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Abstract: This paper presents a comprehensive investigation into the applicability and performance of two
prominent growth models, namely the Verhulst model and the Montroll model, in the context of modeling tumor
cell growth dynamics. Leveraging the power of Physics-Informed Neural Networks (PINNs), we aim to assess
and compare the predictive capabilities of these models against experimental data obtained from the growth
patterns of tumor cells. We employ a dataset comprising detailed measurements of tumor cell growth to train
and evaluate the Verhulst and Montroll models. By integrating PINNs, we not only account for experimental
noise but also embed physical insights into the learning process, enabling the models to capture the underlying
mechanisms governing tumor cell growth. Our findings reveal the strengths and limitations of each growth
model in accurately representing tumor cell proliferation dynamics. Furthermore, the study sheds light on the
impact of incorporating physics-informed constraints on the model predictions. The insights gained from this
comparative analysis contribute to advancing our understanding of growth models and their applications in

predicting complex biological phenomena, particularly in the realm of tumor cell proliferation.
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1. Introduction

Physics-informed Neural Networks (PINNs) represent a powerful and innovative approach at the
intersection of physics-based modeling and machine learning. These networks seamlessly integrate
physical laws or governing equations into the neural network architecture, enabling the incorporation
of prior knowledge about a system’s behavior. PINNs have gained prominence in various scientific
and engineering domains where traditional numerical simulations may be computationally expensive
or challenging.

The key idea behind Physics-informed Neural Networks is to train neural networks to not only
learn from observed data but also to adhere to the underlying physics that govern the system. This is
achieved by incorporating differential equations or other relevant physical constraints as additional
terms in the loss function during training. This unique combination allows PINNSs to generalize well
beyond the available data and offers a data-driven framework for solving complex physical problems.

PINNs have demonstrated success in a diverse range of applications, including fluid dynamics,
heat transfer, structural mechanics, and quantum mechanics. By leveraging the expressive power
of neural networks and the interpretability of physics-based constraints, PINNs provide an efficient
means to model and simulate complex physical systems.[1,2]

Cell growth is a fundamental process in biology, pivotal for understanding development, tissue
regeneration, and disease progression. Over the years, mathematical models have played a crucial role
in unraveling the complexities of cell growth dynamics. One such model that has gained prominence
is the Verhulst model [3], which originates from the field of population dynamics but finds compelling
applications in describing the growth patterns of individual cells.

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Another important proposal was developed by Montroll [4] which consists of a general model,
that translates the asymptotic growth of a variable taking into account the position of the inflexion
point of the curve.

Understanding the growth dynamics of tumor cells is critical for advancing the knowledge of
cancer progression and developing effective treatment strategies. Mathematical models play a pivotal
role in this endeavor by providing a quantitative framework to describe and predict the complex
behavior of tumor cell populations. However, the accurate adjustment of these models to observed
data poses significant challenges, particularly in the context of tumor cell growth.

2. Materials and Methods

The objective of this study was to investigate and compare the applicability of two prominent
growth models: the Verhulst logistic growth model and the Montroll power-law growth model. The
study aimed to understand how these models capture population growth dynamics and to identify
scenarios in which one model may be more suitable than the other. The study utilized a combination
of numerical simulations and empirical data analysis to evaluate the performance of the Verhulst and
Montroll growth models. Numerical simulations allowed for controlled exploration of model behavior,
while empirical data analysis provided insights into the models’ capabilities to describe real-world
growth patterns.

PINNS are a class of machine learning models that leverage neural networks to approximate
solutions to partial differential equations (PDEs) while incorporating physical principles. In this study,
we apply PINNSs to model growth phenomena, specifically utilizing them for the Verhulst and Montroll
growth models.

2.1. Verhulst Growth Model
The Verhulst growth model, representing logistic growth, is described by the differential equation:

o=k (1- ) W

where p is the population size, t is time, k is the growth rate, and C is the carrying capacity. [3]

2.2. Montroll Growth Model

The Montroll growth model, capturing power-law growth, is expressed as:

0
W)= kp(t) (1 - () ) @

Where the parameter ¢ indicates the position for the inflection point of the growth curve. If § =1
we got the Verhulst growth model.[4]

2.3. Network Architecture

A feedforward neural network was designed to approximate the solutions of the Verhulst and
Montroll growth models. The network architecture included an input layer, multiple hidden layers,
and an output layer corresponding to the predicted population size.

2.4. Loss Function

The PINN was trained by minimizing a physics-informed loss function, which combines the
mean squared error between predicted and observed data with terms enforcing the satisfaction of the
underlying growth model equations. The loss function was formulated as:

LpiNN = Liata + )\Ephysics ®3)
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where L, is the data fidelity term and £, sics enforces adherence to the growth model equations,
and A is a regularization parameter.[2]

For a set of data points (x;,y;),_; _ n, where x; are input points and y; are corresponding target
values, the data-driven loss might look like:

Z

Lana = 55 L(p(x) ~ yi)? @

1

I
—

Here, p(x;) represents the output of the neural network for the model under study for input x;
and N is the number of data points.
While the other term is defined by

1 &,
Lonysics = w— ), R(x; 5
physics N ]; ( ]) ()

Here, Ny is the number of points where the model’s restrictions needs to be satisfied and R(x;) is the
residual of the model at point x;.

This component ensures that the solution satisfies the underlying physical laws or constraints. It
is formulated based on the governing equations or other physics-related constraints.

3. Results

In this section, we present the results obtained from the application of PINNs, for Verhulst and
Montroll growth models, to the dataset of tabulated data in Table 1. For this study we used the
previously published data from the Chinese hamster V79 fibroblast tumor cell [5]. It consists of 45
measurements of volumes (10°vm?) during the time period of 60 days.

Table 1. Chinese hamster V79 fibroblast tumor cell.

t |4 t 14 t 14 t 14 t 14

346  0.0158 12.39 04977 2433 32046 352 59668 4829 7.0694

4.58 0.0264 1342 0.6033 2558 45241 36.34 6.6945 4924 7.4971

567  0.0326 1519 0.8441 2643 43459 3729 6.6395 50.19 6.9974

6.64 0.0445 1624 12163 2744 51374 385 6.8971 51.14 6.7219

7.63 0.0646 1723 1447 2843 55376 39.67 7.2966 52.10 7.0523

8.41 0.0933 1818 23298 3049 4.8946 4137 7.2268 54.0 7.1095

932 01454 1929 25342 31.34 5.0660 4258 6.8815 56.33 7.0694

1027 0.2183 21.23 3.0064 3234 6.1494 4539 8.0993 57.33 8.0562

11.19 0.2842 2199 34044 33.0 6.8548 4638 72112 5938 7.2268

The main objective of our study was to leverage the combination of supervised learning and
physics-based constraints to accurately predict the underlying system behavior and compare the two
growth models.
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For each method under study, we define the respective loss function depending on the parameters
to be determined. Namely, for the Verhulst model

/:'Verhulst data = E(k, C) (6)

and for the Montroll model
L Montroll data = ‘C(k/ G, 9) (7)

In Figure 1 we see the graph of the solution predicted by the Verhulst model for the data obtained
at the end of a process of 5000 Epochs. The evolution of the model’s performance can be seen in

Figure 2.
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Figure 1. PINN solution for the Verhulst model.
Training Loss Over Epochs
0.6 —— Training Loss
0.5 4
0.4+
@
9 0.3 4
0.2 4
0.1 A
0.0 4 /\
T T T T T T
0 10 20 30 40 50

Epochs x 100

Figure 2. Histories of the total loss function for Verhulst model .

Similarly, in Figure 3 we see the graph of the solution predicted by the Montroll model for the data
obtained at the end of the same process of 5000 epochs, while the evolution of the model’s performance
can be seen in Figure 4.
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Figure 3. PINN solution for the Montroll model.
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Figure 4. Histories of the total loss function for Montroll model.

The models are well defined when the associated parameters are determined, Table 2 and Table 3
contain the predicted parameters for Verhulst and Montroll models, respectively.

Table 2. Predicted final parameters for the Verhulst model.

k = 057168955 C = 7.533739

Table 3. Predicted final parameters for the Montroll model.

k= 0.8311218 C = 73327312 6 = 0.16937177

4. Discussion

For both models, we found that the PINN methodology can predict the asymptotic behavior of
saturation of tumor cell volume growth. However, the existence of the § parameter of the Montroll
model allows a better fit to the data and a better prediction of the location of the inflection point of the
growth function graph.
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5. Conclusions

This study intended to use physics informed neural networks to choose the method that best fits
the data, as in a reverse engineering procedure, determining the parameters intrinsic to each method.

The methodology presented for adjusting the growth model can be adopted for any other phe-
nomenon that is intended to be mathematically modeled based on experimental data.

PINNSs provide a means of learning robust and accurate models of systems providing an existing
domain knowledge about the models that govern the data, even in situations where the equations
don’t exactly match the data.
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