
Article Not peer-reviewed version

Object-Oriented Modeling of Classic

Physical Systems using Linear Implicit

Equilibrium Dynamics

Dirk Zimmer *

Posted Date: 19 March 2024

doi: 10.20944/preprints202403.1139.v1

Keywords: Object-oriented modeling; Code Generation; Modeling principles

Preprints.org is a free multidiscipline platform providing preprint service that

is dedicated to making early versions of research outputs permanently

available and citable. Preprints posted at Preprints.org appear in Web of

Science, Crossref, Google Scholar, Scilit, Europe PMC.

Copyright: This is an open access article distributed under the Creative Commons

Attribution License which permits unrestricted use, distribution, and reproduction in any

medium, provided the original work is properly cited.

Article

Object-Oriented Modeling of Classic Physical

Systems using Linear Implicit Equilibrium Dynamics

Dirk Zimmer

German Aerospace Center (DLR), Germany; dirk.zimmer@dlr.de; Tel.: +49 8153 28 13 55

Abstract: Pairs of potential and flow variables have long been established for interfacing object-oriented

component models of physical systems. Recently, however, the use of triplets has been discovered for the

purpose of robust modeling. New and powerful Modelica libraries have been developed such as the DLR

ThermoFluid Stream library or the introduction of the Dialectic Mechanics library. Their use of triplets is

entangled with a special modeling approach that uses Linear Implicit Equilibrium Dynamics. In this paper, we

study the basic motivation of this approach, its benefits and drawbacks before we finally demonstrate how it

beneficially impacts the generation of corresponding simulation code.

Keywords: object-oriented modeling; code Generation; modeling principles

1. Introduction

Pairs of potential (effort) and flow variables have long been established for the equation-based,

object-oriented modeling of physical systems. For instance, Table 1 lists the interface currently in use

for the Modelica Standard Library [1] and Table 2 lists the interface typically used for Bond-graphs

[2,3].

Table 1. Connection pairs as used in the Modelica standard library

Domain potential variable flow variable

translational mechanics position: 𝑟 [m] force: 𝑓 [N]

rotational mechanics angle: 𝜑 [rad] torque: 𝜏 [Nm]

thermofluid streams thermodynamic state: Θ 1 mass-flow rate: 𝑚̇ [kg/s]

electrical voltage potential: 𝑣 [V] current: 𝑖 [A]
1 The thermodynamic state is a tuple. Its number of elements and their units may vary depending on the medium

that is modelled. For an ideal gas, one may use pressure and temperature: ([Pa], [K]).

Table 2. Connection pairs as defined by the bond-graph methodology

Domain effort flow

translational mechanics force: 𝑓 [N] velocity: 𝑣 [m/s]

rotational mechanics torque: 𝜏 [Nm] angular velocity: 𝜔 [rad/s]

hydraulics/pneumatics pressure: p [Pa] Volumetric flow: Φ [m3/s]

thermal Temperature: T [K] Entropy flow 𝑆̇ [J/Ks]

electrical voltage: 𝑢 [V] current: 𝑖 [A]

For bond-graphs, the product of these pairs always represents a flow of energy. Although

Modelica is less dogmatic, the flow of energy is still contained in the information of the connection

pair.

The sheer size of the Modelica Standard Library, its industry wide adoption and also the use

similar interfaces in a wide array of commercial tools provide empiric evidence that these pairs form

very useful interfaces. And indeed, these pairs provide an answer for what is necessary for the object-

oriented modeling of classic physical systems:

Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and
contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting
from any ideas, methods, instructions, or products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.

 2

The equations whose solution represent a physical system can be distributed among its

components

Thanks to these pairs, we can indeed distribute the equations of physical systems among

different components. Unfortunately, the very same pairs are also the root cause for many very

persistent problems encountered in the object-oriented modeling of physical systems.

• Irregular systems can be composed and are hard to diagnose.

• Very difficult handling of variable structure systems [4] (change of equations at run-time) due

to the high index of the Differential Algebraic Equation (DAE) system.

• Very difficult code generation for large-scale system simulation [5] since often the complete

equation system is needed for structural analysis

• Highly complex generation of simulation code requiring compilers that have high development

costs. (The decade spanning effort of OpenModelica [6] provides evidence)

All these problems will be diminished (as demonstrated in later chapters), when we fulfill what

is sufficient for object-oriented modeling:

Any valid combination of components (under rules of limited complexity) shall have a solution

representing a physical system.

This statement centers on the ability to make an a-priori statement on the solvability of the

modeled system and sadly (as we will see later), we can cannot fulfill this statement with the

presented pairs of effort and flow. Instead, this paper suggests to use triplets as in Table 3.

Table 3. Connection triplets suggested in this paper that will lead to a robustly solvable form.

Domain signal potential variable flow variable

trans. mechanics position: 𝑟 [m] velocity: 𝑣 [m/s] force: 𝑓 [N]

rot. mechanics angle: 𝜑 [rad] ang. velocity: 𝜔 [rad/s] torque: 𝜏 [Nm]

thermofluid str.
thermodynamic

state: Θ̂ 1
inertial pressure 𝑟 [Pa] mass-flow rate: 𝑚̇ [kg/s]

electrical ? ? ?
1 The same comment as to Table 1 applies. Here the thermodynamic state is also formulated based on the steady-

mass flow pressure 𝑝̂. More explanation on this from section 3 onwards.

Before we can aim to find a sufficient form and understand these triplets, we first need to

understand what actually led us to the necessary pairs of potential (effort) and flow variables. Hence,

we need to revisit the very basic fundamentals of classic physics.

2. The Principle of Stationary Action

The central question is what minimum interface is needed so that we can distribute the equation

of systems in classical physics. The natural starting point is hence the most fundamental law forming

the basis of all classical physics: the principle of stationary action also known as Hamilton‘s Principle.

It is based on the action 𝑆 for an element moving along a path 𝑞(𝑡):

𝑆 = ∫ 𝐿(𝑞(𝑡), 𝑞̇(𝑡)) 𝑑𝑡
𝑡𝑏

𝑡𝑎

= ∫ 𝑇(𝑞̇(𝑡)) − 𝑉(𝑞(𝑡)) 𝑑𝑡
𝑡𝑏

𝑡𝑎

The action is the integral of the Lagrangian 𝐿 over the timespan [𝑡𝑎, 𝑡𝑏]. The Lagrangian itself

can be expressed as the difference between kinetic energy 𝑇 and potential energy 𝑉. The principle

of stationary action states that:

𝜕𝑆

𝜕𝑞(𝑡)
= 0

This principle is the basis of classic physics because it is also fulfilled by the underlying quantum

physics although in a statistical manner as described by Feynman [7]. Yet for a sufficient large number

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 3

of quantum events, the expected value will be fulfilled with great precision and an assumption of

continuity can be made for macroscopic systems.

The principle of stationary action is here written for a conservative system. It would require

extensions for non-conservative systems but there is no need here to complicate matters. In any case,

the following literature may be advised [8–11] (chapter 20). A few points are however often

underrepresented and hence deserve discussion here.

The principle of stationary action is based on the Lagrangian 𝑇 − 𝑉. We see that a different sign

is applied for the kinetic energy 𝑇 than for all other forms of (potential) energy 𝑉. The kinetic energy

has thus a special role. Not only is its role special but also its form. The gradient of the kinetic energy

forms a continuous bijective function for the total domain (whether relativistic or not), meaning that

it has a well-defined inverse over the complete domain. This property is important for the discussion

of another question: is there always a solution for the principle of stationary action?

Given that we can assume no strict restrictions on the complexity of the potential 𝑉 (other than

having a derivative), it may seem unsolvable in the general case. Fortunately, the plot of Figure 1

indicates how to approach this problem.

Figure 1. This topological map illustrates the complexity of the action over time (x-axis) for a straight

path of constant velocity (y-axis). The potential 𝑉 has here been arbitrary chosen in this example and

the actual values are irrelevant. Relevant is that the complexity of the action is increasing over time.

This graph is a topological map of the action over time for paths of different constant velocity.

We recognize that in this (completely arbitrary) example, the action has become a very complex

function after a time-step of one second. However, for a small step of time, the action remains simple

and well-natured. The explanation is straight forward: no matter how complex 𝑉 is shaped, it takes

a motion through time and space to gather this complexity. Hence at 𝑡 = 𝑡𝑎, the well-natured kinetic

energy dominates the action.

This means we can reliably solve the principle of stationary action if the step in time 𝑡𝑏 − 𝑡𝑎 is

small enough. What is small enough? Under the assumption of continuity, there is only one answer:

𝑑𝑡. This leads us ultimately to the famous Euler-Lagrange equation and is also the explanation why

time derivatives are so useful in physics.

𝜕𝐿

𝜕𝑞
−

𝑑

𝑑𝑡

𝜕𝐿

𝜕𝑞̇
= 0

Now we see also why it is so important that the partial derivative of the kinetic energy has a

special form and a well-defined inverse. This ensures that the second term can always compensate

the first in an unambiguous way. Please note that such a general statement on solvability is extremely

helpful.

For illustration, let us now apply the Euler-Lagrange to the following example system for the

pressure wave of a fluid in a pipe. The derivative of our path: 𝑞̇(𝑡) represents the volume flow 𝑄̇.

Correspondingly the path 𝑞(𝑡) then represents the shift in volume 𝑄.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 4

• The kinetic energy is then defined as: T =
Iρ

2
Q̇2 with 𝜌 being the density and the inertance

defined by the geometry length 𝑠 and cross section 𝐴: I = ∫
ds

A

• The potential energy can be formulated by 𝑉 =
𝐾

2𝑄𝑟𝑒𝑓
 𝑄2 where 𝐾 is the bulk modulus and

𝑄𝑟𝑒𝑓 a reference volume.

The Lagrangian is now defined by:

𝐿 =
𝐼𝜌

2
𝑄̇2 −

𝐾

2𝑄𝑟𝑒𝑓
𝑄2

and we can apply the Euler-Lagrange equation which results in:

𝜕 (
𝐼𝜌
2

𝑄̇2 −
𝐾

2𝑄𝑟𝑒𝑓
𝑄2)

𝜕𝑄
−

𝑑

𝑑𝑡

𝜕 (
𝐼𝜌
2

𝑄̇2 −
K

2𝑄𝑟𝑒𝑓
𝑄2)

𝜕𝑄̇
= 0

Fortunately, many terms vanish when taking the partial derivative and the resulting equation is

a differential equation of second order that expresses the wave in the fluid based on its volumetric

shift:

𝑄
𝐾

𝑄𝑟𝑒𝑓
+ 𝐼𝜌𝑄̈ = 0

The elegance of the Euler-Lagrange equation is that it provides a solution of 𝑛 dimensions with

𝑛 equations for an underlying variational problem that is actually a 2𝑛 dimensional problem (please

note that one shall treat 𝜕𝑞 and 𝜕𝑞̇ as independent variables [11]).

This elegant “compression” is however working against the intent of object-oriented modeling:

for examples of higher dimensions, it will be very difficult to redistribute the equations to individual

components. Hence the result of Euler-Lagrange is mostly unsuited for object-oriented modeling.

Fortunately, there is an alternative form that can be achieved by the Legendre transformation

that transforms the Lagrangian 𝑇 − 𝑉 into the Hamiltonian 𝑇 + 𝑉. The stationary action principle

can now be reformulated for our example. For the Legendre transformation we require the

generalized momentums that are defined as

𝑝𝑖 =
𝜕𝐿

𝜕𝑞̇𝑖

For illustration, let us reiterate our previous example. Based on the former Lagrangian, we can

determine the generalized momentum 𝑝:

𝑝 =
𝜕𝐿

𝜕𝑞̇
=

𝜕(
𝐼𝜌
2

𝑄̇2 −
𝐾

2𝑄𝑟𝑒𝑓
 𝑄2)

𝜕𝑄̇
= 𝐼𝜌𝑄̇

Using 𝑝 to express the kinetic energy 𝑇 is then applied for composing the Hamiltonian 𝐻 =

 𝑇 + 𝑉:

𝐻 =
1

2

𝑝2

𝐼𝜌
+

𝐾

2𝑄𝑟𝑒𝑓
 𝑄2

Given the Hamiltonian, we can now apply the famous pair of Hamilton equations:

𝑑𝑞

𝑑𝑡
=

𝜕𝐻

𝜕𝑝

𝑑𝑝

𝑑𝑡
= −

𝜕𝐻

𝜕𝑞

In our example, these translate to:

𝑑𝑞

𝑑𝑡
= 𝑄̇ =

𝜕 (
1
2

𝑝2

𝐼𝜌
+

𝐾
2𝑄𝑟𝑒𝑓

𝑄2)

𝜕𝑝
=

𝑝

𝐼𝜌

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 5

𝑑𝑝

𝑑𝑡
= −

𝜕 (
1
2

𝑝2

𝐼𝜌
+

𝐾
2𝑄𝑟𝑒𝑓

𝑄2)

𝜕𝑞
= −

𝑄

𝜅𝑄𝑟𝑒𝑓

We now get 2𝑛 first order differential equations, based on generalized position and generalized

momentum. These equations express the same system as the previous solution derived by Euler-

Lagrange. (simply differentiate the first equation and eradicate 𝑑𝑝/𝑑𝑡 by substitution). Different

from the Euler-Lagrange solution, these equations can be nicely distributed among components,

especially if we reformulate them based on a corresponding pair. In our setting it is natural to choose

the volume flow 𝑄̇ = 𝑑𝑞/𝑑𝑡 and the pressure 𝑃 = 𝑑𝑝/𝑑𝑡 as pair. The corresponding components

are presented in Table 4, row 1 and 2.

Table 4. Examples of components formulated based on the pairs resulting from the Hamiltonian

equations. The variables forming the pair are marked in bold.

Component Symbol Equation

Fluid Inertance

𝑑𝑸̇

𝑑𝑡
𝐼𝜌 = Δ𝑷

Compressible volume

𝑑𝑷

𝑑𝑡

𝑄𝑟𝑒𝑓

𝐾
= −𝑸̇

Tank 1

]

𝑑𝑷

𝑑𝑡

𝐴

𝜌𝑔
= −𝑸̇

Flow resistance 2

𝜁
𝑸̇|𝑸̇|

𝑄̇𝑟𝑒𝑓
2

= Δ𝑷

1 𝐴 is the cross-section area of the tank and 𝑔 the gravitational constant. 2 𝑄̇𝑟𝑒𝑓
2 is a reference volume flow and

𝜁 is the quadratic friction coefficient.

We can then choose to model a different storage of potential energy such as gravitational

pressure. Even though all our derivations were done on conservative systems, the same pair can be

used to model non-conservative components such as the friction of a valve. These two additional

components are presented in Table 4, row 3 and 4.

Given these 4 components of Table 4 and the pair of effort and flow, we can now assemble a

more complex system and for instance model the example of 3 communicating vessels as in Figure 2.

Classic object-oriented modeling becomes functional.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 6

Figure 2. This diagram represents a model of three communication vessels. Gravitational pressure is

modeled at the tanks. Non-linear flow resistance is used to model the valve at the outlets. The

connecting pipes are modeled using inertances and compressible volumes.

In the corresponding simulation results (Figure 3) we can see the oscillation that result from the

natural parameters of water. As typical for many systems the exchange between potential and kinetic

energy is of high frequency.

Figure 3. Simulation result of the model of Figure 2, showing the 3 volume flows going through the

tank’s orifices. A sudden change of water level is imposed to the system a time 𝑡 = 1 to trigger the

low-frequency response.

3. From Necessary to Sufficient

We have seen that the well-known pairs of potential and flow variables can be derived from the

Hamiltonian form of the principle of stationary action (although not always in the exact same way as

for the hydraulic example above).

Different form the Lagrangian 𝑇 − 𝑉, the kinetic energy loses its special role in the Hamiltonian

𝑇 + 𝑉. Treating all energy forms equal may deceivingly suggest that energy flows are all what the

modelers needs (Bond graph modelling is a prime example of this fallacy). Yet, whereas each valid

Hamiltonian represents a sum of energy terms, not all sums of energy terms represent a valid

Hamiltonian. This leads to a serious problem for object-oriented modeling. Whereas the pairs are

necessary to redistribute the equations resulting out of a valid Hamiltonian, only very few

recombination possible by these pairs form a valid Hamiltonian. This implies that the modeler can

formulate non-physical systems too and modelers even do this on purpose (albeit often without being

fully aware of the consequences). For instance, let us consider the following recombination of

components as depicted in Figure 4.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 7

Figure 4. Modeling 3 communicating vessels without modeling the pipe just by the gravitational

pressure and the flow-resistance of the orifice. Note, that there is an algebraic non-linear equation

system to determine the pressure below the valves so that all flows are in balance.

Here the modeler has now completely removed the inertia and compressibility of water from

the model. This means that there is no representation of the kinetic energy anymore. We have

removed exactly the component that is required to formulate the principle of stationary action and

guarantee its solvability. Instead we now use the pairs to formulate a constraint problem in the

domain of energy. Whether this can be solved is in general undefined. And indeed, we have to solve

a non-linear equations system in this example to perform the simulation. In this example, the solution

could reliably be found during simulation time but in the general case no statement on solvability

can be given.

It is however important to recognize that modelers do such things (mostly) not out of

malevolence or ignorance but to solve relevant problems. The slight additional cost of solving the

non-linear equation system was rewarded in this example by the much higher gain of removing the

high frequency from the system enabling a very efficient simulation of the system (albeit significantly

altering the trajectory).

Figure 5. Simulation result of the model of Figure 4, showing the 3 volume flows going through the

tank’s orifices. In this simplified model the high frequency has been eliminated and the flow rate is

now dominated by the resistance.

Hence, what would we need to do to ensure solvability and also enable powerful modeling

approach? Essentially, we have to fulfill two criteria:

0 1 2 3 4 5 6 7 8
-60

-40

-20

0

20

40

60

80

1 2 3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 8

(a) Ensure that the kinetic energy is always sufficiently represented so that we can guarantee

solvability according to the steady-action principle.

(b) Enable the modeler to reduce the interaction between kinetic and potential energies to key points

in the system so that irrelevant high frequency behavior can be effectively suppressed.

For some domains, these two criteria can be met in a methodological sound manner by going

from a pair to a triplet.

Part of this triplet is a pair that expresses the kinetic energy. This pair is accompanied by a signal

that describes the non-linear configuration under which the kinetic energy can be exchanged. This

rather abstract picture is best described by concrete examples. One for thermo-fluid systems and one

for mechanical systems.

In the following we discuss the modeling of two domains using triplets.

3.1 Triplet Interface for Thermofluid Systems

Here is the triplet interface for thermo-fluid streams:

• 𝑟: inertial pressure (potential)

• 𝑚̇: mass-flow rate (flow)

• Θ̂: Vector representing the thermodynamic state of the medium (signal)

- 𝑝̂: steady-mass flow pressure

- ℎ̂: steady-mass flow enthalpy

- 𝑋: mass fractions

Key to understand this interface is the dynamic of the inertial pressure 𝑟. It represents the

pressure needed to accelerate a mass-flow which forms linear law based on the inertance [12,13] of

the fluid 𝐿:

𝑟 = 𝐿
𝑑𝑚̇

𝑑𝑡

The inertance 𝐿 is thereby independent of the thermodynamic state of the fluid and just defined

by the geometry of the flow with the length 𝑑𝑠 and cross section area 𝐴:

𝐿 = ∫
𝑑𝑠

𝐴

If we now enforce that the inertance law is part of every single component, we have fulfilled

criterion (a).

To fulfill criterion (b), we decompose the pressure into two components:

𝑝 = 𝑝̂ + 𝑟

The complement to 𝑟 is hence the newly defined steady-mass flow pressure 𝑝̂ For the steady-

state with a constant mass flow rate, 𝑟 will go to zero and 𝑝 = 𝑝̂, which explains its name.

A very elegant way to reduce the interaction points between potential energies and kinetic

energy is to use 𝑝̂ to form an approximation for the thermodynamic state Θ̂ of the fluid.

Furthermore, where it is not reasonable to mix pressure, it is feasible to provide mixing laws for 𝑝̂.

This enables an explicit downstream computation of Θ̂.

The kinetic energy will then only interact at the boundaries of streams which are either volume

elements or sources and sinks. At junctions, the kinetic energy of different streams may interact with

each other. Ultimately this means that a different spatial resolution is applied for the effects of 𝑟 than

for 𝑝̂. This assumption is in line with many modeling tasks and deviations are limited to rapid

transients where model uncertainty is typically very high. At steady mass flows there is no difference

which is important for most applications.

The resulting computational scheme is that all the non-linear computations regarding the

thermodynamic state including properties like viscosity, heat conductivity or density are performed

in explicit form downstream. This means that the signal Θ̂ is always computed from the source to

the sink. To ensure this, all circular flows need to contain at least one volume. A linear system then

computes the time derivative of all mass-flows. This system is formed by the equation for the pairs

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 9

of 𝑟 and 𝑚̇. It is guaranteed to be linear because of the characteristics of 𝐿 and it will be regular

since all inertances are strictly greater than zero.

The reader is advised to literature [14,15] to follow the above statements in detail. Revisiting our

example of section 2, there is fortunately a less complex replacement model. Since our models assume

constant density and viscosity, there is no need for the decomposition of 𝑝 and for the signal Θ̂. The

solution would (in this particular case) be equivalent to represent the inertance for each mass-flow

but we are free to neglect the compressibility. The corresponding diagram is shown in Figure 6 and

the simulation result in Figure 7. Also because each mass flow is represented by the sum of all of its

inertances, the frequency of the response is low.

Figure 6. For this particular model of the communicating vessels, the LIED approach has an

equivalent counterpart using conventional connectors. Modeling the inertia but leaving out the

compressibility does the trick here.

Figure 7. Modelling the communicating vessels by the sheer exchange of potential energy.

3.2 Triplet Interface for Mechanical Systems

It is possible to formulate a similar triplet to model multi-body mechanics:

• 𝑣: velocity (potential)

• 𝑓: force (flow)

• 𝑠: position (signal)

0 1 2 3 4 5 6 7 8

-40

-20

0

20

40

60

1 2 3

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 10

Where 𝑣 and 𝑠 represent positions and velocities in a generalized way for both translatory and

rotational motion.

The product of velocity and force thereby represents a flow of energy which will contain also

the kinetic energy. To ensure criterion (a), we simply must enforce that there are no massless

components or (by the means of connection rules) that there is at least a mass representing all degrees

of freedom of a kinetic chain.

To fulfill criterion (b), we have to address the elements of a multi-body system that define the

degrees of freedom for the system: the joint elements. These are typically revolute joints or prismatic

joints but exist in various combinations that define a different set of positional states. Naturally, the

velocity is defined as direct derivative of the position and the acceleration as second derivative:

𝑑𝑣

𝑑𝑡
=

𝑑2𝑠

𝑑𝑡2

In section 3.1, we have reduced the interaction of kinetic and potential energy by lowering the

spatial resolution of the kinetic part. For multi-body mechanics we have to reduce the temporal

resolution of the kinetic part. We can do so by applying a first-order filter:

𝑑𝑣

𝑑𝑡
𝑇𝐷 =

𝑑𝑠

𝑑𝑡
− 𝑣

Using the time constant 𝑇𝐷 , we can now effectively limit the occurring frequencies of the

mechanical system (at the cost of becoming more energy dissipative) without modifying the steady-

state solution.

Just for the sake of quick illustration: Figure 8 from [16] shows the dynamics of a lightweight

object moved in clamp modeled by a very stiff spring. The figure simply illustrates how the

oscillatory dynamics is approximated with a replacement dynamics leading to the same (quasi)

steady-state solution.

Figure 8. Penetration depth into the left claw represented by an elasto-gap, for the choice of two

different time constants, taken from [16]. Both agree on the time-averaged solution. TC of the legend

represents 𝑇𝐷. The dots of the blue result from a decaying high-frequent oscillation. The red line is

the low frequency approximation.

0 1 2 3 4

-0.102

-0.101

-0.100

-0.099

-0.098

Time [s]

TC = 1 microsecond TC = 1 millisecond

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 11

Using the triplet, we can formulate a difference between the motion in the elastic regime 𝑑𝑠/𝑑𝑡

and the velocity in the kinetic regime 𝑣. Because of this separation of two regimes, the author has

denoted it as dialectic mechanics. The interface enables again that all non-linear equations regarding

the geometrical configuration can be formulated in explicit form from the root of the kinematic chain

to its end by the signal 𝑠. To ensure this tree structure, all kinematic loops must contain a flexible

element. The pair of 𝑣 and 𝑓 then sets up a linear system of equations for the kinetic energy.

First implementations and analysis of this modeling approach are presented in [16,17]. Models

using this interface are especially suitable for the simulation of contacts and limited joints also under

hard-real time constraints. We expect many future applications in robotics and related tasks.

4. Triplets and Object-Oriented Modeling

The two triplets presented in section 3 can be directly transformed into code of the equation-

based, object-oriented language Modelica. Table 5 contains the corresponding code. For both

domains, corresponding Modelica libraries have been developed.

Table 5. The triplets as represented in the Modelica language for equation-based modeling.

Thermofluids Mechanics
connector Outlet
 output1 Medium.ThermState state
 “thermodynamical state”;
 Pressure r “inertial pressure”;
 flow MassFlowRate m_flow
 “mass flow rate”;
end Outlet;

connector FlangeOn1DTranslatory2
 output1 Position s
 “positional signal”;
 Velocity v “(kinetic) velocity”;
 flow Force f “force”;

end FlangeOn1DTranslatory;

1 For each connector with an output there is also a counterpart with an input. Two sexes of connectors are thus

needed. Only one is shown. The flow variable is marked in Modelica by the keyword flow. An unmarked

variable is regarded as potential variable. 2 For the mechanical connector also a variant with two pairs of effort

and flow is presented in [16]. This will be however discontinued in favor of the presented triple.

The DLR ThermoFluid Stream Library [15] is a fully functional open-source that is already in

use both in industry and academia. Figure 9 shows an exemplary model diagram of the thermal

architecture of an electric car. We can clearly see that a complex architecture is nicely composed out

of its individual components. The end-user is not directly confronted with the triplets. The modeler

simply needs to take care about the connection rules that all loops contain at least one volumetric

element.

Figure 9. Exemplary model diagram taken from [15] of the thermal architecture of an electric car.

Different cooling loops, including a vapour cycle can be combined to cool the power electronics,

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 12

battery and passenger compartment of the car. Certain components are marked with a star which

is not part of the original diagram. The meaning of this marking is explained in section 6.

The library for Dialectic Mechanics is still under internal development and testing. Figure 10

shows the model diagram of a kinematic loop for a hypothetical landing gear kinematic. This

demonstrates that also here, complex systems can be composed in an object-oriented fashion and the

end-user simply has to uphold the connection rules. The kinematic loops a closed by flexible elements

and each chain contains at least one mass.

Figure 10. Modelica Diagram (left) of a landing gear kinematic (right) using the Dialectic Mechanics

library. The interface of the LIED approach leads to a nice decomposition into ideal components.

Regarding the star marking, the same comment as in Figure 9 applies.

Using Modelica for these examples, a complete DAE system is built based on the composed

models. The complete system of equations is then flattened (meaning that all equations are collected

in a global set) and then state variables are selected and symbolic index reduction (as for example in

[18]) is performed to transform the DAE into a set of Ordinary Differental Equations (ODEs). This

typically results in a larger piece of simulation code where all variables are globally collected.

5. Triplets and Linear Implicit Equilibrium Dynamics

We have derived the triplet interface out of the motivation to have a robust modeling interface

that ensures solvability and yet enables effective modeling by the suppression of high frequency

behavior (that occurs in real physical systems). It is remarkable that for both cases the resulting

computational structure of the complete system is of a particular form that we define here as Linear

Implicit Equilibrium Dynamics (LIED).

A DAE system with potential state derivatives 𝒙̇, time 𝑡 and algebraic variables 𝐰

𝟎 = 𝑭(𝒙̇, 𝒙, 𝐰, 𝑡)

is defined as LIED system when it can be transformed into the following form:

[
𝐰𝐸
𝒙̇𝐸] = g(𝒙𝐼 , 𝒙𝐸 , 𝑡)

𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) [
𝐰𝐼
𝒙̇𝐼] = f(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸 , 𝑡)

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 13

We see that both the algebraic variables as well as the state derivatives can be split into a fully

explicit part (𝒙̇𝐸; 𝐰𝐸) and a part (𝒙̇𝐼; 𝐰𝐼) with a linear system in implicit form expressed by the matrix

𝐀. Furthermore, the following conditions shall hold true:
• 𝒙̇𝐸 ∩ 𝒙̇𝐼 ⊆ 𝒙̇
• 𝐰𝐸 ∩ 𝐰𝐼 ⊇ 𝐰
• 𝒙̇𝐸 ∩ 𝒙̇𝐼 ∩ 𝐰𝐼 ⊇ 𝒙̇
• 𝒙̇𝐸 , 𝒙̇𝐼 , 𝐰𝐸 , 𝐰𝐼 are all disjoint

These conditions essentially mean that it is allowed to perform certain symbolic mechanism of

index reduction such as the dummy derivative method [18] originating from Pantelides [19]. Using

this method, states variables of 𝒙 can be transformed to algebraic variables in 𝐰𝐼 and further

derivatives may be added to 𝐰𝐼 or 𝐰𝐸. In practice this is important because it means that the linear

implicit dynamics can be expressed by far fewer states than suggested in the original DAE

formulation.

To get a practical feeling for this LIED form, let us discuss the decomposition of the linear and

non-linear part, for the presented triplets.

• For thermofluid streams, the signal for the thermodynamic state Θ̂ will be part of 𝐰𝐸. States

associated with this state such as the temperature of a volume will be part of 𝒙𝐸. A subset of the

flow variables 𝑚̇ will form 𝒙𝐼. The subset is chosen in such a way that all streams are described

by 𝒙𝐼 in a non-redundant way. The redundant mass flows as well as the inertial pressures 𝑟

become part of 𝐰𝐼 .

• For dialectic mechanics, the signal for the position will be part of 𝐰𝐸 . The potential and flow

variables of the interface 𝑣 and 𝑓 will be part of 𝐰𝐼. The state vector 𝒙𝐸 is typically empty.

The members of 𝒙𝐼 are chosen from the internal variables in such a way that the motion of the

kinematic chain is described in a non-redundant way. For each degree of freedom its kinetic

velocity and its position form state variables in 𝒙𝐼.

6. How to Create Simulation Code for LIED Systems?

The original intention of the LIED approach was simply to ensure that no non-linear system is

created in implicit form that spans across the components and hence a robust solution of the model

evaluation could be taken for granted, given robust component models. When we started with it, we

expected it to be the only notable change from other DAE models in Modelica and that all other

features of a of code generation (as briefly outlined at the end of section 4) would basically remain

untouched.

However, over time, it was gradually recognized that LIED systems are much simpler to transfer

to simulation code than general DAEs. Let us go through these observed simplifications one-by one:

• Because we avoid the creation of non-linear equation systems, we do not need a non-linear

equation system solver anymore.

• For the same reason, constraint equations among potential states cannot be non-linear and hence

no dynamic state selection is needed [20]

• Even stronger: we can select the states on component level. For example, the stars in Figure 9

and 10 mark those components that define states in 𝒙𝐼.

• Because we can select the states on component level, this means that the dummy-derivative

method can be applied also on component level before system composition.

• Since the goal of the linear equation system is to have a synchronized replacement dynamics

towards the equilibrium, we know suitable tearing variables for this system. These will be the

linear state derivatives: 𝒙̇𝐿 or at least a subset of it.

• The residual for a tearing variable can be attributed to the same component as the tearing

variable.

The terminology of the last two points may require further explanation. A tearing variable is a

variable that can be used to probe the reaction of an algebraic system which is assessed by a

corresponding residual. If the system is linear: 𝐌𝐰 = 𝐛, the probing can be used to construct M and

w and find the solution for w.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 14

All of the points above represent observations resulting from modeling many components and

system examples using the LIED approach. However, these observations have profound

implications. For each component we know:

• the set of pairs of state-variables and their derivatives it adds to the system.

• the set of pairs of tearing and residual variables it adds to the system.

If this is the case, we can basically causalize everything already on the component level. In

concrete terms, this means for each component:

• we stipulate the states

• we stipulate the tearing variables of the linear system and the corresponding residuals

• we perform the dummy derivative method on those equations where necessary.

• we define the causality of the interface variables

• we causalize all equations into assignments in a particular order

• we group the list of assignments depending on their dependence of the inputs.

Practical experience so far indicates that performing index reduction to transform to the LIED form

can be performed in a very methodical and deterministic manner. It is thus far easier to generate

simulation code for the LIED modeling approach than it would be for general higher-index DAEs.

Neither there is a need for global flattening anymore nor are elaborate heuristics needed for the

selection of state or tearing variables. Indeed, the generation of simulation code is so easy that a direct

implementation in C++ becomes feasible. To demonstrate this, the following code excerpts illustrate

the implementation for a thermofluid stream library (using idealized water) in C++.

First, we have to define the interface. This is naturally more tedious than in a language like

Modelica because there is no direct support in the C++ language. Yet, it is feasible and after all,

interfaces only need to be defined once:

Listing 1. ThermoFluid Interface in C++

class ThermodynamicStateOut: public Signal{

 public:

 double p; //pressure [Pa] (steady mass flow)

 double h; //enthalpy [J] (steady mass flow)

 […]

};

class ThermodynamicStateIn: public ThermodynamicStateOut

{

 public:

 void connect(ThermodynamicStateOut* o);

 […]

};

class MassFlowOut : public Signal{

 public:

 double flow; //mass flow rate [kg/s]

 double flow_der; //derivative of mass flow rate [kg/s2]

 […]

};

class MassFlowIn : public MassFlowOut{

 public:

 void connect(MassFlowOut* o);

 […]

};

class InertialPressureOut : public Signal{

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 15

 public:

 double r;

 […]

};

class InertialPressureIn : public InertialPressureOut

{

 public:

 void connect(InertialPressureOut* o);

 […]

};

class ThermalPlugOut : public Signal{

 public:

 ThermodynamicStateOut state{};

 MassFlowOut m{};

 InertialPressureIn inertial{};

 […]

};

class ThermalPlugIn : public Signal{

 public:

 ThermodynamicStateIn state{};

 MassFlowIn m{};

 InertialPressureOut inertial{};

 void connect(ThermalPlugOut* o);

 […]

};

class Connection {

 public:

 Connection(ThermalPlugOut* o,

 ThermalPlugIn* i) {

 i->connect(o);

 };

};

typedef std::vector<Connection> Connections;

To best understand the interface, let us look at the classes ThermalPlugOut for a nominal outlet

flow and at ThermalPlugIn for a nominal inlet flow first. These contain the same 3 components as

the corresponding Modelica connector of the DLR ThermoFluid Stream library.

There are two notable differences however. In Modelica, inertial pressure and mass flow were

not causalized signals as in the C++ implementation. Also the mass-flow signal in the C++ library

consists of the mass-flow rate and its derivative. In Modelica, this is not necessary since symbolic

differentiation can be applied by the Modelica compiler. Using this interface, we can now implement

a component such as the pressure drop:

Listing 2. Implementation of a pressure drop component

class PressureDrop : public Component{

 public:

 ThermalPlugIn inlet;

 ThermalPlugOut outlet;

 PressureDrop(double v_ref,double dp_ref)

 void evalState();

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 16

 void evalFlow();

 void evalInertial();

 double v_ref;

 double dp_ref;

 virtual void metainfo(Meta& meta)

 override;

 […]

};

First, we declare our interface for outlet and inlet, then we have to implement three methods.

The first is evalState and computes the thermodynamic state downstream:

Listing 3. Calculation of the pressure drop by the corresponding method

void PressureDrop::evalState() {

 const double v =

 inlet.m.flow / density(inlet.state);

 const double v_norm = v/v_ref;

 const double dp = 0.5*dp_ref*

 (v_norm + v_norm*v_norm);

 outlet.state.h = inlet.state.h;

 outlet.state.p = inlet.state.p – dp;

}

The second method is evalFlow to ensure what flows in is what flows out. However, this

constraint is restated for the derivative. This is because the dummy derivative method is applied on

the component level.

Listing 4. Trivial implementation of evalFlow

void PressureDrop::evalFlow() {

 outlet.m = inlet.m;

}

The third one is evalInertia that implements the law for the inertance as in the ThermoFluid

Stream Library.

Listing 5. Calculation of the inertial pressure

void PressureDrop::evalState() {

 const double v =

 inlet.m.flow / density(inlet.state);

 const double v_norm = v/v_ref;

 const double dp = 0.5*dp_ref*

 (v_norm + v_norm*v_norm);

 outlet.state.h = inlet.state.h;

 outlet.state.p = inlet.state.p – dp;

}

In similar manner the other components of our introductory example can be implemented. Each

of these components declares its interfaces, defines and implements methods representing the

computational blocks. For all these components, meta-information must be collected by a dedicated

virtual method to register state and tearing variables as well as to track the signal dependence of the

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 17

computing blocks. Finally, we can compose the introductory example of section 2 and 3 directly in

C++:

Listing 7. Total system composition

class ComVessels: public Component {

public:

 OutTank t1{};

 InTank t2{};

 InTank t3{};

 Splitter s{};

 PressureDrop p1{};

 PressureDrop p2{};

 PressureDrop p3{};

 Connections con {

 Connection{&t1.outlet, &p1.inlet},

 Connection{&p1.outlet, &s.inlet},

 Connection{&s.outlet1, &p2.inlet},

 Connection{&p2.outlet, &t2.inlet},

 Connection{&s.outlet2, &p3.inlet},

 Connection{&p3.inlet, &t3.inlet},

 };

 […]

};

Regarding that C++ is a statically compiled imperative general-purpose language, the final result

is astonishingly close to what a modeler is used to from a domain specific language like Modelica.

When an instance of the class is coupled to a simulator, the meta information of all its

computational methods is collected as well as the structural information regarding the signals, the

states and the tearing variables for the linear equation system. Then the methods are put into right

order for complete or partial model evaluation. The full model evaluation is thus simply a list of

method calls that are called in their respective order. The linear implicit system defined by

𝐀(𝒙𝐼 , 𝒙𝐸 , 𝐰𝐸) is reconstructed by using the tearing variables and their residuals for probing. This

requires a number of partial model evaluations.

This also means that all component code is statically compiled but the total system composition

is performed at run-time. Advanced tasks such as variable structure systems would thus be

comparably easy to achieve.

This is also the purpose of this code demonstration. It is not suggesting that we should use C++

as modeling language like Modelica but to highlight that for a certain class of models the object-

oriented modeling code could (and maybe should) be translated to object-oriented imperative code

that can be statically compiled even before total system composition. This would avoid the flattening

of all equations before code generation and help to overcome many limitations of current Modelica

compilers with respect to scalability.

7. Conclusions

This paper started with a very fundamental consideration about the solvability of general

formulations for classic physical systems, then presented a new interface for the object-oriented

modeling and ended up showing a simplified generation of simulation code potentially suitable to

handle challenges such as large-scale system simulation or variable structure systems. It is quite

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 18

remarkable that the two derived criteria for handling the kinetic energy have such practical

consequences for object-oriented modeling.

Indeed, that a more restrictive class of modeling enables a simpler compilation scheme is neither

new nor surprising. The same can be said about the many conventional signal-based modeling

schemes or simple modeling schemes as Forrester’s System Dynamics [21]. Typically, the

disadvantage is that the easier generation of simulation code has to be paid by an inferior modeling

approach and indeed modeling complex mechanics or thermofluid streams is painful when using

purely signal-based approaches (nevertheless this pain has been taken in industrial practice all too

often).

The remarkable thing about the LIED approach is that a simulation engineer has a simple scheme

for code generation but can also conveniently model both mechanics and thermo-fluid streams in a

very robust manner. The corresponding Modelica Libraries prove this [15,16]. Both application

domains are known to be rather difficult but LIED can even be applied to the challenging parts of

these fields such as handling stiff contact mechanics or elaborate by-passes in complex thermal

architectures. It is yet unclear for what other domains LIED is an attractive choice.

Figure 11 attempts to qualitatively depict the trade-off between computational complexity and

algorithmic complexity. LIED forms a very exposed point on a hypothetical Pareto front. This means

that for a large number of applications it is a very attractive choice.

Figure 11. Hypothetical Pareto front weighing computational complexity against algorithmic

complexity for code generation. Distributed (object-oriented) DAE Systems enable a very effective

compression of reality and very efficient models. The same compression is often infeasible to achieve

with distributed ODE system but code is much easier to generate. LIED systems form an attractive

compromise. The ultimate choice of the modeling approach depends however on the concrete

application.

It might be not unimportant to note that the actual discovery of the LIED approach happened

not the way it was presented in this paper. Rather the opposite reflects reality: practical applications

came first; generalization and theory came second. The approach was simply born out of the necessity

(or desperation) to find robust solutions for aircraft environmental control systems and to handle

gripping of stiff objects with robots.

For this paper, this means that most of its statements are to be regarded as empirical. For some

specific LIED systems, formal statements on structure and solvability could be made [14] but in

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 19

general, the statements on suitable system composition and code generation are merely observations

from simulation practice and test implementations. Further solidification of the theoretical

understanding is needed. This is a call to ourselves but also an invitation to the research community.

 As the question marks in Table 3 indicate, there remains an open question whether the LIED

approach can also be successfully applied for electrical systems so that it is of practical value. Clearly,

kinetic energy plays a far less important role for electrical systems, also the formulation of potential

energy requires a generalized form. Hence, the reasoning of this paper cannot be directly converted.

Maybe extensions are needed, maybe it is infeasible? Again, this open question is an invitation to the

research community.

The primary motivation of this paper remains to raise awareness on this class of models and the

possibilities it enables for the generation of simulation code. Although it states mostly observations,

these observations seem valuable to share.

Supplementary Materials: The following supporting information can be downloaded at the website of this

paper posted on Preprints.org.

Funding: This research received no external funding.

Acknowledgments: The author wants to thank Prof. Martin Otter for additional background on Hamilton’s

principle and a review of the LIED definition. Furthermore the author expresses his gratitude to Modelica

Community and the many though-provoking and encouraging discussions in the aftermath in the context of this

research.

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. P. Fritzson, Principles of Object-Oriented Modeling and Simulation with Modelica 3.3, 2nd ed., IEEE Press,

Piscataway, New Jersey, 2014, pp. 1256.

2. Cellier, F.E. (1991) Continuous System Modeling. Springer Verlag New York. 755p.

3. Karnopp, D.C., D.L. Margolis, R.C. Rosenberg (2006), System Dynamics: Modeling and Simulation of

Mechatronic Systems. 4th Edition, John Wiley&Sons, New York, 576p.

4. Zimmer, D. (2010), Equation-Based Modeling of Variable Structure Systems PhD Dissertation, ETH Zürich,

219 pages.

5. Braun, Willi et al. “Solving large-scale Modelica models: new approaches and experimental results using

OpenModelica.” International Modelica Conference (2017).

6. Fritzson, Peter A. et al. “The OpenModelica Integrated Modeling, Simulation, and Optimization

Environment.” Proceedings of The American Modelica Conference 2018, October 9-10, Somberg

Conference Center, Cambridge MA, USA (2019)

7. Feynman, Richard P. (1942). Laurie M. Brown (ed.). The Principle of Least Action in Quantum Mechanics.

PhD Dissertation, Princeton University. World Scientific (with title "Feynman's Thesis: a New Approach to

Quantum Theory") (published 2005). ISBN 978-981-256-380-4.

8. Georg Hamel, Theoretische Mechanik 1949 (Reprint 1978)

9. Torby, Bruce (1984). "Energy Methods". Advanced Dynamics for Engineers. HRW Series in Mechanical

Engineering. United States of America: CBS College Publishing. ISBN 0-03-063366-4.

10. Landau LD and Lifshitz EM (1976) Mechanics, 3rd. ed., Pergamon Press. ISBN 0-08-021022-8.

11. Pennrose, R., The Road to Reality. Vintage Books, New York, 2004.

12. B.S. Massey, Mechanics of Fluids, Chapman & Hall. ISBN 0-412-34280-4, 1989.

13. C.E. Brennen, Internet Book on Fluid Dynamics, Dankat Publishing, Pasadena, California, USA, 2015.

14. Zimmer, D. (2020), Robust Object-Oriented Formulation of Directed Thermofluid Stream Networks .

Mathematical and Computer Modelling of Dynamic Systems, Vol 26, Issue 3.

15. Zimmer, D., N. Weber, M. Meißner (2022) The DLR ThermoFluid Stream Library. MDPI Electronics -

Special Issue.

16. Zimmer, D., C. Oldemeyer (2023). “Introducing Dialectic Mechanics”. Proceedings of the 15th International

Modelica Conference, Aachen.

17. Oldemeyer, C., D. Zimmer (2023). “Dialectic Mechanics: Extension for Hard Real-time Simulation”.

Proceedings of the 15th International Modelica Conference, Aachen.

18. Mattsson, S.E., Gustaf Söderlind (1993). “Index Reduction in Differential-Algebraic Equations Using

Dummy Derivatives” In: SIAM Journal on Scientific Computing 1993 14:3, 677-692

19. Pantelides, C. (1988), The consistent initialization of differential-algebraic systems, SIAM J. Sci. Statist.

Comput., 9 (1988), 213–231

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

 20

20. Sven Erik Mattsson, H. Olsson, H. Elmqvist (2000) “Dynamic Selection of States in Dymola”. Proceedings

of Modelica Workshop 2000.

21. Junglas, P. (2016), Causality of System Dynamics Diagrams, SNE Simulation Notes Europe 26/3, 147-154

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those

of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s)

disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or

products referred to in the content.

Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 19 March 2024 doi:10.20944/preprints202403.1139.v1

