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Abstract: Pairs of potential and flow variables have long been established for interfacing object-oriented 

component models of physical systems. Recently, however, the use of triplets has been discovered for the 

purpose of robust modeling. New and powerful Modelica libraries have been developed such as the DLR 

ThermoFluid Stream library or the introduction of the Dialectic Mechanics library. Their use of triplets is 

entangled with a special modeling approach that uses Linear Implicit Equilibrium Dynamics. In this paper, we 

study the basic motivation of this approach, its benefits and drawbacks before we finally demonstrate how it 

beneficially impacts the generation of corresponding simulation code. 
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1. Introduction 

Pairs of potential (effort) and flow variables have long been established for the equation-based, 

object-oriented modeling of physical systems. For instance, Table 1 lists the interface currently in use 

for the Modelica Standard Library [1] and Table 2 lists the interface typically used for Bond-graphs 

[2,3]. 

Table 1. Connection pairs as used in the Modelica standard library 

Domain potential variable flow variable 

translational mechanics position: 𝑟 [m] force: 𝑓 [N] 

rotational mechanics angle:  𝜑 [rad] torque: 𝜏 [Nm] 

thermofluid streams thermodynamic state: Θ 1  mass-flow rate: 𝑚̇ [kg/s] 

electrical voltage potential: 𝑣 [V]  current: 𝑖 [A] 
1 The thermodynamic state is a tuple. Its number of elements and their units may vary depending on the medium 

that is modelled. For an ideal gas, one may use pressure and temperature: ([Pa], [K]). 

Table 2. Connection pairs as defined by the bond-graph methodology 

Domain effort  flow  

translational mechanics force: 𝑓 [N] velocity: 𝑣 [m/s] 

rotational mechanics torque:  𝜏 [Nm] angular velocity: 𝜔 [rad/s]   

hydraulics/pneumatics pressure: p [Pa]  Volumetric flow: Φ [m3/s] 

thermal Temperature: T [K] Entropy flow 𝑆̇ [J/Ks] 

electrical voltage: 𝑢 [V]  current: 𝑖 [A] 

For bond-graphs, the product of these pairs always represents a flow of energy. Although 

Modelica is less dogmatic, the flow of energy is still contained in the information of the connection 

pair. 

The sheer size of the Modelica Standard Library, its industry wide adoption and also the use 

similar interfaces in a wide array of commercial tools provide empiric evidence that these pairs form 

very useful interfaces. And indeed, these pairs provide an answer for what is necessary for the object-

oriented modeling of classic physical systems: 
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The equations whose solution represent a physical system can be  distributed among its 

components 

Thanks to these pairs, we can indeed distribute the equations of physical systems among 

different components. Unfortunately, the very same pairs are also the root cause for many very 

persistent problems encountered in the object-oriented modeling of physical systems. 

• Irregular systems can be composed and are hard to diagnose. 

• Very difficult handling of variable structure systems [4] (change of equations at run-time) due 

to the high index of the Differential Algebraic Equation (DAE) system. 

• Very difficult code generation for large-scale system simulation [5] since often the complete 

equation system is needed for structural analysis 

• Highly complex generation of simulation code requiring compilers that have high development 

costs. (The decade spanning effort of OpenModelica [6] provides evidence) 

All these problems will be diminished (as demonstrated in later chapters), when we fulfill what 

is sufficient for object-oriented modeling: 

Any valid combination of components (under rules of limited complexity) shall have a solution 

representing a physical system. 

This statement centers on the ability to make an a-priori statement on the solvability of the 

modeled system and sadly (as we will see later), we can cannot fulfill this statement with the 

presented pairs of effort and flow. Instead, this paper suggests to use triplets as in Table 3. 

Table 3. Connection triplets suggested in this paper that will lead to a robustly solvable form. 

Domain signal potential variable flow variable 

trans. mechanics position: 𝑟 [m] velocity: 𝑣 [m/s] force: 𝑓 [N] 

rot. mechanics angle:  𝜑 [rad] ang. velocity: 𝜔 [rad/s] torque: 𝜏 [Nm] 

thermofluid str. 
thermodynamic 

state: Θ̂  1 
inertial pressure 𝑟 [Pa] mass-flow rate: 𝑚̇ [kg/s] 

electrical ? ? ? 
1 The same comment as to Table 1 applies. Here the thermodynamic state is also formulated based on the steady-

mass flow pressure 𝑝̂. More explanation on this from section 3 onwards. 

Before we can aim to find a sufficient form and understand these triplets, we first need to 

understand what actually led us to the necessary pairs of potential (effort) and flow variables. Hence, 

we need to revisit the very basic fundamentals of classic physics. 

2. The Principle of Stationary Action 

The central question is what minimum interface is needed so that we can distribute the equation 

of systems in classical physics. The natural starting point is hence the most fundamental law forming 

the basis of all classical physics: the principle of stationary action also known as Hamilton‘s Principle. 

It is based on the action 𝑆 for an element moving along a path 𝑞(𝑡): 

𝑆 = ∫ 𝐿(𝑞(𝑡), 𝑞̇(𝑡)) 𝑑𝑡
𝑡𝑏

𝑡𝑎

= ∫ 𝑇(𝑞̇(𝑡)) − 𝑉(𝑞(𝑡)) 𝑑𝑡
𝑡𝑏

𝑡𝑎

 

The action is the integral of the Lagrangian 𝐿 over the timespan [𝑡𝑎, 𝑡𝑏]. The Lagrangian itself 

can be expressed as the difference between kinetic energy 𝑇 and potential energy 𝑉. The principle 

of stationary action states that: 

𝜕𝑆

𝜕𝑞(𝑡)
= 0 

This principle is the basis of classic physics because it is also fulfilled by the underlying quantum 

physics although in a statistical manner as described by Feynman [7]. Yet for a sufficient large number 
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of quantum events, the expected value will be fulfilled with great precision and an assumption of 

continuity can be made for macroscopic systems.  

The principle of stationary action is here written for a conservative system. It would require 

extensions for non-conservative systems but there is no need here to complicate matters. In any case, 

the following literature may be advised [8–11] (chapter 20). A few points are however often 

underrepresented and hence deserve discussion here. 

The principle of stationary action is based on the Lagrangian 𝑇 − 𝑉. We see that a different sign 

is applied for the kinetic energy 𝑇 than for all other forms of (potential) energy 𝑉. The kinetic energy 

has thus a special role. Not only is its role special but also its form. The gradient of the kinetic energy 

forms a continuous bijective function for the total domain (whether relativistic or not), meaning that 

it has a well-defined inverse over the complete domain. This property is important for the discussion 

of another question: is there always a solution for the principle of stationary action? 

Given that we can assume no strict restrictions on the complexity of the potential 𝑉 (other than 

having a derivative), it may seem unsolvable in the general case. Fortunately, the plot of Figure 1 

indicates how to approach this problem. 

 

Figure 1. This topological map illustrates the complexity of the action over time (x-axis) for a straight 

path of constant velocity (y-axis). The potential 𝑉 has here been arbitrary chosen in this example and 

the actual values are irrelevant. Relevant is that the complexity of the action is increasing over time.  

This graph is a topological map of the action over time for paths of different constant velocity. 

We recognize that in this (completely arbitrary) example, the action has become a very complex 

function after a time-step of one second. However, for a small step of time, the action remains simple 

and well-natured.  The explanation is straight forward: no matter how complex 𝑉 is shaped, it takes 

a motion through time and space to gather this complexity. Hence at 𝑡 = 𝑡𝑎, the well-natured kinetic 

energy dominates the action.  

This means we can reliably solve the principle of stationary action if the step in time 𝑡𝑏 − 𝑡𝑎 is 

small enough. What is small enough? Under the assumption of continuity, there is only one answer: 

𝑑𝑡. This leads us ultimately to the famous Euler-Lagrange equation and is also the explanation why 

time derivatives are so useful in physics.  

𝜕𝐿

𝜕𝑞
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
= 0 

Now we see also why it is so important that the partial derivative of the kinetic energy has a 

special form and a well-defined inverse. This ensures that the second term can always compensate 

the first in an unambiguous way. Please note that such a general statement on solvability is extremely 

helpful.  

For illustration, let us now apply the Euler-Lagrange to the following example system for the 

pressure wave of a fluid in a pipe. The derivative of our path: 𝑞̇(𝑡) represents the volume flow 𝑄̇. 

Correspondingly the path 𝑞(𝑡) then represents the shift in volume 𝑄.  
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• The kinetic energy is then defined as: T =
Iρ

2
Q̇2 with 𝜌 being the density and the inertance 

defined by the geometry length 𝑠 and cross section 𝐴: I =  ∫
ds

A
  

• The potential energy can be formulated by 𝑉 =  
𝐾

2𝑄𝑟𝑒𝑓
 𝑄2 where 𝐾 is the bulk modulus and 

𝑄𝑟𝑒𝑓 a reference volume. 

The Lagrangian is now defined by: 

𝐿 =  
𝐼𝜌

2
𝑄̇2 −  

𝐾

2𝑄𝑟𝑒𝑓
𝑄2 

and we can apply the Euler-Lagrange equation which results in: 

𝜕 (
𝐼𝜌
2

𝑄̇2 −
𝐾

2𝑄𝑟𝑒𝑓
𝑄2)

𝜕𝑄
−

𝑑

𝑑𝑡

𝜕 (
𝐼𝜌
2

𝑄̇2 −
K

2𝑄𝑟𝑒𝑓
𝑄2 )

𝜕𝑄̇
= 0 

Fortunately, many terms vanish when taking the partial derivative and the resulting equation is 

a differential equation of second order that expresses the wave in the fluid based on its volumetric 

shift: 

𝑄
𝐾

𝑄𝑟𝑒𝑓
+ 𝐼𝜌𝑄̈ = 0 

The elegance of the Euler-Lagrange equation is that it provides a solution of 𝑛 dimensions with 

𝑛 equations for an underlying variational problem that is actually a 2𝑛 dimensional problem (please 

note that one shall treat 𝜕𝑞 and 𝜕𝑞̇ as independent variables [11]).  

This elegant “compression” is however working against the intent of object-oriented modeling: 

for examples of higher dimensions, it will be very difficult to redistribute the equations to individual 

components. Hence the result of Euler-Lagrange is mostly unsuited for object-oriented modeling.  

Fortunately, there is an alternative form that can be achieved by the Legendre transformation 

that transforms the Lagrangian 𝑇 − 𝑉 into the Hamiltonian 𝑇 + 𝑉. The stationary action principle 

can now be reformulated for our example. For the Legendre transformation we require the 

generalized momentums that are defined as 

𝑝𝑖 =
𝜕𝐿

𝜕𝑞̇𝑖
 

For illustration, let us reiterate our previous example. Based on the former Lagrangian, we can 

determine the generalized momentum 𝑝: 

𝑝 =
𝜕𝐿

𝜕𝑞̇
=

𝜕(
𝐼𝜌
2

𝑄̇2 −
𝐾

2𝑄𝑟𝑒𝑓
 𝑄2 )

𝜕𝑄̇
= 𝐼𝜌𝑄̇ 

Using 𝑝 to express the kinetic energy 𝑇 is then applied for composing the Hamiltonian 𝐻 =

 𝑇 + 𝑉: 

𝐻 =  
1

2

𝑝2

𝐼𝜌
+

𝐾

2𝑄𝑟𝑒𝑓
 𝑄2  

Given the Hamiltonian, we can now apply the famous pair of Hamilton equations: 

𝑑𝑞

𝑑𝑡
=

𝜕𝐻

𝜕𝑝
 

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞
 

In our example, these translate to: 

𝑑𝑞

𝑑𝑡
= 𝑄̇ =

𝜕 (
1
2

𝑝2

𝐼𝜌
+

𝐾
2𝑄𝑟𝑒𝑓

𝑄2)

𝜕𝑝
=  

𝑝

𝐼𝜌
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𝑑𝑝

𝑑𝑡
= −

𝜕 (
1
2

𝑝2

𝐼𝜌
+

𝐾
2𝑄𝑟𝑒𝑓

𝑄2)

𝜕𝑞
= −

𝑄

𝜅𝑄𝑟𝑒𝑓
 

We now get 2𝑛 first order differential equations, based on generalized position and generalized 

momentum. These equations express the same system as the previous solution derived by Euler-

Lagrange. (simply differentiate the first equation and eradicate 𝑑𝑝/𝑑𝑡 by substitution). Different 

from the Euler-Lagrange solution, these equations can be nicely distributed among components, 

especially if we reformulate them based on a corresponding pair. In our setting it is natural to choose 

the volume flow 𝑄̇ =  𝑑𝑞/𝑑𝑡 and the pressure 𝑃 =  𝑑𝑝/𝑑𝑡 as pair. The corresponding components 

are presented in Table 4, row 1 and 2. 

Table 4. Examples of components formulated based on the pairs resulting from the Hamiltonian 

equations. The variables forming the pair are marked in bold. 

Component Symbol Equation 

Fluid Inertance 

 

𝑑𝑸̇

𝑑𝑡
𝐼𝜌 = Δ𝑷 

Compressible volume  

 

𝑑𝑷

𝑑𝑡

𝑄𝑟𝑒𝑓

𝐾
= −𝑸̇ 

Tank 1  

]  

𝑑𝑷

𝑑𝑡

𝐴

𝜌𝑔
= −𝑸̇ 

Flow resistance 2 
 

𝜁
𝑸̇|𝑸̇|

𝑄̇𝑟𝑒𝑓
2

= Δ𝑷 

1 𝐴 is the cross-section area of the tank and 𝑔 the gravitational constant. 2 𝑄̇𝑟𝑒𝑓
2  is a reference volume flow and 

𝜁 is the quadratic friction coefficient. 

We can then choose to model a different storage of potential energy such as gravitational 

pressure. Even though all our derivations were done on conservative systems, the same pair can be 

used to model non-conservative components such as the friction of a valve. These two additional 

components are presented in Table 4, row 3 and 4. 

Given these 4 components of Table 4 and the pair of effort and flow, we can now assemble a 

more complex system and for instance model the example of 3 communicating vessels as in Figure 2. 

Classic object-oriented modeling becomes functional. 
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Figure 2. This diagram represents a model of three communication vessels. Gravitational pressure is 

modeled at the tanks. Non-linear flow resistance is used to model the valve at the outlets. The 

connecting pipes are modeled using inertances and compressible volumes. 

In the corresponding simulation results (Figure 3) we can see the oscillation that result from the 

natural parameters of water. As typical for many systems the exchange between potential and kinetic 

energy is of high frequency.  

 

Figure 3. Simulation result of the model of Figure 2, showing the 3 volume flows going through the 

tank’s orifices. A sudden change of water level is imposed to the system a time 𝑡 = 1 to trigger the 

low-frequency response. 

3. From Necessary to Sufficient 

We have seen that the well-known pairs of potential and flow variables can be derived from the 

Hamiltonian form of the principle of stationary action (although not always in the exact same way as 

for the hydraulic example above).  

Different form the Lagrangian 𝑇 − 𝑉, the kinetic energy loses its special role in the Hamiltonian 

𝑇 + 𝑉. Treating all energy forms equal may deceivingly suggest that energy flows are all what the 

modelers needs (Bond graph modelling is a prime example of this fallacy). Yet, whereas each valid 

Hamiltonian represents a sum of energy terms, not all sums of energy terms represent a valid 

Hamiltonian. This leads to a serious problem for object-oriented modeling. Whereas the pairs are 

necessary to redistribute the equations resulting out of a valid Hamiltonian, only very few 

recombination possible by these pairs form a valid Hamiltonian. This implies that the modeler can 

formulate non-physical systems too and modelers even do this on purpose (albeit often without being 

fully aware of the consequences). For instance, let us consider the following recombination of 

components as depicted in Figure 4. 
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Figure 4. Modeling 3 communicating vessels without modeling the pipe just by the gravitational 

pressure and the flow-resistance of the orifice. Note, that there is an algebraic non-linear equation 

system to determine the pressure below the valves so that all flows are in balance. 

Here the modeler has now completely removed the inertia and compressibility of water from 

the model. This means that there is no representation of the kinetic energy anymore. We have 

removed exactly the component that is required to formulate the principle of stationary action and 

guarantee its solvability. Instead we now use the pairs to formulate a constraint problem in the 

domain of energy. Whether this can be solved is in general undefined. And indeed, we have to solve 

a non-linear equations system in this example to perform the simulation. In this example, the solution 

could reliably be found during simulation time but in the general case no statement on solvability 

can be given.  

It is however important to recognize that modelers do such things (mostly) not out of 

malevolence or ignorance but to solve relevant problems. The slight additional cost of solving the 

non-linear equation system was rewarded in this example by the much higher gain of removing the 

high frequency from the system enabling a very efficient simulation of the system (albeit significantly 

altering the trajectory).  

 

Figure 5. Simulation result of the model of Figure 4, showing the 3 volume flows going through the 

tank’s orifices. In this simplified model the high frequency has been eliminated and the flow rate is 

now dominated by the resistance. 

Hence, what would we need to do to ensure solvability and also enable powerful modeling 

approach? Essentially, we have to fulfill two criteria: 

0 1 2 3 4 5 6 7 8 
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(a) Ensure that the kinetic energy is always sufficiently represented so that we can guarantee 

solvability according to the steady-action principle. 

(b) Enable the modeler to reduce the interaction between kinetic and potential energies to key points 

in the system so that irrelevant high frequency behavior can be effectively suppressed. 

For some domains, these two criteria can be met in a methodological sound manner by going 

from a pair to a triplet. 

Part of this triplet is a pair that expresses the kinetic energy. This pair is accompanied by a signal 

that describes the non-linear configuration under which the kinetic energy can be exchanged. This 

rather abstract picture is best described by concrete examples. One for thermo-fluid systems and one 

for mechanical systems. 

In the following we discuss the modeling of two domains using triplets. 

3.1 Triplet Interface for Thermofluid Systems 

Here is the triplet interface for thermo-fluid streams: 

•  𝑟: inertial pressure (potential) 

•  𝑚̇: mass-flow rate (flow) 

• Θ̂: Vector representing the thermodynamic state of the medium (signal) 

- 𝑝̂: steady-mass flow pressure 

-  ℎ̂: steady-mass flow enthalpy 

-  𝑋: mass fractions    

Key to understand this interface is the dynamic of the inertial pressure 𝑟. It represents the 

pressure needed to accelerate a mass-flow which forms linear law based on the inertance [12,13] of 

the fluid 𝐿: 

𝑟 = 𝐿
𝑑𝑚̇

𝑑𝑡
 

The inertance 𝐿 is thereby independent of the thermodynamic state of the fluid and just defined 

by the geometry of the flow with the length 𝑑𝑠 and cross section area 𝐴: 

𝐿 =  ∫
𝑑𝑠

𝐴
 

If we now enforce that the inertance law is part of every single component, we have fulfilled 

criterion (a). 

To fulfill criterion (b), we decompose the pressure into two components: 

𝑝 = 𝑝̂ + 𝑟 

The complement to 𝑟 is hence the newly defined steady-mass flow pressure 𝑝̂ For the steady-

state with a constant mass flow rate, 𝑟 will go to zero and 𝑝 = 𝑝̂, which explains its name.  

A very elegant way to reduce the interaction points between potential energies and kinetic 

energy is to use 𝑝̂  to form an approximation for the thermodynamic state Θ̂  of the fluid. 

Furthermore, where it is not reasonable to mix pressure, it is feasible to provide mixing laws for 𝑝̂. 

This enables an explicit downstream computation of Θ̂. 

The kinetic energy will then only interact at the boundaries of streams which are either volume 

elements or sources and sinks. At junctions, the kinetic energy of different streams may interact with 

each other. Ultimately this means that a different spatial resolution is applied for the effects of 𝑟 than 

for 𝑝̂. This assumption is in line with many modeling tasks and deviations are limited to rapid 

transients where model uncertainty is typically very high. At steady mass flows there is no difference 

which is important for most applications. 

The resulting computational scheme is that all the non-linear computations regarding the 

thermodynamic state including properties like viscosity, heat conductivity or density are performed 

in explicit form downstream. This means that the signal Θ̂ is always computed from the source to 

the sink. To ensure this, all circular flows need to contain at least one volume. A linear system then 

computes the time derivative of all mass-flows. This system is formed by the equation for the pairs 
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of 𝑟 and 𝑚̇. It is guaranteed to be linear because of the characteristics of 𝐿 and it will be regular 

since all inertances are strictly greater than zero. 

The reader is advised to literature [14,15] to follow the above statements in detail. Revisiting our 

example of section 2, there is fortunately a less complex replacement model. Since our models assume 

constant density and viscosity, there is no need for the decomposition of 𝑝 and for the signal Θ̂. The 

solution would (in this particular case) be equivalent to represent the inertance for each mass-flow 

but we are free to neglect the compressibility. The corresponding diagram is shown in Figure 6 and 

the simulation result in Figure 7. Also because each mass flow is represented by the sum of all of its 

inertances, the frequency of the response is low.  

 

Figure 6. For this particular model of the communicating vessels, the LIED approach has an 

equivalent counterpart using conventional connectors. Modeling the inertia but leaving out the 

compressibility does the trick here. 

 

Figure 7. Modelling the communicating vessels by the sheer exchange of potential energy. 

3.2 Triplet Interface for Mechanical Systems 

It is possible to formulate a similar triplet to model multi-body mechanics: 

•  𝑣:  velocity (potential) 

•  𝑓:   force (flow) 

•  𝑠:  position (signal) 
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Where 𝑣 and 𝑠 represent positions and velocities in a generalized way for both translatory and 

rotational motion. 

The product of velocity and force thereby represents a flow of energy which will contain also 

the kinetic energy. To ensure criterion (a), we simply must enforce that there are no massless 

components or (by the means of connection rules) that there is at least a mass representing all degrees 

of freedom of a kinetic chain.  

To fulfill criterion (b), we have to address the elements of a multi-body system that define the 

degrees of freedom for the system: the joint elements. These are typically revolute joints or prismatic 

joints but exist in various combinations that define a different set of positional states. Naturally, the 

velocity is defined as direct derivative of the position and the acceleration as second derivative: 

𝑑𝑣

𝑑𝑡
=

𝑑2𝑠

𝑑𝑡2
 

In section 3.1, we have reduced the interaction of kinetic and potential energy by lowering the 

spatial resolution of the kinetic part. For multi-body mechanics we have to reduce the temporal 

resolution of the kinetic part. We can do so by applying a first-order filter: 

𝑑𝑣

𝑑𝑡
𝑇𝐷 =

𝑑𝑠

𝑑𝑡
− 𝑣 

Using the time constant 𝑇𝐷 , we can now effectively limit the occurring frequencies of the 

mechanical system (at the cost of becoming more energy dissipative) without modifying the steady-

state solution. 

Just for the sake of quick illustration: Figure 8 from [16] shows the dynamics of a lightweight 

object moved in clamp modeled by a very stiff spring. The figure simply illustrates how the 

oscillatory dynamics is approximated with a replacement dynamics leading to the same (quasi) 

steady-state solution. 

 

Figure 8. Penetration depth into the left claw represented by an elasto-gap, for the choice of two 

different time constants, taken from [16]. Both agree on the time-averaged solution. TC of the legend 

represents 𝑇𝐷. The dots of the blue result from a decaying high-frequent oscillation. The red line is 

the low frequency approximation. 
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Using the triplet, we can formulate a difference between the motion in the elastic regime 𝑑𝑠/𝑑𝑡 

and the velocity in the kinetic regime 𝑣. Because of this separation of two regimes, the author has 

denoted it as dialectic mechanics. The interface enables again that all non-linear equations regarding 

the geometrical configuration can be formulated in explicit form from the root of the kinematic chain 

to its end by the signal 𝑠. To ensure this tree structure, all kinematic loops must contain a flexible 

element. The pair of 𝑣 and 𝑓 then sets up a linear system of equations for the kinetic energy.  

First implementations and analysis of this modeling approach are presented in [16,17]. Models 

using this interface are especially suitable for the simulation of contacts and limited joints also under 

hard-real time constraints. We expect many future applications in robotics and related tasks. 

4. Triplets and Object-Oriented Modeling 

The two triplets presented in section 3 can be directly transformed into code of the equation-

based, object-oriented language Modelica. Table 5 contains the corresponding code. For both 

domains, corresponding Modelica libraries have been developed. 

Table 5. The triplets as represented in the Modelica language for equation-based modeling. 

Thermofluids Mechanics  
connector Outlet 
  output1 Medium.ThermState state 
  “thermodynamical state”; 
  Pressure r “inertial pressure”; 
  flow MassFlowRate m_flow  
  “mass flow rate”; 
end Outlet; 

connector FlangeOn1DTranslatory2 
  output1 Position s 
  “positional signal”; 
  Velocity v “(kinetic) velocity”; 
  flow Force f “force”; 
 
end FlangeOn1DTranslatory; 

1 For each connector with an output there is also a counterpart with an input. Two sexes of connectors are thus 

needed. Only one is shown. The flow variable is marked in Modelica by the keyword flow. An unmarked 

variable is regarded as potential variable. 2 For the mechanical connector also a variant with two pairs of effort 

and flow is presented in [16]. This will be however discontinued in favor of the presented triple. 

The DLR ThermoFluid Stream Library [15] is a fully functional open-source that is already in 

use both in industry and academia. Figure 9 shows an exemplary model diagram of the thermal 

architecture of an electric car. We can clearly see that a complex architecture is nicely composed out 

of its individual components. The end-user is not directly confronted with the triplets. The modeler 

simply needs to take care about the connection rules that all loops contain at least one volumetric 

element.  

 

Figure 9. Exemplary model diagram taken from [15] of the thermal architecture of an electric car. 

Different cooling loops, including a vapour cycle can be combined to cool the power electronics, 
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battery and passenger compartment of the car. Certain components are marked with a star   which 

is not part of the original diagram. The meaning of this marking is explained in section 6. 

The library for Dialectic Mechanics is still under internal development and testing. Figure 10 

shows the model diagram of a kinematic loop for a hypothetical landing gear kinematic. This 

demonstrates that also here, complex systems can be composed in an object-oriented fashion and the 

end-user simply has to uphold the connection rules. The kinematic loops a closed by flexible elements 

and each chain contains at least one mass.  

  

Figure 10. Modelica Diagram (left) of a landing gear kinematic (right) using the Dialectic Mechanics 

library. The interface of the LIED approach leads to a nice decomposition into ideal components. 

Regarding the star marking, the same comment as in Figure 9 applies. 

Using Modelica for these examples, a complete DAE system is built based on the composed 

models. The complete system of equations is then flattened (meaning that all equations are collected 

in a global set) and then state variables are selected and symbolic index reduction (as for example in 

[18]) is performed to transform the DAE into a set of Ordinary Differental Equations (ODEs). This 

typically results in a larger piece of simulation code where all variables are globally collected. 

5. Triplets and Linear Implicit Equilibrium Dynamics 

We have derived the triplet interface out of the motivation to have a robust modeling interface 

that ensures solvability and yet enables effective modeling by the suppression of high frequency 

behavior (that occurs in real physical systems). It is remarkable that for both cases the resulting 

computational structure of the complete system is of a particular form that we define here as Linear 

Implicit Equilibrium Dynamics (LIED). 

A DAE system with potential state derivatives 𝒙̇, time 𝑡 and algebraic variables 𝐰 

𝟎 = 𝑭(𝒙̇, 𝒙, 𝐰, 𝑡) 

is defined as LIED system when it can be transformed into the following form: 

[
𝐰𝐸  
𝒙̇𝐸  ] = g(𝒙𝐼 , 𝒙𝐸 , 𝑡) 

𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) [
𝐰𝐼  
𝒙̇𝐼 ] = f(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸 , 𝑡) 
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We see that both the algebraic variables as well as the state derivatives can be split into a fully 

explicit part (𝒙̇𝐸; 𝐰𝐸) and a part (𝒙̇𝐼;  𝐰𝐼) with a linear system in implicit form expressed by the matrix 

𝐀. Furthermore, the following conditions shall hold true: 
• 𝒙̇𝐸 ∩ 𝒙̇𝐼 ⊆ 𝒙̇   
• 𝐰𝐸 ∩ 𝐰𝐼 ⊇  𝐰 
• 𝒙̇𝐸 ∩ 𝒙̇𝐼 ∩ 𝐰𝐼 ⊇  𝒙̇  
• 𝒙̇𝐸 , 𝒙̇𝐼 , 𝐰𝐸 , 𝐰𝐼  are all disjoint 

 

These conditions essentially mean that it is allowed to perform certain symbolic mechanism of 

index reduction such as the dummy derivative method [18] originating from Pantelides [19]. Using 

this method, states variables of 𝒙  can be transformed to algebraic variables in 𝐰𝐼  and further 

derivatives may be added to 𝐰𝐼 or 𝐰𝐸. In practice this is important because it means that the linear 

implicit dynamics can be expressed by far fewer states than suggested in the original DAE 

formulation. 

To get a practical feeling for this LIED form, let us discuss the decomposition of the linear and 

non-linear part, for the presented triplets. 

• For thermofluid streams, the signal for the thermodynamic state Θ̂ will be part of 𝐰𝐸. States 

associated with this state such as the temperature of a volume will be part of 𝒙𝐸. A subset of the 

flow variables 𝑚̇ will form 𝒙𝐼. The subset is chosen in such a way that all streams are described 

by 𝒙𝐼 in a non-redundant way. The redundant mass flows as well as the inertial pressures 𝑟 

become part of 𝐰𝐼 .    

• For dialectic mechanics, the signal for the position will be part of 𝐰𝐸 . The potential and flow 

variables of the interface 𝑣 and 𝑓 will be part of 𝐰𝐼. The state vector 𝒙𝐸 is typically empty. 

The members of 𝒙𝐼 are chosen from the internal variables in such a way that the motion of the 

kinematic chain is described in a non-redundant way. For each degree of freedom its kinetic 

velocity and its position form state variables in 𝒙𝐼.  

6. How to Create Simulation Code for LIED Systems? 

The original intention of the LIED approach was simply to ensure that no non-linear system is 

created in implicit form that spans across the components and hence a robust solution of the model 

evaluation could be taken for granted, given robust component models. When we started with it, we 

expected it to be the only notable change from other DAE models in Modelica and that all other 

features of a of code generation (as briefly outlined at the end of section 4) would basically remain 

untouched. 

However, over time, it was gradually recognized that LIED systems are much simpler to transfer 

to simulation code than general DAEs. Let us go through these observed simplifications one-by one: 

• Because we avoid the creation of non-linear equation systems, we do not need a non-linear 

equation system solver anymore. 

• For the same reason, constraint equations among potential states cannot be non-linear and hence 

no dynamic state selection is needed [20] 

• Even stronger: we can select the states on component level. For example, the stars in Figure 9 

and 10 mark those components that define states in 𝒙𝐼. 

• Because we can select the states on component level, this means that the dummy-derivative 

method can be applied also on component level before system composition. 

• Since the goal of the linear equation system is to have a synchronized replacement dynamics 

towards the equilibrium, we know suitable tearing variables for this system. These will be the 

linear state derivatives: 𝒙̇𝐿 or at least a subset of it. 

• The residual for a tearing variable can be attributed to the same component as the tearing 

variable. 

The terminology of the last two points may require further explanation. A tearing variable is a 

variable that can be used to probe the reaction of an algebraic system which is assessed by a 

corresponding residual. If the system is linear: 𝐌𝐰 =  𝐛, the probing can be used to construct M and 

w and find the solution for w.  
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All of the points above represent observations resulting from modeling many components and 

system examples using the LIED approach. However, these observations have profound 

implications. For each component we know: 

• the set of pairs of state-variables and their derivatives it adds to the system. 

• the set of pairs of tearing and residual variables it adds to the system. 

If this is the case, we can basically causalize everything already on the component level. In 

concrete terms, this means for each component: 

• we stipulate the states 

• we stipulate the tearing variables of the linear system and the corresponding residuals 

• we perform the dummy derivative method on those equations where necessary.  

• we define the causality of the interface variables 

• we causalize all equations into assignments in a particular order 

• we group the list of assignments depending on their dependence of the inputs. 

Practical experience so far indicates that performing index reduction to transform to the LIED form 

can be performed in a very methodical and deterministic manner. It is thus far easier to generate 

simulation code for the LIED modeling approach than it would be for general higher-index DAEs. 

Neither there is a need for global flattening anymore nor are elaborate heuristics needed for the 

selection of state or tearing variables. Indeed, the generation of simulation code is so easy that a direct 

implementation in C++ becomes feasible. To demonstrate this, the following code excerpts illustrate 

the implementation for a thermofluid stream library (using idealized water) in C++. 

First, we have to define the interface. This is naturally more tedious than in a language like 

Modelica because there is no direct support in the C++ language. Yet, it is feasible and after all, 

interfaces only need to be defined once: 

 

Listing 1. ThermoFluid Interface in C++  

  

class ThermodynamicStateOut: public Signal{ 

  public: 

    double p; //pressure [Pa] (steady mass flow) 

    double h; //enthalpy [J] (steady mass flow) 

     […] 

}; 

 

class ThermodynamicStateIn: public ThermodynamicStateOut 

{ 

  public: 

    void connect(ThermodynamicStateOut* o); 

    […] 

}; 

 

class MassFlowOut : public Signal{ 

  public: 

    double flow; //mass flow rate [kg/s] 

    double flow_der; //derivative of mass flow rate [kg/s2] 

    […] 

}; 

 

class MassFlowIn : public MassFlowOut{ 

  public: 

     void connect(MassFlowOut* o); 

    […] 

}; 

 

class InertialPressureOut : public Signal{ 
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  public:     

    double r; 

    […] 

}; 

 

class InertialPressureIn : public InertialPressureOut 

{ 

  public: 

    void connect(InertialPressureOut* o); 

    […] 

}; 

 

class ThermalPlugOut : public Signal{ 

   public: 

     ThermodynamicStateOut state{}; 

     MassFlowOut m{}; 

     InertialPressureIn inertial{}; 

     […]        

}; 

class ThermalPlugIn : public Signal{ 

  public: 

    ThermodynamicStateIn state{}; 

    MassFlowIn m{}; 

    InertialPressureOut inertial{}; 

    void connect(ThermalPlugOut* o); 

    […] 

}; 

 

class Connection { 

  public: 

    Connection(ThermalPlugOut* o, 

               ThermalPlugIn* i) { 

                i->connect(o); 

     }; 

}; 

typedef std::vector<Connection>  Connections; 

 

To best understand the interface, let us look at the classes ThermalPlugOut for a nominal outlet 

flow and at ThermalPlugIn for a nominal inlet flow first. These contain the same 3 components as 

the corresponding Modelica connector of the DLR ThermoFluid Stream library. 

There are two notable differences however. In Modelica, inertial pressure and mass flow were 

not causalized signals as in the C++ implementation. Also the mass-flow signal in the C++ library 

consists of the mass-flow rate and its derivative. In Modelica, this is not necessary since symbolic 

differentiation can be applied by the Modelica compiler. Using this interface, we can now implement 

a component such as the pressure drop: 

 

Listing 2. Implementation of a pressure drop component 

  

class PressureDrop : public Component{ 

  public: 

    ThermalPlugIn inlet; 

    ThermalPlugOut outlet;    

     PressureDrop(double v_ref,double dp_ref)  

    void evalState(); 
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    void evalFlow(); 

    void evalInertial(); 

    double v_ref; 

    double dp_ref; 

   

    virtual void metainfo(Meta& meta)  

      override; 

    […] 

}; 

 

First, we declare our interface for outlet and inlet, then we have to implement three methods. 

The first is evalState and computes the thermodynamic state downstream: 

 

Listing 3. Calculation of the pressure drop by the corresponding method 

  

void PressureDrop::evalState() { 

   const double v =  

     inlet.m.flow / density(inlet.state); 

   const double v_norm = v/v_ref; 

   const double dp = 0.5*dp_ref* 

     (v_norm + v_norm*v_norm); 

   outlet.state.h = inlet.state.h; 

   outlet.state.p = inlet.state.p – dp;                     

} 

 

The second method is evalFlow to ensure what flows in is what flows out. However, this 

constraint is restated for the derivative. This is because the dummy derivative method is applied on 

the component level. 

 

Listing 4. Trivial implementation of evalFlow 

  

void PressureDrop::evalFlow() { 

  outlet.m = inlet.m; 

} 

 

The third one is evalInertia that implements the law for the inertance as in the ThermoFluid 

Stream Library. 

 

Listing 5. Calculation of the inertial pressure 

  

void PressureDrop::evalState() { 

   const double v =  

     inlet.m.flow / density(inlet.state); 

   const double v_norm = v/v_ref; 

   const double dp = 0.5*dp_ref* 

     (v_norm + v_norm*v_norm); 

   outlet.state.h = inlet.state.h; 

   outlet.state.p = inlet.state.p – dp;                     

} 

 

In similar manner the other components of our introductory example can be implemented. Each 

of these components declares its interfaces, defines and implements methods representing the 

computational blocks. For all these components, meta-information must be collected by a dedicated 

virtual method to register state and tearing variables as well as to track the signal dependence of the 
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computing blocks. Finally, we can compose the introductory example of section 2 and 3 directly in 

C++: 

 

Listing 7. Total system composition 

  

class ComVessels: public Component { 

public: 

  OutTank t1{}; 

  InTank t2{}; 

  InTank t3{}; 

   Splitter s{}; 

  PressureDrop p1{}; 

  PressureDrop p2{}; 

  PressureDrop p3{}; 

 

  Connections con {  

    Connection{&t1.outlet, &p1.inlet}, 

    Connection{&p1.outlet, &s.inlet}, 

    Connection{&s.outlet1, &p2.inlet}, 

    Connection{&p2.outlet, &t2.inlet}, 

    Connection{&s.outlet2, &p3.inlet}, 

    Connection{&p3.inlet, &t3.inlet}, 

  }; 

  […] 

 

}; 

 

 

Regarding that C++ is a statically compiled imperative general-purpose language, the final result 

is astonishingly close to what a modeler is used to from a domain specific language like Modelica.   

When an instance of the class is coupled to a simulator, the meta information of all its 

computational methods is collected as well as the structural information regarding the signals, the 

states and the tearing variables for the linear equation system. Then the methods are put into right 

order for complete or partial model evaluation. The full model evaluation is thus simply a list of 

method calls that are called in their respective order. The linear implicit system defined by 

𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) is reconstructed by using the tearing variables and their residuals for probing. This 

requires a number of partial model evaluations.   

This also means that all component code is statically compiled but the total system composition 

is performed at run-time. Advanced tasks such as variable structure systems would thus be 

comparably easy to achieve.  

This is also the purpose of this code demonstration. It is not suggesting that we should use C++ 

as modeling language like Modelica but to highlight that for a certain class of models the object-

oriented modeling code could (and maybe should) be translated to object-oriented imperative code 

that can be statically compiled even before total system composition. This would avoid the flattening 

of all equations before code generation and help to overcome many limitations of current Modelica 

compilers with respect to scalability. 

7. Conclusions 

This paper started with a very fundamental consideration about the solvability of general 

formulations for classic physical systems, then presented a new interface for the object-oriented 

modeling and ended up showing a simplified generation of simulation code potentially suitable to 

handle challenges such as large-scale system simulation or variable structure systems. It is quite 
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remarkable that the two derived criteria for handling the kinetic energy have such practical 

consequences for object-oriented modeling. 

Indeed, that a more restrictive class of modeling enables a simpler compilation scheme is neither 

new nor surprising. The same can be said about the many conventional signal-based modeling 

schemes or simple modeling schemes as Forrester’s System Dynamics [21]. Typically, the 

disadvantage is that the easier generation of simulation code has to be paid by an inferior modeling 

approach and indeed modeling complex mechanics or thermofluid streams is painful when using 

purely signal-based approaches (nevertheless this pain has been taken in industrial practice all too 

often). 

The remarkable thing about the LIED approach is that a simulation engineer has a simple scheme 

for code generation but can also conveniently model both mechanics and thermo-fluid streams in a 

very robust manner. The corresponding Modelica Libraries prove this [15,16]. Both application 

domains are known to be rather difficult but LIED can even be applied to the challenging parts of 

these fields such as handling stiff contact mechanics or elaborate by-passes in complex thermal 

architectures. It is yet unclear for what other domains LIED is an attractive choice.  

Figure 11 attempts to qualitatively depict the trade-off between computational complexity and 

algorithmic complexity. LIED forms a very exposed point on a hypothetical Pareto front. This means 

that for a large number of applications it is a very attractive choice. 

 

Figure 11. Hypothetical Pareto front weighing computational complexity against algorithmic 

complexity for code generation. Distributed (object-oriented) DAE Systems enable a very effective 

compression of reality and very efficient models. The same compression is often infeasible to achieve 

with distributed ODE system but code is much easier to generate. LIED systems form an attractive 

compromise. The ultimate choice of the modeling approach depends however on the concrete 

application. 

It might be not unimportant to note that the actual discovery of the LIED approach happened 

not the way it was presented in this paper. Rather the opposite reflects reality: practical applications 

came first; generalization and theory came second. The approach was simply born out of the necessity 

(or desperation) to find robust solutions for aircraft environmental control systems and to handle 

gripping of stiff objects with robots.  

For this paper, this means that most of its statements are to be regarded as empirical. For some 

specific LIED systems, formal statements on structure and solvability could be made [14] but in 
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general, the statements on suitable system composition and code generation are merely observations 

from simulation practice and test implementations. Further solidification of the theoretical 

understanding is needed. This is a call to ourselves but also an invitation to the research community. 

 As the question marks in Table 3 indicate, there remains an open question whether the LIED 

approach can also be successfully applied for electrical systems so that it is of practical value. Clearly, 

kinetic energy plays a far less important role for electrical systems, also the formulation of potential 

energy requires a generalized form. Hence, the reasoning of this paper cannot be directly converted. 

Maybe extensions are needed, maybe it is infeasible? Again, this open question is an invitation to the 

research community.  

The primary motivation of this paper remains to raise awareness on this class of models and the 

possibilities it enables for the generation of simulation code. Although it states mostly observations, 

these observations seem valuable to share. 

Supplementary Materials: The following supporting information can be downloaded at the website of this 

paper posted on Preprints.org. 
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