Pre prints.org

Article Not peer-reviewed version

Secure loT communication:
Implementing a One-Time-Pad Protocol
with True Random Numbers and Secure
Multiparty Sums

. . . * . . .
Julio Fenner , Patricio Galeas , Francisco Escobar , Rail Neira

Posted Date: 19 March 2024
doi: 10.20944/preprints202403.1167v1

Keywords: One time pad cryptography; Internet of Things; Secure multiparty computation

Preprints.org is a free multidiscipline platform providing preprint service that
is dedicated to making early versions.of research outputs permanently
available and citable. Preprints posted at Preprints.org appear in Web of
Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons
Attribution License which permits unrestricted use, distribution, and reproduction in any
medium, provided the original work is properly cited.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

Disclaimer/Publisher’'s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and

contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Article

Secure IoT Communication: Implementing a
One-Time-Pad Protocol with True Random Numbers
and Secure Multiparty Sums

Julio E. Fenner 2, Patricio Galeas *'*, Francisco Escobar *’ and Rail Neira

Departamento de Ciencias de La Computacion e Informatica (DCI), Universidad de La Frontera
* Correspondence: patricio.galeas@ufrontera.cl

Abstract: The process of establishing secure communication between devices in the Internet of Things (IoT) can be
approached by using a One-time-Pad (OTP) protocol. We propose using a known secure multiparty sum protocol
for generating a One-time-Pad key using true (physical) random numbers in each device (party). We implemented
the proposal using ZeroC-Ice, a middleware for distributed computing. The protocol security properties were

analyzed under the assumptions of the Dolev-Yao threat model.

Keywords: one time pad cryptography; internet of things; secure multiparty computation

1. Introduction

The increasing prevalence of IoT in our daily lives opens a wealth of opportunities to create
new services; many of them personalized and customized for individuals, provided that privacy of
individual and sensible data is granted in the process of constructing digests that can be used for
public benefit, such as planning, policy making [1], smart agriculture [2], and health care [3], among
others.

However, in conjunction with the use of IoT in daily life, the question of data privacy acquires
increasing importance, as IoT devices and their data are known to be exposed to significant vulnerabil-
ities from the point of view of modern information security[4]. In fact, the transmission of raw data
without adequate privacy protection measures can lead, for example, to unauthorized virtual profiling,
which poses a potential threat to fundamental privacy requirements and public trust [5]. However,
ensuring the privacy of data collected from IoT devices, while leveraging them for social profit and the
common good, can be effectively achieved through a combination of secure multiparty computation
(SMPCQ), secret sharing protocols, and masking via one-time pads.

Secure multiparty computation is a process in which multiple parties can jointly compute a func-
tion over their own private inputs without revealing them to each other. The only thing that is shared
among the participants is the result of the calculation. This ensures that the private inputs remain
hidden. SMPC can be used in distributed scenarios together with secret sharing and oblivious transfer
techniques in order to ensure data privacy, hence enabling joint computation without compromising
individual data privacy. Secret-sharing protocols distribute a secret amongst a group of participants,
where the secret can only be reconstructed when a sufficient number of shares are combined. They
have been shown to be essential for cryptographic applications, beginning with the groundbreaking
work of Diffie-Hellman in 1976 [6].

An example of a protocol in which secure multiparty computation using secret sharing in a dis-
tributed environment is used to preserve user privacy while reducing communication and computation
costs can be found in [7].

Oblivious transfer (OT), on the other hand, allows a party to send one of many pieces of informa-
tion to another party without revealing which piece was sent; see, for example, [8].

Additionally, masking through one-time pads, where data are encrypted by XORing with a key
known only by the communicating parties, ensures a high level of security, provided the key is used
once. This method, when combined with MPC and secret sharing, forms a robust framework to
preserve the privacy of sensitive information. This synergy is particularly valuable in applications

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

2 of 10

such as smart agriculture, policy making, and healthcare care, where sensitive personal data must
be protected while used for analysis and decision making. The combination of these techniques
ensures that even if part of the system is compromised, it should be difficult for third parties to deduce
confidential information, as it would require considerable computational resources or processing times
for full disclosure of protected data, thus supporting the ethical and secure use of IoT data for public
benefit.

In this study, we introduce a straightforward protocol for establishing a communication key in the
form of a one-time pad (OTP). The key is generated using true randomness, and the communication
between two parties is encrypted via XORing with the key. We achieve this by incorporating a dummy
third-party and modifying a classical three-party computation protocol. This modified protocol can be
applied in real time to mask communications. The use of true randomness ensures that the generated
key is used only once, thus maintaining confidentiality. The details of the protocol are explained
in Section 2, and we implement it in a hybrid environment using ZeroC-Ice, Slice, and Python as
described in Sections 3 and 4. Furthermore, an analysis of the security properties is presented in
Section 5 and our findings are discussed in Section 6.

2. A One Time Pad with True Randomness

In this section, we consider the first building block for the secure multiparty computation (SMPC)
among two parties using a third dummy party, in a procedure inspired by [9]. Although the procedure
generally applies to any set of numbers, we consider in particular the numbers in Z or Z, in which p is
an appropriate prime. This is because any message has to be converted into a number (or a block of
numbers) for encryption, regardless of the message, whether it is data or not. Once the technique has
been illustrated, we concentrate our calculations on Zé\’ , in which N is a suitable message length.

Think of two parties, P; and P», who wish to agree on a common key using a multiparty com-
putation that involves the sum of their individual private inputs x1, x3 in Z;, but without disclosing
them to one another. The procedure needs, of course, a third party, which will be P3, that is used as an
auxiliary server, that only receives inputs and broadcasts the resulting sum of the inputs:

Share generation: Each party P;, i = 1,2 generates two random shares r;; and r;, in Z,, and
computes a third share r; 3 as the difference between their private input x; and the sum of the
two random shares, modulo p. This is described by the equations:
$
(rig rip) Lp X L, (1)
riz = Xj— (ri,l + l’i,z) mod v, i=1,2. (2)

The party P5 generates three random numbers 73 ; & Zyp,j=1,2,3.

Standard share distribution (as in [9]): Each party P; sends two of its three shares to the other
parties according to a specific rule to ensure that no one party receives all shares from another
party. Quote: Each P; sends privately r;,, ri3 to Py, i1, i3 to P>, and r;1, ;5 to P;. Hence, the
distribution pattern is:

P : -—— ‘71,1||71,3—>P2‘ rallrz = Ps

Py: |rppllraz — Py - == 21|22 — P3 3)

Py: |r3p|lraz — Py ‘73,1||T3,3 — Pz‘ -——

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

30f10

Modified share distribution: Each P; sends privately rij, to Pj, i#j,i,j=1,2,3. Hence, the
distribution pattern is as follows:

P1 : _- — — ’7’1,2—>P2‘ 1’1,3—>P3

Pz : 1 — P1 - — — 23 — P3 (4)

P3: o |r31 — P ’r3,2—>P2‘ ___

Partial Sum Determination: In the standard procedure, each party P; adds the corresponding
shares as: s = r1; + 12 +13;,1 #j,j = 1,2,3. In the modified share distribution, each party P;
computes the (single) sum of the shares received according to:

§j =711 + 12,i + 13,js] =1,2,3. 5)

For instance, P, is aware of his own generated shares, 7,1, 25, and 7, 3. Additionally, he has
obtained r1, from P; and r3, from P;. Therefore, P, can calculate s, which is expressed as:
Sp =Tr1p + 120 +137.

Partial sum distribution: In the standard procedure, each party computes and announces
(broadcasts) two values. In our proposed modification, P; sends s1 to P, P, sends s, to P; and Ps
broadcast s3 to P; and P:

P o~ [mom] -

P [shop| ——— ——— (6)
Ps: |s3— P ‘83—>P2‘ - — —

Final sum calculation: In the standard procedure, all parties compute the result s; + sy + s3
mod p. In our modified procedure, P; and P, calculate both the sum K = s; + 5, + 53, while P3
learns nothing. Therefore, K will be known only for P; and P,, while all private inputs remain
private and cannot be deduced from the outputs.

Figure 1 graphically shows our proposal that highlights communication between parties.

X1 =r1+ri2+r3

Figure 1. Diagram depicting Key-agreement between P; and P, from the private inputs x; (in red)
and x, (in green), by using P; (in blue) as an auxiliary unit in the SMPC protocol. The total sum is
K = s1 4+ 53 4+ 53 = x1 + x2 + x3, where x3 is random and cannot be traced by observation of the
communication.

Observe that for P3, the role of randomness guarantees that x3 is never disclosed during commu-
nication between parties. In fact, for the first part, only 73 ; and r3, travel to P; and P,, respectively.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

40f10

The third component r3 3 travels masked in the sum s3 when transmitted. Therefore, even in the case
where a malicious eavesdropper was following the interchange between P; and P, towards P;, it is not
possible that the output s3 can be correlated with the secure multiparty sum protocol, nor with the
random component x3. Therefore, since the final computation of the key K takes place privately for P;
and P, the conclusion is that P; and P, have effectively shared a common key K, which can now be
used to mask communication between them.

In a usual SMPC summation for three parties, as in [9], the transmission of the shares is different
(10 rounds compared to 12), and allows cross-checking of the partial sums to detect a potential
dishonest 1 out of 2 parties. In addition, the key is shared between the three intervening parties. In our
procedure, instead, communication can be sequentially arranged so that the total number of rounds
can be reduced to 8, which is a reduction of the order of 30% from the standard multiparty summation
protocol; see next section.

Now, it should be clear that at this point the space in which the sums are taken can be some ZY
for a suitable N, which means that there is no restriction a priori about whether the sums are binary
sums or not. This means that the procedure between parties can be performed bit by bit or by blocks
of bits of size N. As a classical implementation of the One-Time-Pad protocol, the summation can be
executed using the well-known XOR operator.

It is worth noting that it is not necessary to limit the quality of the random shares; they can be
pseudo-but also true random bits. These true random bits can be obtained from any source, such as
physical true random numbers, which are commonly found in IoT devices (by capturing states from
sensors, accelerometers, channel noise, etc.).

3. On the Fly KeyGen and Encryption

It is important to note that while the protocol depicted in Figure 1 respects the logic behind a three-
party sum, as described in [9], with the exception that the dummy third party does not get knowledge
of the final (secure) sum, the actual protocol to be implemented can be significantly improved if the
order in which transactions are invoked is taken into account.

Indeed, since any consideration about the messages to be exchanged includes parsimony and
duplication avoidance, the protocol can be modified as follows:

Protocol SMP-OTF4IOT: On the Fly KeyGen and Encryption

Require: Users Uj, Uy, which will be called Client and Server, respectively
Ensure: Peer to Peer Key sharing and Encryption.
Initialization:
- U; generates a dummy third party Uz and shares the connection details with the server Us.
- U; reads three (true) random numbers from the devices attached toit: 7; 1,70 and ;3,1 = 1,2,3.
Procedure:
1. First Round:
3,2 r21ls2

1,2 3 .
-y = U, —= Uz — Uy —— Uy, with s, := o+ 12 +130.

1,3 S .
-U; — Us 23 U,, with s3 := 3+ 13 +7133.

311ls3
U 2 g

2. Key determination:
- Uy computes Ky := s1 + 55 + 53, with sy ;=711 +721 +7137.
- Up computes Kp := sp + 53
Encryption and decryption:

- s1||c:=Ky®m A
- Uy decrypts the message as m = (s; + Kp) @ ¢

We implement the protocol SMP-OTF4IOT described above to establish a common key K between
any two IoT devices that can be used as OTP to secure communication between two parties P; and P»

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 i:10. reprints202403.1167.v1

50f 10

that requires a third (dummy) server P3, whose job is to receive inputs and broadcast the sum of the
inputs.
The procedure described above can be visualized in the following figure:

1. Each party generates 3 random shares ri,1, ri,2 and ri,3 .

Client

Server
e ;.\

Dummy

2. First Round Client - Client

‘L 27 L4

3. Second Round KeyGen Client - Client

—_—
4. Third Round Client - Server with encrypted message,and Key sharing

% Q c=m®K
e

Figure 2. Diagram depicting On the fly Key-agreement and encryption between P; and P, using P; (in

A\l
£

Client
Server
Server

Server

i o

; Y

Dummy
Client

Client
Dummy

Client
Server

blue) as an auxiliary unit in the SMPC protocol.

4. Methodology and Implementation

In the Figure 3, it is shown how a "client" program sends the encrypted message "Hello secret
world!" character by character and then the message is decoded as it reaches the "server", which
interprets each of the sent characters and reconstructs the original string. All of this is through the
SMP-OTF4IOT protocol implemented in Python.

The realization of this process requires the simultaneous functioning of three programs: (1)
smpc_dummy.py, which acts as an intermediary for generating random numbers, (2) smpc_server.py,
responsible for establishing communication with the "dummy" service where synchronization begins,
and finally (3) smpc_client.py, which initializes communication coordination and initiates the sending
of encrypted data to the server, synchronously generating keys in real-time to transmit each character.
Each of these programs utilizes ZeroC-Ice for network data transfer.

The complete implementation is available in the gitlab repository at https://gitlab.com/smpc-
ufro/smpc.

PS C:\Users\neira\Desktop\Nuevo smpc> python .\smpc_client.py PS C:\Users\neira\Desktop\Nuevo smpc> python .\smpc_server.py

Secret key:

Secret key:

Secret key

Secret key

Secret key

secret key: b'\xd9' 9 -> Hello se

Secret key: b’ i \xd5™ \X9 bc\x88 -> Hello sec

Secret key: b'\xco' \xd5" u x9e\xc1\xbc\x88\xbb -> Hello secr

Secret key: b’ ' 5 u 9e\xc1\xbc\x88\xbb\xeb -> Hello secre

Secret key: 3 5 9 bc\x88\xbb\xebD -> Hello secret
\x88\xbb\xebD\xc3 -> Hello secret

Secret key:
Secret key:
Secret key:

Secret key: b'T' \xd5 u x9e\xc1\xbc \x88\xbb\xebD\xc3\xabm\xb9\x8a® -> Hello secret world
Secret key: b’ : de x99u\xdf\x9e\xc1\xbc\x88\xbb\xebD\xc3\xabm\xb9\x8ae" -> Hello secret world!

Figure 3. Simple SMP-OTF4IOT’s "Hello secret world!", client sending encripted message and server
receiving and decrypting message

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

60f10

4.1. ZeroC-Ice Implementation on SMP-OTF410T

We implement the protocol in ZeroC-Ice, an Internet Communication Engine developed by ZeroC,
as described in [10] using Python [11] and Slice, a specification language for Ice, see https://doc.
zeroc.com/ice/3.6/the-slice-language. The advantage of using this approach lies in the possibility of
connecting three devices from three different platforms with independent architectures, as a raspberry-
pi device, a portable device, and the cloud, for example, each running its own script: client, server, and
dummy, as well as a masking middleware.

Listing 1: ZeroC-Ice SMPC Implementation

module SMPC{
interface Server {

void deliverFromClient (int share,
out int shareServer,
out int sumServer

)

void deliverFromDummy (int sum) ;

void terminate(int sum, byte payload);

interface Dummy {
void deliverFromClient (int share,
out int shareDummy,
out int sumDummy
)
void deliverFromServer (int share,
out int shareDummy

)

One benefit of utilizing function calls is the ability to include multiple parameters within the call.
For instance, in the scenario where the Client’s last message consists of both their partial sum and
the encrypted (XORed) message, the Server can retrieve both the key and the message in a single call.
Similarly, when making a remote call, it is possible for the call to return multiple values. For example,
the Server can return their share and partial sum as a tuple of integers.

By adopting this method, the number of messaging instances for communication is reduced
from 11 to 8, including the transmission of the encrypted message (approximately 30% reduction in
bandwidth). Notice that the roles described above (Client, Server, Dummy) are used ‘as a whole’ for the
purposes of secretly communicating between two parties by using (true) random number acquisition
and a dummy third party that does not get access to the shared encrypted message, but these roles
can be continuously and dynamically changed, so that, in principle, the protocol extends naturally for
peer-to-peer secure communication between any number of IoT agents in a real-life application. Note
also that if a message m of size |m| must be transmitted encrypted according to our algorithm, then
the total communication cost for key generation and transmission of an encrypted message would be
approximately twice the size of the message; simply because in our setting, the communication time
between parties U; and U is bounded above by

3 3
time(Uy, Uy, K m) ~ Y [rii|+ Y |si| + K m| < 2[m|.
ij=1 k=1

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

70f 10

5. Security Analysis

The security aspects of the SMP-OTP4IOT protocol can be rigorously examined and verified using
formal analysis using, say, Tamarin Prover [12] or Proverif [13] (see [14] for an extended review of
formal modeling and security analysis of security protocols). However, an accurate description of the
formalism required for our protocol lies beyond the scope of this investigation. Instead, we focus on
the inherent security properties of the protocol as implemented in ZeroC-Ice.

Under the Dolev-Yao threat model [15-17], we assume a semi-honest adversary that has access
to all messages exchanged between parties Uj, Uy and U3 and tries to gain some knowledge of the
messages being transmitted, without tampering with the transmitted data, or a dishonest adversary,
which also actively modifies the messages in transaction.

In the context of the semi-honest participant scenario, all the information being transmitted
consists of random numbers and additions. Observing the communication between U, and U, as
well as between Uz and U in the first round, it is possible to deduce the partial sums s, and ss.
Subsequently, by monitoring communication between U; and U, during encryption and decryption, it
is possible to deduce 51, and consequently the adversary could potentially compute K; = s1 + 55 + 53,
as well as Ky = sp + s3. We argue that since K; and Kj differ by s, the eavesdropper should need to
know exactly the computations that are being performed privately by each of the involved parties,
which is conveniently masked by the use of ZeroC-Ice, in order to achieve decryption with the OTP.
On the other hand, in the case of a dishonest attacker, any alteration or substitution of the random
numbers being transferred can potentially result in a different key for U; and U, rendering the
encrypted message useless and may serve as a warning for an eventual unauthorized interception.

We examine our protocol along the lines of [7] (Section IV) and [18] (Definition 1.) :

5.1. Privacy, Computation and Communication Costs

As stated by Patel et al. [7], the protocol must demonstrate the following characteristics: privacy,
costs related to communication, and computation. As for privacy, we already noted that the transmitted
data consists of random numbers and some partial sums of them. Nothing different from that that
flows sequentially during the protocol. Therefore, it is necessary for any attacker, regardless of their
level of honesty, to have prior knowledge of the protocol being used. This knowledge, even if it is
concealed by the middleware, would still require the attacker to fully impersonate the parties involved
in the connection. A side-channel type of attack could in principle be avoided by adequate formatting
for the transmitted data. For computational aspects, only sums are required, so that we neglect this
overload. A technique known as RJID (Random Code Injection to Mask Power Analysis based Side
Channel Attacks) can be used to protect parties from the exposure of simple and differential power
analysis, see [19]. Finally, as stated above, communication costs are approximately equal to 70% of a
typical three-party sum, as in [9].

5.2. Error Correction and Privacy Amplification

It is known that IoT devices are known to be able to calculate hash functions that can be used
to improve security by integrating them into the KeyGen protocol. However, the specific functions
they can compute depend on the device’s processing power, memory, and energy constraints. They
typically have limited resources compared to more powerful devices, such as computers and servers.
For this reason, one of the commonly used approaches to improve security in the IoT setting is the use
of hash functions. Among them, BLAKE2 appears to be a good choice, since it has versions optimized
for 64-bit architectures (BLAKE2b) and optimized for 8 to 32-bit platforms (BLAKE2s) [20]. With this
at hand, one possible procedure for error correction and privacy amplification that can be applied to
ensure that the OTP key obtained by the SMP-OTP4IOT procedure is as follows.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

80f10

Protocol KeyGen-security check: Error correction and privacy amplification

Require: SMP-OTP4IOT derived Key K; for user U; and s; + K3 for user Uy & agreed hash function
h.
Ensure: K| =51+ K
Initialization:
U; generates a random position b € {1,2,...n} such that Ky = [ky, ko, ... ky_1]||[kp, kpi1, - - Knl,
with n = |Ky|.
Procedure:
U, computes hy, = h(sy; + Kp[b,b+1,...n]) and sends it to Uy
Uy verifies if h([ky, kpi1, ... kn]) = hy. If so, return True, otherwise return False.

This process enables the user Uj to verify that U has the same OTP key, which can be utilized
by U, in the same way. It should be noted that this concept is not novel and has been applied in a
different context, such as IoT with a quantum security layer, as illustrated in [21]. Observe also that the
final steps in the KeyGen-security validation might seem unnecessary, since comparing the hash of the
entire key should suffice, which is indeed the case. However, the selection of a random subset based
on position b introduces a variable workload on the processor each time the procedure is executed,
making it easier to prevent a side-channel attack by monitoring processor energy consumption, as
in [22].

5.3. Abstract Requirements for SMPC

We examine the properties of validity, agreement, termination, and privacy to postulate the
security of our protocol, as depicted in [18], Definition 1.0. Since the key is produced by means of (true)
random numbers obtained individually by each party P;, i = 1,2, 3, and the individual contributions
to the key are never transmitted, the individual inputs remain secret to other processes (apart from the shares
that are given away), and malicious processes cannot prevent the computation from taking place or influence
the computation in favorable ways (quote adapted from [18]). Therefore, validity is ensured, in the sense
that the final result is obtained with at least all the correct inputs in the chain of computation, as the
party currently working will utilize its own data and the value received from the previous party to
perform the computation, which can only be achieved if the accurate values are supplied. In contrast,
agreement is achieved directly during the first half of the protocol, even in the presence of a dishonest
attacker, since replacing randoms by other numbers indistinguishable from random will produce the
same key agreement. So, only in the second half of the procedure, it is possible that the distribution of
s1 and sy to P, and Py, respectively, if intercepted by a dishonest party, will produce a discrepancy in
the OTP key K calculated by P; and derived by P, see Figure 2, with the result that in this case the
message will not be recovered. This can be avoided by using the KeyGen security check, as depicted
above.

Finally, it is obvious that termination and privacy are inherent in the process. Termination means
that every correct process eventually computes the result intended by the protocol, and privacy means
that the specific inputs of the individual parties are never transmitted, computed, or potentially
revealed.

6. Discussion

The SMP-OTF4IOT protocol is introduced and implemented using ZeroC-Ice. The proposed
procedure establishes a common key between IoT devices for secure communication, where two
primary parties (P; and P;) and a dummy server (P;), sequentially agree on a key K, using true random
numbers, and a modified (but standard) multiparty security sum procedure, which is applied for
encrypted communication with a single pad.

The role of the dummy party is to facilitate the establishment of the key, but does not access
the shared encrypted message. The implementation in ZeroC-Ice offers the advantage of connecting

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

9 of 10

devices across different platforms and architectures, and the protocol is shown to exhibit a reduction
in communication by a factor of approximately 30%.

A notable benefit of this approach is the efficiency in message transmission, where multiple
parameters can be included in a single function call, reducing bandwidth requirements. The protocol
uses true random number acquisition and dynamic role changes, making it adaptable for peer-to-peer
communication between multiple IoT agents.

Although a formal security analysis of the protocol is not extensively covered here, which we
leave for a forthcoming article, we focus instead on its inherent security properties as implemented in
ZeroC-Ice and suitable generic metrics for assessing security of SMPC protocols.

Under the Dolev-Yao threat model, our protocol assumes the presence of either a semi-honest
or a dishonest adversary. In the semi-honest scenario, with no tampering of data, the transmitted
information consists of random numbers and their sums, which makes deducing the key challenging
unless the adversary knows the exact computations performed by each party. In the case of a dishonest
attacker, any alteration in the transmitted random numbers could result in a different key, potentially
flagging an interception attempt.

We argue that privacy for parties is maintained since only random numbers and partial sums are
transmitted sequentially. In an actual implementation for the IoT setting, a side-channel attack could
be mitigated by appropriate data formatting and techniques, such as random code injection techniques.
The communication cost is estimated at 70% of the usual three-party sum, which significantly reduces
the overhead.

In terms of future work, we plan to propose a formal analysis of the protocol using tools such
as Tamarin Prover or Proverif. Additionally, our objective is to explore the scalability of the protocol
to federated n-party key agreement and encryption. This analysis and investigation could offer a
more comprehensive understanding of the security properties of the protocol and highlight potential
advantages or disadvantages, particularly in the IoT domain. It should be noted that our protocol
already appears suitable for the IoT, which can be implemented among peers in a one-to-one manner.

Author Contributions: Conceptualization,].F. and P.G.; software, R.N.; formal analysis,].F. and P.G.; investigation,
J.F, P.G. and EE.; writing—original draft preparation, J.F.; writing—review and editing, J.E,, EE. and P.G.;
visualization, P.G. and R.N.; supervision, J.F. and EE.; project administration, J.F.; funding acquisition, J.F. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Project grant number DI21-0079, Universidad de La Frontera.

Data Availability Statement: ZeroC-Ice implementation code used for testing can be freely accessed at: https:
/ / gitlab.com/smpc-ufro/smpc

Conflicts of Interest: The authors declare no conflict of interest. Sponsors had no role in the design of the study,
in the collection, analysis or interpretation of the data, nor in the writing of the manuscript or in the decision to
publish the results.

Abbreviations

The following abbreviations are used in this manuscript:

IoT Internet of Things
OoTP One Time Pad
SMP-OTP4IO Secure multiparty One-time pad protocol for IoT
XOR Exclusive OR
References

1. Vorakulpipat, C.; Rattanalerdnusorn, E.; Thaenkaew, P.; Hai, H.D. Recent challenges, trends, and concerns
related to IoT security: An evolutionary study. In Proceedings of the 2018 20th International Conference on
Advanced Communication Technology (ICACT). IEEE, 2018, pp. 405-410.

2. Cravero, A.; Bustamante, A.; Negrier, M.; Galeas, P. Agricultural Big Data Architectures in the Context of
Climate Change: A Systematic Literature Review. Sustentability 2022, 22, 7855.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 d0i:10.20944/preprints202403.1167.v1

10 of 10

3. Mohammadi, M.; Al-Fuqaha, A.; Sorour, S.; Guizani, M. Deep learning for IoT big data and streaming
analytics: A survey. IEEE Communications Surveys & Tutorials 2018, 20, 2923-2960.

4. Lopez-Fenner, J.; Sepulveda, S.; Bittencourt, L.E,; Costa, EM.; Georgantas, N. Privacy Preserving Multi Party
Computation for Data-Analytics in the IoT-Fog-Cloud Ecosystem. In Proceedings of the CICCSI 2020 : IV
International Congress of Computer Sciences and Information Systems, Mendoza / Virtual, Argentina, 2020;
CICCSI 2020 Proceedings.

5. Hossain, E.; Khan, I; Un-Noor, E; Sikander, S.S.; Sunny, M.S.H. Application of big data and machine learning
in smart grid, and associated security concerns: A review. leee Access 2019, 7, 13960-13988.

6. Diffie, W.; Hellman, M. New directions in cryptography. IEEE Transactions on Information Theory 1976,
22, 644-654. https://doi.org/10.1109/TIT.1976.1055638.

7. Patel, K. Secure multiparty computation using secret sharing. In Proceedings of the 2016 International
Conference on Signal Processing, Communication, Power and Embedded System (SCOPES). IEEE, 2016, pp.
863-866.

8. Niu, Z.; Wang, H.; Li, Z.; Song, X. Privacy-preserving statistical computing protocols for private set
intersection. International Journal of Intelligent Systems 2022, 37, 10118-10139.

9. Cramer, R.;; Damgard, LB.; et al. Secure multiparty computation; Cambridge University Press, 2015.

10. ZeroC. Ice - The Internet Communications Engine. https://doc.zeroc.com/ice/3.6/introduction, 2022.
[Accessed 22 Jan. 2024].

11. Van Rossum, G.; Drake Jr, EL. Python tutorial; Centrum voor Wiskunde en Informatica Amsterdam, The
Netherlands, 1995.

12. Cremers, C. Symbolic security analysis using the tamarin prover. In Proceedings of the 2017 Formal Methods
in Computer Aided Design (FMCAD). IEEE, 2017, pp. 5-5.

13. Blanchet, B.; et al. Modeling and verifying security protocols with the applied pi calculus and ProVerif.
Foundations and Trends® in Privacy and Security 2016, 1, 1-135.

14. Modesti, P,; Garcia, R. Formal Modeling and Security Analysis of Security Protocols. In Handbook of Formal
Analysis and Verification in Cryptography; CRC Press, 2023; pp. 213-274.

15. Yao, A.C. Protocols for secure computations. In Proceedings of the 23rd annual symposium on foundations
of computer science (sfcs 1982). IEEE, 1982, pp. 160-164.

16. Yao, A.C.C. How to generate and exchange secrets. In Proceedings of the 27th annual symposium on
foundations of computer science (Sfcs 1986). IEEE, 1986, pp. 162-167.

17. Dolev, D.; Yao, A. On the security of public key protocols. IEEE Transactions on information theory 1983,
29,198-208.

18. Fort, M,; Freiling, F; Penso, L.D.; Benenson, Z.; Kesdogan, D. TrustedPals: Secure multiparty computation
implemented with smart cards. In Proceedings of the Computer Security—ESORICS 2006: 11th European
Symposium on Research in Computer Security, Hamburg, Germany, September 18-20, 2006. Proceedings 11.
Springer, 2006, pp. 34—48.

19. Ambrose, J.A.; Ragel, R.G.; Parameswaran, S. RIJID: Random code injection to mask power analysis based
side channel attacks. In Proceedings of the Proceedings of the 44th annual Design Automation Conference,
2007, pp. 489-492.

20. Aumasson,].P,; Meier, W.; Phan, R.C.W.; Henzen, L.; Aumasson,].P.; Meier, W.; Phan, R.C.W.; Henzen, L.
Blake2. The Hash Function BLAKE 2014, pp. 165-183.

21. Shamshad, S.; Riaz, F; Riaz, R.; Rizvi, S.S.; Abdulla, S. An enhanced architecture to resolve public-key
cryptographic issues in the internet of things (IoT), Employing quantum computing supremacy. Sensors
2022, 22, 8151.

22. McCann, D.; Eder, K.; Oswald, E. Characterising and comparing the energy consumption of side channel
attack countermeasures and lightweight cryptography on embedded devices. In Proceedings of the 2015
International Workshop on Secure Internet of Things (SIoT). IEEE, 2015, pp. 65-71.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those
of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and /or the editor(s)
disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or
products referred to in the content.

