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Abstract: Background: Amyloid beta peptides (Aβ) have been identified as the main pathogenic agents in 

Alzheimer’s disease (AD). Soluble Aβ oligomers, rather than monomer or insoluble amyloid fibrils, show 

membrane-binding capacity to red blood cells (RBCs) and trigger several morphological and functional 

alterations in RBCs that can result in impaired oxygen transport and delivery. Since bioactive lipids have been 

recently proposed as potent protective agents against Aβ toxicity, we investigated the role of sphingosine-1-

phosphate (S1P) in signaling pathways involved in the mechanism underlying ATP release in A-treated RBCs. 

Methods: In RBCs following different treatments, ATP, 2,3 DPG, cAMP levels, and caspase 3 activity were 

determined by spectrophotometric and immunoassay. Results: S1P rescued the inhibition of ATP release from 

RBCs triggered by A through a mechanism involving  caspase-3 and restoring 2,3 DPG and cAMP levels 

within the cell. Conclusions: These findings reveal the molecular basis of S1P protection against Aβ in RBCs 

and suggest new therapeutic avenues in AD. 
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1. Introduction 

Sphingosine-1-phosphate (S1P) is a potent lipid mediator that performs several roles [1]. 

Sphingosine kinase 1 (Sphk1) or sphingosine kinase 2 produce S1P from its precursor sphingosine; 

meanwhile, S1P phosphatase and S1P lyase (Sgpl) revert into sphingosine and 2-hexadecenal and 

phospho-ethanolamine, respectively [2]. Red blood cells (RBCs) uptake S1P [3–5], while S1P may also 

be produced within the cells through Sphk1 [2]. Since RBCs contain Sphk1 but no S1P-degrading 

enzymes [6], S1P is abundantly stored in RBCs [7], as well as in platelets [8] and the endothelium 

[9,10]. S1P performs several functions and regulates many cellular processes, including cell growth, 

proliferation, migration, and apoptosis [11–14]. In recent papers, S1P has been discussed concerning 

the RBC adaptation mechanism to SARS-COVID-19 infection [15]. In RBCs, S1P promotes 

deoxygenated haemoglobin (deoxyHb), which anchors to band 3, the most abundant membrane 

protein in RBCs, thereby increasing glycolysis flux, 2,3-diphosphoglycerate (2,3 DPG) levels [16], and 

ATP release [17]. RBCs release ATP under reduced oxygen tensions and following deformation, to 

modulate vasodilation [18]. The pathway underlying ATP release from RBCs involves several 

proteins, such as G proteins, adenylyl cyclase (AC) and cyclic AMP-dependent protein kinase A [18], 

which are a cystic fibrosis transmembrane conductance regulator and protein pannexin, respectively 

[19,20]. Alzheimer's disease (AD) is a pathology characterised by senile plaques in several regions of 

the central nervous system (CNS), which are frequently correlated with areas of neurodegeneration 

[21]. Amyloid beta (Aβ) peptides, which are major protein components in the plaques, consist of 39–

43 amino acid peptides that originate from a more significant transmembrane protein, amyloid 

precursor protein (APP).  Aβ neurotoxicity has been associated with peptide self-aggregation, which 

leads to the formation of amyloid-like fibrils [22] and eventually to neuronal cell death through 
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apoptosis. However, recent studies have shown that soluble forms of Aβ exhibit stronger 

neurotoxicity, and in the monomeric form, Aβ may be responsible for the neurodegeneration 

observed in AD [23,24]. A has been found in blood at nanomolar concentrations and is abundantly 

produced by platelets [25]. RBCs encounter A peptides at the luminal surface level of brain 

capillaries [26] and seem to only interact with monomeric A peptides [27]. A alters RBC metabolism 

and induces RBC death [28–34] through a signaling pathway involving protein kinase C [35,36]. 

Evidence from epidemiological data indicates a close association between vascular and AD pathology 

[37]. However, experimental studies suggest that Aβ can reduce cerebral blood flow (CBF), inducing 

neurovascular dysfunction and increasing the brain's susceptibility to ischemia [38]. Therefore, we 

are interested in determining whether RBCs contribute to the AD pathogenesis. Previous studies 

have reported decreased S1P levels in AD tissues and plasma [39,40]. S1P protects neuronal cells from 

apoptosis [41], notably in response to A [42]. Moreover, a recent paper demonstrated that S1P 

abrogates neuronal Ca2+ dyshomeostasis induced by toxic Aβ cells [43].  

Based on the importance of vascular dysfunction in AD pathology, in this study, we investigated 

the protective role of S1P against A peptides on ATP release in RBCs. 

2. Results 

2.1. Protective Role of Sphingosine-1-Phosphate on ATP Release 

It is known that RBCs can readily uptake exogenous S1P, up to 5 μmol, l−1 in an in vitro system 

[3]. Firstly, we assessed whether S1P affected the mechanism responsible for ATP release from RBCs. 

Here, RBCs were treated at high and low oxygen tensions with S1P at concentrations of 0.1 and 

0. M for 24 h. The ATP values were significantly higher for control cells with S1P at 0.5 M 

compared to 0.1 M (Figure 1A). When 0.1 M A was added to RBCs at low and high oxygen 

tensions for 24 hours, it inhibited the release of ATP from RBCs at the low oxygen tension (Figure 

1B), as previously reported [31]. Next, to verify the protective role of S1P against A, S1P was pre-

incubated with RBCs for 30 min before A exposure at a low oxygen tension. As shown in Figure 1B, 

ATP values were fully restored in the presence of 0.5 M S1P, with a slight protective effect at 0.1 M. 

It is known that caspase-3 is involved in the mechanism responsible for the inhibition of ATP release 

from RBCs by A [31]. Next, we examined whether the protective effect of S1P against Aβ was 

mediated by caspase 3. Pre-treatment of RBCs exposed to A with a caspase-3 inhibitor, i.e., Z-DEVD-

FMK, was able to rescue ATP levels back to control levels (Figure 1B), evidencing the involvement of 

caspase-3 in the protective mechanism elicited by S1P.  In RBCs, it has been shown that ATP release 

is linked to a pathway including Gi and adenylyl cyclase (AC) [18]. Mastoparan 7, an activator of Gi, 

was used to clarify the involvement of the Gi-related pathway in the protective role of S1P against 

A. As reported in Figure 2, in the experiments with mastoparan 7, ATP release values remained 

similar between RBCs in the presence and absence of S1P, demonstrating that Gi proteins do not 

mediate S1P action. 

A 
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Figure 1. (A) Effect of sphingosine-1-phosphate (S1P) on ATP release in oxygenated (white) and 

deoxygenated (black) red blood cells (RBCs). Values are presented as the mean ± SD (N = 5). *p < 0.05 

compared with control. (B) Protective role of S1P against amyloid beta (A) peptides Values are 

presented as the mean ± SD (N = 5). #p < 0.05 compared with deoxygenated cells, *p < 0.05 compared 

with A. 

 

Figure 2. Effect of mastoparan 7 (10 µM) on ATP release from RBCs. Values are presented as the mean 

± SD (N = 6). *p < 0.05 compared with A cells. 

2.2. Effect of Sphingosine-1-Phosphate on the Accumulation of cAMP  

Then, we investigated whether cAMP was involved in the protective effect of S1P against A in 

deoxygenated RBCs. Here, in deoxygenated RBCs treated for 24 h with S1P alone at 0.1 and 0. M, 

cAMP values were significantly higher for control cells treated with S1P at 0.5 M. As previously 

reported [18], cAMP levels in RBCs are significantly higher when the cells are deoxygenated 

compared to oxygenated conditions (Figure 3A). Next, further, to verify the protective role of S1P 

against A, S1P was pre-incubated with RBCs for 30 min before A exposure at low oxygen tension. 

As shown in Figure 3B, cAMP values were fully restored in the presence of 0.5 M S1P, with no effects 

observed at 0.1 M. Pre-treatment of A-exposed RBCs with a caspase-3 inhibitor, i.e., Z-DEVD-FMK, 

rescued cAMP levels to those shown by control cells, thereby demonstrating the involvement of 

caspase-3 in the protective mechanisms elicited by S1P.  
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Figure 3. (A) Effect of S1P on cyclic adenosine monophosphate (cAMP) levels in deoxygenated RBCs 

(black). Values are presented as the mean ± SD (N = 5). *p < 0.05 compared with control. (B) Protective 

role of S1P against A in deoxygenated (black) RBCs. . Values are presented as the mean ± SD (N = 5). 

#p < 0.05 compared with deoxygenated cells, *p < 0.05 compared with A. 

2.3. Effect of Sphingosine-1-Phosphate on 2,3 DPG Levels 

When RBCs were treated with A for 24 h, the 2,3 DPG levels observed in the deoxygenated 

RBCs were significantly reduced compared to the control cells (Figure 4). S1P alone at 0.5 M 

increased 2,3 DPG levels compared to the control, demonstrating that S1P could increase metabolic 

fluxes through glycolysis to generate 2,3-BPG, as previously reported [16]. In RBCs pre-incubated for 

30 min with S1P at 0.5 M before A, the 2,3 DPG levels were significantly higher than those shown 

by the A-treated cells. Pre-treatment of A-A-exposed RBCs with Z-DEVD-FMK fully restored the 

2,3 DPG levels, thereby demonstrating that, among other mechanisms, caspase is involved in the 

protective mechanism elicited by S1P. 
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Figure 4. Effect of S1P treatment on 2,3-diphosphoglycerate (2,3 DPG) levels in deoxygenated RBCs. 

Values are presented as the mean ± SD (N = 5). *p < 0.01 compared with control deoxygenated cells. 

#p < 0.01 compared with A-treated cells. 

2.4. Effect of Sphingosine-1-Phosphate on Caspase-3 Activity 

Band 3 degradation by caspase-3 has been suggested to induce cdb3/deoxyHb binding site 

disruption in RBCs [29,30]. Cdb3/deoxyHb binding activated the pathway responsible for ATP 

release from deoxygenated RBCs [18]. A inhibits ATP release from RBCs through a pathway 

involving the activation of caspase-3 [31]. As shown in Figure 5, A treatment dramatically increased 

caspase-3 activity in a time-dependent manner. A-mediated caspase-3 activation was significantly 

rescued by pre-incubation with S1P at 0.5 M for 30 min, with only a minor protective effect observed 

with 0.1 M. Pre-incubation of A-treated RBCs with Z-DEVD-FMK inhibited the A-mediated 

caspase-3 activation. However, this observation excluded the presence of unspecified proteolytic 

activities. Moreover, S1P alone at 0.5 M did not affect caspase-3 activity. Then, we examined the 

effects of mastoparan 7, an activator of Gi, to determine whether Gi mediated the observed protective 

effect of S1P against the activation of caspase-3 by Aβ. As reported in Figure 5, caspase-3 was 

unaffected in the presence of mastoparan 7, demonstrating that Gi proteins do not mediate S1P action. 

 

Figure 5. Caspase-3 activity in deoxygenated RBCs following treatment under different conditions. 

Values are presented as the mean ± SD (N = 5). *p < 0.05 compared with A-treated cells. a.u. 

2.5. Hemolysis Degree 
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The spontaneous lysis of RBCs is another potential source of extracellular ATP. Thus, the RBC 

suspensions were analyzed to evaluate hemoglobin concentrations in the supernatants and 

determine hemolysis after experiments [40]. In all experiments, hemolysis was less than ~3%. 

3. Discussion 

RBCs release ATP in response to low oxygen tension [18]. The starting event in the release of 

ATP from RBCs involves an interaction between deoxyHb and the cytoplasmic domain of the anion 

exchange protein band 3, i.e., the cdb3–deoxyHb/band 3 complex induces stress in the membrane 

components, triggering the downstream pathway responsible for ATP release. It has been shown that 

ATP release and cAMP accumulation are strongly reduced in RBCs in the presence of A and 

associated with caspase-3 activation [31], thus decreasing tissue oxygenation, particularly in cerebral 

microvascular circulation, and aggravating AD pathology. Here, we report that A-mediated 

inhibition of ATP release from deoxygenated RBCs was abolished when cells were pre-incubated 

with sphingosine-1-phosphate (S1P) before treatment with A. The signalling pathway underlying 

ATP release from RBCs includes the heterotrimeric G proteins Gs and Gi, adenylyl cyclase (AC), and 

cyclic AMP-dependent protein kinase A [18]. In the presence of S1P, comparable amounts of 

intracellular cAMP were measured following incubation with mastoparan 7 (i.e., stimulatory agent 

of Gi), both in the presence and absence of A peptides; this finding suggests that the activity of the 

Gi subunit in heterotrimeric G proteins could not explain the protective effect induced by S1P in A-

treated RBCs. The possible role of S1P In AD is controversial, with some studies suggesting a 

causative role in AD while others propose a protective role [44]. We observed that the pre-treatment 

with a caspase-3 inhibitor, i.e., Z-DEVD-FMK, before A, could rescue ATP and cAMP levels to those 

observed in control cells. We suggest that S1P inhibited the A-mediated activation of caspase-3 

activity, protecting the cytoplasmic domain of the anion exchange protein band 3, i.e., cdb3, through 

caspase-3 cleavage. 

Since the release of ATP from RBCs occurs in response to low oxygen tension and consists of an 

interaction between deoxyHb and cdb3 [18], our findings indicate that the mechanism underlying 

the protective role of S1P on the inhibition of ATP release, triggered by A partially involves the S1P-

mediated abrogation of caspase-3 activation. These findings align with a previous paper, which 

showed that the S1P agonist SEW2871 decreased Aβ-induced caspase-3 activation, neuronal death, 

and cognitive damage in rats with AD [45]. Furthermore, we showed that S1P increased 2,3-DPG 

levels within the cell. In a previous study [16], it has been suggested that S1P induces 2,3 DPG 

production by binding directly to deoxy-Hb, thereby stabilizing Hb in the deoxygenated state. 

DeoxyHb binds to cdb3, triggering the release of some glycolytic enzymes to the cytosol, thereby 

increasing glycolysis flux to produce more 2,3-DPG. Thus, the increase in 2,3 DPG can bind more 

oxyHb molecules, meaning S1P promotes deoxyHb anchoring to cdb3 and triggers the mechanism 

responsible for ATP release from RBCs in response to low oxygen tension. 

4. Materials and Methods 

4.1. Chemicals 

A peptide (1-42) purity > 98%. was purchased by Peptide Speciality Laboratories GmbH 

(Heidelberg, Germany). Peptides were solubilized in 100% 1,1,1,3,3,3-hexafluoro-2-propanol (HFIP; 

Sigma, St. Louis, MO, USA). The HFIP was then removed by vacuum evaporation, and the remaining 

disaggregated peptide was dissolved in dimethylsulphoxide (DMSO). Sphingosine-1-phosphate 

(S1P) and other chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA). 

4.2. Preparation of Red Blood Cells and Incubation Conditions 

Blood samples were collected in citrate and washed three times with an iso-osmotic NaCl 

solution. Low-speed centrifugation (800x g,5 min) was performed to separate plasma, avoiding 

mechanical stress that could determine RBC morphological alterations. Ficoll was used to isolate 

mature RBC for a density gradient centrifugation. RBCs were incubated at 37 °C for 24h with or 
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without 0.1 μM Aβ peptide, pre-incubated in the presence and absence of S1P at 0.1 and 0.5 μM. In 

experiments performed under low oxygen conditions, the measured percentage of deoxyHb was 60% 

± 0.32%. RBCs were sedimented by centrifugation at 500g for 10 min to exclude the possibility that 

RBC lysis affects our determinations. Oxygenated hemoglobin in the supernatant was determined by 

light absorption at 405 nm (Cary 3E, Varian, Palo Alto, CA) [46]. Although this method does not 

measure methemoglobin and oxidized forms of hemoglobin (about 1-3% of the total hemoglobin), it 

is commonly used when measuring experimentally induced RBC lysis [47]. 

4.3. ATP Assay 

The luciferin-luciferase technique was used to measure ATP, as reported [48], which uses the 

ATP concentration dependence of light generated by the reaction of ATP with firefly tail extract. 

4.4. Measurement of cAMP 

After RBCs exposure to different experimental conditions, cAMP's concentration was then 

determined, as previously described [49], with a cAMP Biotrak enzyme immunoassay system 

(Amersham Biosciences).  

4.5. Determination of 2,3 DPG  

2,3-DPG in 20 μl RBC pellet was isolated with 100 μl, 0.6 M cold perchloric acid on ice, vortexed, 

and centrifuged. A volume of 80 μl supernatant was transferred to a new tube, neutralized, and 

centrifuged. An aliquot of supernatant was used to measure 2,3-DPG levels using a commercially 

available kit (Sigma Aldrich, St. Louise, USA). 

4.6. Caspase-3 Activity Determination 

After RBCs exposure to different experimental conditions, caspase activity has been carried out 

as previously described [50]. 

4.7. Statistical Analysis 

All data are expressed as means ± SD. Statistical analyses (Student’s-test and ANOVA) were 

performed with SYSTAT 10.2 software (Statcom, Inc., Richmond, CA, USA). The level of significance 

was set at 0.05. 

5. Conclusions 

We provide evidence that S1P rescued the inhibition of ATP release from RBCs triggered by A 

Among several signalling pathways mediated by S1P, our results suggest that the protective path is 

mediated by caspase-3 and deoxyHb. The protective role of S1P could be relevant to supporting 

energy demands in tissues, particularly in cerebral microvascular regions after ischemia or where a 

deposition may cause the cerebral vessel lumen to narrow. While this is a promising finding, this 

study is limited because it did not use AD models; therefore, future studies that use blood cells from 

AD patients are warranted. Lately, fingolimod (FTY720), a synthetic analog of S1P, was observed to 

revert memory deficits in a rat model of AD, suggesting a crucial role of S1P in neuroprotection 

against A toxicity [51]. Taken together, data from this study indicate that restoring S1P plasma levels 

may be an attractive therapy to treat or prevent AD. 
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