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Abstract: Throughout history, the pursuit of diagnosing and predicting crop yields has evidenced genetics,
environment, and management practices’ intertwined roles in achieving food security. However, the sensitivity
of crop phenotypes and genetic responses to weather and climate remains unclear, hampering the identification
of the underlying abilities of plants to adapt to climate change. We hypothesize that the PAWN global
sensitivity analysis (GSA) coupled with a genetic by environment (GXE) model -built of environmental
covariance and genetic markers structures- can evidence the contributions of climate on the predictability of
maize yields in the U.S. and Ontario, Canada (US-CA). The GSA-GxE modeling framework estimates the
relative contribution of climate variables such as solar radiation, temperature, rainfall, and relative humidity
on improving maize yield predictions in US-CA. We use an improved version of the Genomes to Fields (G2F)
initiative multi-dimensional database to build the environmental covariance matrices for the proposed GSA-
GXE framework. The PAWN indices show that the aggregated GxE model’s highest sensitivity levels over US-
CA were attributed to solar radiation, temperature, rainfall, and relative humidity. In one-third of the locations,
rainfall was the primary climate variable responsible for maize yield predictability. Also, a consistent pattern
of top sensitivity indices by location indicates that Relative Humidity, Solar Radiation, and Temperature were
distributed as the main or the second most relevant drivers of maize yield predictability.

Keywords: sensitivity analysis; maize yield predictability; genetic by environment interactions (GxE)

1. Introduction

Maize (Zea mays L.) adaptability is a spatiotemporal expression of the organism’s genetic and
phenotypic responses to its environment. The study of maize blends scientific and technological
advancements with cultural identities, agronomic practices, and variable climate conditions, making
it one of the world’s top cereals, a critical resource to meet our future food security, and a pilar of
civilizations [1-5]. Efforts to understand crop responses to volatile climate are recorded by plant’s
organic and production variables [6-8]. Predicting those responses requires integrating inherently
uncertain genetic, climate, phenotypic and management data to elucidate the underpinning processes
responsible for the plants’ abilities to adapt. While such uncertainties challenge the diagnosis and
prediction of crops’ yields in a changing climate using statistical and data-driven models, they can
also be used to identify the areas of model improvement and the explicit or implicit integration of
OMICS and climate data [9-22].

The sensitivity of observations, numerical, and empirical estimations of crop production to
climate variations have fostered human ingenuity to adapt crops to a changing environment.
Environmental factors such as temperature and precipitation [23-26], temperature thresholds [27],
increasing global temperature [6], and climate variability and change projections [28-32] affect the
responses of crops to a changing climate and how we quantify them. Inherent uncertainties in climate
variables also represent a challenge to identify the genomic and phenotype responses to a changing
environment, propagating errors and affecting the projections of more physiologically efficient crop
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varieties, the expansion of agriculture, and the same sustainability of crop productivity [28,33—41].
Furthermore, climate variability and change continuously trigger crop performance losses,
compromising food security across multiple geographic and productive scales [31,42] and
challenging breeding efforts [5,13,40,41,43-47].

Uncertainty in model inputs can lead to estimating the relative importance of model parameters
or input variations by analyzing the propagation of input errors to outputs [48-55] or implementing
global sensitivity analyses [56-61]. Local and global sensitivity analyses have been coupled to
multiple models, for example, local sensitivity analyses have been used to determine that the outputs
vary according to changes in the inputs around a specific point of the feasible input domain. In
contrast, global sensitivity analyses (GSA) cover an entire viable input space to recognize the output
sensitivity level. In this study, we developed a conceptual modeling framework to estimate the global
sensitivity of maize phenotype predictability to variations in climate variables.

Crop phenomics modeling studies analyze the sensitivity of crop traits to environmental and
management factors using biophysical models. The authors [62] analyzed the sensitivity of CERES-
Maize yield predictions to solar radiation and soil properties, showing a higher sensitivity of the
model to solar radiation, and to less extent to soil properties. The authors [63] applied g-factorial
design GSA method to the CSM-CROPGRO-Cotton model to rank 16 input parameters to assess the
variability in cotton yields. Their results indicated that the specific leaf area of the cultivar under
standard growth conditions is the most effective model parameter. However, the continuous
responses of organisms to a changing environment require the implementation of sensitivity analyses
that can reduce the errors in simulated phenotypes at high-frequency time steps [64], high parameter
dimensionality [65], and multi-scale environmental changes [66]. While these studies use biophysical
models to unveil the complexity of crop model sensitivity levels to various hydroclimatic factors, it
remains unclear how climate and climate-genetic interactions affect crop phenotypes. A pertinent
question for the present research endeavor is: What are the climate variables that drive improvements
in the predictability of maize yields across one of the most productive agricultural systems in the
world?

To answer this question, this study rests in three premises: (1) Previous studies found a high
sensitivity of maize yield simulations in the U.S. to climatic drivers such as temperature, solar
radiation, precipitation, and relative humidity [67-71]; (2) the enhancement of OMICS and climate
data indicate that the associated interactions between climate variables and the genetic markers lead
to improvements in maize yield predictions [17,19]; and (3) climate variation and changes are
integrated into multiple environmental covariance matrices with genetic marker data to predict
phenotypes [72]. Since the sensitivity of maize yields to climate variability and change is an inherent
element of breeding practices and an opportunity to couple a GSA model, we hypothesize that a
global sensitivity analysis (GSA) [73] coupled with integrated environmental covariance and genetic
markers structures —and built in a genetic by environment (GXE) model [9] —can identify the
contribution of climate uncertainties on the predictability of maize yields in the G2F area of study.
The latter is a statistical modeling approach that uses the environmental covariance matrices to
simulate the direct and interactive effects between genetics and the environment on crop yields. The
covariance structure synthesizes the environmental co-variability among tested environments in the
GxE model. A novelty of this work relies on using PAWN [74] as an efficient, easy-to-interpret, and
density-based technique for identifying and prioritizing environmental factors. The PAWN
technique contrasts unconditional and conditional phases to quantify the sensitivity of model
outputs, indicative of model performance to the uncertainty in input climate variables.

The GSA-GxE coupling modeling system uses the environmental covariance matrices to
integrate climate variables and estimate the sensitivity of maize yield predictions to uncertainties in
solar radiation, temperature, rainfall, and relative humidity across the US and the province of Ontario
in Canada (US-CA). We use the improved Genomes to Field (G2F) database [17-19,74], conformed
by maize OMICs (i.e., genetic and phenotypic) and environmental datasets. This database is used to
test the GSA-GXE framework, summarized in section 2.1. In section 2.2., the GXE model’s equations
and the environmental covariance matrix structure to incorporate genetic and environmental
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interactive effects on maize yield predictability are described, respectively. Afterward, the PAWN’s
technique as a GSA method and the conceptualization of the GSA-GXE framework for quantifying
the GxXE model predictive skill sensitivity to environmental drivers is provided in section 2.3. Next,
section 3 reviews and discusses the results and findings of the study. Finally, the concluding remarks
on GxE performance sensitivity to environmental factors are summarized in section 4.

2. Materials and Methods

2.1. Database and Data Availability
2.1.1. Multi-Dimensional Genomes to Field (G2F) database

This study used an enhanced version of the Genomes to Field (G2F) initiative database [17-19,74]
to test the proposed GSA-GXE coupling system. The G2F database comes from a public-private
collaboration in North America to provide multi-dimensional data consisting of maize OMICs
datasets and major environmental drivers in phenotypes [75]. The G2F initiative, initiated in 2014,
implemented several maize test plots in the U.S. and the province of Ontario in Canada (see Figure
la) to track, record, integrate, and provide large-scale, multi-year, and multi-environment
information for researchers and the public. The G2F initiative releases annually three data categories,
including maize genetic markers (G2F-G), phenotypic measurements (G2F-P), and environmental
information (G2F-E) averaged across 25 experimental fields through its official website [75]. Figure 1
lists the observed and recorded variables in each mentioned category. Here we processed an
improved version of the G2F data with 84 experimental fields between 2014 and 2017. This database
is the foundation of the built and tested environmental covariance matrix used by the GSA-GxE
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Figure 1. The spatial distribution of Genome to Field (G2F) experiments across the U.S. and Canada
in (a). The collected genetic (G2F-G) dataset in (b), environmental (G2F-E) time series in (c), and
phenotypic (G2F-P) observations in (d) in each of the G2F experimental maize plots are listed.

2.1.2. G2F-E Pre-Processing

Before testing the GSA-GXE framework, the G2F database requires pre-processing to be ready
for further analysis. A pre-processing methodology has been applied to assign each experiment to a
unique ID. As can be seen in [17], the first four digits in each ID represent the conducted year of the
experiment. The following two characters show the state of the field location, and the last two
characters refer to the assigned number for the hybrid experiments. For example, “2015NEH1”
represents a maize hybrid experiment called H1 located in the state of NE and conducted in 2015.
Since this study focuses on yield predictive skill sensitivity to hydroclimatic drivers, the G2F-E
datasets are briefly explained below. More information on G2F-G and G2F-P is provided in [17,72].

At each G2F experimental plot, eight hydroclimatic variables, including temperature (T) [°C],
dew point (DP) [°C], relative humidity (RH) [%], solar radiation (SR) [W?/m], rainfal(R) [mm], wind
speed (WS) [m/s], wind direction (WD) [degrees], and wind gust (G) [m/s] have been measured and
recorded in 30-min time intervals by a weather station located in the field during the maize growing
season. For this study, the sensitivity analysis consists of four hydroclimatic variables including T,
RH, SR, and R. For more details about the collecting techniques, see the G2F website [75]. All
environmental time series released by G2F have been downloaded, analyzed, and controlled for
completeness and consistency for this study. The deep learning data-driven model has imputed the
gaps and missing samples explained in [17]. In many cases, more than one experiment has been
conducted in the exact location. This scenario indicates that the recorded G2F-E time series is the
same for such experiments at the same sites.

2.2. Modeling the GxE Interactions

Crop phenotypes are an expression of the crop’s genetics, environmental conditions, and their
interactions [9,76,77]. Understanding such factors contribute to develop diagnostic and prognostic
models, guiding more informed agronomic recommendations according to complex patterns of
climate variability and change.

The GxE-based models use environmental covariance matrices paired with genetic markers to
predict maize yields [9]. The methodology below introduces the analysis of global sensitivity of
phenotype predictions for a regional experiment defining the GxE model as:

Yijg = u+ wij+ g; +(gw)ij + €iji (1)

where, Y, is maize phenotypic response variable (i.e., grain yield) of plant k" of genotype line
j tested in environment i, u is the overall mean from all observations, w;; is the representation of the
main environmental condition effect i faced by maize line j in each envilonment i, g; is
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representation of main genetic effect of maize line j, (gw);; is the interaction term between maize
line j and environmental conditions in envIronment i, and ¢;; is error term.

The authors [9] proposed an extension of genomic-best linear unbiased predictors to incorporate
genetic and environmental gradients. In this approach, the genetic and environmental gradients are
defined as linear phenotypic regressions with molecular Markers Covariates (MCs) and with
Environmental Covariates (ECs), respectively, as follows:

P
9= Z Xjm b )
m=1
Q
Wij = Z Wijq¥q 3)
q=1

where, xj,, is the genotype of the j* atthe m™ MC, b,, is the effectof m™™ MC, p is the total
number of MCs, W, is the value of ¢** EC in the ij"" environment x maize line combination, y,
is the main effet of q** EC, and Q is the total number of ECs.

We assume both markers and environments effect (b, and y,) are identically normal
distributed as follows:

by ~N(0, o) @)
Ya~N(0,07) (5)
where, N is noted as normal distribution.
The genetic and environmental main effects in Eq. (1) follow multivariate normal distribution as

below:
g~N(0,Go}) where G = %XX’ (6)
w ~ N (0, Q02) where Q = % ww’ %)

where, G is the covariance structure describing the similarities between each pair of maize lines
and computed based on MCs. The covariance structure Q describes the similarities between
environmental conditions of each pair of environments and computed based on ECs.

Based on the above, the interaction in the covariance structure is defined in Eq. (8) as the Schur
product of G and Q:

wg = {wg;} = g;xw;  wg~N(0,G#Q.0fy) ®)

Similar to other components in the modeling phenotypes described above, the error term also is

normally distributed with null mean and variance o2 as below:

eijk ~ N (0,02) )
The covariance matrices are the metrics of similarity for the genetic and the environment
between each pair of genomes in genetic covariance matrix G and each pair of environments in the
environmental covariance matrix €, respectively. To analyze the sensitivity of GXE performance to
environmental drivers, the environmental covariance matrix represents the link between the GxE
model and the GSA’s PAWN technique. The structure of the environmental covariance matrix is
presented below in more detail.

2.2.1. Environmental Covariates (ECs) and Environmental Covariance Matrix Structure

The authors [9] states that there is not a linear relationship between the effects of ECs and the
crop traits. As a result, ECs cannot flawlessly deliver the hydroclimate time series impacts on the
yield values. Thus, they proposed incorporating the environmental covariance function and its
interactive effect with genetic covariance function as environmental similarity criteria to borrow
information between environments. Authors [26] also showed the combined effect of changing
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climatic variables, represented by the interaction among T, R, and SR, influencing maize yields. These
authors suggest that in analyzing the sensitivity of crops’ yields to the variability of a single climate
variable, the co-variability among the main climatic drivers should be expanded for crop growth
diagnostics. That is why we have taken the advantage of the environmental covariance matrix (Q)
calculated from the hydroclimatic time series (ECs) to measure the environmental co-variability
between G2F experiments in Equation (1). Consequently, this model incorporates a compound
environmental similarity, rather than one single hydroclimate variable to simulate the crop
phenotypes.

The environmental variance-covariance matrix () is a square matrix that provides the variances
of a given random vector, which diagonal elements are the ECs time series for each G2F location. The
covariances between each pair of independent random vectors (i.e.,, ECs) are the upper/lower off-
diagonal elements of the matrix. The covariance values measure the joint variability between each
pair of ECs time series. A higher covariance is a measure of the strength of the environmental
relationships between G2F experiments. The environmental covariance matrix integrates multi-
dimensional data from ECs of all the G2F locations in a single structure containing all the climate
conditions from the entire set of experiments during the studied years.

In this study, we designed ECsyyq matrix to calculate the Q. The ECsp,, contains 15
environmental time series from M G2F experiments including daily minimum temperature (Twin),
mean temperature (Twen), maximum temperature (Twms), minimum dew point (DPuwin), mean dew
point (DPumen), maximum dew pint (DPmw), minimum relative humidity (RHwin), mean relative
humidity (RHmen), maximum relative humidity (RHmax), minimum solar radiation (SRmi» = 0), mean
solar radiation (SRmen), maximum solar radiation (SRm«), accumulative rainfall (Rac), mean wind
speed (WSmem), and mean wind direction (WD), respectively. All environmental data is extracted
from the enhanced G2F database [18]. The q is the length of growing season in days multiplied by
the number of considered climatic variables. The general ECs and Q@ matrix structures are shown

below:
EC11 M EClq
ECs = : m=1,..M (10)
ECpi -+ ECyq
Vargc, Cov (EC1,EC2) .. Cov (EC1,ECm)
Q= Cov (EC:'Z,ECl) Va7:‘EC2 Cov (EC;Z,ECm) (1)
Cov (ECm,EC1) Cov (ECm,EC2) .. Vargem

where, EC,,, is the daily environmental time series observation, q is the total number of
environmental covariables, Vargcy, is the variance of environmental time series in G2F experiment
m, and Cov (EC1,EC2) = Cov (EC2,EC1) is the covariance of the climate time series between the
G2F experiment 1 and 2.

The elements in the ECs are standardized to calculate the variance-covariance matrix Q, which
contains the variance of each G2F environmental time series and the covariance between each pair of
G2F climate time series calculated according to the following equations:

var (ECm) = \/% YN (EC; — EC)? (12)
cov (EC1,EC2) = L(EG ~ Eclz(ECZ ) (13)

where, var (ECm) is the variance of the ECs time series in G2F experiment m, cov (EC1,EC2)
is the covariance of ECs time series in G2F experiment 1 and 2, EC; is the standardized value of ECs
atday i, and EC is the average of standardized ECs in the whole time series.

We processed 84 G2F experimental locations across the US and Ontario in Canada to test the
proposed GSA-GXE framework. In these locations, 372 maize lines were grown, 8,171 individuals
yield measurements, and 15 climate variables were registered during 79-day long growing season
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between 2014 and 2017. The ECs matrices were built from the 15 climate time series (i.e., Twin, Trmean,
Tmax, mein, memm, DPmax, RHmin, RHmemz, RHmax, SRmin, SRmean, SRmax, R{ZCC, WSmcan, and WDmeun). The total
number of environmental covariables in each G2F experimentsis g = 79 x 15 = 1185.

2.2.3. PAWN Global Sensitivity Analysis (GSA)

The PAWN GSA technique is a density-based GSA method that provides the sensitivity index
of model output to input variations based on a Cumulative Distribution Function (CDF) developed
by [73]. The PAWN methodology the function between output and inputs is described as Eq. (14):

Y = f(Xy, Xz, X)) (14)
where Y is the output of amodel, f() is the relationship between
input(s) and output, and X4, X,, -+, X; are the inputs to the model.

In PAWN, the Y can be the model performance metric which is calculated between the
observation measurements and the simulated values like the coefficient of determination (R?). The
PAWN methodology is implemented for an unconditional and conditional phase. In the
unconditional phase, the model is implemented simply given inputs Xy, X,,---,X; and the output Y
is generated [Y = fy,..(X)]. Then, the empirical CDF of output Y is obtained [Fy,. (Y)]. In the
conditional phase, the model is implemented given inputs X;, X5, -, X;, where the uncertainty of
input X; isremoved [Y = f¢,, (X; = x;)], and the empirical CDF of output Y is obtained [F¢,, (X; =
x;)]. In other words, one of the model’s inputs (X;) is kept fixed at a nominal value for the conditional
phase, while all the other model’s inputs vary across a range of feasible values like in the conditional
phase. Then, the largest difference between unconditional and conditional CDFs is the PAWN
sensitivity index of the model output to input X; which is calculated by Kolmogorov-Smirnov (K-S)
statistics [59,73]. The K-S is a non-parametric test to identify whether two independent samples (here
unconditional and conditional CDFs) are following similar distributions [78]. It measures the absolute
maximum difference between conditional and unconditional CDFs. The smaller K-S statistics, the
more similar the CDFs are and, consequently, the lower the PAWN sensitivity index is [79]. The K-S
statistics are formulated as below:

D (X)) = méixlFUnc. (Y) = Feon. (Y|X; = x))| (15)

where, D (X;) is the K-S statistics as the sensitivity index of output Y (the yield predictability in
our case) to variable X; (the ECs in our case), Fy,. (Y) is the empirical unconditional CDF of Y, and
Feon. (Y1X; = x;) is the empirical conditional CDF of Y when all variables vary in their feasible
domain but the variable X; is kept at nominal value of x;.

The K-S statistics vary between 0 and 1. When K-S is equal to 0, there is no divergence between
the CDFs of two samples, and when the value tends to 1 the difference between the CDFs becomes
significant [73]. Figure 2 illustrates the flowchart of PAWN.
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Figure 2. The flowchart of PAWN technique in unconditional and conditional phases. If the function
between inputs X3, X,,---,X; and output Y is f, the model is implemented in unconditional (Y =
fune.(X)) and conditional phases (fzon. (X; = x;)). The Cumulative Distribution Functions are obtained
in unconditional phase (Fy,. (Y)) and conditional phase (Fgon (X; =x;)). The D (X;) is the
Kolmogorov-Smirnov statistics and Sly, is the PAWN sensitivity index of model f to variable X;.

2.3. Coupling the GxE Model with PAWN Global Sensitivity Analysis

In this study, the sensitivity of phenotype predictability by the statistical GXE model to climate
variables is investigated. For this purpose, we coupled GSA with GxE through the environmental
covariance matrix () using the PAWN method. Figure 3 illustrates the conceptualization flowchart
for the coupling GSA-GxE for the unconditional and conditional phases of PAWN. For the
unconditional phase (the green box in Figure 3), we integrated the daily ECs from all 84 G2F
experiments as described in section 2.1. All inputs were allowed to vary across their observed
domain, which provides the EC matrix and then @ matrix is calculated. The constructed Q is an
84x84 matrix with 84 variance values in the diagonal and 3,486 covariance values in the lower/upper
diagonal. Note that the lower and upper diagonal values are the same. Next, the GXxE model is
implemented in unconditional phase and the CDF of GxE model performance based on R? values is
computed [Fy,, (Y)]. A similar method is used in the conditional phase (see the purple box in Figure
3), but one variable (X;) is kept constant at a nominal value x;. The CDF of GXE model performance
evaluated by R? is obtained [F¢,, (Y|X; = x;)]. In Figure 3, we represent the conditional phase of
PAWN for T as an example of the conditional variable X;. Other variables, including DPumin, DPuean,
DPrax, RHmin, RHmean, RHumax, SRmin, SRmean, SRimax, Race, WSmean, and WDmean vary together in their domain,
like they were in the unconditional phase, while Twin, Tmem, and Tma remain constant at generated
nominal values in the conditional phase. Then, the K-S statistics are calculated between Fy,,. (Y) and
Feon. (Y1X; = x;). To verify this methodology, we created 100 combinations of ECs by selecting
different 100 samples of the nominal values for conditional variable (i.e., temperature in Figure 3)
and iterated the whole conditional phase 100 times. The 100 nominal values have been generated by
dividing the range of T values [Range(Tmemn) = Max(Tmen) — Min(Tmem), Range(Tmin) = Max(Tmin) —
Min(Tmin), and Range(Tmax) = Max(Tmax) — Min(Tmax)] from all observed G2F experiments by 100 and as
a result, the 100 equal-spaced nominal values are generated. In Figure 3, T values are fixed at nominal
values as follows: Twin at tmin Nom., Twean at tmean Nom., and Twma at tmar Nom. time series. The same
process was applied to other variables including SR and RH. In the case of the conditional variable
R, the range of R-values from all G2F experiments is divided by 100. Consequently, the 100 equal-
spaced nominal values produced are set to Ra for each iteration.
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Figure 3. The flowchart of coupled GSA-GXE framework through environmental covariance matrix
(2) in unconditional and conditional phases for temperature. In unconditional phase all variables
including minimum temperature (Tmir), mean temperature (Tmean), maximum temperature (Tmax),
minimum dew point (DPuin), mean dew point (DPmen), maximum dew point (DPumer), minimum
relative humidity (RHwmin), mean relative humidity (RHmen), maximum relative humidity (RHma),
minimum solar radiation (SRwix), mean solar radiation (SRmem), maximum solar radiation (SRmax);
accumulative rainfall (Re), mean wind speed (WSmen), and mean wind direction (WDmea) vary all
together in their observed domain and the GXE model is implemented (Y = fyn. (T)). While in
conditional phase, all variables vary in their observed domain but Twmis, Tiean and Timex remain constant
at a nominal value of tmin(n), fmean(n), and tmax(n), respectively, where n is the number of iterations (n =
1, ..., 100). The conditional model (fzon. (X; = x;)) is implemented in each iteration. The Cumulative
Distribution Function of the output Y is obtained in unconditional (Fy,. (Y)) and each iteration of
conditional phase (F¢on. (X; = x;)). The D (X;) is the Kolmogorov-Smirnov statistics and Sly, is the
PAWN sensitivity index of GXE model to temperature. The similar methodology has been created
and implemented for solar radiation (SRmin, SRmean, and SRmax) with nominal values of srmin,
srmean, and srmax, accumulative rainfall (Racc) with nominal values of racc, and relative humidity
(RHwmin, RHmean, and RHmax) with nominal values of rhmin, rhmean, and rhmax, respectively. G2F-G,
G2F-E, and G2F-P represent the G2F genetic, environmental, and phenotypic datasets, respectively.

In the last step, after implementing all 100 iterations for a given conditional climatic variable and
calculating the 100 K-S statistics, the maximum value of the calculated K-S measurements is
presented as the PAWN sensitivity index. Here, the maximum K-S is the PAWN sensitivity index of
GxE model performance to the given conditional variable X; (i.e., T in Figure 3) which is obtained as
follows:

SI(X;) = max[D(X)] (16)

where, Slx; is the PAWN sensitivity index of GxE model predictability to the conditional
climatic variable X;.
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The GxE model performance sensitivity to the uncertainty of the climatic input variables
including T, SR, R, and RH run 100 iterations for each climate drivers of maize growth. This approach
represents 400 GxE simulations conducted at the University of Nebraska High Performance
Computing facility. It is noteworthy that the proposed sensitivity analysis framework is applicable
for other or additional environmental variables, and as many as iterations can be explored.

The GxE model predictive skill evaluated by the R? performance metric between observed and
predicted yield values in each G2F environment is considered the output, its sensitivity is quantified
to the model inputs. The R? is defined below in Eq. (17):

Y 17
Z%=1(YObSm - y$imm)2 ( )

Z%:l()’obsm - ym)z

2 —
R GxEn — 1-

where, R?;p, is calculated GXE model R? for environment 1; yops m and Y, - is observed
and simulated yield values for recorded individual genotype m in environment #, respectively; ¥,
is the average of simulated yield of genotypes m in environment n, and M is the total number of
recorded genotype m in environment 7.

3. Results and Discussion

We present a modeling framework for the sensitivity of the maize yield predictions to
uncertainties in climate. The framework couples a GXE model that integrates the co-variability of
environmental and maize genetic molecular markers and the PAWN global sensitivity analysis. The
GSA-GxE modeling framework supports the thesis that integrated genetics, climate, and their
interactions contribute to identify the climate variables responsible for the improvement of the
predictability of maize yields in US-CA. We consider that the effects of climate on maize predictability
can shed some light on how crops respond and adapt to spatiotemporal fluctuations in climate and
our abilities to capture such patterns of variability and crop responses in collected data, biophysical,
statistical, and data models [8,11,12,17,80,81]. The selection of rainfall, solar radiation, temperature,
and relative humidity to create the covariance matrices for the GSA’s conditional phase followed
studies that indicate their influence on maize growth and production [24,26,70,82]. Table 1 illustrates
the range of observed values used in the nonconditional phase, which represent the climate variations
occurred between 2014 and 2017. These ranges were used to generate the 100 nominal values for the
selected variables (i.e., Tmin, Tmean, Tmax, SRmin, SRmean, SRmax, Racc, RHmin, RHmean, and RHwmax) in the
conditional phases. It is noteworthy that the developed GSA-GxE framework can be expanded to
include other climate or environmental variables released in [19] and [74].

Table 1. The observed daily minimum, daily maximum, and range of conditional variables in all 84
G2F experiments. The G2F experiment in the parenthesis is the experiment that the minimum or
maximum values is observed in.

Conditional
Min Max Range
variable
Toin (°C) -10.7 (2014NYH1) 30.5 (2017ARH2) 41.2
Tomean (°C) -6.4 (2014NYH2) 32.5 (2017ARH2) 38.9
Tmax (°C) -5.7 (2014NYH2) 51.4 (2016IAH2) 57.1
SRuin (W/m?2) 0 (All) 0 (All) 0
SRumean (W/m?2) 0 (2017IAH4) 1168.3 (2017TXH1) 1168.3
0 (2017IAH1, 20171AH2,
SRumax (W/m?2) 1507.0 (2017MOH1) 1507.0

20171AH3, 2017IAH4)
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Race (mm) 0 (All) 451.8 (2016IAHI) 451.8
RHumin (%) 0 (2016NCH]1, 2017ARH2) 99.5 (2014IAH3) 99.5
RHimean (%) 10.2 (2017WIHI) 99.9 (2014IAH3) 89.7
100.0 (All except 2016GAH2
RHumax (%) 11.2 (2017TAH3) 88.8
and 2017NYHI)

The GSA-GxE framework expands what Leng et al. [26] studied as the contributions of
covariable temperature, precipitation, and radiation to maize and soybean yields in the US. These
authors also pointed out the limitations of building regression models for yield prediction where
multiple variables affect the outputs. This argument suggests the use of covariance matrices for
phenotype predictability proposed by [9], integrating the genomic and climate complexities to enable
the identification of specific climate effects on maize yield predictions [17].

3.1. The Environmental Covariance Matrix

The unconditional phase of GSA-GXE has been implemented when all 15 variables are set to the
observed time series at each G2F experiment, and the unconditional Q is calculated. The conditional
phase of coupled GSA-GXE framework has been iterated for each of the 100 generated nominal
values, and in each iteration, the conditional Q is computed. The covariances values quantify the
environmental similarity using environmental co-variability between pairs of the G2F experiments
time series. In other words, the covariance function measures the joint variability of the G2F
experiments’ hydroclimatic time series by synthesizing the co-variability of 15 climatic variables.
Figure 4 shows the histograms of covariance values in the unconditional phase (in gray color) and
conditional phase for each conditional variable, including temperature, solar radiation, rainfall, and
relative humidity.

The unconditional Q is the same for any given variable as the conditional variable since it has
been calculated based on the observed time series for all 15 hydroclimatic variables across the G2F
study area. The conditional © for any given conditional variable is calculated in each iteration with
the given generated nominal value. The selected nominal value, which remains constant in all G2F
experiments in an iteration for a given conditional variable, does not change the joint variability of
the time series between G2F experiments. Consequently, the calculated conditional @ in iterations 1
through 100 remains the same since the covariance function measures how the time series of each
pair of the G2F experiments covary together. Also, in Figure 4 the probabilities of unconditional and
conditional covariance values are slightly different. These slight differences align with our previous
study [72], where we coupled the GSA with Q. In that study, we found the PAWN sensitivity index
of & toT, SR, R, and RH equal 0.091, 0.084, 0.077, and 0.082, respectively. In the next step of the GSA-
GXE, the observed slight contrasts between calculated unconditional and conditional @ interacted
with the genetic covariance G through the GXE model. These contrasts will be propagated by the
model using the product of @ and G and the ranked hydroclimatic variables, from the most to the
least impactful to the maize yield predictability.

Phenotypes like grain yields are affected by genetics, environmental drivers, and the complex
interactions between them [9], meaning that the environmental similarities are not linearly affecting
the yields, the predicted values by GXE models, and the resultant errors. In a study by [83], the GxE
interaction is the most important factor compared to the independent components used for maize
yield predictability in the G2F layout. This complexity introduces a potential error propagation and
increases the sensitivity of maize yield predictability to the GXE compared to the sensitivity of Q to
hydroclimatic variables.
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Another complexity in maize phenotype predictability is that the tested maize varieties differ
across the designed G2F experiments [18]. This genetic variability among the trials is considered in
the GXE model through genetic covariance (G). Similarly, to Q, which quantifies the similarity among
the environments based on hydroclimatic time series, the calculated G measures the similarity among
the maize varieties using molecular markers [83]. These variations in the molecular genetic markers
lead to different phenotypic responses to climate conditions. For example, [84] showed that the
responses of different maize species with different thresholds of tolerance are affected differently by
temperature means and extremes. Thus, the effect of hydroclimatic variables and their interaction
with genetic markers through the environmental covariance (Q) and genetic covariance (G) on the
maize yield predictability can be estimated.

As mentioned above, the study of [72] contrasted the conditional and unconditional Q to
calculate the sensitivity of covariance values to fluctuations in the hydroclimate in one iteration by
coupling GSA and Q. In the present study, we introduced the GSA-GxE coupling, extending the
number of iterations for verification purposes. The test the GSA-GxE framework we used a four-year
dataset with a limited number of trials, mainly over the eastern and central US. According to this
testing procedure, we could miss the effects of long-term modes of climate variability and their co-
variability with genetics. This data limitation can be tackled by releasing and using new
hydroclimatic data in a more significant number of G2F environments over time and space scales,
which may enhance the model predictability [17]. Nevertheless, the proposed GSA-GxE
methodology can be expanded to other locations and tested with datasets other than G2F. Using
released environmental and OMICs datasets from other crop breeding programs, such as the
International Center for Maize and Wheat Improvement, is also recommended to test and enhance
the proposed sensitivity analysis framework.

3.2. The GSA-GxE Framework

The sensitivity analyses have been explored from multiple perspectives [57,85], including those
aimed to identify the main drivers of environmental change using physical and data driven models
[58-60]. In crop phenotyping diagnostics and prognostics such efforts have been centered on the use
of crop and Earth System models and statistical analyses of climate and crop yields [22,26,70,80,86—
90]. Authors [72] introduced a PAWN’s GSA coupler for @ using the G2F initiative data, which is
the foundation for the GSA-GXE coupler presented here. The GSA-GXE coupler estimated the
sensitivity of the GxE model performance to the constructed ©, and account for the possible
variations in climate as drivers of maize yields predictability.

The sensitivity of the GXE model performance to the constructed conditional environmental
covariance matrix has been assessed successfully for T, SR, R, and RH, which supports the central
thesis of quantifying the GXE performance sensitivity to test the hydroclimatic drivers for maize yield
predictability. Figure 5 illustrates the unconditional and conditional CDFs of the GxE model
performance for T, SR, R, and RH. The 100 iterations for each conditional variable take approximately
one month in a Windows system with an Intel Core i9 configuration. The codes made available to the
public allow users to perform this methodology for as many iterations as they aim. The tested
iterations in this study evidenced that the differences between the SI values for all variables were
minimal, indicating that such number of iterations could be sufficient to achieve the maximum SI
value. The SI values show the maximum difference between the unconditional and conditional CDFs
(K-S statistics) among all iterations. After completing all 100 iterations, the maximum derived K-S
has been reported as the PAWN sensitivity index (Sly,; Equation 16) of the GxE model performance
(R?in Eq. (17)) for a given conditional variable.
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The largest PAWN sensitivity index for the area of study is solar radiation (SIsz = 0.25). After
that, temperature is the most effective climatic driver in GxE model performance (SIr = 0.18). The
sensitivity indices calculated for rainfall and relative humidity are the same (SIz = SIru = 0.17). The
dominance of solar radiation can be supported by biophysical crop modeling and observations. For
instance, [93] suggested that solar radiation’s effects on maize yields are often overlooked compared
to other climatic factors. Their study shows that 27% of the maize production growth can be
attributed to increasing solar radiation in the U.S. Authors [94] also identified that the effects of solar
radiation on maize yields surpassed those of temperature and rainfall. Yet other patterns emerge
when solar radiation is compounded with an increasing variability of precipitation, leading to
simulated less conspicuous changes in yields. On the other hand, using observations and
physiological attributions between climate and crop development, [26] shed some light on how
photosynthesis and solar radiation drive crop development in conterminous US. Thus, the SI-
aggregates in Figure 5 are indicative of how the GSA-GXE coupler and the contrasting SR, R, RH, and
T, as compound and individual feasibility spaces, evidence the contributions of climate factors to
maize yield predictions in the U.S. and Canada.

The effects of markers and environmental covariates using the covariance structures introduced
by [9] and coupled to the GSA by [61] at each location illustrate the dominance of different climate
variables on maize yield predictability. Figure 6 shows the spatial distribution of the most and second
most effective climatic drivers for maize yield predictability and their associated GXE modeling
performance (R?). The most sensitive climate drivers observed in Figure 6a indicate that R dominates
in 26 sites, while RH, SR, and T are the main controls of maize predictability in 21, 20, and 17 sites,
respectively. Figure 6b shows that RH dominates SR, T, and R as the second most influential driver
of maize predictability in 26, 24, 19, and 15 locations, respectively. Additionally, there is a consistent
pattern in the most and the second most effective predictors are the sequence RH, SR, and T. Authors
[80] indicated that crop sensitivity studies have been dominated by the assessment of how
temperature and, to less extent rainfall affect crop yields. Other studies have assessed the
compounded effect of temperature with precipitation deficits in shortening the crop’s growing
season [24,29,80,86,87,95-97]. While the compounded effect of temperature and precipitation on
yields can be seen as a crop’s adaptive mechanism when yields are sustained, long-growing maize
varieties can be sensitive to water deficits or surpluses [61,88,98]. The sequences presented here
indicate the patterns of climate variability need to be further explored and explained. Authors [10]
and [32] provide a framework to model the complex interactions driven agricultural land use in West
Africa (i.e., climate, socioeconomic, and land use). Authors [22] also highlighted the key roles of
genomics and enviromics interconnections for crops phenotyping in a changing climate. However, it
remains unclear how genetics and climate will interact and lead to secure agriculture in the short and
long-term future.
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Figure 6. The spatial distribution of the (a) largest (maximum of R?), and the second
largest GxE model performance in the G2F area of study extracted from the analysis of
years 2014-2017. The color represents the calculated Kolmogorov-Smirnov statistics,
and the size of markers represents the size of R2. The minimum, median, and maximum
R2values and their associated sizes for each marker have been selected to be shown in
the legend. The circle marker represents the sites where temperature (T), the diamond
marker represents the sites where solar radiation (SR), the triangle marker represents
the sites where rainfall (R), and the square marker represents the sites where relative
humidity (RH) is the most important hydroclimatic variable.

Another perspective on the compounding effect of climate or environmental variables on maize
yields and the sequence RH, SR, and T in Figure 6 can be linked to the use of observations and crop,



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 March 2024 d0i:10.20944/preprints202403.0999.v1

17

Earth system, statistical and data modeling [29,80,87,92]. Figure 6 illustrates how the global
sensitivity analysis, and the construction of environmental covariates enable the conceptualization of
compounding environmental variables and identifying their individual contributions. GSA-GxE
operates within a feasibility space that captures the complexity of plants’ response to spatiotemporal
environmental variations. Such variations can also reflect our abilities to capture or parameterize
processes using high-dimensional ecosystems of digital resources (i.e., data, parameterizations,
analytics, and conceptualizations). Authors [99] used a crop model to assess how the effects of
multiple factors on crop yields are sensitive to the spatial resolution of the inputs, the parameters in
the implementation of the model, and, eventually, the results. While statistical approaches have used
an explicit integration of genetic-by-environment interactions into the crop yield simulations, it
remains unclear how the individual factors play a role across the large-scale areas [9,13,17,92].
Authors [25] and [80] highlight the need to characterize the individual contributions of climate factors
on crop yield predictions. The effort presented here addresses this point and explores the relative
contribution of four climate variables, which scales up what [91], and [17] showed. Some of those
changes have not been characterized in terms of the individual contributions of multiple climate
factors [23] and continue the activities launched by the G2F Initiative, including the studies of
[16,83,91,100]. Furthermore, the resulting crop yield sensitivities to climate factors and their
distribution across US-CAN suggest the need to identify the geospatial and temporal patterns of
variability in the genetic-by-climate interactions. Such patterns and additional sources of
predictability could emerge from monitoring technologies that combine unmanned aerial vehicles
and eddy covariance towers [101,102], co-segmentation methods that enhance current computer
vision- based phenotyping [103,104], remote sensing-based modeling for diagnostics and predictions
of biophysical variables [105], and technologies to improve best management practices. These
advances can contribute to seeing how predicted weather and climate conditions can aid hybrid
selection, manage cultivars during the growing season, and prevent or mitigate major impacts of
extreme hydrometeorological and climate events.

4. Conclusions

In this study, we developed a novel methodology to couple a GSA technique called PAWN with
the statistical GXE model to quantify and rank the sensitivity index of maize yields predictability to
hydroclimatic drivers, including T, SR, R, and RH variables. We take advantage of the multi-
dimensional G2F database, which releases environmental, genetic, molecular markers, and
phenotypes for maize grain yield from 2014 to 2017 across 84 experimental fields in the North
America. The PAWN technique has been linked to GxE model through constructing environmental
covariance matrices (). The covariance function enables incorporating the co-variability effect of
multiple climatic variables on the maize yield predictability by the GXE model. The coupled GSA-
GXE framework has been tested for T (including Twmir, Tmean, and Tmax), SR (including SRumin, SRimean, and
SRmax), R (including Ruce), and RH (including RHumin, RHmemn, and RHmax) covariables and the PAWN
SIs have been obtained based on K-S statistics. The GSA-GXE couple has been implemented in two
phases of unconditional and 100 iterations of conditional phase for each given conditional variable.

In conclusion, the increase in the sensitivity of maize yield predictability by GXE model (R?)
compared to the sensitivity of environmental matrices (Q) to the conditional hydroclimatic variables
confirmed the large effect of genetic and environments interaction effect on the model performance.
This effect is conceptualized by the product of genetic molecular markers (G) and the environmental
() covariances in the GxE model.

The average shows the superior sensitivity of GxE performance to SR (SIsr =0.25). Afterward, T
is the most influential variable on model predictive skill (SIr = 0.18). The sensitivity level of both R
and RH has been estimated to be the same and slightly smaller than T (SIz = SIkn = 0.17). These results
align with several previous studies showing SR’s major impact on average maize yield predictability.
However, the geospatial sensitivity analysis illustrated that R is the responsible input variable to
achieve the largest R? values in 30% of the G2F experimental sites. The next dominant variable in GXE
model predictive skill is RH in 31% of the locations. These results suggest that the geospatial
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sensitivity analysis proposed by the GSA-GxE framework will recognize the most influential
environmental variables in the GXE performance improvement by considering the tested genetic
variability in each experiment.

Finally, the authors recommend the proposed GSA-GxE methodology for further studies in
sensitivity analysis of crop phenotypes predictability using GxE to other possible influential
environmental variabilities like wind speed and soil properties using the proposed GSA-GxE
framework. In this case, the researcher would be able to rank all the effective environmental key
drivers and screen the uninfluential ones. Furthermore, the GXE performance sensitivity to the
hydroclimatic drivers during each of the phenological development stages can also shed light on the
specific time intervals with high-level sensitivity to the environmental variation during crop growth.
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