝑘=1

[𝑏(𝑏 − 1) + {(𝑏 + 1)𝑏 − 𝑘(𝑘 − 1)}𝜆𝐸[𝑆] + (𝑏 − 𝑘)𝜆2𝐸[𝑆2]] 

−𝜆{𝑏(𝑏 − 1) − 𝜆2𝐸[𝑆2]}) 

𝛽𝑘 = ∫ 𝑃𝑘(𝑥)𝜁(𝑥)𝑑𝑥
∞

0

 

𝛽𝑘  represents the probability that P has k-1 entities during the entire system runtime. This 

reveals the entities' confirmation time when 𝛴𝑘=0
𝑈 𝛼𝑁𝑐𝑘

+ 𝐸[𝑆] ≤ 𝑏 , the system is stable. In a system 

comprising M queues, each conforming to a quasi-reversible M/M/1 queue model, the composite 

arrival process at an individual queue retains the characteristics of a Poisson process. This holds 

under the condition that each customer, upon service completion, has a probability r of being routed 

to any other queue in the system, with each of these queues having an equal probability of 
1

𝑁−1
 of 

receiving the customer. Recall that an entity with k stage arrives at P according to a uniform Poisson 

process with rate 𝛼𝑁𝑐𝑘
+  across all queues. So we apply this theorem to a synthetic flow queue P with 

𝛴𝑘=0
𝑈 𝛼𝑁𝑐𝑘

+  satisfying Poisson distribution. 

However, applying (7) directly to (9) will only give the expected time 𝐸[𝑇]𝑒  for a 𝑐𝑘
+ to be 

processed. Recall that our goal is to get the expected time for a TX, so this does not meet our 

expectations. Knowing that 𝐸[𝑇]𝑒 is the average expected time for c to complete the service in queue 

P or the average expected time for 𝑐𝑘
+ to accept the service and transform into 𝑐𝑘−1

+ , we can obtain 

the expected service time for a transaction to accept service in the QN queue: 

𝐸[𝑇]𝑝𝑟𝑜𝑐𝑒𝑠𝑠 = 𝛴𝑘=0
𝑈 𝛼𝑁𝑐𝑘

+ 𝑘𝐸[𝑇]𝑒 (10) 

(10) reveals that new arrivals are multiplied by their numbers in the target fields. Since it needs 

to be executed sequentially k times in different shards. According to the definition of eventual 

sharded blockchain in [15] (Definition 29), a transaction or block does not confirm instantly, and 

several blocks at the end of a blockchain must be added to obtain stable states. Therefore, 𝐸[𝑇]𝑝𝑟𝑜𝑐𝑒𝑠𝑠 

cannot represent the expected delay of transaction confirmation, because PFQN was designed 

according to PoW consensus within the shard and the cross-shard consensus relay method, so it 

should meet the definition of Eventual sharded blockchain. Although the PFQN model is very 

applicable to eventual sharded blockchain, the model still needs to introduce a new queue to simulate 

the confirmation time of transactions in the shard's main chain. 

We additionally considered the stabilizing process of transactions on the main chain by adding 

a new confirmation queue F at the end of queue N, which is more consistent with the actual situation 

of transactions being confirmed on the blockchain. F is an M/M/1 queue, i.e., both arrival and service 

processes follow a Poisson distribution, as shown in Figure 2 The arrival rate 𝜆𝐹 of queue F includes 

two entities, 𝑠0
+  and 𝑠1

+  from queue N. It is obvious that 𝜆𝐹𝑠
=  𝜇𝑁𝑠1

+ .The confirmation queue F 

processes block component s with a service rate 𝜇𝐹. The average processing and waiting time of the 

block component, which is also the confirmation time of the transaction on the main chain, can be 

obtained through the waiting time formula 𝑇𝐹 =  
1

(𝜇𝐹– 𝜆𝐹)
. Substituting 𝜆𝐹 =  𝜇𝑁𝑠1

+ =  𝛼𝐽𝑐1
+ =  𝜆 +

 𝛴𝑘=1
𝑈 (𝑀 −  1)𝑅𝐽

𝑘,we get 

𝑇𝐹 =  
1

𝜇𝐹 −  𝜆 −  𝛴𝑘=1
𝑈 (𝑀 −  1)𝑅𝐽

𝑘
(11) 

By (10) and (11), the time from a transaction being issued to being fully confirmed, E[T], can be 

calculated as 

𝐸[𝑇] = 𝐸[𝑇]𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝑇𝐹 = 𝛴𝑘=0
𝑈 𝛼𝑁𝑐𝑘

+ 𝑘𝐸[𝑇]𝑒 +
1

𝜇𝐹 − 𝜆 − 𝛴𝑘=1
𝑈 (𝑀 − 1)𝑅𝐽

𝑘 
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Figure 2. Queue Network structure with confirmation queue. 

3. Results 

We simulate the sharded blockchain as a PFQN queue. When pairs are in the stationary state, 

we analyze the impact of different variables on shard λ. To analyze λ, we need to first obtain the 

initial values of different parameters, D(d) as the distribution law of the transaction set 𝑇𝑥𝑠𝑑 . We give 

the following definition: 

𝐷(𝑑) = [𝛷1, … , 𝛷𝑑 , … , 𝛷𝑑𝑚𝑎𝑥], 1 < 𝑑 < 𝑑𝑚𝑎𝑥 

𝛷𝑑 =
𝑇𝑥𝑠𝑑

𝑇𝑥𝑠
 

Because of the need to carry out ∑ 𝑘𝛷𝑘
𝑑
𝑘=1  piecewise selection, it is equivalent to carrying out 

∑ 𝑘𝛷𝑘
𝑑
𝑘=1  i.i.d. random experiments, and the number of times each piecewise is selected is subject to 

binomial distribution 𝐵𝑖𝑛 (∑ 𝑘𝛷𝑘
𝑑
𝑘=1 ,

1

𝑀
) . According to the central limit theorem, the binomial 

distribution can be approximated by a normal distribution when the number of trials is large enough. 

In the Bitcoin and Ethereum marketplaces, we know that the number of transactions is large enough, 

so we assume that D(d) is normally distributed. The expectation and variance of the binomial 

distribution gives us D(d) obeying N (
𝑇𝑋𝑁𝑈𝑀

𝑀
, √(

𝑇𝑋𝑁𝑈𝑀(𝑀−1)

𝑀2 ) ). Here, we assume that dmax is a 

constant, and in practical UTXO scenarios, each transaction usually involves a finite number of inputs 

and outputs. For example, a standard Bitcoin transaction typically contains 2.26 UTXOs with a small 

difference, possibly around 1, as shown in [22] (Table 1). We set the number of shards as 5, the 

utilization rate ρp as 0.995, block b containing 5 transactions each time, and the maximum degree of 

the transaction dmax as 2. 
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Table 1. Summary of Application Research of Queuing Theory in Blockchain Model Analysis. 

Refere

nce 
Methodology Focus Area 

Key Findings  Contributions to the 

Field 

[8] GI/M/1 queue 

with batch-

service 

Transaction 

confirmation in 

Single-chain 

systems 

Developed a queueing 

theory model for 

blockchain systems, 

identifying average 

transaction numbers 

and confirmation times 

 

Introduced an 

analytical approach for 

blockchain queueing 

systems 

[9] M/G/1 for delay 

characterizatio

n, Machine 

learning for 

transaction 

classification  

Transaction 

confirmation in 

Single-chain 

systems 

Proposed a machine 

learning framework for 

transaction 

classification and 

queueing theory for 

delays 

Enhanced 

understanding of 

blockchain delays and 

transaction 

confirmation dynamics 

[10] PFQN  Sharded 

blockchain 

efficiency 

Established a model for 

sharded blockchain and 

derived maximum 

throughput 

 

Introduced a new 

model for analyzing 

sharded blockchain 

performance 

[11,12] M/G/1 queue 

with batch 

service 

Transaction 

confirmation time 

in Bitcoin 

Analyzed transaction 

confirmation time in 

Bitcoin using queue 

theory 

 

Applied queue theory 

to understand Bitcoin's 

transaction dynamics 

 

 
(a) (b) 

Figure 3. (a) Impact of utilization ρp on arrival rate λ; (b) impact of transaction degree dmax on 

arrival rate λ. 
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(a) (b) 

Figure 4. (a) impact of number of shards M on arrival rate λ; (b) impact of block size b on arrival 

rate λ. 

 

Figure 5. Effect of λ and E(S) on E(T). 

In our experiment, we utilize BlockEmulator [23] to simulate real transaction confirmation 

latency in sharded blockchain systems. This decision is based on BlockEmulator's sophisticated 

ability to replicate the complex operations and network conditions of sharded blockchains accurately. 

Its detailed emulation of transaction processing, consensus mechanisms, and inter-shard 

communication provides a realistic environment to measure and analyze TX confirmation latency. 

Additionally, its capability to mimic real-world network scenarios, including packet transmission 

and bandwidth constraints, ensures that our latency measurements reflect practical blockchain 

conditions. This makes BlockEmulator an essential tool for our research, offering valuable insights 

into optimizing transaction efficiency and scalability in sharded blockchain architectures. 

In our study, we ensure that each shard queue remains stable, meaning that for λall, the 

expected service time E[S] is less than the arrival rate λ. Figure 6 illustrates the transaction latency in 

a simulated sharded blockchain environment under real transaction conditions, with 100,000 

Ethereum transactions injected at a constant rate. The simulations were performed with different 

numbers of shards, specifically 2, 4, 50, and 100, while maintaining the number of nodes within each 

shard at four. The figure compares the transaction delays within the sharded blockchain with the 

expected delays across different numbers of shards. 
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Figure 6. Theoretical model of PFQN and simulated data of block emulator. 

4. Discussion 

4.1. PFQN and Sharded Blockchain Simulation 

In the exploration of sharded blockchain systems, our study identifies critical parameters 

influencing system throughput λ and overall performance. Notably, Figure 3(a) elucidates the 

positive relationship between the participation rate ρp and system throughput λ, signifying that 

enhanced participation in the blockchain network correlates with increased throughput. 

Conversely, Figure 3(b) presents a contrasting scenario where an increase in the number of 

shards involved in a transaction inversely affects system throughput. This decline is attributable to 

the augmented coordination costs inherent in managing multiple shards. 

Further complications arise as delineated in Figure 4(a), where augmenting the number of 

resources or shards correspondingly diminishes λ attainable by a single shard. This decrement 

underscores the dilutive effect of resource distribution across an expanded set of shards, implicating 

the importance of resource allocation efficiency. Conversely, Figure 4(b) illustrates a logarithmic 

increase in system throughput λ as the transaction size (b) processed per consensus round is 

amplified. This suggests that while larger transactions impose more significant processing demands, 

their integration into consensus rounds significantly boosts throughput. 

Our investigation extends to the system performance metrics, E(T) and E(S), as depicted in 

Figure 5. An increase in the system performance index λ exhibits a concomitant rise in E(T), indicating 

a positive correlation between system throughput and the expected time for transaction processing 

or consensus attainment. This positive association may stem from the enhanced complexities or 

delays engendered by elevated transaction rates or consensus challenges as throughput escalates. 

Similarly, the correlation between E(S) and transaction confirmation time illuminates the impact 

of block production timelines on transaction latency. An elongation in block generation duration 

necessitates that transactions endure extended confirmation periods, awaiting the endorsement of 

succeeding blocks. Therefore, optimizing both λ and E(S) emerges as paramount in facilitating rapid 

transaction confirmation. 

Nevertheless, Figure 6 unveils discrepancies potentially ascribable to the transaction allocation 

process within the sharded architecture. The deviations observed could emanate from the challenges 

inherent in replicating an idealized uniform arrival flow and constant service rate within a dynamic, 

real-world environment. In summation, our findings advocate for a balanced approach to sharded 

blockchain design, where the imperative to optimize throughput and security is counterbalanced by 

the necessities of efficient resource utilization and strategic transaction size management. 
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4.2. Security Analysis 

In our research, we focus on the transaction latency of sharded blockchains, in particular 

simulating the transaction confirmation process through the PFQN model. PFQN as a tool for 

analyzing the transaction confirmation process, could theoretically be used to evaluate scenarios that 

contain quantum resistance mechanisms. Assuming that quantum-resistant digital signature and 

encryption algorithms are implemented in a sharded blockchain, we can use the PFQN model to 

simulate and quantify the potential impact of these quantum-resistant measures on transaction 

confirmation times. 

4.2.1. Prior Research on Quantum-Safe Blockchain 

With the advancement of quantum computing, there is an increasing challenge to the security 

of blockchain technology, particularly the vulnerability of traditional blockchains to quantum 

algorithms. Consequently, we have integrated various research findings into model modules to study 

the transaction confirmation time of PFQN in the context of quantum computing. 

Existing studies [25] have ensured security through three main aspects: data, transmission, and 

verification. Specifically, qBitcoin utilizes quantum transmission technology, employing quantum 

teleportation for currency transmission. This ensures that once the currency is sent, the sender cannot 

retain the original currency data, effectively preventing double-spending issues. Furthermore, 

qBitcoin employs quantum digital signatures to verify transactions, requiring other participants to 

validate the signatures, thus maintaining compatibility with the principles of peer-to-peer (P2P) cash 

systems. In terms of data transmission, qBitcoin uses the Quantum Key Distribution (QKD) protocol 

to share private keys with the receiver. 

Regarding data transmission and verification, certain study [26] have utilized quantum one-way 

functions based on the Quantum State Computational Distinguishability (QSCD) problem to design 

quantum asymmetric encryption algorithms, ensuring the security of the verification process. This 

method effectively prevents eavesdropping, forgery, denial, and interception attacks. Additionally, 

witness nodes selected through the DPoSB (Delegated Proof of Stake based on node behavior and 

Borda count) mechanism are responsible for verifying transaction signatures. [27] have also analyzed 

two lattice-based post-quantum encryption schemes.  

4.2.2. Attack Models and Assumptions 

Assuming that an adversary possesses a super quantum computer with over 1,000 error-

corrected qubits and low decoherence times, it could feasibly compute 10^12 true random numbers 

per second using Grover and Shor algorithms, surpassing current classical methods.  

In the context of quantum computers, the security of blockchain is under a double threat [28,29]. 

On the one hand, the acceleration of Grover's algorithm [30] on the search problem may cause some 

operations in the blockchain network to occur faster than expected. On the other hand, Shor's 

algorithm [31] has potential damage to the traditional encryption method, which may lead to the 

security of the private key is no longer guaranteed. We demonstrate security in the malicious attacker 

model in Table 2, according to the Shor and Grover algorithm.  

Table 2. Attack scheme. 

Attack Type 
Affected Blockchain 

Component 
Attack Purpose Means of Attack 

Block 

Replacement 

Attack 

Blockchain Historical 

Records 

To replace the 

existing blockchain 

rewrite historical 

records. 

Using Grover's algorithm to 

calculate nonces 

Signature 

Forgery 

Attack 

Transaction and 

Message Signatures 

To tamper with or 

forge transactions 

Using Shor's algorithm to break 

public key encryption systems 

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 19 March 2024                   doi:10.20944/preprints202403.1173.v1



 15 

 

First, we discuss the utilization of the Grover algorithm for executing a single block replacement 

attack within Bitcoin. As mentioned, for Bitcoin, the Grover algorithm reduces the number of 

attempts required to find a valid block from 264 to about 232. 

In such an attack scenario, assume there is a quantum computer capable of executing one trillion 

(1012) attempts per second. Theoretically, this machine could complete 232 attempts per second. 

Therefore, under ideal conditions, it could find a Bitcoin block in 0.0043 seconds. If this quantum 

computer is used to execute a block replacement attack, it could replace six blocks in 0.0258 seconds. 

Once the length of the attacker's private chain exceeds the official chain, the network's nodes will 

accept this private chain according to the principle of the longest chain, resulting in the original 

blockchain being overwritten. This would allow attackers to rewrite transaction history, potentially 

leading to double-spending attacks. 

For an ongoing transaction 'c', if it is included in the block replaced by the attackers, this 

transaction might disappear from the blockchain because the attackers may not include it in their 

reconstructed blockchain. This means a transaction might never be confirmed due to the attack. 

Meanwhile, since the attacked shard transaction becomes invalid, all transactions involving this 

cross-shard might fail to be completed. 

Existing strategies to counter this attack involve adjusting the difficulty level to make it hard for 

quantum computers to compute, introducing problems due to computational power imbalance. 

Another strategy is to adopt a reputation model, introducing a penalty mechanism, which promptly 

replaces block producers when a block replacement attack occurs, punishing malicious nodes. 

Regardless, the solutions include improvements to the consensus mechanism and adjustments to 

difficulty, modifying the block generation mechanism. 

For the signature forgery attack, we focus on the verification of the protocol, rather than the 

whole protocol covering transmission, data processing and verification. The reason for this is that the 

transport and data processing steps are heavily dependent on the specific protocol code and data 

format, and their complexity is beyond the scope of this article. On the contrary, the verification link 

covers the integrated application of cryptographic algorithms and is the core of blockchain security 

under signature forgery attack. In this study, the encryption algorithms adopted in the verification 

phase will be explored in detail, and in particular, their computational complexity against signature 

forgery attack will be evaluated as a basis for measuring their security metrics. With this focus, we 

provide a methodology for assessing the overall security of a system without delving into the specific 

details of the protocol. 

We discuss in this section the following two encryption algorithms post-quantum encryption 

algorithms integrated into PFQN. 

We first measure the security performance of the blockchain by the computational complexity 

of the encryption algorithm and reflect it in the expected transaction time. Computational Complexity 

We use the National Institute of Standards and Technology (NIST) security levels to measure how 

hard an encryption algorithm is to break. NIST is rigorously working to analyze, test, and validate 

post-quantum algorithms and is expected to release a draft standard by 2023. We can see the 

encryption difficulty corresponding to different NIST levels through the Table 3. We then refer to the 

NIST level of post-quantum encryption algorithms in the paper [32,33]. 

Table 3. NIST level. 

NIST level Encryption Standard 

1 AES 128 

2 SHA3-256 

3 AES192 

4 SHA3-384 

5 AES256 
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Table 4. Cryptographic algorithm and corresponding difficulty. 

Algorithm Category 
Cryptographic 

Algorithm 

Private 

Key 

Length 

(bytes) 

Public 

Key 

Length 

(bytes) 

NIST 

Level 

Approximate 

Probability of 

Compromise 

Post-quantum 

encryption algorithm 

CYSTAL-

Dilithium3 
1952 4000 3 2−192 

FALCON 1793 2305 5 2−256 

Classic 
RSA 3072 3072 1 2−128 

ECDSA 256 512 1 2−128 

Theorem 5 (proof provided in the Appendix A) is proposed for the analysis of the security lower 

bound. In the theorem, the parameter h relates to the safety parameter of the encryption algorithm, 

representing the probability that the encryption algorithm can be successfully attacked through 

signature forgery. |𝑃𝑖| represents the total length of transactions processed by the ith shard, with the 

expected confirmation time denoted as E[T], recalling that U denotes the maximum number of shards 

a single transaction can involve. 

Theorem 5: As long as the cross-shard protocol of the verified sharded blockchain protocol satisfies atomicity 

and 𝑃𝑖 <
1

𝑈ℎ
, 𝑓𝑜𝑟 ∀𝑖 ∈ 𝑀, then the blockchain protocol satisfies consistency. 

Then, we map the security coefficient ℎ to the computational complexity of the encryption 

algorithm and analyze the security of the PFQN model under the same configuration. We define 

security as the expected number of rounds a shard blockchain system can safely process transactions 

before the first occurrence of a security vulnerability or unsafe transaction caused by quantum 

computational capabilities, in the face of attacks based on Shor's algorithm. 

In the context of quantum computing, to ensure PFQN maintains the same level of security as 

Bitcoin, we only need to set the 𝜖 in the proof of Theorem 5 to 2−128 , and ℎ as the number of times 

a quantum computer needs to compute the encryption algorithm. Then, we can use Theorem 5 to 

calculate the expected upper bound of the total number of secure transactions for the PFQN model 

integrated with the encryption algorithm under the NIST framework for shard blockchains. Finally, 

assuming that the service rate 𝜇𝑝 of the consensus queue 𝑃 is linearly related to the performance of 

the encryption algorithm [33] (see Table 5), from formula (8), it is known that 𝜆all  is also linearly 

related to 𝜇𝑝. We can calculate the expected total time for all transactions in the shard blockchain 

under the guarantee of security.  

Table 5. Cryptographic algorithm and corresponding difficulty. 

 Signatures/s Verifications/s 
Max Safe 

Transactions 

Expected Encryption 

Time Per Transaction 

 

CYSTAL-

Dilithium3 
6,506.33 17,561.33 ≈

221

𝑈
 0.000154 

FALCON 1,446.52 9,782.67 ≈
285

𝑈
 0.000691 

In the context of quantum attacks, these expected upper bounds signify the maximum number 

of transactions that can theoretically be executed safely. Taking into account the time for each 

transaction, we can infer that, within these security limits, a system using the CRYSTAL-Dilithium3 

algorithm could process a large number of transactions and blocks very rapidly. However, due to its 

lower upper limit, if it is to be used in a shard blockchain, stronger security parameters must be 

employed to enhance the algorithm's resistance to quantum attacks, thereby increasing the upper 

limit of secure transactions. This approach may sacrifice some performance, as stronger security 

parameters typically result in larger signature sizes and longer processing times. Conversely, the 
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FALCON algorithm has a longer processing time for individual transactions, and its optimization 

goals should focus on improving algorithm performance. Recall from Figure 5, as μ decreases, E(S) 

causes E(T) to increase exponentially. 

5. Conclusions 

In this paper, we introduce the PFQN model to solve confirmation latency in sharded 

blockchains. Our analysis highlighted the interplay between network load, consensus efficiency, and 

security in sharded blockchains, providing insights for enhancing their robustness and efficiency. 

This work not only addresses scalability but also paves the way for future research, with plans to test 

our model in various scenarios. 
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Nomenclature 

Description of parameters 

Parameter Description 

M Set of queues 

λ Customer input rate per shard 

d Total number of destination fields in a TX 

D[d] The probability distribution for 'd' 

b Maximum number of TXs allowed in a block 

c Regular customer  

𝑐𝑘
+ K stages cross-shard signal  

s Block components 

𝛼𝐽𝑒 The arrival rate of customer type e to queue J 
𝛼𝐽𝑠𝑖

+  The arrival rate of positive signal 𝑠𝑖
+to queue J 

𝛼𝐽𝑐𝑖

+  
The arrival rate of cross-shard positive signal 𝑐𝑖

+to queue 

J 

U Maximum stage achievable for signal 𝑐𝑖
+ 

𝑅𝐽′𝐽
𝑘  

The service completion rate for a receipt in network 

queue J' leading to a stage k signal 𝑐𝑘
+ for network queue 

J 

𝜇𝐽𝑒 Service rate for customer type e in a standard queue J 

𝜌𝐽𝑒 
The utilization factor incurred by customer type e on a 

typical queue J 
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Appendix A 

Before we begin our proof, we need to introduce the definition of blockchain security by 

referring to previous research [15,24]. In order to prevent readers from confusing the related concepts 

in PFQN, it is necessary here to prove security with a new set of symbols. 

Beginning with the identification of key parameters in the security definition: μ represents the 

ratio of honest blocks in the shard chain, k is identified as the safety coefficient in the state machine 

replication protocol. 

Definition 1 (A Secure Sharding Blockchain). Let (𝐴, 𝑍) be an adversary and environment pair 

w.r.t. a sharding consensus protocol П. 𝑇initial  denotes the time for a sharding blockchain protocol to 

start up, including the production of genesis blocks and initial committees. 𝑇liveness  denotes the 

transaction confirmation delay parameter, i.e., the time required to commit a transaction. We say Π 

is secure w.r.t. (𝐴, 𝑍)  with parameters 𝑇initial , 𝑇liveness  if the following properties hold with an 

overwhelming probability: 

Definition 2 (Consistency). Consistency includes the following two properties: 

Common prefix inside a shard: For any two honest nodes 𝑖, 𝑗 ∈ shard𝑆  where 𝑆 ∈ [1, 𝑀], node 𝑖 

outputs 𝐿𝑂𝐺𝑖  to 𝑍 at time 𝑡, and node 𝑗 outputs 𝐿𝑂𝐺𝑗 to 𝑍 at time 𝑡′, it holds that either 𝐿𝑂𝐺𝑖 ≤

𝐿𝑂𝐺𝑗 or 𝐿𝑂𝐺𝑗 ≤ 𝐿𝑂𝐺𝑖 . 

No conflict between shards: For any two honest nodes 𝑖 ∈ shard𝑠, 𝑗 ∈ shard𝑠′  where 𝑠, 𝑠′ ∈

[1, 𝑚] and 𝑠 ≠ 𝑠′, node 𝑖 outputs 𝐿𝑂𝐺𝑖  to 𝑍 at time 𝑡, and node 𝑗 outputs 𝐿𝑂𝐺𝑗  to 𝑍 at time 𝑡′. 

For any transaction tx1 ∈ 𝐿𝑂𝐺𝑖  and tx2 ∈ 𝐿𝑂𝐺𝑗  where tx1 ≠ tx2 , it holds that tx1  and tx2  don't 

conflict with each other, i.e., there is no input that belongs to tx1 and tx2 simultaneously.  

¬ ((tx1 ∈ 𝐿𝑂𝐺𝑖 ∧ tx2 ∉ 𝐿𝑂𝐺𝑗) ∨ (tx1 ∉ 𝐿𝑂𝐺𝑖 ∧ tx2 ∈ 𝐿𝑂𝐺𝑗)) 

Definition 3 (Liveness). For any honest node from any shard, if it receives a transaction tx at time 

𝑡0 ≥ 𝑇initial  from 𝒵, then at time 𝑡0 + 𝑇liveness , tx must be accepted or rejected. 

Definition 4 (Persistence). Parameterized by 𝑘 ∈ ℕ ("depth" parameter), if in a certain round an 

honest party reports a shard that contains a transaction TX in a block at least 𝑘 blocks away from the 

end of the shard's ledger (such transaction will be called "stable"), then whenever TX is reported by 

any honest party it will be in the same position in the shard's ledger. 

Assumption 1: In the following discussion, the consensus protocol in each shard has been proved to be secure, 

i.e., it meets the definition of A Secure Sharding Blockchain (see Appendix A for a detailed definition). 

Assumption 2: We assume that each shard in the blockchain network maintains a majority of honest nodes, 

i.e. a proportion for each shard. 

For the basic assumptions of the security analysis, we propose:  

Lemma 3: Without cross-shard TX, every shard can achieve security. 

Proof of Lemma 3: Based on Assumption 1 and 2, each shard is a-honest, that is, honest majority. The 

security aspects of Persistence, Liveness, and Consistency depend on the parameters μ, network 

condition, and k, which has been satisfied by Assumption 1. Even if 𝑄𝑖  is large, it will not affect 

network condition. The safety coefficient k is met due to 𝜇 = 1 − 𝑎 [4 Theorem 1] by the consensus 

algorithm within the shard. Based on our assumption that invalid relay transactions will not affect 

other shards, each shard can run independently, thus ensuring its security. 

Theorem 4. Even in the worst case, as long as 𝑃𝑖𝑈＜
1

ℎ
 is satisfied, persistency and liveness can be guaranteed 

with a very high probability.  
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Proof of Theorem 4: Persistency depends on two factors: the probability that stable transactions 

become invalid and the probability that confirmed cross-shard transactions are revoked. These two 

factors only depend on the common prefix property of the shard consensus mechanism. Based on 

Definition 2, the blockchain protocol has been proof atomic for cross-shard TX that invalidating relay 

TX will not affect other shards, thus satisfying the common prefix property. It is assumed that the 

common prefix is satisfied with a probability of 1 − 𝑝  (overwhelmingly in the "depth" security 

parameter k). The p value is a very small probability value under a normal operating blockchain 

protocol. We know that there may be less than U shards involved in a transaction. Therefore, the 

probability that a single cross-shard transaction valid is bigger than (1 − 𝑝)𝑈. Here, we assume that 

U is a constant, in practical scenarios, each transaction typically involves a limited number of inputs 

and outputs, or UTXOs. Consequently, we can regard U as a constant. In the worst case, all 

transactions in 𝑃𝑖  are cross-shard transactions, which follow the binomial distribution 𝐵(|𝑃𝑖|, (1 −

𝑝)𝑈), we can get the probability that all transactions in 𝑃𝑖(𝑡) are valid: 𝑃𝑟𝑜𝑏(𝑥 = |𝑃𝑖|) = (1 − 𝑝)|𝑃𝑖|𝑈, 

to find 1 − 𝑃𝑟𝑜𝑏(𝑥 = 𝑃𝑖) < 𝜀, consider its Taylor expansion: (1 − 𝑥)𝑛 = 1 − 𝑛𝑥 +
𝑛(𝑛−1)

2
𝑥2 − ⋯ 

(1 − 𝑝)𝑃𝑖𝑈 ≈ 1 − 𝑃𝑖𝑈𝑝 +
𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)

2
𝑝2 

Then the probability that the transaction is invalidated is: 

1 − 𝑃𝑟𝑜𝑏(𝑥 = 𝑃𝑖) ≈ 𝑃𝑖𝑈𝑝 −
𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)

2
𝑝2 +

𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)(𝑃𝑖𝑈 − 2)

6
𝑝3 

Consider the following inequality: 

𝑃𝑖𝑈𝑝 −
𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)

2
𝑝2 +

𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)(𝑃𝑖𝑈 − 2)

6
𝑝3 < 𝜖 

Where p satisfies the condition 0 < 𝑝 < ℎ𝜖 , and c is a known positive constant, ℎ𝜖  is the 

probability of error that the blockchain protocol can tolerate. Our goal is to determine an upper bound 

on n such that the above inequality holds for all p and ϵ values that satisfy the given conditions. 

By substituting 𝑝 = ℎ𝜖 and simplifying, we get: 

𝑃𝑖𝑈ℎ𝜖 −
𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)

2
(ℎ𝜖)2 +

𝑃𝑖𝑈(𝑃𝑖𝑈 − 1)(𝑃𝑖𝑈 − 2)

6
(ℎ𝜖)3 < 𝜖 

Moreover, ϵ is a positive number that can take any value close to zero. we can conclude the 

upper bound: 𝑃𝑖𝑈 <
1

ℎ
 

Therefore, to ensure that the above inequality holds for all p and ϵ values that meet the 

conditions, 𝑃𝑖𝑈 must be less than 
1

𝑈ℎ
. From the above corollary, we can know that persistency is 

satisfied. Similarly, liveness is satisfied within each shard. Moreover, this means that cross-shard 

transactions also satisfy liveness. Specifically, as long as the chain quality and chain growth are 

ensured within each shard, both active and relay transactions will eventually be included in the shard 

transaction ledger. 

Theorem 5: As long as the cross-shard protocol of the verified sharded blockchain protocol satisfies atomicity 

and 𝑃𝑖𝑈 <
1

ℎ
, 𝑓𝑜𝑟 ∀𝑖 ∈ 𝑀, then the blockchain protocol satisfies consistency. 

Proof of Theorem 5: It is known that the cross-shard protocol satisfies atomicity, then the adversary 

cannot validate two conflicting transactions across different shards. When 𝑃𝑖𝑈 <
1

ℎ
，the liveness and 

persistence of all shards can be guaranteed by Theorem 1, and a cross-shard transaction is "stable" 

with probability 1 − 𝑝𝑈 when all associated shards are accepted. Therefore, the adversary cannot 

revert the chain of a shard and double-spend an input of the cross-shard transaction because 

consistency holds with high probability, given persistence holds with high probability. 
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