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Abstract: Unmanned aerial vehicle (UAV), or drone is recognized for its potential to improve efficiency and

address last-mile delivery issues. As a result, there has been a lot of activity in recent years in the field of

drone scheduling and routing. Unlike the vehicle routing problem, drone route design is difficult due to several

operational characteristics, such as speed optimization, multitrip operation, and energy consumption estimation.

On the one hand, drone energy consumption is a complex nonlinear function of both speed and payload in

practice. On the other hand, the high operating speed of drones can significantly curtail the drone range, thereby

limiting the efficiency of drone delivery systems. Most of the existing drone delivery models either assume

constant drone speed or do not consider the effect of drone speed and parcel weight on energy consumption,

leading to costly or energy-infeasible routes. This paper addresses the trade-off between speed and flight range

in a multi-trip drone routing problem with variable flight speeds (DRP-VFS), in which a team of homogeneous

drones is employed for delivery services. We propose a new model to particularly consider energy constraints

using a nonlinear energy consumption model and treat drone speeds as decision variables so that various drone

speeds can be adopted in applications. The DRP-VFS is initially formulated as mixed-integer linear programming

(MILP) to minimize total energy consumption. To solve large-scale instances, we propose a three-phase adaptive

large neighborhood search (ALNS) algorithm. The experimental results demonstrate that suboptimal solutions

can be found effectively in practical scenarios using the proposed method. Furthermore, results indicate that

operating drones at variable speeds leads to about 21% of energy savings compared to fixed speeds, boasting

advantages in cost-savings and range extensions.

Keywords: drone routing problem; logistics drone; mixed-integer linear programming; adaptive large neighbor-

hood search

1. Introduction

Over the past few decades, the development of technology, especially carbon fiber and lithium
polymer batteries, has facilitated the use of drones for last mile delivery. For example, Zipline has
completed over 14,000 medical supply deliveries in Rwanda since 2016 ([1]). In 2019, Google’s Wing
and Amazon received Federal Aviation Administration (FAA) approval to begin commercial delivery
by drone ([2,3]).

In recent years, researchers have shown a growing interest in last-mile delivery that incorporates
drones ([4,5]). The drone delivery problems can be categorized as drone-only or truck-drone tandem
problems. The first uses only drones for parcel delivery, while the second uses both drones and trucks
to deliver. The alternative objectives of drone delivery problems are to minimize delivery time or
minimize operational cost ([6]). Numerous variants of these problems have been suggested, such as
heterogeneous drones ([7]) or multiple trucks ([8,9]).

Compared with traditional truck transportation, drone delivery is faster and less affected by road
systems, in addition, it can save a lot of labor and time costs ([10]). These benefits allow logistics
companies to dispatch drones for parcel delivery. On the other hand, a drone’s endurance is constrained
by its battery’s capacity, which is further impacted by parcel weight, speed, and weather conditions
([11–13]). In the literature involving drone delivery, one typical assumption is that drones fly at
constant or maximum speed, regardless of their payload or speed. Thus, speed is not taken into
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consideration during the decision-making procedure. In fact, operating drones to fly at a fixed speed
may lead to increased energy consumption, thus resulting in an energy-infeasible route or an inability
to serve long-distance customers because the energy consumption of drones is severely impacted
by parcel weight and speed. Therefore, it is crucial to consider the impact of payload and speed on
endurance in drone routing problems.

The motivation for considering flight speeds as decision variables is the influence of drone energy
consumption on flight endurance and range. Figure 1(a) shows the power rate of drones under
different payloads, using the model suggested by [12]. The circular marks indicate optimal drone
speeds that maximize the drone endurance under any onboard battery capacity, which can be seen
more clearly from Figure 1(c). Figure 1(b) shows the drone energy consumption per unit traveling
distance with varying payloads. The triangular symbols indicate optimal drone speeds that maximize
the total traveling distance with fixed battery capacity, which can be observed more distinctly from
Figure 1(d). It can be seen from Figure 1(b) that the drone energy consumption per unit distance
initially decreases and subsequently rises again as the speed increases. This is because there is a
balance between the flight duration and the energy consumption. Flying at lower speeds requires less
power, which leads to a longer flight duration. In contrast, higher speeds result in more power being
consumed, but the makespan is reduced. Therefore, the flight range notably depends on its speed, and
faster flight speeds are not always optimal. Consequently, higher speeds can cause faster deliveries
but with reduced range and increased energy consumption. This is essential within the scope of drone
delivery systems because, in some cases, the customer is sufficiently remote from the warehouse, and
flying at maximum speed can lead to a shorter range that falls short of the distance necessary to reach
the customer. It may be beneficial to fly at lower speeds which can improve range and serve more
customers. Moreover, speed adjustments can enhance endurance, which enables drones to serve more
customers. As such, it is imperative to factor in drone speeds during deliveries when considering
energy consumption.

This paper introduces the multi-trip drone routing problem with variable flight speeds (DRP-VFS),
an extension of the DRP proposed by [14]. In this problem, a fleet of homogeneous drones delivers
multiple parcels to customers while minimizing energy consumption. In this case, drones can perform
multiple trips and only be dispatched from and returned to the depot once per trip. While existing
literature on the DRP assumes that drones fly at constant speeds in advance, the DRP-VFS considers
drone speeds as decision variables when drones make deliveries.

This paper has the following contributions.

• We introduce and formally define a multi-trip drone routing problem, aiming to achieve opera-
tional cost minimization, where drone speeds are considered as decision variables rather than
constants.

• We clearly consider drone energy consumption as a nonlinear function of both flight speed and
payload rather than supposing that flight endurance and range are constants.

• We proposed a three-phased method integrating variable drone speed to solve DRP-VFS, which
can improve the solution in terms of computational time to a greater extent than MILP.

The rest of this paper is structured as follows. In Section 2, we present a review of the literature.
Section 3 presents the formal description of DRP-VFS and its MILP formulation. In Section 4, an
efficient heuristic method proposed to solve large-scale instances is introduced. Section 5 demonstrates
the case study and verifies the effectiveness of the proposed method. In the end, conclusions are
drawn, and future research work is discussed in Section 6.
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(a) Drone power versus speed and payload (b) Drone energy consumption per unit distance

(c) Drone endurance with fixed battery capacity (d) Drone range with fixed battery capacity

Battery capacity = 100 kJ Battery capacity = 100 kJ

Figure 1. The required power, energy consumption per unit distance, endurance, and range of a drone
versus speed and payload referenced from [15].

2. Literature Review

Over the past years, there have been increasing studies on the civil application of drones ([4,16]).
These studies reported that operational planning for drone delivery is a well-studied problem. There
already exists a lot of literature on the vehicle routing problem (VRP) involving conventional delivery
vehicles and its variants ([17,18]). However, adapting the VRP to drones is faced with additional
challenges since delivery by drones must account for extra constraints such as lower battery capacity
and higher sensitivity of energy cost to payload and flight speed ([6]).

Most drone studies have assumed either a fixed endurance or a constant speed ([10,19–24]).
Obviously, under this assumption, drones flying at higher speed have longer ranges. Other studies
consider a constant range of UAVs. These two assumptions are equivalent when drone speeds are
constant. However, both of them fail to consider the influence of payload and speed on the drone’s
energy consumption, thus limiting the flexibility of drone delivery. For example, drones can extend
their flight endurance by adjusting speed to serve customers further away from the depot.

Some studies have improved the fixed endurance/range model by considering drone power
consumption dependent on payload while remaining unrelated to drone speed. [25] apply the UAV
power rate function proposed by [26] and assume that the UAV maintains the maximum power during
flight to calculate the load-dependent UAV speed during delivery. [27] propose a package delivery
schedule utilizing drones and consider the drone’s power rate varies linearly with its payload. [6]
propose two drone routing problems where customers are served by drones only. The authors consider
the power rate function linearly dependent on payload weight and develop a simulated annealing
(SA) algorithm to address the problems. The power rate function adopted in [6] pertains solely to
hovering without encompassing that of actual flight. [14] adopt the same energy consumption as in [6],
but instead of approximating the power rate function, they develop an exact algorithm adding logical
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and subgradient cuts to solve a DRP with time windows. [28] use the UAV power rate proposed by
[29] as a piecewise linear function of package weight in their DRP. [30] also consider the influence of
package weight on energy consumption using the same model as [6]. However, different from the
proposed model based on varying speeds, the studies in the above papers only consider constant
drone speeds. Moreover, the proposed energy-consumption models are mainly about hovering and
do not consider the energy cost of actual flight status. Other studies apply an energy consumption
model related to the payload and the drone speed during forward flight. [31] adopt an energy model
by [26], which is linearly dependent on payload and speed. [32] also consider the energy consumption
function introduced in [11] in the multiple flying sidekicks traveling salesman problem (mFSTSP).
However, the UAV speeds are fixed in these two papers, limiting the potential time and energy savings
from flying at varying speeds.

Some recent studies have considered variable flight speeds in drone routing problems. For
instance, [33] considers the reciprocal of the flight speed to be approximately linear with the weight of
loads. However, they consider drone speed as a function of the load, which can be regarded as a fixed
parameter related to given loads rather than as a decision variable to be optimized. [34] consider drone
speeds as decision variables and use the energy model introduced by [12]. Besides, [35] employs the
multi-rotor UAV energy consumption model developed by [11] and considers power rate as a function
of a UAV’s payload and speed. [35] investigate the mFSTSP with variable drone speeds. These two
studies treat drone speeds as decision variables and demonstrate that operating drones at varying
speeds contribute to delivery cost and time reductions, respectively. Moreover, [34] emphasizes that
using fixed speeds may result in infeasibility in some instances. These two papers consider drone and
truck tandem delivery, whereas our focus is solely on drone-only deliveries. As far as we know, this
paper presents for the first time a DRP-VDS that considers UAV energy consumption and variable
flight speeds.

Table 1 demonstrates a summary of relevant studies on the drone delivery problem reviewed
in this paper. The studies are compared using the following factors: (i) the type of delivery (truck-
drone tandem or drone-only), (ii) whether the endurance of drones is fixed or evaluated by energy
consumption model, (iii) the drone speed (constant or variable), (iv) the objective function used, and
(v) whether the solution methods are exact or heuristic. In the literature mentioned above, it is evident
that only a few papers clearly consider the energy cost model and even fewer take drone speeds into
account as decision variables. Because the finite drone range is susceptible to speed and payload
weight, it is essential to consider variable drone speed and payload in drone delivery systems. In this
study, a DRP-VFS is proposed to consider the energy constraints and variable speed and payload of
the drone delivery systems for last-mile delivery systems. Also, a three-phased heuristic method is
proposed to solve large-scale scenarios. The performance of the proposed heuristic is evaluated by
comparing it to the exact method.
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Table 1. Summary of studies on drone routing problem in the literature.

Reference Delivery type Energy modelDrone Speed Objective Solution methodTruck&Drone Drone

[19] ✓ Constant Delivery
time

Exact &
Heuristic

[20] ✓ Constant Delivery
time

Heuristic

[21] ✓ Constant Delivery
time

−

[22] ✓ Constant Operational
cost

Heuristic

[23] ✓ Constant Operational
cost

Heuristic

[10] ✓ Constant Delivery
time

Exact &
Heuristic

[24] ✓ Constant Delivery
time

Exact

[25] ✓ [26] Constant Vehicle
waiting

time

Heuristic

[27] ✓ Hovering Constant Drone fleet
size

Exact &
Heuristic

[6] ✓ Hovering Constant Operational
cost

Exact &
Heuristic

[14] ✓ Hovering Constant Operational
cost

Exact

[28] ✓ [29] Constant Delivery
time

Heuristic

[30] ✓ Hovering Constant Delivery
time

Exact &
Heuristic

[31] ✓ [26] Constant Operational
cost

Exact

[32] ✓ [11] Constant Delivery
time

Exact &
Heuristic

[33] ✓ Linear Variable Delivery
time

Exact

[34] ✓ [12] Variable Operational
cost

Exact &
Heuristic

[35] ✓ [11] Variable Delivery
time

Heuristic

This paper ✓ [12] Variable Operational
cost

Exact &
Heuristic

3. Model Formulation

This section presents a formulation of the DRP-VFS, and introduces piecewise linearization to
approximate the nonlinear energy consumption function.

3.1. Problem Definition

The multi-trip drone routing problem with variable flight speeds (DRP-VFS) is defined on a
complete directed graph G = (N, A), where N = {0, 1, . . . , n + 1} represents the set of all nodes with
the node 0 and n + 1 corresponding to the depot (distribution center) from which all drones must
originate and return. The set of customers is denoted by N′ = {1, . . . , n} associated with the distinct
parcels. To simplify notation, we introduce N+ = {0, . . . , n} to indicate the set of nodes from which
a drone can depart and N− = {1, . . . , n + 1} to describe the set of nodes that a drone may visit. Let
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A = {(i, j) : i ∈ {0}, j ∈ N′ and i ∈ N′, j ∈ N−, i ̸= j} denote the set of arcs. Additionally, we define
sets δ−(i) and δ+(i) to denote the forward and backward nodes of node i, respectively.

Each customer has a positive demand qi and a hard time window [ai, bi]. The drones are allowed
to arrive early but need to wait until ai to begin serving the customer. A fleet of U homogeneous
multi-rotor drones departs from the depot with a fully charged battery. Q represents the drone’s
maximum payload, and we suppose that qi ≤ Q, ∀i ∈ N′, while E is the maximum energy provided by
a fully charged battery. The service time for each customer is si. Every drone can implement multiple
trips and serve several customers within one delivery. dij represents flight distance on arc (i, j), which
is assumed to be symmetric. Since the drone speeds are decision variables in this paper, the flight time
on arc (i, j) is non-constant, as discussed later. The maximum speed limit is represented by Vmax.

We make the following assumptions:

• Parcels are delivered by drones only.
• There is only one depot from which drones can depart.
• We neglect the time of loading parcels and swapping batteries.
• Without loss of generality, we ignore the influence of weather, i.e., wind impact is not considered.
• Drones can fly at a constant speed between two locations. The speed of each flight can vary.

3.2. Mathematical Model

DRP-VFS involves two sets of binary variables: xij = 1 if a drone flies across arc (i, j), and xij = 0
otherwise. zij = 1 if a trip ends in node i and is immediately succeeded by another trip with node j as
the first customer. Additionally, there are six sets of continuous variables: mij is the parcel’s weight
transported across the arc (i, j) (kg). vij denotes the drone speed from node i ∈ N+ to node j ∈ N−

(m/s). τi is the service start time of customer i ∈ N− (second). tij represents the time required to fly
through arc (i, j). fi denotes the total energy a drone consumes when it arrives at customer i (kWh). eij
indicates the energy consumed through arc (i, j), measured in kWh.

The constraints of route feasibility can be expressed as follows:

∑
j∈δ+(i)

xij = 1 ∀i ∈ N′, (1)

∑
j∈δ−(i)

xji = 1 ∀i ∈ N′, (2)

∑
j∈N′

x0j = ∑
j∈N′

xj,n+1. (3)

Constraints (1) and (2) guarantee that each customer is served only once. Constraint (3) guarantees
that the number of trips leaving the depot equals the number returning to the depot.

We apply demand constraints through

∑
j∈δ−(i)

mji − ∑
j∈δ+(i)

mij = qi ∀i ∈ N′, (4)

mi,n+1 = 0 ∀i ∈ N′, (5)

mij ≤ Qxij ∀(i, j) ∈ A. (6)

Constraints (4) ensure that the demand of each customer can be satisfied, and also eliminate sub-
tours. Consequently, the payload decreases to zero when the drone returns to the depot as specified by
constraints (5). With constraints (6), the total weight of parcels carried by a drone in a trip must not
exceed its payload capacity.
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The following equations are formulated to enforce time-related constraints.

τi + si + dij/vij ≤ M
(
1− xij

)
+ τj ∀i ∈ N′, j ∈ N−, (7)

ai ≤ τi ≤ bi ∀i ∈ N−, (8)

τi + si +
(
ti,n+1 + t0j

)
≤ M

(
1− zij

)
+ τj ∀i, j ∈ N′, i ̸= j. (9)

Constraints (7) require that the total of the arrival time and service time in i and travel time
across the arc (i, j) not greater than the arrival time at the customer j (the immediate successor of i).
Constraints (8) indicate that the arrival time to customer i falls within its designated time window
[ai, bi]. Constraints (9) indicate the temporal relationship between successive trips executed by one
drone, including the return time. Note that constraints (7) are nonlinear due to 1

vij
, we will introduce a

piecewise linear method to convert them into linear ones in subsection 3.3.
In this paper, we allow drones to change batteries and place parcels for new trips when they

return to the depot. We adopt a 2-index formulation inspired by [14] to formulate the multi-trip
characteristics of drone delivery. Therefore, we can achieve the reusability of drones by incorporating
the following constraints:

∑
i∈N′
i ̸=j

zij ≤ x0j j ∈ N′, (10)

∑
j∈N′
j ̸=i

zij ≤ xi,n+1 i ∈ N′, (11)

∑
j∈N′

x0j − ∑
i∈N′

∑
j∈N′
j ̸=i

zij ≤ U. (12)

Constraints (10) and (11) establish a relationship between variables x and z. Constraint (12) limits
the number of drones that can be used.

To evaluate the energy usage during delivery, we adopt the power rate model according to [12].

P(v, w) =
σ

8
ρsDΩ2R3(1 +

3v2

U2
tip

) +
κw

3
2√

2ρD

(√
v4

4v4
0
+ 1− v2

2v2
0

) 1
2

+
1
2

ρSFPv3. (13)

where σ is the average profile drag coefficient, ρ is the air density, s is the rotor solidity, Ω is the angular
velocity of the rotor, Utip is the blade tip speed, R is the rotor radius, D is the rotor disc area, κ is the
correction factor to ideal induced power, v0 is the induced velocity in hovering, SFP is the equivalent
flat plate area of the drone. w is the total weight of the drone, including the unloaded weight mv of
the drone and the weight mp of parcels. Thus, w =

(
mv + mp

)
g on the forward flight to customers,

where g is the gravitational acceleration. To simplify the above formula, define P0 = σ
8 ρsDΩ2R3 and

Pi =
κw

3
2√

2ρD
as the blade profile power and induced power when hovering.

By transforming (13), we derive an energy consumption formula denoted as E0(v, m) (J/m) for a
drone’s travel over per unit distance at a constant speed v, and calculated as

E0(v, w) =
P(v, w)

v
= P0

(
1
v
+

3v
U2

tip

)
+ Pi

(√
v−4 +

1
4v4

0
− 1

2v2
0

) 1
2

+
1
2

ρSFPv2. (14)

Thus, the energy consumption for drone on arc (i, j), denoted as eij can be expressed as

eij =

{
E0
(
vij, wij

)
· dij xij = 1,

0 otherwise,
(15)
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where dij and wij =
(
mv + mij

)
g are the distance and payload on arc (i, j). It is worth noting that

(15) is nonlinear when xij = 1 and a piecewise linear method will be applied to deal with them in the
next subsection.

Hence, drones’ energy constraints are written as

f0 = 0, (16)

fi + eij ≤ M
(
1− xij

)
+ f j ∀(i, j) ∈ A, (17)

fn+1 ≤ E. (18)

Constraint (16) signifies that the initial energy consumption of each trip is set to zero. Constraints
(17) indicate the energy consumed across the arc (i, j). Constraint (18) guarantees the battery’s energy
capacity constraint must be imposed.

The domain of the variables is shown below.

xij ∈ {0, 1} ∀(i, j) ∈ A, (19)

zij ∈ {0, 1} ∀i, j ∈ N′, (20)

mij, eij, tij ≥ 0 ∀(i, j) ∈ A, (21)

0 ≤ vij ≤ Vmax ∀(i, j) ∈ A, (22)

fi ≥ 0 ∀i ∈ N, (23)

τi ≥ 0 ∀i ∈ N−. (24)

3.3. Piecewise Linearization

Piecewise linearization can approximate a nonlinear univariate function using a set of non-
negative variables of special ordered sets type 2 (SOS2), where at most two adjacent variables can be
positive, while the sum of all variables equals 1 ([36]). For univariate functions like 1/v, the piecewise
linearization approximation is realized by sampling K points [V1, V2, . . . , VK] as breakpoints on the
v-axis. After that, the linear segments [(V1, 1/V1), . . . , (VK, 1/VK)] are used to approximate 1/v.

In this case, we define a set of continuous variable αk
ij for each breakpoint. The value of vij on arc

(i, j) is represented by

vij =
K

∑
k=1

Vkαk
ij. (25)

The approximation value of the reciprocal of speed 1/vij is 1/ṽij which can be calculated by (26).

1
ṽij

=
K

∑
k=1

αk
ij

Vk
. (26)

The SOS2 variables αk
ij need to satisfy the following constraints.

K

∑
k=1

αk
ij = 1, (27)

0 ≤ αk
ij ≤ 1 k = 1, 2, . . . , K. (28)

Most modern MIP solvers, such as Gurobi and CPLEX, can address specially ordered sets of
types 1 and 2 automatically. Consequently, constraints (25)–(28) are sufficient to produce the correct
computation. Consequently, the nonlinear constraints in (7) are approximated by replacing 1/vij with
1/ṽij.

Similarly, we introduce a set of SOS3 variables βst
ij to linearly approximate the two-variable

energy consumption function dependent on drone speed and parcel weight in (14). Similar to the
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SOS2, the SOS3 variables require that at most three adjacent components be greater than 0. The
difference is that the set of SOS2 variables is one-dimensional, while the set of SOS3 variables is
two-dimensional. Consider again S sampling coordinates [V1, V2, . . . , VS] on the v-axis and T sampling
coordinates [M1, M2, . . . , MT ] on the m-axis. The function E0(v, m) is determined by each breakpoint
(Vs, Mt)(s = 1, . . . , S; t = 1, . . . , T).

In our problem, the value of vij and mij on arc (i, j) are represented by

vij =
S

∑
s=1

Vsβst
ij , (29)

mij =
T

∑
t=1

Mtβ
st
ij . (30)

The approximation value of the energy consumption is ẽij which can be calculated by using (31).

ẽij =
S

∑
s=1

T

∑
t=1

E0(Vs, Mt)βst
ij . (31)

The SOS3 variables βst
ij should satisfy (32) and (33).

S

∑
s=1

T

∑
t=1

βst
ij = 1, (32)

0 ≤ βst
ij ≤ 1 s = 1, 2, . . . , S, t = 1, 2, . . . , T. (33)

However, unlike SOS1 and SOS2, modern MIP solvers don’t have an automatic syntax for impos-
ing SOS3. For this reason, we utilize the triangle method proposed by [37] to impose corresponding
constraints. Consider the rectangle corresponding to intervals [Vs, Vs+1) and [Mt, Mt+1) and the two
triangles generated by its diagonal [(Vs, Mt)(Vs+1, Mt+1)]. We introduce two sets of binary variables
ust

ij and lst
ij to represent the upper and lower triangles in the rectangle, respectively, with dummy

values u0∗
ij = u∗0ij = uS∗

ij = u∗Tij = 0 and l0∗
ij = l∗0ij = lS∗

ij = l∗Tij = 0 at the boundaries. The additional
constraints are shown as follow:

S−1

∑
s=1

T−1

∑
t=1

(
ust

ij + lst
ij

)
= 1, (34)

βst
ij ≤ ust

ij + lst
ij + us,t−1

ij + ls−1,t−1
ij + us−1,t−1

ij + ls−1,t
ij . (35)

The constraint (34) requires that just one triangle be chosen from all possible triangles. Constraints
(35) guarantee that the only βst

ij values greater than 0 can be those corresponding to the three vertices
of such a triangle. Accordingly, the nonlinear energy-related constraints in (17) are approximated by
replacing eij with ẽij.

The objective function is minimizing the total energy consumption during delivery.

min ∑
(i,j)∈A

eij,

s.t. (1)− (35).
(36)

The model described above is a mixed-integer linear programming (MILP) model which can
be solved efficiently by commercial MIP solvers such as Gurobi. While MILP solvers find optimal
solutions, the computational time required is substantial, even for scenarios with several customers. In
Section 4, we propose a three-phased heuristic algorithm aimed at finding suboptimal solutions within
computational time constraints.
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4. Solution Method

The DRP-VFS extends the classical VRP and is an NP-hard problem. Owing to the NP-hardness of
the DRP-VFS, a three-phased heuristic is proposed to effectively tackle practical large-scale scenarios.

The solution of DRP-VFS can be represented by R = {r1, r2, . . . , rK}, where K is the number
of trips. The rk contains a vector of customers that a drone will visit, which can be expressed as
rk =

{
r1, r2, . . . , rCk

}
, where Ck is the number of customers assigned to the kth trip.

4.1. Initialization

There are numerous heuristic approaches that can efficiently search for a feasible solution for the
VRP, such as CW savings algorithm and sweep algorithm. In our method, we first apply an improved
k-means algorithm that includes capacity and Euclidean distance as constraints to partition customers
into several subsets (Algorithm 1). Next, a traveling salesman problem with time windows (TSPTW)
is solved within each subset to determine the customer sequence a drone serves. This algorithm is
executed while satisfying the capacity, energy, and time window constraints. The number of clusters is
calculated by the total demands and capacity of the drone as

K = ⌈
n

∑
i=1

qi/Q⌉ (37)

The K centroids are randomly initialized in the customers’ coordinate range. The Euclidean
distances between each customer and all K centroids are calculated. Sort customers by demand from
largest to smallest and assign each customer to the nearest centroids. The total demands for each
subset of clusters cannot exceed the drone’s capacity. The selected customer will be assigned to the
next nearest centroid if the capacity constraint is not satisfied. The centroid of kth cluster (xk, yk) is
calculated based on its members using (38).

xk =
Ck

∑
i=1

xi/Ck,

yk =
Ck

∑
i=1

yi/Ck.

(38)

The iterative procedure is repeated until the cluster is unchanged or the maximum iteration is
reached.

Algorithm 1 K-means Clustering.

Require: a set of customers R = {r1, r2, . . . , rn}.
1: Initialization: calculate K using (37) and initialize the centroid randomly. Sort customers by

demand.
2: while not converged do
3: for each customer ri ∈ R do
4: Calculate the distance from ri to each of the K clusters and sort it in descending order.
5: while ri is not assigned do
6: Assign ri to the nearest centroid without violating the capacity constraint.
7: if ri is not assigned then
8: Choose the next nearest centroid.
9: end if

10: end while
11: end for
12: Calculate the new centroid of the clusters using (38).
13: end while
Ensure: K clusters
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The TSPTW is a special case of DRP-VFS since only one drone is used. Thus, we just need to
remove the reusability constraints (10)-(12) and modify constraints (3) to the following.

∑
r∈rk

x0r = ∑
r∈rk

xr,n+1 = 1 k = 1, 2, . . . ,K. (39)

Therefore, an initial feasible solution can be obtained quickly.

4.2. Local Search

In this section, we propose a speed optimization model to adjust the flight speed in a trip and
calculate the cost of a DRP-VFS solution, and the Adaptive Large Neighborhood Search (ALNS)
algorithm is used to enhance the solution quality.

4.2.1. Speed Optimization

The speed optimization problem (SOP) involves adjusting the flight speed in order to minimize
energy consumption. The SOP is defined on a route r = {r0, r1, . . . , rC+1} consisting of customers
served by a single drone, where r0 and rC+1 represent the depot corresponding to 0 and n + 1,
respectively. vi and mi denote the flight speed and payload carried by a drone between node ri and its
successor. The SOP is formulated as follows:

min
C

∑
i=0

ei, (40)

subject to

mi =
C

∑
j=i+1

qj i = 0, . . . , C, (41)

m0 ≤ Q, (42)

τi + si + di/vi ≤ τi+1 i = 0, . . . , C, (43)

ai ≤ τi ≤ bi i = 1, . . . , C, (44)

ei = E0(vi, mi)di i = 0, . . . , C, (45)

f0 = 0, (46)

fi + ei ≤ fi+1 i = 0, . . . , C, (47)

fC+1 ≤ E. (48)

The nonlinear energy function is linearized using SOS2 variables introduced in section 3.3. Since
mi is calculated in advance using (42), the E0 between node ri and its successor depends only on vi.
We introduce γs

i to linearly approximate the energy consumption function. Hence, the value of vi and
the approximate value of ẽi can be represented by

vi =
S

∑
s=1

Vsγs
i , (49)

ẽi =
S

∑
s=1

E0(Vs, mi)γ
s
i . (50)

To deal with 1/vi, the same method can be used. However, to speed up the solving process, we in-
troduce a convexification method, i.e., replace 1/vi with an auxiliary variable λi to avoid reintroducing
integer variables:

τi + si + diλi ≤ τi+1. (51)
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Meanwhile, the following inequality should be imposed to ensure λi converges to 1/vi.

λi ≥ 1/vi. (52)

It can be seen that constraint (52) is a quadratic and convex constraint. Therefore, the SOP is
modeled as a mixed-integer quadratically constrained programming (MIQCP) and can be solved by
commercial solvers.

4.2.2. ALNS heuristics

In this subsection, an adaptive large neighborhood search algorithm is adopted to improve the
initial solution obtained by Section 4.1. The ALNS framework has demonstrated successful results
in solving multiple variants of vehicle routing problems ([38]). By removing selected nodes from the
solution and reinserting them, we obtain a neighborhood of the given solution. The operators are
dynamically chosen based on their previous performance. For this reason, each operator is given a
score that increases if it enhances the current solution. A new solution is accepted if it meets the criteria
specified by the local search scheme, such as simulated annealing.

In this paper, we apply two removal operators and two insertion operators to effectively destroy
and repair a DRP-VFS solution. In addition, for every Γ iteration, the TSPTW model is solved once
within each trip to adjust the customer sequence. The framework of the ALNS algorithm is presented
in Algorithm 2. Figures 2(a)-(c) depict the initial solution, the solution after applying two destroy
operators and the solution after executing two repair operators.
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(a) Initial DRP-VFS solution (b) Destroy operators: blue route removal {1}, 

red route removal {9}, green route removal {8}

(c) Repair operators: blue route inseration {9},

red route inseration {1, 8} 

Figure 2. Example of ALNS heuristic on DRP-VFS solution.

The destroy operators involve primarily removing several nodes from the current solution and
placing them in a removal list L. We present the removal operators involved in our approach as
follows:

(1) Random removal: This operator removes several nodes at random from the current solution.
(2) Worst removal: This operator removes the highest-cost node from the solution, where the cost is

determined by solving SOP.

The insertion operators are applied to repair a partly destroyed solution by reinserting the nodes
from L back into the solution. The insertion operators employed in our algorithm include:

(1) Greedy insertion: This operator repeatedly removes a node from L and inserts it into the lowest
cost position of a route.

(2) Regret insertion: An obvious disadvantage of greedy insertion is that it defers node insertion to
later iterations where few feasible moves are available. The regret operator in our algorithm uses
a 2-regret criteria. Define ∆cj

i as the cost change incurred by inserting node i into the route where
the cost is jth cheapest. The 2-regret criteria inserts the node i based on i∗ = argmax

i∈L

(
∆c2

i − ∆c1
i
)
,

where ∆c1
i and ∆c2

i are the best and second-best insertion of node i. We iterate the procedure until
no more nodes in L can be inserted.
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We describe the adaptive weight adjustment process below. The operators are chosen by the
roulette-wheel method. In the beginning, all operators are equally likely. They are updated as
Pt+1

i = Pt
i (1−Θ) + Θπi/ωi during program execution, where Pt

i is the probability of operator i at the
tth iteration, Θ is the parameter of roulette wheel, πi denotes the score of operator i and ωi indicates
times it was selected in the previous Γ iterations. The score reflects the performance of each operator.
When a new best solution is found, the related operators’ scores are increased by σ1. If the new solution
outperforms the current one, the score is increased by σ2. If the new solution falls short of the current
one but meets the acceptance criteria, the score is increased by σ3.

Our ALNS algorithm applies the simulated annealing as an acceptance criterion. We calculate
the probability in line 12 to determine whether to update the current solution and decrease the initial
temperature T according to T = ΦT, where Φ is a constant indicating the cooling rate. The algorithm
produces the best solution that has been found after Λ iterations.

Algorithm 2 ALNS with simulated annealing.

Require: Removal operators D, insertion operators I , cooling rate Φ.
1: Produce an initial solution using the K-means algorithm in section (4.1).
2: Initialize temperature T and counter t← 1.
3: Initialize probability Pt

d for each destroy operator and probability Pt
i for each repair operator.

4: LetRcurrent ← Rbest ← Rinit.
5: while t ≤ Λ do
6: Select a removal operator d∗ ∈ D and a insertion operator i∗ ∈ I .
7: Apply operator d∗ toRcurrent to generateR′new.
8: Apply operator i∗ toR′new to generateRnew.
9: if c(Rnew) < c(Rcurrent) then

10: Rcurrent ← Rnew
11: else
12: Let ν← e−(c(Rnew)−c(Rcurrent)/T)

13: end if
14: Get a random number ξ ∈ [0, 1]
15: if ξ ≤ ν then
16: Rcurrent ← Rnew
17: end if
18: if c(Rcurrent) < c(Rbest) then
19: Rbest ← Rcurrent
20: end if
21: T ← ΦT
22: if t mod Γ = 0 then
23: Apply the adaptive weight adjustment procedure to update probabilities.
24: Solve TSPTW model within each route to adjust the customer sequence.
25: end if
26: t← t + 1
27: end while
Ensure: Rbest

4.3. Assignment

In this section, we describe a list schedule algorithm to minimize the number of drones. The
delivery time, denoted by h, is the latest allowable departure time from the depot, whereas the arrival
time, denoted by l, indicates when the drone reaches the depot upon finishing the delivery. The two
times are calculated by using (53).

h = τ1 − d0/v0,

l = τC + sC + dC/vC,
(53)

where τ1 and τC are the starts of service time at the first and last nodes in a route, d0, v0 and dC, vC is
the distance and speed at the first and last flights in a route, and sC is the service time of the last node.
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We allocate K routes to U drones using the list scheduling algorithm (Algorithm 3). First, sort
routes by delivery time in ascending order. A binary heap is used to get the route with minimum
arrival time quickly. Next, traverse the K routes; if the delivery time of rk is greater or equal to the
arrival time of the heap top route, then rk is appended to this route. Otherwise, a new drone should be
added. The time complexity is O(K logK). In conclusion, our heuristic method finds a near-optimal
solutionR∗ for DRP-VFS.

Algorithm 3 List Schedule.

Require: a solutionR = {r1, r2, . . . , rK}, the number of drones U.
1: Initialize near-optimal solutionR∗ ← ∅
2: Initialize binary heap Q ← ∅
3: for i ∈ {1, . . . , U} do
4: Q ← Q∪ (∅, 0)
5: end for
6: SortR by delivery time in ascending order.
7: for k ∈ {1, . . . ,K} do
8: (r, l)← POPMINIMUMARRIVALTIMEELEMENT(Q)
9: if l ≤ hk then

10: r← r∪ rk
11: l ← lk
12: else
13: PUSHELEMENT(Q, (rk, lk))
14: end if
15: PUSHELEMENT(Q, (r, l))
16: end for
17: while Q is not empty do
18: r← POPELEMENT(Q)
19: R∗ ← R∗ ∪ r
20: end while
Ensure: R∗.

5. Results and Discussion

In this section, numerical experiments have been carried out to verify the computational efficiency
of the proposed heuristic method for the DRP-VFS. Firstly, the computational performance of the ALNS
algorithm is revealed by comparing its solution quality and CPU time to those of the exact method with
small-scale scenarios in section 5.2. Secondly, the performance of ALNS implementation in large-scale
instances is demonstrated in section 5.3. Finally, we compare the solutions generated by fixed-speed
and variable-speed in section 5.4. It is demonstrated that the energy consumption of variable-speed
solutions decreases notably compared to that of fixed-speed solutions. All computational work was
conducted on the computer configuration with an Intel i7 CPU and 16 GB RAM. The heuristic algorithm
was coded in Python 3.7 and Gurobi 9.5.0 was used to solve the mathematical models.

5.1. Parameter Settings

We use two sets of benchmark instances introduced by [14], named Set A and Set B. The Set A is
created based on [39] and [6], which contains 10-50 customers. The Set B is an extension of Solomon’s
instance, which contains 10-100 customers. We use Set A to validate the effectiveness of MILP and
ALNS implementation and energy savings with variable flight speeds. We use Set B to validate the
efficiency of ALNS implementation on large-scale instances. We execute the MILP implementation
once for each instance. We execute the ALNS algorithm 10 times for each instance and calculate the
average objective value and computational time. The parameter settings of drones and the ALNS
algorithm are shown in Table 2 and Table 3. For Set A instances, the battery energy capacity is set to
E = 0.27 kWh; For Set B instances, we set E = 0.027 kWh.
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Table 2. Parameters of typical values for drones.

Notation Description Values

mv Mass of drone (kg) 2
s Rotor solidity 0.05
v0 Induced velocity in hover 4.03
κ correction factor 1.1
ρ Air density (kg/m3) 1.225
σ Profile drag coefficient 0.012
Ω Angular velocity of the rotor (rad/s) 300
D Rotor disc area in m2, D = πR2 0.503
R Rotor radius (m) 0.4
SFP Equivalent flat plate area (m2) 0.0151
Utip Blade tip speed (m/s) 120

Table 3. Parameters settings of ALNS algorithm.

Parameter Λ Γ Θ Φ T σ1 σ2 σ3
Setting 1000 50 0.4 0.9 30 30 20 10

5.2. Performance Comparison between MILP and ALNS Implementations

In this section, we compare the performance of the MILP implementation with the ALNS imple-
mentation to demonstrate that the ALNS algorithm is effective in finding near-optimal solutions to
small DRP-VFS instances. The results of MILP and ALNS are presented in Table 4. CPU is the computa-
tional time taken to solve the problem. The last three columns in Table 4 are the percentage differences
of ALNS versus MILP in terms of energy consumption, total flight distance, and computational time.
The reason why ALNS needs more drones than MILP is that the time window is not fully utilized
when calculating the delivery time and arrival time using (53). For example, when appending r1 to r2,
the delivery time of r2 is possible to postpone backward while satisfying the time window constraint.
Nevertheless, ALNS does not take this scenario into account due to the challenges associated with its
implementation.

We can observe that the CPU time of MILP grows exponentially with the number of customers.
For instance, the average CPU time increases from 144.2 s to 666.9 s, up by 362.5 % when solving the
20-customer problem compared to the 15-customer problem. The average CPU time of the ALNS
increases from 123.5 s to 149.4 s, a growth of 21.3 %. Moreover, for the first two instances with 10
customers, ALNS finds the optimal solution. It can be obviously found from Table 4 that the difference
in energy consumption and travel distance between ALNS and MILP is less than 10 %, which reveals
that ALNS is capable of finding near-optimal solutions in small scenarios.
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Table 4. Comparison of MILP and ALNS for Set A instances with size 10-20.

Cust Inst MILP ALNS Gap (%)
Energy Distance CPU UAVs

*
Energy Distance CPU UAVs

*
Energy Distance CPU

10

1 0.0133 4.475 19.5 2 0.0133 4.475 83.9 2 0.00 0.00 330.26
2 0.0163 5.447 19.9 2 0.0163 5.447 80.4 2 0.00 0.00 304.02
3 0.0137 4.582 18.4 2 0.0146 4.981 99.6 2.5 6.57 8.71 441.30
4 0.0156 5.281 77.9 2 0.0157 5.320 110.9 2.1 0.64 0.74 42.36
5 0.0144 4.845 52.5 2 0.0144 4.845 84.7 3 0.00 0.00 61.33

15

1 0.018 6.025 124.8 3 0.0184 6.121 127.7 4.6 2.22 1.59 2.32
2 0.0221 7.382 228.9 3 0.0225 7.513 134.6 3.8 1.81 1.77 -

41.20
3 0.0183 6.042 93.4 4 0.0186 6.140 102.4 4 1.64 1.62 9.64
4 0.0213 7.195 112.2 3 0.0227 7.515 137.3 3.8 6.57 4.45 22.37
5 0.0231 7.74 161.6 3 0.0232 7.760 115.4 3.3 0.43 0.26 -

28.59

20

1 0.0306 10.208 658.7 4 0.0307 10.211 130.2 4 0.33 0.03 -
80.23

2 0.0262 8.638 586.1 4 0.0270 9.026 158.4 4 3.05 4.49 -
72.97

3 0.0281 9.345 1039.2 4 0.0282 9.453 186.1 4 0.36 1.16 -
82.09

4 0.0266 8.819 495.1 4 0.0268 8.949 109.4 5 0.75 1.47 -
77.90

5 0.0222 7.331 555.4 5 0.0229 7.585 164.9 6 3.15 3.46 -
70.31

* The UAVs used within each ALNS instance are the average value of 10 runs. Gap (%) = ALNS−MILP
MILP × 100%.

5.3. Performance of ALNS on Large-Scale Instances

Additionally, the ALNS algorithm is used to solve large-scale instances. Table 5 indicates the
results of Set B instances with 100 customers. Trips is the number of trips that drones would execute.
The ALNS algorithm can find feasible solutions for large instances within a limited time. However,
due to its high spatial complexity, the MILP model can’t be solved. As shown in Table 5, the average
computational time is 689.6 s, indicating the high computational efficiency of the proposed heuristic
algorithm.

Table 5. ALNS results for Set B instances with size 100.

Instance Energy (Wh) Distance (km) CPU (s) Trips * UAVs *

c201 8.035 2.639 500.0 30 12.3
c202 8.020 2.639 633.6 37.2 14.2
c203 8.002 2.641 754.2 37 16.8
c204 8.007 2.644 870.5 37.1 21.1

Average 8.016 2.641 689.6 37.8 16.1
* The trips and UAVs used within each ALNS instance are the average value of 10 runs.

5.4. Comparison between Variable-Speed and Fixed-Speed

This section provides the energy saving achievable by enabling drones to fly at variable speeds.
The MILP implementation is run with varying speeds and three fixed speeds (10/20/30 m/s) to
generate solutions for the DRP-VFS. Table 6 shows that the average total energy consumption can be
reduced by up to 46.61 % against the 10 m/s case, 1.03 % against the 20 m/s case and 15.13 % against
the 30 m/s case. The drone speeds in variable speed cases are all located at maximum-range speed
since this is the most energy-efficient speed for drones. The results in Table 6 demonstrate that variable
flight speeds result in lower energy consumption than fixed speeds in most instances. Reducing energy
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consumption could enable the utilization of smaller-capacity batteries, resulting in weight savings and
possibly extending the flight range.

Table 6. Comparison of energy consumption for the variable-speed case versus the fixed-speed cases
(10, 20 and 30 m/s).

Customer Instance Energy consumption (kWh)
10 20 30 variable-speed

(% desc. over
10/20/30 m/s)

20

1 0.0571 0.0309 0.0361 0.0306 (-46.39/-
0.94/-15.29)

2 0.0495 0.0265 0.0308 0.0262 (-47.14/-
1.15/-14.99)

3 0.0521 0.0283 0.0331 0.0281 (-46.09/-
0.82/-15.23)

4 0.0496 0.0269 0.0314 0.0266 (-46.34/-
1.18/-15.22)

5 0.0419 0.0224 0.0261 0.0222 (-47.06/-
1.06/-14.93)

6. Conclusion and Future Work

This paper extends the multi-trip DRP with time windows to incorporate variable flight speeds.
We proposed a MILP formulation for DRP-VFS that minimizes total cost while considering the energy
consumption model, flight speed, payload weight, and drone reuse. To tackle practical instances, we
proposed a three-phased ALNS heuristic algorithm. Numerical results indicate that optimizing drone
speeds is an important consideration for drone delivery. Variable-speed resulted in about 46 % and
15 % improvements in total energy consumption compared to fixed-speed 10 m/s and 30 m/s cases,
respectively. Numerical experiments also revealed that the three-phased heuristic performed well in
both solution quality and CPU times in small and large DRP-VFS instances.

There are multiple opportunities for further research in this scope. For instance, exact solution
methods can be explored to address the nonlinear energy function. To extend the flight range of drones,
multiple depots or recharging stations might be investigated. More destruction and repair operations
can be applied to improve solution quality. Additionally, the problem could be raised by considering
heterogeneous drones or collaborative delivery of drones and trucks.
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