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Abstract: Taiwan’s auditors have suffered from processing excessive audit data, including drawing audit evidence.
This study advances sampling techniques by integrating machine learning with sampling. This machine learning
integration helps avoid sampling bias, keep randomness and variability, and target the risker samples. We
first apply a Naive Bayes classifier to classify data into some classes. Next, a user-based, item-based, or hybrid
approach is employed to draw audit evidence. The representativeness index is the primary metric for measuring
the representativeness of audit evidence. The user-based approach denotes the selection of samples between
two percentiles in a class as audit evidence. It may be equivalent to a combination of monetary and variable
sampling methods. The item-based approach represents the choice of risky samples as audit evidence. It may
be identical to a combination of non-statistical and monetary sampling methods. Auditors can hybridize those
user-based and item-based approaches to balance representativeness and riskiness in selecting audit evidence.
Three experiments show that sampling using machine learning integration has the benefits of drawing unbiased
samples, handling complex patterns, correlations, and unstructured data, and improving efficiency in sampling
big data. However, the limitations are the classification accuracy output by machine learning algorithms and the
range of prior probabilities.

Keywords: sampling; audit evidence; representativeness index; Naive Bayes classifier

1. Introduction

Taiwan’s auditors have recently suffered from processing excessive data, including drawing audit
evidence. This audit evidence refers to the information to support auditors’ findings or conclusions
about those excessive data. Auditors desire assistance from emerging technologies such as machine
learning algorithms or software robots in completing the sampling. The overload of sampling exces-
sive data causes Taiwan’s small to medium accounting firms to need more young auditors to help
accountants. They even ask Taiwan’s universities to provide excellent accounting students as potential
employees.

This study develops a Naive Bayes classifier (e.g., [1]) as a sampling tool. It is employed to help
auditors generate audit evidence from a massive volume of data. For example, enterprises employ
enterprise resource planning or information management systems to manage accounting data. They
output a colossal amount of data each day. For economic reasons, auditing all data is almost impossible.
Auditors rely on sampling methods to generate audit evidence. It denotes that auditors audit less than
100 % of data; nevertheless, the sampling risk will occur correspondingly. It implies the likelihood that
auditors’ conclusions based on samples may differ from the conclusion made from the entire data.

A previous study [2] suggested applying a classification algorithm to mitigate the sampling risk
in choosing audit evidence. This published research constructed a neural network to classify data into
some classes and generate audit evidence from each class. If classification results are accurate, the
corresponding audit evidence is representative.

However, we may have intelligent demands in drawing audit evidence. For example, financial
accounts accepting frequent transactions are risky in a money laundering problem. Criminals may own
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these financial accounts to receive black money. An auditor will be grateful for sampling such risky
financial accounts as audit evidence. We select a Naive Bayes classifier to complete those intelligent
demands of generating audit evidence since it provides the relationships between members in a class.
Other alternative classification algorithms cannot provide similar relationships.

Many published studies (e.g., [3-5]) attempted to integrate machine learning with sampling;
however, the research interest of most was not auditing. Their goal was to develop unique sampling
methods for improving the performance of machine learning algorithms in solving specific problems
(e.g., [3]). Some studies (e.g., [4]) suggested sampling with machine learning in auditing; moreover,
only some researchers (e.g., [5]) have indeed implemented machine learning-based sampling in
auditing.

This study starts acquiring audit evidence by appending some columns to data to store the
classification results of a Naive Bayes classifier. It next classifies data into some classes. Referring
to existing sampling methods, we next implement a user-based, item-based, or hybrid approach to
draw audit evidence. The representativeness index [6] is the primary metric for measuring whether
audit evidence is representative. The user-based approach draws samples between two percentiles in
a class. It may be equivalent to a combination of monetary and variable sampling methods [7]. The
item-based approach chooses risky samples. It may be equivalent to combining non-statistical and
monetary sampling methods [7]. Auditors may hybridize these user- and item-based approaches to
balance the representativeness and riskiness in selecting audit evidence.

The remainder of this study has five sections. Section 2 presents a review of relevant studies to
this study. Section 3 shows an integration of a Naive Bayes classifier with sampling. Section 4 presents
three experiments for testing the resulting works in Section 3. Section 5 discusses the experimental
results. Based on the previous two sections, Section 6 lists this study’s conclusion and concluding
remarks.

2. Literature review

As stated earlier, only some studies have sampled data using a machine learning algorithm in
auditing. This sparsity leads to harassment in searching for advice to implement this study.

If the purpose is to improve the efficiency of auditing, some published studies (e.g., [5]) integrated
machine learning with sampling for detecting anomalies. For example, Chen et al. [5] selected the ID3,
CART, and C4.5 algorithms to find anomalies in financial transactions. Their results indicated that a
machine learning algorithm can simplify the audit of financial transactions by efficiently exploring
their attributes.

Schreyer et al. [8,9] constructed an autoencoder neural network to sample journal entries in their
two papers. They fed attributes of those journal entries into the resulting autoencoder. However,
Schreyer et al. plotted figures to describe the representatives of samples.

Lee [10] built another autoencoder neural network to sample taxpayers. Unlike Schreyer et
al. [8,9], Lee calculated the reconstruction error to quantify the representativeness of samples. This
metric measures the difference between input data and outputs reconstructed using samples. Lower
reconstruction errors indicate better representativeness of original taxpayers. Besides, Lee [10] used
the Aprior algorithm to find those taxpayers who may be valuable to sample together. If one taxpayer
breaks some laws, other taxpayers may also be fraudulent.

Chen et al. [11] applied the random forest classifier, XGBoost algorithm, quadratic discriminant
analysis, and support vector machines model to sample attributes of Bitcoin daily transaction data.
These attributes contain the property and network, trading and market, attention, and gold spot prices.
The goal of this previous research is to predict Bitcoin daily prices. Chen et al. [11] found that machine
learning algorithms predicted more accurately Bitcoin 5-minute interval prices than statistical methods
did.

Different from the above-mentioned four studies, Zhang and Trubey [3] designed under-sampling
and over-sampling methods to highlight rare events in a money laundering problem. Their goal was
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improving the performance of machine learning algorithms in modeling money laundering events.
Zhang and Trubey [3] adopted the Bayes logistic regression, decision tree, random forest classifier,
support vector machines model, and artificial neural network.

In fields other than auditing, three examples are listed: Liberty et al. [12] defined a specialized
regression problem to calculate the probability of sampling each record of a browse dataset. The
goal was to sample a small set of records over which evaluating aggregate queries can be done
both efficiently and accurately. Deriving their solution to the regression problem employs a simple
regularized empirical risk minimization algorithm. Liberty et al. [12] concluded that machine learning
integration improved both uniform and standard stratified sampling methods.

Hollingsworth et al. [13] derived generative machine learning models to improve the compu-
tational efficiency in sampling high-dimensional parameter spaces. Their results achieve orders of
magnitude improvements in sampling efficiency compared to a brute-force search.

Artrith et al. [14] combined a genetic algorithm and a specialized machine-learning potential
based on artificial neural networks to quicken the sampling of amorphous and disordered materials.
They found that machine learning integration decreased the required calculations in sampling.

Other relevant studies discussed the benefits or challenges of integrating a machine learning
algorithm with the audit of data. These studies only encourage or remind the current study to notice
these benefits or challenges. For example, Huang et al. [15] suggested that a machine learning algorithm
may serve as a ‘Black Box” to help an auditor. However, auditors may need help in mastering a machine
learning algorithm. Furthermore, auditors may have a wrong understanding of the performance of a
machine learning algorithm. This misunderstanding causes auditors to believe we can always obtain
accurate classification or clustering of data using a machine learning algorithm. Besides, it improves
effectiveness and cost efficiency, analyzes massive data sets, and reduces time spent on tasks. Therefore,
we should ensure the performance of a machine learning algorithm is sufficiently good before applying
it to aid auditors” work.

3. Naive Bayes classifier

This study applies a Naive Bayes classifier (e.g., [1]) to select audit evidence since this classification
algorithm provides posterior probabilities to implement the selection. A Naive Bayes classifies data
according to posterior probabilities. We may employ posterior probabilities to relate different members
of a class.

Suppose (X1,C1), (X2,C2) ..., (XN, Cn) denote N items of data where C; is the class variable,
Xi = (Xi1, Xiz -+, Xin), and Xj; (j = 1,2...,n) is the j-th attribute of X; and 7 is the total number of
attributes.

A Naive Bayes classifier is a supervised multi-class classification algorithm. As shown in Figure
1, developing a Naive Bayes classifier considers Bayes’ theorem with conditional independence
assumption between every pair of variables:

PI‘(X]|CZ) PI‘(Cl)
Pr(X;)

inwhichi,j=1,2...,N,Pr(C |X]-) is the posterior probability, Pr (X]- |C;) denotes the likelihood, Pr(C;)
and Pr (X]-) is the prior probability.
Applying the assumption of features X1, Xj» . . ., Xj,, are independent of each other yields

Pr(C;) k]ill Pr (xjk|cl-)

Pr(Ci|X;)= Pr (X))

)
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where i,j = 1,2..., N. Since the denominator of Equation (2) is the same for all C; classes, comparing
the numerator of it for each C; class is implemented in classifying features X1, Xa, ..., Xy, Xj; (j =
1,2...,n). This comparison ends when Equations. (3)-(4) are satisfied:

Pr(CifX;) o Pr(Cy) [ T Pr(XgelC:) 3)
k=1

n
y € argmax lPr(Ci) []Pr (Xjk|ci) 4)
k=1

ie{1,2..,N}

where i/ denotes a class variable.

Figure 1. Bayes’ theorem

Regarding conventional sampling methods [7], this study designs user-based and item-based
approaches in integrating Equations (3)-(4) with the selection of audit evidence:

i. User-based approach: In an attempt to generate unbiased representations of data, classifying
(X1,C1), (X2,C2) ..., (XN, Cn) and compute two percentiles in each class according to an audi-
tor’s professional preferences. Draw the X, Xy, ..., Xy bound by the resulting two percentiles as
audit evidence, and

ii. Item-based approach: Suppose those Xy, Cy (j = 1,2..., N) represent risky samples. Choose
them as audit evidence after classifying (X1, C1), (X2,C2) ..., (XN, CN)-

3.1. User-based approach

Suppose the C; (1 <i < N) is a class after classifying (X1,C1), (X2, C2) ..., (Xn, Cn), For imple-
menting this classification, we compute posterior probabilities Pr(C;|X;) and regress the resulting
Pr(C; |X]-) values by a posterior probability distribution. Figure 2 shows an example. Deriving the
detailed expression of this posterior probability distribution is unnecessary since deriving such an
expression is not our goal. On the curve in Figure 2, we can determine two percentiles P and P_
for bounding audit entities X;, Xz 11,..., Xy and draw them as audit evidence. In mathematical
formulations, the present user-based approach implements the following Equation (5) to output audit
evidence:

P <XpXps1-.. Xm <Py ®)

Auditors may have unique preferences of percentiles P and P_. For example, if P and P_ are
97.5th and 2.5th percentiles, features X;, X} 1, ..., Xp represent audit evidence in a 95% confidence
interval.

Furthermore, computing posterior probabilities audit entities Xy, Xy 41, ..., X yields

PI‘(CZ'|P_ < XLIXL+1 .. -/XM < P+):

M 6
PH(CIXL)+ Pr(CXLs1) ..+ Pr(GXan) = 1 Pr(CifXe) ©)
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Figure 2. Construction of a posterior probability distribution

After drawing audit evidence, this study measures the representativeness of these X, Xy 4+1,. .., Xpm
by [3]

(7)

12N(C;) M 2r—1
Representativeness index (RI)=1— (Ci) d }

4[N(C)P—1 ,;L {F(XL)_ZN(CZ-)

inwhichi=1,2...,N, N(C;) is the total number of members in the C; class, and F is the cumulative
distribution function of the curve in Figure 2. Since X1, X141, ..., X are discrete, this F function is

equal to
.

Z (CilX) (®)

where L < i < M. If total members in the C; (1 < I < N) class are sampled, the representativeness
index RI is identical to 1. On this RI value, the goal of drawing audit evidence may be choosing
sufficient samples but maintaining high RI values.

Regarding existing audit sampling methods [4], the present user-based approach may be identical
to a combination of the monetary and variable sampling methods.

3.2. Item-based approach

Similarly manipulating Section 3.1, suppose a C; (1 < i < N) is one of the classes in which
Xz, Xz41, - - -, Xp are members of this C; class.

If we have a null hypothesis Hy that members of the C; (1 < i < N) class are risky, a member
XL (1 < L < N) of this C; class with a lower Pr(C;| X)) value increases the possibility of rejecting this
Hy. Hence, drawing this X}, as an audit evidence is valueless. To strengthen the belief that Hj is true, it
is better to choose members of satisfying:

0<oq < Pr(Ci|Xp)<1 9)

where L < k < M and 07 represents a selected threshold.
Furthermore, samples X and X1 may be simultaneously risky. Selecting them as audit evidence
may be valuable. This selection may be based on the posterior probabilities of X; N Xp;:

Pr(Xy N Xm|C;) Pr(G;)

PG X0 =5 5 A X (10)
Further simplifying Equation (10) results in
Pr(Ci[X, mXM):Pr(XL|Ci)Pr(XM|Ci)Pr(Ci)7Pr(Ci\XL)Pr(Ci|xM) a

Pr(X.) Pr(Xy) B Pr(C;)

Samples satisfying 0<cy < Pr(C;|Xp NXp) < (1C
another selected threshold. The upper bound of Equation (11) depends upon the Pr(C;) value. To save
time in searching those Xp, Xy suitable for applying Equation (11), the Apriori algorithm states that

y are drawn as audit evidence in which o0 is
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we may start the search from those samples satisfying Equation (9). Such audit evidence may produce
larger numerators in the last expression of Equation (11).
Furthermore, extending Equation (10) to samples X, Xr 11, ..., Xp yields

PI‘(CZ'|XL NXpN..n XM):

— Pr(X[Ci) Pr(Xp44]Ci) X... xPr(Xy|Ci) Pr(Cy) __ Pr(Cy[Xy) Pr(Ci|Xp 1) X...xPr(Ci[Xm) (12)
o Pr(Xp) Pr(Xp41) X ... xPr(Xp) o [Pr(C;)| ML
Samples satisfying 0<ce3 < Pr(C;|Xp N Xy N...NXp1) < W are selected as audit evidence

in which o3 denotes third chosen threshold. Similarly, the upper bound of Equation (12) depends upon
the [Pr(C;)]“ ™ value. Again, the Apriori algorithm suggests that we can choose audit entities from
those satisfying Pr(C;| X, N Xpy) > oa.

Regarding existing audit sampling methods [4], the present item-based approach may be equiva-
lent to a combination of non-statistical and monetary sampling methods.

Like Section 3.1, we calculate the representativeness index RI [3] to check whether audit evidence
is sufficiently representative.

3.3. Hybrid approach

Auditors may hybridize the resulting works in Sections 3.1-3.2 to balance representativeness and
riskiness. We first apply the user-based approach to sample representative membersina C; (1 <i < N)
class. Implementing the item-based approach to draw the risker samples is next performed among
those resulting representative samples.

4. Results

This study generates three experiments to illustrate the benefits and limitations of combining a
machine learning algorithm with sampling. The first experiment demonstrates that machine learning
integration helps avoid sampling bias and maintains randomness and variability. The second experi-
ment shows that the proposed works help sample unstructured data. The final experiment shows the
hybrid approach balances representativeness and riskiness in sampling audit evidence.

Referring to the previous study [15], implementing machine learning integration with sampling is
better based on the accurate classification results provided by a machine learning algorithm. Therefore,
this study chooses a random forest classifier and a support vector machines model with a radial basis
function kernel as baseline models.

4.1. Experiment 1

A customer ad click prediction data set contains 10° (i.e., N = 10%) records in which 50% of
customers clicked the advertisement and the remaining 50% did not. This study uses the 'Daily
time spent on site,” “Age,” "Area income,” ‘Daily internet usage,” and 'Clicked on Ad’ columns as
experimental data. Two-thirds of those 103 records are randomly chosen as train data, whereas others
are test data. The 'Daily time spent on site,” "Age,” “Area income,” and ’Daily internet usage’ columns
are attributes Xij, (i=1-4,j=1,2...,N). Besides, set the class variable Cjto indicate the "Clicked
on Ad’ column equal to "Clicked” or "Not clicked’. Figure 3 shows variations of those X;; values.
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Figure 3. Distributions of attributes Xij: (i=1-4,j=1,2...,N) values in Experiment 1

To avoid sampling frame errors and undercoverage [15], studying the classification accuracy
output by Equations (3)-(4) is necessary. Figure 4 shows the resulting ROC curves in which NB, RF,
and SVM are abbreviations of Naive Bayes, random forest, and support vector machines. This figure
also shows the confusion matrix output by Equations (3)-(4). Its components have been normalized
based on the amount of test data. Moreover, this study computes:

true positive+true negative

= =0.964 13
accuracy all samples (13)
precision= t,n_le posifive —=0.977 (14)

true positive+false positive

true positive
— —=0. (15)
true positive+false negative

recall=

true negative 0974 (16)

specificity= =0.
P Y true negative+-false positive

Further computing the F1 score from Equations (14)-(15) yields

2 x precision X recall

precision-+recall =0.965 (17)

F1 score=

Meanwhile, calculating the AUC from Figure 4 obtains 0.965 (Equations (3)-(4)), 0.953 (Random
forest classifier), and 0.955 (Support vector machines model with a radial basis function kernel). These
AUC values indicate that Equations (3)-(4) slightly outperform the random forest classifier and support
vector machines model with a radial basis function kernel in avoiding sampling frame errors and
undercoverage. However, all three algorithms are good models.
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Figure 4. ROC curves provided by different machine learning algorithms and the confusion matrix
output by Equations (3)-(4) for Experiment 1

Our aim for testing Section 3.1 is to sample an unbiased representation of experimental data with
machine learning integration. Figure 5 shows the resulting audit evidence with a 50 % confidence
interval for each class. Histograms on this figure’s top and right sides compare the distributions of
original customers and audit evidence. In this figure, light and heavy gray points denote experimental
data, whereas red and blue colors mark audit evidence. The total number of blue and red points in
Figure 5 equal 250, respectively. Substituting the resulting audit evidence into Equation (7) obtains the
representativeness indices RI listed in the legend of Figure 5.

300 T
[
o
%
=] 200 B
°
=
2
£
> 100 -
'®
(m] ® Clicked (RI=0.875)
Not clicked (Rl = 0.867)
O 1 1 1

0 25 50 75 100
Daily time spent on site

Figure 5. Audit evidence for 50 % confidence intervals
Suppose the null hypothesis defines that the experimental data and audit evidence originate from

the same probability distribution. We calculate the Kolmogorov-Smirnov test statistic [16] to quantify
the possibility of rejecting this null hypothesis. The result is equal to 0.044, and it is less than the critical



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 March 2024 d0i:10.20944/preprints202403.1017.v1

9of 16

value equal to 0.055 = % [16] for concluding Kolmogorov-Smirnov test statistics with considering
the probability of 10% in rejecting the null hypothesize.

Calculating the Kolmogorov-Smirnov test statistic ensures that the audit evidence in Figure 5 is
unbiased and representative of original customers. If the resulting Kolmogorov-Smirnov test statistic is
lower than the critical value for concluding this test statistic, the original customers and audit evidence
originate from the same probability distribution. Thus, we can reduce the risk of system errors or
biases in estimating customers’ attributes.

We have another aim of keeping the variability in testing Section 3.2. As marked by a blue cross
in Figure 6, choose a customer with the predicted posterior probability of 0.999. The caption of Figure
6 lists the attributes of this customer. Other customers relevant to this customer are drawn as audit
evidence and marked using red points in Figure 6. Besides, we still use light or heavy gray points
representing the experimental data and histograms besides Figure 6 to describe the distribution of audit
evidence. Since the denominator Pr(C;) of Equation (11) equals 0.5. setting the 0, threshold to 1.9999
is considered. Substituting the resulting audit evidence into Equation (7) yields the representativeness
index RI in the legend of Figure 7. Counting the number of drawn audit evidence yields 294.

Table 1 compares variability between the original ‘Daily Internet use’ variable and audit evidence.
We employ the range, standard deviation, interquartile range, and coefficient of variation to measure
the variability.

Measuring the variability helps understand the shape and spread of audit evidence. Table 1
shows that the audit evidence maintains the variability.

Table 1. Comparison of the variability between original customers and audit evidence

Original data Audit evidence
Range [104.78,225.24] [104.78,225.24]
Standard deviation 24.55 24.53
Interquartile range 34.58 34.58
Skewness 0.674 0.673
Coefficient of variation 0.1731 0.173

300 T T
oo
2 °
8 °
5 200F
©
s
Q
£
>100F f -
‘© selected customer
(m]
Not clicked (Rl = 0.93)
0 [} [} [ |

0 25 50 75 100
Daily time spent on site

Figure 6. Audit evidence relevant to a chosen customer ('Daily time spent on site’ = 67.51, "Age’ = 43,
"Area in-come’ = 23942.61, 'Daily internet usage’ = 127.2, and "Clicked on Ad’ = "Not clicked”)
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4.2. Experiment 2

A spam message is one of the unstructured data that did not appear in the conventional sampling.
In this experiment, this study introduces a data set containing 5572 messages, and 13 % of them
are spam. This study randomly selects 75 % of them as train data. The other 25 % are test data. In
implementing this experiment, the first step is preprocessing these train and test data by vectorizing
each message into a series of keywords. We employ a dictionary to select candidate keywords.
Counting their frequencies is next performed. Classifying ham and spam messages is done by setting
a class variable C; (1 <i < N) indicating a spam or ham message, and attributes are the frequency of
keywords.

Based on the counts of keywords in ham and spam messages of experimental data, Figure 7
compares the top 20 keywords. Choosing them eliminates ordinary conjunctions and prepositions
such as 'to” and ‘and.” We can understand the unique keywords of spam messages from Figure 7.

To prevent sampling frame errors and undercoverage [15], Figure 8 compares the corresponding
ROC curves versus different machine learning algorithms. It also shows the confusion matrix output
by Equations (3)-(4). We have normalized its components based on the amount of test data. Table 2
lists other metrics for demonstrating classification accuracy on this confusion matrix.

Calculating the AUC values from Figure 8 yields 0.989 (Equations (3)-(4)), 0.923 (Random forest
classifier), and 0.934 (Support vector machines model with a radial basis function kernel). Such
AUC values indicate a support vector machines model, random forest, and Equations (3)-(4) are all
good models for preventing sampling frame errors and undercoverage; however, the performance of
Equations (3)-(4) is still the best.

Next, this study chooses the 75 % confidence interval of spam messages to generate audit evidence.
We obtained 652 samples of spam messages. Figure 9 compares counts of the top 20 keywords
of original text data and audit evidence. Substituting their posterior probabilities to compute the
representativeness index RI equals 0.997.

Figure 9 demonstrates that machine learning integration promotes sampling unstructured data
(e.g., spam messages) while keeping their crucial information. The design of conventional sampling
methods doesn’t consider unstructured data [4]. In this figure, sampling spam messages keeps the
ranking of all the top 20 keywords. The resulting samples may form a benchmark data set for testing
the performance of different spam message detection methods.

doi:10.20944/preprints202403.1017.v1
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Figure 7. Comparison of top 20 keywords in ham and spam messages: (a) ham messages; (b) spam

messages
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Figure 8. ROC curves provided by different machine learning algorithms and the confusion matrix
output by Equation (3)-(4) for Experiment 2

Table 2. Metrics output by Equations (3)-(4) for Experiment 2

Metric Value
Accuracy 0.983
Precision 0.992

Recall 0.989
Specificity 0.992
F1 score 0.99
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Figure 9. Comparison of top 20 keywords in original text data and audit evidence
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4.3. Experiment 3

The third experiment illustrates that integrating machine learning with sampling can balance
representativeness and riskiness. We use the Panama Papers to create a directed graph model having
535891 vertices in which each vertex denotes a suspicious financial account. Its attributes are the
degree centrality and clustering coefficient.

The Panama Papers were a massive leak of documents. They exposed how wealthy individuals,
politicians, and public figures worldwide used offshore financial accounts and shell companies to
evade taxes, launder money, and engage in other illegal activities.

The degree centrality D [17] is the number of edges connecting to a vertex. The higher the degree
centrality, the greater the possibility detects black money flows. Besides, we consider that two financial
accounts may have repeated money transfers. Therefore, computing the degree centrality considers
the existence of multiple edges. For example, if a sender transfers money to a payee two times, the
degree of a vertex simulating such a sender or payee equals 2.

Meanwhile, the clustering coefficient ¢ [17] measures the degree to which nodes in a graph tend to
group. Evidence shows that in real-world networks, vertices may create close groups characterized by
a relatively high density of ties. In a money laundering problem, a unique clustering coefficient may
highlight a group within which its members exchange black money. Like the computation of degree
centrality, calculating the clustering coefficient considers the possible existence of multiple edges.

The purpose of generating Experiment 3 is to demonstrate that integrating machine learning with
sampling can balance representativeness and riskiness. Therefore, we set the C; (1 <i < N) variable
according to the D; and c¢; values. Table 3 lists the results. Its final column lists the total members
corresponding to each C; class.

Table 3. The resulting degree centrality D;, clustering coefficient ¢; (1 < i < N), and total number of
members in each C; class

Class variable c; Degree centrality D;  Clustering coefficient Total number of
C; members
1 [0,2) [0,1] 338800
2 [2,4) [0,1] 117323
3 [4,6) [0,0.417] 41720
4 [6,10) [0,0.367] 22743
5 [10,00) [0,0.28] 15304

To prevent sampling frame errors and undercoverage [15], Figure 10 compares the ROC curves
output by different machine learning algorithms in classifying nodes in Experiment 3. Obtaining
Figure 10 randomly chooses 80 % of nodes as train data and other vertices as test data. Moreover,
Equations (3)-(4) output the confusion matrix shown in Equation (18):

0.6311 0 0 0 0
0 0.2198 0 0 0
0 0.00139  0.077 0 0 (18)
0 0 0.00031 0.0042 0
0 0 0 0.004 0.0244

in which each component has been normalized based on the amount of test data.

From Equation (18), we further calculate the averaged accuracy, specificity, recall, precision, and
F1 value, as shown in Table 4. Next, calculating the AUC values from Figure 10 and Table 4 results in
0.965 (Equations (3)-(4)), 0.844 (Random forest classifier), and 0.866 (Support vector machines model
with a radial basis function kernel). Figure 10 indicates that the random forest classifier and support
vector machines model with a radial basis function kernel are unsuitable for this experiment. Since we
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have a high volume of data in this experiment, these two algorithms may output unacceptable errors
in sampling nodes.
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Figure 10. ROC curves provided by different machine learning algorithms for Experiment 3

Table 4. Metrics calculated from Equation (18)

Metric Averaged value
Accuracy 0.995
Precision 0.992

Recall 0.989
Specificity 0.992
F1 score 0.99

Suppose a 75 % confidence interval to sample members of each class C; (i = 1,2...,N). However,
we agree that the C; = 5 class has the risker members. High D; values imply frequent transactions.
Therefore, further drawing audit evidence from samples with Pr(C;=5|X;)(1 < i,j < N) = 1 values
within the 75 % confidence interval of the C; = 5 class. The red points in Figure 11 represent the
resulting audit evidence. Heavy gray points denote original data. The legend of this figure lists the
corresponding representativeness index RI and the number of drawn samples.

Carefully inspecting Figure 11 indicates that vertices (D; > 13 (i = 1,2...,N)) are drawn as
audit evidence. They are riskier than other nodes in the C; = 5 class. With the help of a Naive Bayes
classifier (Equations (3)-(4)), profiling the class C; = 5 is unnecessary before sampling this C; = 5 class.
This unnecessity illustrates the difference between sampling with machine learning integration and
conventional sampling methods.
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Figure 11. Risker audit evidence for Experiment 3

5. Discussion

Section 4 implies the benefits and limitations of integrating a Naive Bayes classifier with sampling.
These benefits and limitations are further explained below

¢ Conventional sampling methods [4] may not profile the full diversity of data; thus, they may
provide biased samples. Since this study samples data after classifying them using a Naive
Bayes classifier, it substitutes for a sampling method to profile the whole diversity of data.
Experimental results of Section 4 indicate that the Naive Bayes classifier classifies three open
data sets accurately, even if they are excessive. Those accurate classification results indicate that
we capture the whole diversity of experimental data.

¢ Developing conventional sampling methods may not consider complex patterns or correlations
in data [4]. In this study, we handle complex correlations or patterns in data (for example, a
graph structure in Section 4.3) by a Naive Bayes classifier. This design mitigates the sampling

bias caused by complex patterns or correlations if it provides accurate classification results.
* Section 4.3 indicates that a Naive Bayes classifier works well for big data in a money laundering

problem. It outperforms the random forest classifier and support vector machines model with a
radial basis function kernel in classifying massive vertices. Thus, we illustrate that the efficiency
of sampling big data can be improved. One can sample risker nodes modeling fraudulent
financial accounts without profiling specific groups of nodes.

* Development of conventional sampling methods considers structured data; however, they
struggled to handle unstructured data such as spam messages in Section 4.2. We resolve this

difficulty by employing a Naive Bayes classifier before sampling.
¢ Since this study samples data from each class classified by a Naive Bayes classifier, accurate

classification results eliminate sample frame errors and improper sampling sizes.

Nevertheless, this study also finds limitations in integrating machine learning and sampling. They are
listed as follows:

e It is still possible that a Naive Bayes classifier provides inaccurate classification results. Before
integrating a machine learning algorithm with sampling, one should test the classification
accuracy.

* In implementing Section 3.2, thresholds 0; (j = 1 — 3) are needed. However, we should inspect
variations of the prior probabilities for determining proper ¢ (j = 1 — 3) values. They denote
the second limitation of our machine learning-based sampling.
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6. Conclusions

Sampling plays a crucial role in auditing. It provides a mechanism for auditors to draw audit
evidence. However, various challenges exist within available sampling methodologies, including
selection bias, sampling frame errors, improper sampling sizes, and handling of unstructured and
massive data. This study develops a Naive Bayes classifier as a sampling tool. It is employed to
overcome the challenges mentioned above. From Section 4, we conclude that sampling with machine
learning integration has the benefits of providing unbiased samples, handling complex patterns or
correlations in data, processing unstructured or big data, and avoiding sampling frame errors or
improper sampling sizes.

However, sampling using a Naive Bayes classifier has limitations. Inaccurate classification
results output by the Naive Bayes classifier may result in biased samples or sampling frame errors.
Overcoming them requires testing the Naive Bayes classifier before applying it to sampling.
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