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Abstract: Throughout history, the pursuit of diagnosing and predicting crop yields has evidenced genetics, 

environment, and management practices’ intertwined roles in achieving food security. However, the sensitivity 

of crop phenotypes and genetic responses to weather and climate remains unclear, hampering the identification 

of  the  underlying  abilities  of  plants  to  adapt  to  climate  change. We  hypothesize  that  the  PAWN  global 

sensitivity  analysis  (GSA)  coupled with  a  genetic  by  environment  (GxE) model  ‐built  of  environmental 

covariance and genetic markers structures‐ can evidence the contributions of climate on the predictability of 

maize yields  in  the U.S.  and Ontario, Canada  (US‐CA). The GSA‐GxE modeling  framework  estimates  the 

relative contribution of climate variables such as solar radiation, temperature, rainfall, and relative humidity 

on improving maize yield predictions in US‐CA. We use an improved version of the Genomes to Fields (G2F) 

initiative multi‐dimensional database to build the environmental covariance matrices for the proposed GSA‐

GxE framework. The PAWN indices show that the aggregated GxE model’s highest sensitivity levels over US‐

CA were attributed to solar radiation, temperature, rainfall, and relative humidity. In one‐third of the locations, 

rainfall was the primary climate variable responsible for maize yield predictability. Also, a consistent pattern 

of top sensitivity indices by location indicates that Relative Humidity, Solar Radiation, and Temperature were 

distributed as the main or the second most relevant drivers of maize yield predictability. 

Keywords: sensitivity analysis; maize yield predictability; genetic by environment interactions (GxE) 

 

1. Introduction 

Maize (Zea mays L.) adaptability is a spatiotemporal expression of the organism’s genetic and 

phenotypic  responses  to  its  environment. The  study of maize blends  scientific  and  technological 

advancements with cultural identities, agronomic practices, and variable climate conditions, making 

it one of the world’s top cereals, a critical resource to meet our future food security, and a pilar of 

civilizations [1–5]. Efforts to understand crop responses to volatile climate are recorded by plant’s 

organic and production variables  [6–8]. Predicting  those responses requires  integrating  inherently 

uncertain genetic, climate, phenotypic and management data to elucidate the underpinning processes 

responsible for the plants’ abilities to adapt. While such uncertainties challenge the diagnosis and 

prediction of crops’ yields in a changing climate using statistical and data‐driven models, they can 

also be used to identify the areas of model improvement and the explicit or implicit integration of 

OMICS and climate data [9–22]. 

The  sensitivity  of  observations,  numerical,  and  empirical  estimations  of  crop  production  to 

climate  variations  have  fostered  human  ingenuity  to  adapt  crops  to  a  changing  environment. 

Environmental factors such as temperature and precipitation [23–26], temperature thresholds [27], 

increasing global temperature [6], and climate variability and change projections [28–32] affect the 

responses of crops to a changing climate and how we quantify them. Inherent uncertainties in climate 

variables also represent a challenge to identify the genomic and phenotype responses to a changing 

environment, propagating errors and affecting the projections of more physiologically efficient crop 
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varieties, the expansion of agriculture, and the same sustainability of crop productivity [28,33–41]. 

Furthermore,  climate  variability  and  change  continuously  trigger  crop  performance  losses, 

compromising  food  security  across  multiple  geographic  and  productive  scales  [31,42]  and 

challenging breeding efforts [5,13,40,41,43–47]. 

Uncertainty in model inputs can lead to estimating the relative importance of model parameters 

or input variations by analyzing the propagation of input errors to outputs [48–55] or implementing 

global  sensitivity  analyses  [56–61].  Local  and  global  sensitivity  analyses  have  been  coupled  to 

multiple models, for example, local sensitivity analyses have been used to determine that the outputs 

vary according  to  changes  in  the  inputs around a  specific point of  the  feasible  input domain.  In 

contrast, global sensitivity analyses (GSA) cover an entire viable input space to recognize the output 

sensitivity level. In this study, we developed a conceptual modeling framework to estimate the global 

sensitivity of maize phenotype predictability to variations in climate variables. 

Crop phenomics modeling studies analyze the sensitivity of crop traits to environmental and 

management factors using biophysical models. The authors [62] analyzed the sensitivity of CERES‐

Maize yield predictions  to solar  radiation and soil properties, showing a higher sensitivity of  the 

model  to solar radiation, and  to  less extent  to soil properties. The authors  [63] applied q‐factorial 

design GSA method to the CSM‐CROPGRO‐Cotton model to rank 16 input parameters to assess the 

variability  in cotton yields. Their results  indicated  that  the specific  leaf area of  the cultivar under 

standard  growth  conditions  is  the  most  effective  model  parameter.  However,  the  continuous 

responses of organisms to a changing environment require the implementation of sensitivity analyses 

that can reduce the errors in simulated phenotypes at high‐frequency time steps [64], high parameter 

dimensionality [65], and multi‐scale environmental changes [66]. While these studies use biophysical 

models to unveil the complexity of crop model sensitivity levels to various hydroclimatic factors, it 

remains unclear how climate and climate‐genetic  interactions affect crop phenotypes. A pertinent 

question for the present research endeavor is: What are the climate variables that drive improvements 

in the predictability of maize yields across one of the most productive agricultural systems in the 

world? 

To answer this question, this study rests in three premises: (1) Previous studies found a high 

sensitivity  of maize  yield  simulations  in  the U.S.  to  climatic  drivers  such  as  temperature,  solar 

radiation, precipitation, and relative humidity [67–71]; (2) the enhancement of OMICS and climate 

data indicate that the associated interactions between climate variables and the genetic markers lead 

to  improvements  in maize  yield  predictions  [17,19];  and  (3)  climate  variation  and  changes  are 

integrated  into multiple  environmental  covariance matrices with  genetic marker  data  to  predict 

phenotypes [72]. Since the sensitivity of maize yields to climate variability and change is an inherent 

element of breeding practices and an opportunity  to couple a GSA model, we hypothesize  that a 

global sensitivity analysis (GSA) [73] coupled with integrated environmental covariance and genetic 

markers  structures  –and  built  in  a  genetic  by  environment  (GxE) model  [9] —can  identify  the 

contribution of climate uncertainties on the predictability of maize yields in the G2F area of study. 

The  latter  is  a  statistical modeling  approach  that uses  the  environmental  covariance matrices  to 

simulate the direct and interactive effects between genetics and the environment on crop yields. The 

covariance structure synthesizes the environmental co‐variability among tested environments in the 

GxE model. A novelty of this work relies on using PAWN [74] as an efficient, easy‐to‐interpret, and 

density‐based  technique  for  identifying  and  prioritizing  environmental  factors.  The  PAWN 

technique  contrasts  unconditional  and  conditional  phases  to  quantify  the  sensitivity  of  model 

outputs, indicative of model performance to the uncertainty in input climate variables. 

The  GSA‐GxE  coupling  modeling  system  uses  the  environmental  covariance  matrices  to 

integrate climate variables and estimate the sensitivity of maize yield predictions to uncertainties in 

solar radiation, temperature, rainfall, and relative humidity across the US and the province of Ontario 

in Canada (US‐CA). We use the improved Genomes to Field (G2F) database [17–19,74], conformed 

by maize OMICs (i.e., genetic and phenotypic) and environmental datasets. This database is used to 

test the GSA‐GxE framework, summarized in section 2.1. In section 2.2., the GxE model’s equations 

and  the  environmental  covariance  matrix  structure  to  incorporate  genetic  and  environmental 
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interactive effects on maize yield predictability are described, respectively. Afterward, the PAWN’s 

technique as a GSA method and the conceptualization of the GSA‐GxE framework for quantifying 

the GxE model predictive skill sensitivity to environmental drivers is provided in section 2.3. Next, 

section 3 reviews and discusses the results and findings of the study. Finally, the concluding remarks 

on GxE performance sensitivity to environmental factors are summarized in section 4. 

2. Materials and Methods 

2.1. Database and Data Availability 

2.1.1. Multi‐Dimensional Genomes to Field (G2F) database 

This study used an enhanced version of the Genomes to Field (G2F) initiative database [17–19,74] 

to  test  the  proposed GSA‐GxE  coupling  system. The G2F database  comes  from  a public‐private 

collaboration  in North  America  to  provide multi‐dimensional  data  consisting  of maize OMICs 

datasets and major environmental drivers in phenotypes [75]. The G2F initiative, initiated in 2014, 

implemented several maize test plots in the U.S. and the province of Ontario in Canada (see Figure 

1a)  to  track,  record,  integrate,  and  provide  large‐scale,  multi‐year,  and  multi‐environment 

information for researchers and the public. The G2F initiative releases annually three data categories, 

including maize genetic markers  (G2F‐G), phenotypic measurements  (G2F‐P), and environmental 

information (G2F‐E) averaged across 25 experimental fields through its official website [75]. Figure 1 

lists  the  observed  and  recorded  variables  in  each mentioned  category.  Here  we  processed  an 

improved version of the G2F data with 84 experimental fields between 2014 and 2017. This database 

is  the  foundation of  the built and  tested environmental  covariance matrix used by  the GSA‐GxE 

framework. 

 
(a) 
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(b)  (c)  (d) 

Figure 1. The spatial distribution of Genome to Field (G2F) experiments across the U.S. and Canada 

in  (a). The  collected genetic  (G2F‐G) dataset  in  (b),  environmental  (G2F‐E)  time  series  in  (c), and 

phenotypic (G2F‐P) observations in (d) in each of the G2F experimental maize plots are listed. 

2.1.2. G2F‐E Pre‐Processing 

Before testing the GSA‐GxE framework, the G2F database requires pre‐processing to be ready 

for further analysis. A pre‐processing methodology has been applied to assign each experiment to a 

unique ID. As can be seen in [17], the first four digits in each ID represent the conducted year of the 

experiment.  The  following  two  characters  show  the  state  of  the  field  location,  and  the  last  two 

characters  refer  to  the  assigned  number  for  the  hybrid  experiments.  For  example,  “2015NEH1” 

represents a maize hybrid experiment called H1 located in the state of NE and conducted in 2015. 

Since  this  study  focuses  on  yield  predictive  skill  sensitivity  to  hydroclimatic  drivers,  the G2F‐E 

datasets are briefly explained below. More information on G2F‐G and G2F‐P is provided in [17,72]. 

At each G2F experimental plot, eight hydroclimatic variables, including temperature (T) [°C], 

dew point (DP) [°C], relative humidity (RH) [%], solar radiation (SR) [W2/m], rainfaI(R) [mm], wind 

speed (WS) [m/s], wind direction (WD) [degrees], and wind gust (G) [m/s] have been measured and 

recorded in 30‐min time intervals by a weather station located in the field during the maize growing 

season. For this study, the sensitivity analysis consists of four hydroclimatic variables including T, 

RH,  SR,  and  R.  For more  details  about  the  collecting  techniques,  see  the G2F website  [75]. All 

environmental  time  series  released by G2F have been downloaded,  analyzed,  and  controlled  for 

completeness and consistency for this study. The deep learning data‐driven model has imputed the 

gaps and missing  samples explained  in  [17].  In many cases, more  than one experiment has been 

conducted  in  the exact  location. This scenario  indicates  that  the recorded G2F‐E  time series  is  the 

same for such experiments at the same sites. 

2.2. Modeling the GxE Interactions 

Crop phenotypes are an expression of the crop’s genetics, environmental conditions, and their 

interactions [9,76,77]. Understanding such factors contribute to develop diagnostic and prognostic 

models,  guiding more  informed  agronomic  recommendations  according  to  complex  patterns  of 

climate variability and change. 

The GxE‐based models use environmental covariance matrices paired with genetic markers to 

predict maize yields  [9]. The methodology below  introduces  the  analysis of global  sensitivity of 

phenotype predictions for a regional experiment defining the GxE model as: 

𝑌௜௝௞ ൌ  𝜇 ൅  𝑤௜௝ ൅  𝑔௝  ൅ ሺ𝑔𝑤ሻ௜௝ ൅  𝜀௜௝௞  (1) 
where,  𝑌௜௝௞  is maize phenotypic response variable (i.e., grain yield) of plant kth of genotype line 

j tested in environment i,  𝜇  is the overall mean from all observations, 𝑤௜௝  is the representation of the 
main  environmental  condition  effect  i  faced  by  maize  line  j  in  each  enviIonment  i,  𝑔௝   is 
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representation of main genetic effect of maize line j,  ሺ𝑔𝑤ሻ௜௝  is the interaction term between maize 

line j and environmental conditions in envIronment i, and  𝜀௜௝  is error term. 

The authors [9] proposed an extension of genomic‐best linear unbiased predictors to incorporate 

genetic and environmental gradients. In this approach, the genetic and environmental gradients are 

defined  as  linear  phenotypic  regressions  with  molecular  Markers  Covariates  (MCs)  and  with 

Environmental Covariates (ECs), respectively, as follows: 

𝑔௝ ൌ ෍ 𝑥௝௠𝑏௠

௣

௠ୀଵ

  (2) 

𝑤௜௝ ൌ ෍𝑊௜௝௤𝛾௤

ொ

௤ୀଵ

  (3) 

where,  𝑥௝௠  is the genotype of the  𝑗௧௛  at the 𝑚௧௛ MC,  𝑏௠  is the effect of 𝑚௧௛ MC,  𝑝  is the total 
number of MCs, 𝑊௜௝௤  is the value of  𝑞௧௛  EC in the  𝑖𝑗௧௛  environment ൈ maize line combination,  𝛾௤ 
is the main effet of  𝑞௧௛  EC, and 𝑄  is the total number of ECs. 

We  assume  both  markers  and  environments  effect  ( 𝑏௠   and  𝛾௤ )  are  identically  normal 

distributed as follows: 

𝑏௠ ~𝐍ሺ0,𝜎௕
ଶሻ  (4) 

𝛾௤~𝐍ሺ0,𝜎ఊଶሻ  (5) 
where, 𝐍  is noted as normal distribution. 

The genetic and environmental main effects in Eq. (1) follow multivariate normal distribution as 

below: 

𝐠 ~ 𝐍 ሺ0,𝐆σ୥ଶሻ                     where    𝐆 ൌ  ଵ
௉
𝐗𝐗′  (6) 

𝐰 ~ 𝐍 ሺ0,𝛀σ୵ଶ ሻ                 where   𝛀 ൌ  ଵ
ொ

 𝐖𝐖′  (7) 

where, 𝐆  is the covariance structure describing the similarities between each pair of maize lines 

and  computed  based  on  MCs.  The  covariance  structure  𝛀   describes  the  similarities  between 

environmental conditions of each pair of environments and computed based on ECs. 

Based on the above, the interaction in the covariance structure is defined in Eq. (8) as the Schur 

product of 𝐆  and 𝛀: 

𝐰𝐠 ൌ  ൛𝑤𝑔௜௝ൟ ൌ  𝑔௝ ൈ 𝑤௜          𝐰𝐠 ~ 𝐍 ሺ0,𝐆#𝛀.𝜎ீௐ
ଶ ሻ  (8) 

Similar to other components in the modeling phenotypes described above, the error term also is 

normally distributed with null mean and variance  𝜎ఢଶ  as below: 

𝜀௜௝௞ ~ 𝐍 ሺ0,σ஫ଶሻ  (9) 
The  covariance matrices  are  the metrics  of  similarity  for  the  genetic  and  the  environment 

between each pair of genomes in genetic covariance matrix 𝐆  and each pair of environments in the 

environmental covariance matrix 𝛀, respectively. To analyze the sensitivity of GxE performance to 

environmental drivers,  the environmental covariance matrix  represents  the  link between  the GxE 

model and  the GSA’s PAWN  technique. The  structure of  the environmental covariance matrix  is 

presented below in more detail. 

2.2.1. Environmental Covariates (ECs) and Environmental Covariance Matrix Structure 

The authors [9] states that there is not a linear relationship between the effects of ECs and the 

crop  traits. As a result, ECs cannot flawlessly deliver  the hydroclimate time series  impacts on  the 

yield  values.  Thus,  they  proposed  incorporating  the  environmental  covariance  function  and  its 

interactive  effect with genetic  covariance  function  as  environmental  similarity  criteria  to borrow 

information  between  environments. Authors  [26]  also  showed  the  combined  effect  of  changing 
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climatic variables, represented by the interaction among T, R, and SR, influencing maize yields. These 

authors suggest that in analyzing the sensitivity of crops’ yields to the variability of a single climate 

variable,  the co‐variability among  the main climatic drivers should be expanded  for crop growth 

diagnostics. That is why we have taken the advantage of the environmental covariance matrix (𝛀) 
calculated  from  the  hydroclimatic  time  series  (ECs)  to measure  the  environmental  co‐variability 

between G2F  experiments  in  Equation  (1).  Consequently,  this model  incorporates  a  compound 

environmental  similarity,  rather  than  one  single  hydroclimate  variable  to  simulate  the  crop 

phenotypes. 

The environmental variance‐covariance matrix (𝛀) is a square matrix that provides the variances 

of a given random vector, which diagonal elements are the ECs time series for each G2F location. The 

covariances between each pair of  independent random vectors  (i.e., ECs) are  the upper/lower off‐

diagonal elements of the matrix. The covariance values measure the  joint variability between each 

pair  of  ECs  time  series. A  higher  covariance  is  a measure  of  the  strength  of  the  environmental 

relationships  between  G2F  experiments.  The  environmental  covariance matrix  integrates multi‐

dimensional data from ECs of all the G2F locations  in a single structure containing all the climate 

conditions from the entire set of experiments during the studied years. 

In  this  study,  we  designed  𝐄𝐂𝐬୫ൈ୯  matrix  to  calculate  the  𝛀 .  The  𝐄𝐂𝐬୫ൈ୯   contains  15 
environmental  time series  from 𝑀 G2F experiments  including daily minimum  temperature  (Tmin), 

mean  temperature  (Tmean), maximum  temperature  (Tmax), minimum dew point  (DPmin), mean dew 

point  (DPmean),  maximum  dew  pint  (DPmax),  minimum  relative  humidity  (RHmin),  mean  relative 

humidity (RHmean), maximum relative humidity (RHmax), minimum solar radiation (SRmin = 0), mean 

solar  radiation  (SRmean), maximum  solar  radiation  (SRmax),  accumulative  rainfall  (Racc), mean wind 

speed (WSmean), and mean wind direction (WDmean), respectively. All environmental data is extracted 

from the enhanced G2F database [18]. The  𝑞  is the length of growing season in days multiplied by 

the number of considered climatic variables. The general  𝐄𝐂𝐬  and 𝛀 matrix structures are shown 

below: 

𝐄𝐂𝐬 ൌ  ቎
𝐸𝐶ଵଵ ⋯ 𝐸𝐶ଵ௤
⋮ ⋱ ⋮

𝐸𝐶௠ଵ ⋯ 𝐸𝐶௠௤

቏  𝑚 ൌ 1, … ,𝑀  (10) 

𝛀 ൌ ൦

𝑉𝑎𝑟ா஼ଵ 𝐶𝑜𝑣 ሺ𝐸𝐶1,𝐸𝐶2ሻ … 𝐶𝑜𝑣 ሺ𝐸𝐶1,𝐸𝐶𝑚ሻ
𝐶𝑜𝑣 ሺ𝐸𝐶2,𝐸𝐶1ሻ 𝑉𝑎𝑟ா஼ଶ … 𝐶𝑜𝑣 ሺ𝐸𝐶2,𝐸𝐶𝑚ሻ

⋮ ⋮ ⋱ ⋮
𝐶𝑜𝑣 ሺ𝐸𝐶𝑚,𝐸𝐶1ሻ 𝐶𝑜𝑣 ሺ𝐸𝐶𝑚,𝐸𝐶2ሻ … 𝑉𝑎𝑟ா஼௠

൪    (11) 

where,  𝐸𝐶௠௤ is  the  daily  environmental  time  series  observation,  𝑞   is  the  total  number  of 

environmental covariables,  𝑉𝑎𝑟ா஼௠  is the variance of environmental time series in G2F experiment 

𝑚, and  𝐶𝑜𝑣 ሺ𝐸𝐶1,𝐸𝐶2ሻ ൌ  𝐶𝑜𝑣 ሺ𝐸𝐶2,𝐸𝐶1ሻ  is  the covariance of  the climate  time series between  the 

G2F experiment 1 and 2. 

The elements in the  𝐄𝐂𝐬  are standardized to calculate the variance‐covariance matrix 𝛀, which 

contains the variance of each G2F environmental time series and the covariance between each pair of 

G2F climate time series calculated according to the following equations: 

𝑣𝑎𝑟 ሺ𝐸𝐶𝑚ሻ ൌ  ට
ଵ

௡
∑ ሺ𝐸𝐶௜ െ 𝐸𝐶തതതതሻଶே
௜ୀଵ         (12) 

𝑐𝑜𝑣 ሺ𝐸𝐶1,𝐸𝐶2ሻ ൌ
∑ሺ𝐸𝐶ଵ െ 𝐸𝐶തതതതଵሻሺ𝐸𝐶ଶ െ 𝐸𝐶തതതതଶሻ

𝑞
  (13) 

where,  𝑣𝑎𝑟 ሺ𝐸𝐶𝑚ሻ  is the variance of the ECs time series in G2F experiment 𝑚,  𝑐𝑜𝑣 ሺ𝐸𝐶1,𝐸𝐶2ሻ 
is the covariance of ECs time series in G2F experiment 1 and 2,  𝐸𝐶௜  is the standardized value of ECs 
at day  𝑖, and  𝐸𝐶തതതത  is the average of standardized ECs in the whole time series. 

We processed 84 G2F experimental locations across the US and Ontario in Canada to test the 

proposed GSA‐GxE  framework.  In  these  locations, 372 maize  lines were grown, 8,171  individuals 

yield measurements, and 15 climate variables were registered during 79‐day long growing season 
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between 2014 and 2017. The ECs matrices were built from the 15 climate time series (i.e., Tmin, Tmean, 

Tmax, DPmin, DPmean, DPmax, RHmin, RHmean, RHmax, SRmin, SRmean, SRmax, Racc, WSmean, and WDmean). The total 

number of environmental covariables in each G2F experiments is  𝑞 ൌ 79 ൈ 15 ൌ 1185. 

2.2.3. PAWN Global Sensitivity Analysis (GSA) 

The PAWN GSA technique is a density‐based GSA method that provides the sensitivity index 

of model output to input variations based on a Cumulative Distribution Function (CDF) developed 

by [73]. The PAWN methodology the function between output and inputs is described as Eq. (14): 

𝑌 ൌ 𝑓ሺ𝑋ଵ,𝑋ଶ,⋯ ,𝑋௜ሻ  (14) 
where  𝑌  is the output of a model,  𝑓ሺ ሻ  is the relationship between 

input(s) and output, and 𝑋ଵ,𝑋ଶ,⋯ ,𝑋௜  are the inputs to the model. 

In  PAWN,  the  𝑌   can  be  the  model  performance  metric  which  is  calculated  between  the 

observation measurements and the simulated values like the coefficient of determination (R2). The 

PAWN  methodology  is  implemented  for  an  unconditional  and  conditional  phase.  In  the 

unconditional phase, the model is implemented simply given inputs  𝑋ଵ,𝑋ଶ,⋯ ,𝑋௜  and the output  𝑌 
is  generated  ሾ𝑌 ൌ 𝑓௎௡௖.ሺ𝑋ሻ].  Then,  the  empirical CDF  of  output  𝑌   is  obtained  ሾ𝐹௎௡௖. ሺ𝑌ሻ].  In  the 
conditional phase,  the model  is  implemented given  inputs  𝑋ଵ,𝑋ଶ,⋯ ,𝑋௜ , where  the uncertainty of 

input 𝑋௜  is removed  ሾ𝑌 ൌ 𝑓஼௢௡.ሺ𝑋௜ ൌ 𝑥௜ሻ], and the empirical CDF of output  𝑌  is obtained  ሾ𝐹஼௢௡. ሺ𝑋௜ ൌ
𝑥௜ሻ]. In other words, one of the model’s inputs (𝑋௜) is kept fixed at a nominal value for the conditional 

phase, while all the other model’s inputs vary across a range of feasible values like in the conditional 

phase.  Then,  the  largest  difference  between  unconditional  and  conditional  CDFs  is  the  PAWN 

sensitivity index of the model output to input 𝑋௜ which is calculated by Kolmogorov‐Smirnov (K‐S) 

statistics [59,73]. The K‐S is a non‐parametric test to identify whether two independent samples (here 

unconditional and conditional CDFs) are following similar distributions [78]. It measures the absolute 

maximum difference between conditional and unconditional CDFs. The smaller K‐S statistics,  the 

more similar the CDFs are and, consequently, the lower the PAWN sensitivity index is [79]. The K‐S 

statistics are formulated as below: 

𝐷 ሺ𝑋௜ሻ ൌ  max
௒

|𝐹௎௡௖. ሺ𝑌ሻ െ  𝐹஼௢௡. ሺ𝑌|𝑋௜ ൌ 𝑥௜ሻ|  (15) 

where, 𝐷 ሺ𝑋௜ሻ is the K‐S statistics as the sensitivity index of output  𝑌  (the yield predictability in 
our case) to variable  𝑋௜  (the ECs in our case),  𝐹௎௡௖. ሺ𝑌ሻ  is the empirical unconditional CDF of  𝑌, and 
𝐹஼௢௡. ሺ𝑌|𝑋௜ ൌ 𝑥௜ሻ   is  the  empirical  conditional CDF  of  𝑌  when  all  variables  vary  in  their  feasible 

domain but the variable  𝑋௜  is kept at nominal value of  𝑥௜. 
The K‐S statistics vary between 0 and 1. When K‐S is equal to 0, there is no divergence between 

the CDFs of two samples, and when the value tends to 1 the difference between the CDFs becomes 

significant [73]. Figure 2 illustrates the flowchart of PAWN. 
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Figure 2. The flowchart of PAWN technique in unconditional and conditional phases. If the function 

between  inputs  𝑋ଵ,𝑋ଶ,⋯ ,𝑋௜   and output  𝑌  is  𝑓,  the model  is  implemented  in unconditional  (𝑌 ൌ
𝑓௎௡௖.ሺ𝑋ሻ) and conditional phases (𝑓஼௢௡.ሺ𝑋௜ ൌ 𝑥௜ሻ). The Cumulative Distribution Functions are obtained 

in  unconditional  phase  ( 𝐹௎௡௖. ሺ𝑌ሻ )  and  conditional  phase  ( 𝐹஼௢௡. ሺ𝑋௜ ൌ 𝑥௜ሻ ).  The  𝐷 ሺ𝑋௜ሻ is  the 
Kolmogorov‐Smirnov statistics and  𝑆𝐼௑೔   is the PAWN sensitivity index of model  𝑓  to variable 𝑋௜. 

2.3. Coupling the GxE Model with PAWN Global Sensitivity Analysis 

In this study, the sensitivity of phenotype predictability by the statistical GxE model to climate 

variables  is investigated. For this purpose, we coupled GSA with GxE through the environmental 

covariance matrix (𝛀) using the PAWN method. Figure 3 illustrates the conceptualization flowchart 

for  the  coupling  GSA‐GxE  for  the  unconditional  and  conditional  phases  of  PAWN.  For  the 

unconditional  phase  (the  green  box  in  Figure  3), we  integrated  the  daily  ECs  from  all  84 G2F 

experiments  as  described  in  section  2.1. All  inputs were  allowed  to  vary  across  their  observed 

domain, which provides  the  𝐄𝐂 matrix and  then 𝛀 matrix  is calculated. The constructed 𝛀  is an 
84×84 matrix with 84 variance values in the diagonal and 3,486 covariance values in the lower/upper 

diagonal. Note  that  the  lower  and upper diagonal values  are  the  same. Next,  the GxE model  is 

implemented in unconditional phase and the CDF of GxE model performance based on R2 values is 

computed [𝐹௎௡௖. ሺ𝑌ሻ]. A similar method is used in the conditional phase (see the purple box in Figure 

3), but one variable (𝑋௜) is kept constant at a nominal value  𝑥௜. The CDF of GxE model performance 

evaluated by R2  is obtained  [𝐹஼௢௡. ሺ𝑌|𝑋௜ ൌ 𝑥௜ሻ].  In Figure 3, we  represent  the conditional phase of 

PAWN for T as an example of the conditional variable  𝑋௜. Other variables, including DPmin, DPmean, 
DPmax, RHmin, RHmean, RHmax, SRmin, SRmean, SRmax, Racc, WSmean, and WDmean vary together in their domain, 

like  they were  in the unconditional phase, while Tmin, Tmean, and Tmax remain constant at generated 

nominal values in the conditional phase. Then, the K‐S statistics are calculated between  𝐹௎௡௖. ሺ𝑌ሻ  and 
𝐹஼௢௡. ሺ𝑌|𝑋௜ ൌ 𝑥௜ሻ .  To  verify  this methodology, we  created  100  combinations  of  𝐄𝐂𝐬   by  selecting 
different 100 samples of the nominal values for conditional variable (i.e., temperature in Figure 3) 

and iterated the whole conditional phase 100 times. The 100 nominal values have been generated by 

dividing  the  range  of T  values  [Range(Tmean)  = Max(Tmean)  – Min(Tmean), Range(Tmin)  = Max(Tmin)  – 

Min(Tmin), and Range(Tmax) = Max(Tmax) – Min(Tmax)] from all observed G2F experiments by 100 and as 

a result, the 100 equal‐spaced nominal values are generated. In Figure 3, T values are fixed at nominal 

values as follows: Tmin at tmin Nom., Tmean at  tmean Nom., and Tmax at tmax Nom. time series. The same 

process was applied to other variables including SR and RH. In the case of the conditional variable 

R, the range of R‐values from all G2F experiments is divided by 100. Consequently, the 100 equal‐

spaced nominal values produced are set to Racc for each iteration. 
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Figure 3. The flowchart of coupled GSA‐GxE framework through environmental covariance matrix 

(𝜴)  in unconditional and conditional phases  for  temperature.  In unconditional phase all variables 

including minimum  temperature  (Tmin), mean  temperature  (Tmean), maximum  temperature  (Tmax), 

minimum  dew  point  (DPmin), mean  dew  point  (DPmean), maximum  dew  point  (DPmax), minimum 

relative  humidity  (RHmin), mean  relative  humidity  (RHmean), maximum  relative  humidity  (RHmax), 

minimum  solar  radiation  (SRmin), mean  solar  radiation  (SRmean), maximum  solar  radiation  (SRmax); 

accumulative rainfall (Racc), mean wind speed  (WSmean), and mean wind direction  (WDmean) vary all 

together  in  their  observed  domain  and  the GxE model  is  implemented  (𝑌 ൌ 𝑓௎௡௖.ሺ𝑇ሻ). While  in 

conditional phase, all variables vary in their observed domain but Tmin, Tmean and Tmax remain constant 

at a nominal value of tmin(n), tmean(n), and tmax(n), respectively, where n is the number of iterations (n = 

1, …, 100). The conditional model (𝑓஼௢௡.ሺ𝑋௜ ൌ 𝑥௜ሻ) is implemented in each iteration. The Cumulative 

Distribution Function of the output  𝑌  is obtained in unconditional (𝐹௎௡௖. ሺ𝑌ሻ) and each iteration of 
conditional phase  (𝐹஼௢௡. ሺ𝑋௜ ൌ 𝑥௜ሻ). The 𝐷 ሺ𝑋௜ሻ is  the Kolmogorov‐Smirnov statistics and  𝑆𝐼௑೔   is  the 

PAWN sensitivity  index of GxE model to temperature. The similar methodology has been created 

and  implemented  for solar radiation (SRmin, SRmean, and SRmax) with nominal values of srmin, 

srmean, and srmax, accumulative rainfall (Racc) with nominal values of racc, and relative humidity 

(RHmin, RHmean, and RHmax) with nominal values of rhmin, rhmean, and rhmax, respectively. G2F‐G, 

G2F‐E, and G2F‐P represent the G2F genetic, environmental, and phenotypic datasets, respectively. 

In the last step, after implementing all 100 iterations for a given conditional climatic variable and 

calculating  the  100  K‐S  statistics,  the  maximum  value  of  the  calculated  K‐S  measurements  is 

presented as the PAWN sensitivity index. Here, the maximum K‐S is the PAWN sensitivity index of 

GxE model performance to the given conditional variable  𝑋௜  (i.e., T in Figure 3) which is obtained as 

follows: 

𝑆𝐼ሺ𝑋௜ሻ ൌ  max
௑೔

ሾ𝐷ሺ𝑋௜ሻሿ  (16) 

where,  𝑆𝐼௑೔   is  the  PAWN  sensitivity  index  of GxE model  predictability  to  the  conditional 

climatic variable 𝑋௜. 
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The  GxE model  performance  sensitivity  to  the  uncertainty  of  the  climatic  input  variables 

including T, SR, R, and RH run 100 iterations for each climate drivers of maize growth. This approach 

represents  400  GxE  simulations  conducted  at  the  University  of  Nebraska  High  Performance 

Computing facility. It is noteworthy that the proposed sensitivity analysis framework is applicable 

for other or additional environmental variables, and as many as iterations can be explored. 

The GxE model predictive skill evaluated by the R2 performance metric between observed and 

predicted yield values in each G2F environment is considered the output, its sensitivity is quantified 

to the model inputs. The R2 is defined below in Eq. (17): 

𝑅ଶீ௫ா,௡ ൌ 1 െ  
∑ ሺ𝑦௢௕௦௠ െ 𝑦ො௦௜௠௠ሻ

ଶெ
௠ୀଵ

∑ ሺ𝑦௢௕௦௠ െ 𝑦ത ௠ሻଶெ
௠ୀଵ

 

(17) 

where, 𝑅ଶீ௫ா,௡  is calculated GxE model R2  for environment n;  𝑦௢௕௦ ௠  and  𝑦ො௦௜௠ ௠  is observed 

and simulated yield values for recorded individual genotype m in environment n, respectively;  𝑦ത ௠ 

is  the average of simulated yield of genotypes m  in environment n, and M  is  the  total number of 

recorded genotype m in environment n. 

3. Results and Discussion 

We  present  a  modeling  framework  for  the  sensitivity  of  the  maize  yield  predictions  to 

uncertainties  in climate. The  framework couples a GxE model  that  integrates  the co‐variability of 

environmental and maize genetic molecular markers and the PAWN global sensitivity analysis. The 

GSA‐GxE modeling  framework  supports  the  thesis  that  integrated  genetics,  climate,  and  their 

interactions  contribute  to  identify  the  climate  variables  responsible  for  the  improvement  of  the 

predictability of maize yields in US‐CA. We consider that the effects of climate on maize predictability 

can shed some light on how crops respond and adapt to spatiotemporal fluctuations in climate and 

our abilities to capture such patterns of variability and crop responses in collected data, biophysical, 

statistical, and data models [8,11,12,17,80,81]. The selection of rainfall, solar radiation, temperature, 

and relative humidity  to create  the covariance matrices  for  the GSA’s conditional phase  followed 

studies that indicate their influence on maize growth and production [24,26,70,82]. Table 1 illustrates 

the range of observed values used in the nonconditional phase, which represent the climate variations 

occurred between 2014 and 2017. These ranges were used to generate the 100 nominal values for the 

selected  variables  (i.e.,  Tmin,  Tmean,  Tmax,  SRmin,  SRmean,  SRmax, Racc, RHmin, RHmean,  and RHmax)  in  the 

conditional phases.  It  is noteworthy  that the developed GSA‐GxE  framework can be expanded  to 

include other climate or environmental variables released in [19] and [74]. 

Table 1. The observed daily minimum, daily maximum, and range of conditional variables in all 84 

G2F experiments. The G2F experiment  in  the parenthesis  is  the experiment  that  the minimum or 

maximum values is observed in. 

Conditional 

variable 
Min  Max  Range 

Tmin (°C)  ‐10.7 (2014NYH1)  30.5 (2017ARH2)  41.2 

Tmean (°C)  ‐6.4 (2014NYH2)  32.5 (2017ARH2)  38.9 

Tmax (°C)  ‐5.7 (2014NYH2)  51.4 (2016IAH2)  57.1 

SRmin (W/m2)  0 (All)  0 (All)  0 

SRmean (W/m2)  0 (2017IAH4)  1168.3 (2017TXH1)  1168.3 

SRmax (W/m2) 
0 (2017IAH1, 2017IAH2, 

2017IAH3, 2017IAH4) 
1507.0 (2017MOH1)  1507.0 
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Racc (mm)  0 (All)  451.8 (2016IAH1)  451.8 

RHmin (%)  0 (2016NCH1, 2017ARH2)  99.5 (2014IAH3)  99.5 

RHmean (%)  10.2 (2017WIH1)  99.9 (2014IAH3)  89.7 

RHmax (%)  11.2 (2017IAH3) 
100.0 (All except 2016GAH2 

and 2017NYH1) 
88.8 

The  GSA‐GxE  framework  expands  what  Leng  et  al.  [26]  studied  as  the  contributions  of 

covariable temperature, precipitation, and radiation to maize and soybean yields in the US. These 

authors also pointed out  the  limitations of building regression models  for yield prediction where 

multiple  variables  affect  the  outputs. This  argument  suggests  the use  of  covariance matrices  for 

phenotype predictability proposed by [9], integrating the genomic and climate complexities to enable 

the identification of specific climate effects on maize yield predictions [17]. 

3.1. The Environmental Covariance Matrix 

The unconditional phase of GSA‐GxE has been implemented when all 15 variables are set to the 

observed time series at each G2F experiment, and the unconditional 𝛀  is calculated. The conditional 
phase  of  coupled GSA‐GxE  framework has  been  iterated  for  each  of  the  100 generated nominal 

values, and  in each  iteration,  the conditional 𝛀  is computed. The covariances values quantify  the 

environmental similarity using environmental co‐variability between pairs of the G2F experiments 

time  series.  In  other  words,  the  covariance  function measures  the  joint  variability  of  the  G2F 

experiments’ hydroclimatic  time  series by  synthesizing  the  co‐variability of 15  climatic variables. 

Figure 4 shows the histograms of covariance values in the unconditional phase (in gray color) and 

conditional phase for each conditional variable, including temperature, solar radiation, rainfall, and 

relative humidity. 

The unconditional  𝛀  is the same for any given variable as the conditional variable since it has 

been calculated based on the observed time series for all 15 hydroclimatic variables across the G2F 

study area. The conditional  𝛀  for any given conditional variable is calculated in each iteration with 

the given generated nominal value. The selected nominal value, which remains constant in all G2F 

experiments in an iteration for a given conditional variable, does not change the joint variability of 

the time series between G2F experiments. Consequently, the calculated conditional  𝛀  in iterations 1 
through 100 remains the same since the covariance function measures how the time series of each 

pair of the G2F experiments covary together. Also, in Figure 4 the probabilities of unconditional and 

conditional covariance values are slightly different. These slight differences align with our previous 

study [72], where we coupled the GSA with  𝛀. In that study, we found the PAWN sensitivity index 

of  𝛀  to T, SR, R, and RH equal 0.091, 0.084, 0.077, and 0.082, respectively. In the next step of the GSA‐
GxE, the observed slight contrasts between calculated unconditional and conditional  𝛀  interacted 
with the genetic covariance  𝐆  through the GxE model. These contrasts will be propagated by the 

model using the product of  𝛀  and  𝐆  and the ranked hydroclimatic variables, from the most to the 

least impactful to the maize yield predictability. 

Phenotypes like grain yields are affected by genetics, environmental drivers, and the complex 

interactions between them [9], meaning that the environmental similarities are not linearly affecting 

the yields, the predicted values by GxE models, and the resultant errors. In a study by [83], the GxE 

interaction is the most important factor compared to the independent components used for maize 

yield predictability in the G2F layout. This complexity introduces a potential error propagation and 

increases the sensitivity of maize yield predictability to the GxE compared to the sensitivity of  𝛀  to 
hydroclimatic variables.
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 4. The histograms of environmental covariance values between each pair of 84 G2F experiments in (a) conditional phase for temperature (Con.T), (b) conditional phase for solar 

radiation (Con.SR), (c) conditional phase for rainfall (Con.R), and (d) conditional phase for relative humidity (Con.RH). 

P
rep

rin
ts.o

rg
 (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 18 M
arch

 2024                   d
o

i:10.20944/p
rep

rin
ts202403.0999.v1



  13 

 

Another complexity in maize phenotype predictability is that the tested maize varieties differ 

across the designed G2F experiments [18]. This genetic variability among the trials is considered in 

the GxE model through genetic covariance (𝐆). Similarly, to  𝛀, which quantifies the similarity among 

the environments based on hydroclimatic time series, the calculated G measures the similarity among 

the maize varieties using molecular markers [83]. These variations in the molecular genetic markers 

lead  to different phenotypic  responses  to  climate  conditions.  For  example,  [84]  showed  that  the 

responses of different maize species with different thresholds of tolerance are affected differently by 

temperature means and extremes. Thus, the effect of hydroclimatic variables and their  interaction 

with genetic markers through the environmental covariance (𝛀) and genetic covariance (𝐆) on the 
maize yield predictability can be estimated. 

As mentioned  above,  the  study  of  [72]  contrasted  the  conditional  and  unconditional  𝛀   to 
calculate the sensitivity of covariance values to fluctuations in the hydroclimate in one iteration by 

coupling GSA and 𝛀.  In  the present study, we  introduced  the GSA‐GxE coupling, extending  the 

number of iterations for verification purposes. The test the GSA‐GxE framework we used a four‐year 

dataset with a limited number of trials, mainly over the eastern and central US. According to this 

testing procedure, we could miss the effects of long‐term modes of climate variability and their co‐

variability  with  genetics.  This  data  limitation  can  be  tackled  by  releasing  and  using  new 

hydroclimatic data in a more significant number of G2F environments over time and space scales, 

which  may  enhance  the  model  predictability  [17].  Nevertheless,  the  proposed  GSA‐GxE 

methodology can be expanded  to other  locations and  tested with datasets other  than G2F. Using 

released  environmental  and  OMICs  datasets  from  other  crop  breeding  programs,  such  as  the 

International Center for Maize and Wheat Improvement, is also recommended to test and enhance 

the proposed sensitivity analysis framework. 

3.2. The GSA‐GxE Framework 

The sensitivity analyses have been explored from multiple perspectives [57,85], including those 

aimed to identify the main drivers of environmental change using physical and data driven models 

[58–60]. In crop phenotyping diagnostics and prognostics such efforts have been centered on the use 

of crop and Earth System models and statistical analyses of climate and crop yields [22,26,70,80,86–

90]. Authors [72] introduced a PAWN’s GSA coupler for 𝛀  using the G2F initiative data, which is 

the  foundation  for  the  GSA‐GxE  coupler  presented  here.  The  GSA‐GxE  coupler  estimated  the 

sensitivity  of  the  GxE model  performance  to  the  constructed  𝛀 ,  and  account  for  the  possible 

variations in climate as drivers of maize yields predictability. 

The  sensitivity of  the GxE model performance  to  the  constructed  conditional  environmental 

covariance matrix has been assessed successfully for T, SR, R, and RH, which supports the central 

thesis of quantifying the GxE performance sensitivity to test the hydroclimatic drivers for maize yield 

predictability.  Figure  5  illustrates  the  unconditional  and  conditional  CDFs  of  the  GxE  model 

performance for T, SR, R, and RH. The 100 iterations for each conditional variable take approximately 

one month in a Windows system with an Intel Core i9 configuration. The codes made available to the 

public  allow  users  to  perform  this methodology  for  as many  iterations  as  they  aim.  The  tested 

iterations  in this study evidenced that the differences between the SI values for all variables were 

minimal, indicating that such number of iterations could be sufficient to achieve the maximum SI 

value. The SI values show the maximum difference between the unconditional and conditional CDFs 

(K‐S statistics) among all iterations. After completing all 100 iterations, the maximum derived K‐S 

has been reported as the PAWN sensitivity index (𝑆𝐼௑೔;  𝐸quation 16) of the GxE model performance 

(R2 in Eq. (17)) for a given conditional variable. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5. The Cumulative Distribution Function (CDF) of coefficient of determination (R2) of GxE performance for conditional variable (a) temperature, (b) solar radiation, (c) rainfall, 

and (d) relative humidity. The solid black line represents the CDF of unconditional phase, and the red lines are the CDFs of conditional phase for temperature in (a), the yellow lines are 

the CDFs of conditional phase for solar radiation in (b), the blue lines are the CDFs of conditional phase for rainfall in (c), and the purple lines are the CDFs of conditional phase for 

relative humidity in (d) for all 100 iterations. Each line corresponds to a unique generated nominal value. The dashed lines represent the CDF of PAWN sensitivity index (SI). In (a) the 

four red dashed lines represent the SI = 0.18 to temperature, in (b) the yellow dashed line represents the SI = 0.25 to solar radiation, in (c) the three blue dashed lines represents the SI = 

0.17 to rainfall, and in (d) five purple dashed lines represent the SI = 0.17 to relative humidity. 

P
rep

rin
ts.o

rg
 (w

w
w

.p
rep

rin
ts.o

rg
)  |  N

O
T

 P
E

E
R

-R
E

V
IE

W
E

D
  |  P

o
sted

: 18 M
arch

 2024                   d
o

i:10.20944/p
rep

rin
ts202403.0999.v1



  15 

 

The largest PAWN sensitivity index for the area of study is solar radiation (SISR = 0.25). After 

that,  temperature  is  the most effective climatic driver  in GxE model performance  (SIT = 0.18). The 

sensitivity indices calculated for rainfall and relative humidity are the same (SIR = SIRH = 0.17). The 

dominance of solar radiation can be supported by biophysical crop modeling and observations. For 

instance, [93] suggested that solar radiation’s effects on maize yields are often overlooked compared 

to  other  climatic  factors.  Their  study  shows  that  27%  of  the maize  production  growth  can  be 

attributed to increasing solar radiation in the U.S. Authors [94] also identified that the effects of solar 

radiation on maize yields surpassed  those of  temperature and rainfall. Yet other patterns emerge 

when  solar  radiation  is  compounded with  an  increasing  variability  of  precipitation,  leading  to 

simulated  less  conspicuous  changes  in  yields.  On  the  other  hand,  using  observations  and 

physiological  attributions  between  climate  and  crop development,  [26]  shed  some  light  on  how 

photosynthesis  and  solar  radiation  drive  crop  development  in  conterminous  US.  Thus,  the  SI‐

aggregates in Figure 5 are indicative of how the GSA‐GxE coupler and the contrasting SR, R, RH, and 

T, as compound and  individual  feasibility spaces, evidence  the contributions of climate  factors  to 

maize yield predictions in the U.S. and Canada. 

The effects of markers and environmental covariates using the covariance structures introduced 

by [9] and coupled to the GSA by [61] at each location illustrate the dominance of different climate 

variables on maize yield predictability. Figure 6 shows the spatial distribution of the most and second 

most  effective  climatic drivers  for maize  yield  predictability  and  their  associated GxE modeling 

performance (R2). The most sensitive climate drivers observed in Figure 6a indicate that R dominates 

in 26 sites, while RH, SR, and T are the main controls of maize predictability in 21, 20, and 17 sites, 

respectively. Figure 6b shows that RH dominates SR, T, and R as the second most influential driver 

of maize predictability in 26, 24, 19, and 15 locations, respectively. Additionally, there is a consistent 

pattern in the most and the second most effective predictors are the sequence RH, SR, and T. Authors 

[80]  indicated  that  crop  sensitivity  studies  have  been  dominated  by  the  assessment  of  how 

temperature  and,  to  less  extent  rainfall  affect  crop  yields.  Other  studies  have  assessed  the 

compounded  effect  of  temperature with  precipitation  deficits  in  shortening  the  crop’s  growing 

season  [24,29,80,86,87,95–97]. While  the  compounded  effect  of  temperature  and  precipitation  on 

yields can be seen as a crop’s adaptive mechanism when yields are sustained, long‐growing maize 

varieties  can be  sensitive  to water deficits or  surpluses  [61,88,98]. The  sequences presented here 

indicate the patterns of climate variability need to be further explored and explained. Authors [10] 

and [32] provide a framework to model the complex interactions driven agricultural land use in West 

Africa  (i.e.,  climate,  socioeconomic, and  land use). Authors  [22] also highlighted  the key  roles of 

genomics and enviromics interconnections for crops phenotyping in a changing climate. However, it 

remains unclear how genetics and climate will interact and lead to secure agriculture in the short and 

long‐term future. 
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(a) 

 
(b) 

Figure 6. The spatial distribution of the (a)  largest (maximum of R2), and the second 

largest GxE model performance in the G2F area of study extracted from the analysis of 

years 2014‐2017. The color  represents  the  calculated Kolmogorov‐Smirnov  statistics, 

and the size of markers represents the size of R2. The minimum, median, and maximum 

R2 values and their associated sizes for each marker have been selected to be shown in 

the legend. The circle marker represents the sites where temperature (T), the diamond 

marker represents the sites where solar radiation (SR), the triangle marker represents 

the sites where rainfall (R), and the square marker represents the sites where relative 

humidity (RH) is the most important hydroclimatic variable. 

Another perspective on the compounding effect of climate or environmental variables on maize 

yields and the sequence RH, SR, and T in Figure 6 can be linked to the use of observations and crop, 
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Earth  system,  statistical  and  data  modeling  [29,80,87,92].  Figure  6  illustrates  how  the  global 

sensitivity analysis, and the construction of environmental covariates enable the conceptualization of 

compounding  environmental  variables  and  identifying  their  individual  contributions. GSA‐GxE 

operates within a feasibility space that captures the complexity of plants’ response to spatiotemporal 

environmental variations. Such variations can also reflect our abilities  to capture or parameterize 

processes  using  high‐dimensional  ecosystems  of  digital  resources  (i.e.,  data,  parameterizations, 

analytics,  and  conceptualizations). Authors  [99]  used  a  crop model  to  assess  how  the  effects  of 

multiple factors on crop yields are sensitive to the spatial resolution of the inputs, the parameters in 

the implementation of the model, and, eventually, the results. While statistical approaches have used 

an  explicit  integration  of  genetic‐by‐environment  interactions  into  the  crop  yield  simulations,  it 

remains  unclear  how  the  individual  factors  play  a  role  across  the  large‐scale  areas  [9,13,17,92]. 

Authors [25] and [80] highlight the need to characterize the individual contributions of climate factors 

on crop yield predictions. The effort presented here addresses this point and explores the relative 

contribution of four climate variables, which scales up what [91], and [17] showed. Some of those 

changes have not been characterized  in  terms of  the  individual contributions of multiple climate 

factors  [23]  and  continue  the  activities  launched  by  the G2F  Initiative,  including  the  studies  of 

[16,83,91,100].  Furthermore,  the  resulting  crop  yield  sensitivities  to  climate  factors  and  their 

distribution across US‐CAN  suggest  the need  to  identify  the geospatial and  temporal patterns of 

variability  in  the  genetic‐by‐climate  interactions.  Such  patterns  and  additional  sources  of 

predictability could emerge  from monitoring technologies that combine unmanned aerial vehicles 

and  eddy  covariance  towers  [101,102],  co‐segmentation methods  that  enhance  current  computer 

vision‐ based phenotyping [103,104], remote sensing‐based modeling for diagnostics and predictions 

of  biophysical  variables  [105],  and  technologies  to  improve  best  management  practices.  These 

advances  can  contribute  to  seeing how predicted weather and  climate  conditions  can aid hybrid 

selection, manage cultivars during  the growing season, and prevent or mitigate major  impacts of 

extreme hydrometeorological and climate events. 

4. Conclusions 

In this study, we developed a novel methodology to couple a GSA technique called PAWN with 

the statistical GxE model to quantify and rank the sensitivity index of maize yields predictability to 

hydroclimatic  drivers,  including  T,  SR,  R,  and  RH  variables. We  take  advantage  of  the multi‐

dimensional  G2F  database,  which  releases  environmental,  genetic,  molecular  markers,  and 

phenotypes  for maize  grain  yield  from  2014  to  2017  across  84  experimental  fields  in  the North 

America. The PAWN technique has been linked to GxE model through constructing environmental 

covariance matrices  (𝛀). The covariance  function enables  incorporating  the co‐variability effect of 
multiple climatic variables on the maize yield predictability by the GxE model. The coupled GSA‐

GxE framework has been tested for T (including Tmin, Tmean, and Tmax), SR (including SRmin, SRmean, and 

SRmax), R (including Racc), and RH (including RHmin, RHmean, and RHmax) covariables and the PAWN 

SIs have been obtained based on K‐S statistics. The GSA‐GxE couple has been implemented in two 

phases of unconditional and 100 iterations of conditional phase for each given conditional variable. 

In conclusion,  the  increase  in  the sensitivity of maize yield predictability by GxE model  (R2) 

compared to the sensitivity of environmental matrices (𝛀) to the conditional hydroclimatic variables 

confirmed the large effect of genetic and environments interaction effect on the model performance. 

This effect is conceptualized by the product of genetic molecular markers (𝐆) and the environmental 

(𝛀) covariances in the GxE model. 

The average shows the superior sensitivity of GxE performance to SR (SISR = 0.25). Afterward, T 

is the most influential variable on model predictive skill (SIT = 0.18). The sensitivity level of both R 

and RH has been estimated to be the same and slightly smaller than T (SIR = SIRH = 0.17). These results 

align with several previous studies showing SR’s major impact on average maize yield predictability. 

However,  the geospatial sensitivity analysis  illustrated  that R  is  the  responsible  input variable  to 

achieve the largest R2 values in 30% of the G2F experimental sites. The next dominant variable in GxE 

model  predictive  skill  is  RH  in  31%  of  the  locations.  These  results  suggest  that  the  geospatial 
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sensitivity  analysis  proposed  by  the  GSA‐GxE  framework  will  recognize  the  most  influential 

environmental variables  in  the GxE performance  improvement by  considering  the  tested genetic 

variability in each experiment. 

Finally,  the  authors  recommend  the proposed GSA‐GxE methodology  for  further  studies  in 

sensitivity  analysis  of  crop  phenotypes  predictability  using  GxE  to  other  possible  influential 

environmental  variabilities  like  wind  speed  and  soil  properties  using  the  proposed  GSA‐GxE 

framework.  In  this case,  the  researcher would be able  to  rank all  the effective environmental key 

drivers  and  screen  the  uninfluential  ones.  Furthermore,  the GxE  performance  sensitivity  to  the 

hydroclimatic drivers during each of the phenological development stages can also shed light on the 

specific time intervals with high‐level sensitivity to the environmental variation during crop growth. 
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