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Abstract: Asymptotic theories for fractional cointegrations have been extensively studied in the
context of time series data, with numerous empirical studies and tests developed. However, most of
the previously developed testing procedures for fractional cointegration were primarily designed for
time series data. This paper proposes a generalized residual-based test for fractionally cointegrated
panels with fixed effects. The test development is based on bivariate panel series with the regressor
assumed to be fixed across cross-sectional units. The proposed test procedure accommodates any
integration order between [0, 1], and it is asymptotically normal under the null hypothesis. Monte
Carlo experiments demonstrate that the test exhibits better size and power compared to a similar
residual-based test across varying sample sizes.
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1. Introduction

Numerous studies have addressed panel data analysis and cointegration either separately or in
conjunction. Various methods, including residual-based and spectral-based approaches, have been
developed to address issues such as unit roots, cross-sectional dependence, and heterogeneity. [1]
highlighted the increasing attention given to unit root problems in panel data and the consequent
identification of cointegration relationships among variables. The existing panel cointegration
techniques were initially designed for balanced panel data with moderate time and cross-sectional
units. However, in scenarios involving large time and cross-sectional units with the potential for long
memory, conventional panel cointegration tests are inadequate [2]. The presence of long memory
often implies fractional mean reversion, suggesting equilibrium occurs over fractional time periods.
Therefore, there is a need to explore fractional cointegration or equilibrium mean reversion within the
context of panel data.

There have been numerous developed fractional cointegration tests within the realm of
time-series analysis. These tests are typically grouped into two categories: spectral density-based
and residual-based. [3] developed a residual-based test utilizing the residuals of the multivariate
fractional cointegration common-components model with varying memory parameters. [4] compared
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semiparametric tests of fractional cointegration, evaluating nine tests for both spectral density and
residual-based approaches. They found that several methods yield significantly different results when
correlated short-run components are present. Moreover, when applied to common-component models
rather than triangular systems, these methods exhibit varied power. Notably, there is a significant
difference in the power of the tests between the two models.

In empirical studies, [5] investigated the memory of exchange rates, while [6] explored the
dynamics of interest rate futures markets and stock market prices. Both studies identified evidence of
fractional cointegration in stock market prices, achieving satisfactory results under the assumption that
the observations are I(1) processes. Subsequently, testing for fractional cointegration was extended
to fractionally integrated processes. [7] proposed a test based on joint local Whittle estimation of all
parameters, which eliminates the possibility of the two underlying series having equal integration
orders.[8] developed a Hausman-type test to detect fractional cointegration, with the additional
assumption that the cointegration error is nonstationary. [9] proposed a Hausman-type test for no
cointegration for time series with equal integration orders, which involves determining a bandwidth.

In panel settings, [2] studied a large cross-sectional and time unit heterogeneous panel data model
with fixed effects. The approach allows cross-sectional dependency, persistency, and fractionally
integrated errors. In addition, the methodology provides a general treatment for stationary and
nonstationary indicators. The Monte-Carlo simulation showed that it works effectively in practice. [10]
proposed an extension of the Generalized Method of Moments (GMM) for a fixed effect fractionally
integrated panel model. Both [2] and [10] studies assumed that the fixed effect parameter fizzled out
in the long run. The method of [2] is limited in that fractional cointegration is assumed in a panel
system if the estimate of mean reversion for the series is greater than that of the residuals [2,11]. This
approach is expected to inflate the type I error, as there is an increased possibility of many rejections of
mean reversion when there is none [12,13].

Furthermore, [14] introduced a new panel cointegration test that is robust to nonlinearity,
structural breaks, and cross-sectional dependency. The proposed method is a bootstrap panel
cointegration test called the Fractional Frequency Flexible Fourier Form for Panel Cointegration
Test and it was empirically illustrated by testing the Feldstein–Horioka paradox for 15 Asian countries,
and it was discovered that Indonesia, Philippines, Bangladesh, Japan, Thailand, and China are not
among the countries that generate cointegration in the cross-section. The study is limited as it only
considered country-specific cointegration rather than the panel of interest.

In summary, the findings of the finite sample properties of various fractional cointegration tests
for time-series data reviewed by [4] revealed the exemplary applicability of the residual-based methods
of [3] and [15] for stationary systems under the common component model assumption. Also, the
study showed that the class of tests with low power under the alternative hypothesis of fractional
cointegration are [9] and [16]. However,[7,17,18] methods are resistant to shortrun correlation and are
commonly applied due to their simplistic framework. None have particularly developed a test for
panel data of all the works done on fractional integration and cointegration.

Thus, in this paper, a generalized fractional cointegration testing procedure is being developed,
where both fractional and non-fractionally cointegrated models are considered such that the observed
series with cross-sections and cointegrating error are both fractional and non-fractional processes
and a residual-based testing procedure for generalized fractional cointegration is proposed and its
performance is compared to an existing fractionally cointegrated test when 0 ≤ d ≤ 1.

The proposed test involves modifying the residual-based test proposed by [15] which involves two
integrated time series yt and xt, where the observed series are I(d) processes and the regression residual
ϵt = yt − βxt is an I(γ), γ and d can be real-valued, and the test includes traditional cointegration as a
special case. [15] constructed a test statistic which has an asymptotic standard normal distribution
under the null hypothesis of no cointegration using a consistent estimate of d and γ obtained from xt

and the residual ϵt.
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2. Wang et al. (2015) Fractional Cointegration Test

Let xt and yt be two processes that are both I(d), [19] reported that for a certain scalar β ̸= 0, a
linear combination ϵt = yt − βxt, will also be I(d), with the possibility that ϵt can be I(d − b) with
b > 0. Thus, given two real numbers d, b, the components of a vector ct are said to be cointegrated of
order d, b, denoted as ct ∼ CI(d, b) if:

i. all the components of ct are I(d),
ii. there exists a vector α ̸= 0 such that st = α′ct ∼ I(γ) = I(d − b), b > 0,

where α and st are called the cointegration vector and error respectively [20]. A simple bivariate system
of fractional cointegrated xt and yt processes can be defined as:

yt = βxt + (1 − L)−γϵ1t

xt = (1 − L)−dϵ2t
(1)

for positive t. The vector ϵt = (ϵ1t, ϵ2t)
′ is now a bivariate zero mean covariance stationary I(0) process,

β ̸= 0 and γ < d. In equation (1) xt and yt are both I(d) and ϵ1t = yt − βxt is I(γ).
The lag operator Lyt = yt−1 and the difference ∆−d = (1 − L)−d is obtained using (1 − L)d =

∑∞
j=0 (

d
j)(−1)jLj, (d

j)=
d!

j!(d−j)! . In contrast to standard CI(1, 1) cointegration, the memory parameter d
is unknown in fractionally cointegrated systems and has to be estimated. The relevant hypotheses
to test whether the two processes are fractionally cointegrated are: H0 : xt and yt are not fractionally
cointegrated (d = γ), H1 : xt and yt are fractionally cointegrated (d > γ).

The [15] fractional cointegration test is based on second components xt of the process Xt = (yt, xt)

and the associated residuals ϵt = yt − βxt. [15] constructed a simple t-like test statistic that utilizes the
spectral density of the component xt denoted as f̂22 = 1

2πT ∑T
t=1(∆

d̂xt)2 and the fractional cointegration
parameter γ of residual ϵ2t. Thus, the statistic is given as

Fw =
∑T

t=1 ∆γ̂xt√
2πT f̂22

H0→ N(0, 1). (2)

The method requires d > 0.5 so that a consistent cointegrating vector β can be estimated
using Ordinary Least Squares (OLS). The first step in the construction of the test is to estimate
the cointegration parameter β using

β̂ols =
∑T

t=1 xtyt

∑T
t=1 x2

t
(3)

and then obtain the residuals ϵ̂1t = yt − β̂olsxt. The values d̂ and γ̂ are later estimated from the
series xt and ϵ̂1t respectively using the method of [21]. Correspondingly, the differenced series ∆d̂xt

and ∆γ̂xt are then calculated.

3. Generalized Residual-Based Fractional Cointegration Test for Fixed Effect Panel Model

Suppose we have a balanced fixed effect panel model with n the number of cross-sectional units, t
the time unit such that T = n × t is the total sample size. The model

yit = µi + βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(4)

where β is the cointegration parameter is assumed to be constant over i cross-sectional units, µi is the
fixed effect coefficient for the ith cross-sectional units, xt and yt represent simple bivariate processes
denoting independent and dependent variables in panel model which are fractionally cointegrated if
we can establish the following Assumption:
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A1. xt and yt are both I(d) with 0 ≤ d ≤ 1 and ϵ1t = yt − βxt is I(γ) and
A2. the vector ϵit = (ϵ1it, ϵ2it)

′ is a bivariate zero mean covariance stationary I(0) process which is
independent across i, β ̸= 0 and γ < d.

A3. the vector µi fizzled out in the longrun such that µi = 0 as T → ∞.

The relevant hypotheses to test whether the two processes are fractionally cointegrated are:
H0 : xit and yit are not fractionally cointegrated (d = γ),
H1 : xit and yit are fractionally cointegrated (d > γ).
Notice we can rewrite (4) as:

yit − µ̂i = βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(5)

where µ̂i = ȳi = N−1 ∑N
t=1 yit and denotes zit = yit − µ̂i, such that we have:

zit = βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(6)

It is clear that (6) is the demean transformed version of (1) which is reduced to the original time
series model in (1) with cross-sectional parameter µi factored out. According to [3], when d ≤ 0.5, a
consistent β in (6) can be estimated using the Tapered Narrow Band Least Square (TNBLS). The TNBLS
[3] procedure involves estimation of a complex-valued taper qt defined as:

qt =
1
2

(
1 − exp−i2π(t−1/2)s−1

)
, t = 1, 2, . . . , s. (7)

The next step involves obtaining the discrete tapered Fourier transform of the series ηt and
cross-periodogram using

ω′
η,j =

(
2π

s

∑
t=1

|qp−1
t |2

)−0.5 s

∑
t=1

qp−1
t ηt exp−iλjt, (8)

I′ηη̄,j = ω′
η,jω̄

′
η,j (9)

respectively. The averaged tapered-periodogram obtained using m bandwidth is given by

F̂′
ηη̄,j(m) = 2πs−1

m

∑
j=1

ℜI′ηη̄,j, 1 ≤ m ≤ s
2

. (10)

Therefore, the estimate of a consistent long-memory parameter β in (4) when d ≤ 0.5 is:

β̂m =
F̂′

xz(m)

F̂′
xx(m)

(11)

where m ≥ 1 is fixed. If instead of holding m fixed we substitute m = s/2 and avoid differencing and
tapering, we obtain the ordinary least squares (OLS) estimator [3].

[15] established that if d > 0.5, the OLS estimator is consistent and in contrast it is inconsistent. In
order to develop a generalized test statistic that is usable for all d’s in the range of [0, 1]. We developed
a piecewise estimator for β for the two possible situations that is for d ≤ 0.5 and d > 0.5. Thus, the
modified estimator for the long memory parameter β̂mix is
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β̂mix =


F̂′

xz(m)

F̂′
xx(m)

0 < d ≤ 0.5

∑T
i,t=1 xitzit

∑T
i,t=1 x2

it
0.5 < d ≤ 1

(12)

Theorem 1. For a fixed effect fractional cointegrated panel model defined in (4) satisfying A1 and A2, the

long-memory parameter can be estimated with (12). Thus, the modified test statistic Mw =
∑T

i,t=1 ∆γ̂xit√
2πTK̂22

, where

K̂22 = 1
2πT ∑T

i,t=1(∆
d̂xit)

2, converges; Mw
d−→ N(0, 1) under H0 and diverges under H1.

Proof. Required to show that:

Mw =
∑T

i,t=1 ∆γ̂xit√
2πTK̂22

H0→ N(0, 1). (13)

Equation (13) can be rewritten as

Mw =
ST

k̂22
√

T
. (14)

where ST = ∑T
i,t=1 ∆γ̂xit, k̂22 =

√
2πK̂22. Since ST is the sum of T independently and identically

distributed random variables. Recall that the moment generating function Q(u) = E(eux) of ST and
correspondingly Mw can be defined as:

QST (u) =
(
Q(u)

)T

;

QMw(u) =
[

Q
(

u
k̂22

√
T

)]T

. Now, computing the Taylor’s series expansion of Q(u) around 0 leads to:

Q(u) = Q(0) + Q
′
(0)u +

1
2

Q
′′
(0)u2 + rem = 1 +

1
2

K22u2 +O(u3)

, since Q(0) = E(e0) = 1, Q
′
(0) = d

du E(eux) = E(x) = 0 (x is assumed to be the differenced xit whose

mean is zero under H0), Q
′′
(0) = d2

du2 E(eux) = Var(x) = Var(∆γ̂xit|H0) = K22. Thus,

Q
(

u
k̂22

√
T

∣∣∣∣H0

)
= 1 +

1
2

K22

(
u

k22
√

T

)2

+O
[(

u
k22

√
T

)3]
= 1 +

u2

2T
+O

(
1

T3/2

)

QMw(u|H0) =

[
1 +

u2

2T
+O

(
1

T3/2

)]T
T→∞−−−→ eu/2

. The moment generating function of a Gaussian random variable ς ∼ N(0, 1) with mean 0 and

variance 1 is defined as Qς(u) = E(euς) = eu/2. Thus, Mw
d−→ N(0, 1) under H0. On the other hand,

under H1, E(eux) = Var(x) = Var(∆γ̂xit|H1) ̸= K22. Let Var(∆γ̂xit|H1) = G22, then we have
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Q
(

u
k̂22

√
T

∣∣∣∣H1

)
= 1 +

1
2

G22

(
u

k22
√

T

)2

+O
[(

u
k22

√
T

)3]
= 1 +

u2

2T

(
G22

K̂22

)
+O

[
1

T3/2

(
G33

k̂22

)]
.

QMw(u|H1) =

{
1 +

u2

2T

(
G22

K̂22

)
+O

[
1

T3/2

(
G33

k̂22

)]}T
T→∞−−−→ e

u/2
( G22

K̂22

)
.

4. Simulation Study

We assume the following balanced fixed effect panel model with n the number of cross-sectional
units, t the time unit such that T = n × t is the total sample size. The model is:

yit = µi + βxit + (1 − L)−γϵ1it

xit = (1 − L)−dϵ2it.
(15)

where µi = (5, 10, 15, 20, 25) are the panel intercepts across the units i = 1, 2, . . . , 5. Monte Carlo
experiments are conducted to examine the finite sample performance of the tests. Let (yit, xit)

′ be
generated from model (1) with β = 1, ϵit = (ϵ1it, ϵ2it)

′ being a Gaussian white noise with E(ϵit) = 0,
Var(ϵ1it) = Var(ϵ2it) = 1 and Cov(ϵ1it, ϵ2it) = ρ. We consider cases with ρ = 0.0, 0.5 and sample sizes
T = 500, 1250, 2500 corresponding to t = 100, 250, 1000. Similar approaches were used in [4,12,22–27].

The test statistic simulation procedure follows the same three steps approaches used in [15] which
are:

Step 1: Estimate d̂ using xit by the method of [21].
Step 2: Compute K̂22 = 1

2πT ∑T
i,t=1(∆

d̂xit)
2.

Step 3: Compute the estimate of the long memory parameter using β̂mix and use it to estimate
ϵ̂1it = yit − β̂mixxit. Again estimate γ̂ using ϵ1it by the method used in step 1. Thus, the test
statistic Mw is computed. Each statistic is replicated 5000 times so as to estimate the empirical
type 1 error rates at 1%, 5%, and 10%.

The empirical type 1 error rates and power are reported in Table 1. In Table 1, it was observed
that the original [15] Fw test undersized the nominal size when d < 0.5 as expected. However, when
d > 0.5, its empirical type 1 error rates compete with the modified test. On the other hand, the modified
test empirical type 1 error rates are slightly oversized and converge to the nominal size as T → ∞
irrespective of d values and the correlation values ρ. Overall, the empirical type 1 error rates returned
by the modified test Mw are relatively closer to the nominal size than the original [15] Fw test. This
establishes the validity and applicability of the proposed Mw test for fractionally cointegrated panels.
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Table 1. Empirical Type I error rate for original [15] test: Fw and proposed modified [15] test: Mw at
varying levels of d, ρ and sample sizes T.

α = 0.01 α = 0.05 α = 0.10

d Method/T 500 1250 2500 500 1250 2500 500 1250 2500

0.3 Fw 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.001 0.000
Mw 0.015 0.014 0.013 0.066 0.055 0.052 0.118 0.115 0.106

ρ = 0.0 0.6 Fw 0.028 0.018 0.015 0.069 0.063 0.048 0.107 0.094 0.091
Mw 0.026 0.016 0.011 0.079 0.069 0.056 0.145 0.120 0.115

0.8 Fw 0.036 0.027 0.018 0.083 0.073 0.065 0.146 0.125 0.116
Mw 0.015 0.013 0.010 0.068 0.064 0.059 0.128 0.112 0.101

1 Fw 0.026 0.023 0.016 0.076 0.070 0.065 0.122 0.117 0.112
Mw 0.008 0.011 0.013 0.059 0.051 0.051 0.114 0.104 0.101

0.3 Fw 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Mw 0.012 0.014 0.011 0.059 0.054 0.052 0.123 0.111 0.103

ρ = 0.5 0.6 Fw 0.023 0.017 0.016 0.060 0.054 0.050 0.107 0.091 0.097
Mw 0.020 0.012 0.013 0.084 0.067 0.062 0.148 0.120 0.116

0.8 Fw 0.038 0.022 0.017 0.089 0.070 0.067 0.140 0.126 0.109
Mw 0.014 0.011 0.010 0.060 0.059 0.057 0.127 0.119 0.109

1 Fw 0.030 0.020 0.019 0.076 0.068 0.060 0.123 0.113 0.113
Mw 0.008 0.010 0.010 0.046 0.044 0.043 0.110 0.105 0.102

For the power results in Table 2, we considered γ < d, the powers of the two tests approach 1
when T increases and when the effect size γ − d is large. Again, the powers of the Mw are in most
cases closer to 1 than Fw. The better performance of Mw observed in Tables 1 and 2 can be attributed to
model adequacy. While Mw was developed using panel data model assumption, Fw was developed
using a time series model. Since the model simulated is a panel one, Mw is expected to be better than
Fw.

Table 2. Empirical power for original [15] test: Fw and proposed modified [15] test: Mw at varying
levels of d, γ and sample sizes T.

α = 0.01 α = 0.05 α = 0.10

γ Method/T 500 1250 2500 500 1250 2500 500 1250 2500

d = 1.0 0.9 Fw 0.146 0.169 0.175 0.256 0.258 0.307 0.332 0.362 0.369
Mw 0.169 0.186 0.197 0.286 0.310 0.352 0.390 0.410 0.434

0.6 Fw 0.765 0.815 0.877 0.851 0.890 0.919 0.856 0.900 0.910
Mw 0.837 0.860 0.899 0.889 0.907 0.937 0.906 0.919 0.929

0.3 Fw 0.913 0.959 0.967 0.944 0.952 0.980 0.949 0.966 0.981
Mw 0.969 0.983 0.984 0.974 0.994 0.994 0.982 0.992 0.990

0.0 Fw 0.935 0.961 0.968 0.957 0.969 0.976 0.950 0.971 0.979
Mw 0.993 0.997 1.000 0.995 0.998 1.000 0.999 0.997 1.000

d = 0.9 0.6 Fw 0.638 0.694 0.759 0.721 0.747 0.826 0.721 0.747 0.826
Mw 0.737 0.743 0.803 0.795 0.796 0.850 0.795 0.796 0.850

0.3 Fw 0.856 0.887 0.939 0.887 0.924 0.952 0.887 0.924 0.952
Mw 0.950 0.971 0.980 0.961 0.977 0.986 0.961 0.977 0.986

d = 0.6 0.3 Fw 0.264 0.335 0.421 0.392 0.457 0.530 0.392 0.457 0.530
Mw 0.728 0.739 0.813 0.788 0.793 0.847 0.788 0.793 0.847

0.0 Fw 0.389 0.446 0.503 0.518 0.569 0.625 0.518 0.569 0.625
Mw 0.966 0.973 0.977 0.978 0.978 0.979 0.978 0.978 0.979

d = 0.4 0.1 Fw 0.005 0.006 0.012 0.011 0.021 0.033 0.055 0.070 0.082
Mw 0.712 0.735 0.803 0.815 0.819 0.868 0.817 0.820 0.870
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5. A Fractional Cointegration Panel Model for Realized Industry and Market Volatilities in U.S.
Economy

The data used here were drawn from Yahoo Finance and Kenneth French’s Data Library. Five
Industries portfolios (Cnsmr:Consumer Durables, Nondurables, Wholesale, Retail, and Some Services;
Manuf: Manufacturing, Energy, and Utilities; HiTec: Business Equipment, Telephone and Television
Transmission; Hlth: Healthcare, Medical Equipment, and Drugs; and Other: Mines, Construction,
Building Materials, Transport, Hotels, Bus Services, Entertainment, Finance) spanning time period
2000 − 2019 (Nt = 240) months were extracted from Kenneth French’s Data Library in the U.S.
economy. This dataset was used to compute the industry’s realized volatility. The market volatility
dataset was extracted from Yahoo Finance for three composite portfolios (NYSE, NASDAQ and AMEX).
The market portfolios were aggregated to be used as constant input for the realized industry portfolios.
The returns were computed as described in [2].

We let IVit i = 1, 2, 3, 4, 5, t = 1, . . . , 240 represent industry volatility and MVit represent market
volatility. The associated fractional cointegrated panel model is given by

IVit = µi + βMVit + ∆−γϵ1it

MVit = ∆−dϵ2it.
(16)

We estimated the fractional cointegration parameters d and γ using bandwidth ηm = 0.75 which
corresponds to m = 2400.75 = 61 for each industry and the pooled industries (Panel). It is essential
to test the equality of d across portfolios to ensure the validity of pooling. The tests of [9] in [28] was
applied and the estimated results were (Tstat = 0.38, p = 0.353). The results revealed that the null
hypothesis of equality of d across various portfolios holds.

Table 3 presents the estimates of d̂, γ̂, β̂mix, and Fw, Mw tests of no fractional cointegration for
the five industry portfolios and market average. The β̂mix = β̂ols since dmarket = 0.55 > 0.5, thus
the TNBLS approach was not employed here. All the estimates of d’s for both market and industry
portfolios are all less than 1 indicating the validity of fractional integration for the U.S. volatilities.
Furthermore, the Fw test showed that of the five industry portfolio volatilities, only HiTec is not
fractionally cointegrated with market-realized volatility. Also, the Fw fractional panel cointegration
test obtained by pooling all industries showed that there is no fractional panel cointegration (p > .05)
for the combined industries against the market. On the other hand, the Mw test showed that all the
five industry portfolio volatilities are not fractionally cointegrated with market realized volatility. In
addition, the fractional panel cointegration test obtained by adjusting for the fixed effect showed that
there is also no fractional panel cointegration for the combined industries against the market. The
results of Mw are more reliable compared to Fw as all the individual fractional cointegration test agrees
with the overall results obtained for the panel of industries.

Table 3. Estimates of d̂, γ̂, β̂mix, and Fw, Mw tests of no fractional cointegration for the five industry
portfolios and market average.

Market Cnsmr Manuf HiTec Hlth Other Panel

d̂ 0.55 0.55 0.52 0.61 0.46 0.74 0.54
γ̂ 0.20 0.42 0.87 0.32 0.34 0.52
β̂mix 0.75 0.98 1.11 0.68 1.26 0.96
SE(β̂mix) 0.016 0.022 0.043 0.028 0.029 0.014

Fw 7.54 2.16 0.79 2.80 12.69 1.28
p(> |Fw|) 0.000 0.031 0.432 0.005 0.000 0.201
Mw 0.38 0.25 0.23 0.21 0.49 0.12
p(> |Mw|) 0.705 0.799 0.821 0.832 0.626 0.903
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6. Conclusion

This paper proposed a generalized residual-based test for a fractionally cointegrated panel model
with fixed effects. The test development is based on bivariate panel series yit and xit where xit is
assumed to be fixed across cross-sectional units. As with other fractional cointegration tests yit and xit
are I(d) and the residual ϵit = yit − βxit is I(γ). The proposed test procedure accepts any values of d
and γ between [0, 1]. The modified test Mw is asymptotically normal under the null hypothesis and it
diverges under the alternative. Mw shows better size and power when compared to the [15] test at
varying sample sizes and other simulation conditions. In addition, the real-life application to industry
realized and market volatilities for the U.S. economy shows the applicability of the test.
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