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modular relation structure has not been recognized until the work of Goldstein-de la Torre, and streamlining
the classical proofs in the modular relation will reveal the meaning hidden in those works. Our main aim is to

elucidate the works of these researchers in the context of modular relations.
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1. Hecke Modular Relation for Generalized Eta-Functions

Rademacher’s “Topics” [1], along with Siegel’s “Advanced analytic number theory”[2], has been
the masterpiece classic of the theory of algebraic aspect of analytic number theory and widely read by
researchers. [1][Chapter 9] is devoted to the theory of the transformation formula for the Dedekind
eta-function 7 (7); hereafter abbreviated as ETF. The main concern is about the ETF under a general
Mobius transformation, not restricted to the Spiegelung S : T — 7 !. The correspondence between
the transformation formula under the Spiegelung and the functional equation for the associated zeta-,
L-functions has been known as the Hecke correspondence or more generally as the Riemann-Hecke-
Bochner correspondence, RHB correspondence, also referred to as modular relation. This is developed
by many authors [3-12], culminated by [13].

Rademacher [1][Chapter 9], however, incorporates Iseki’s paper [14] for the proof of ETF under a
general substitution. [14] depends on the partial fraction expansion (PFE) for the cotangent function
and [1] gives an impression that ETF must be proved by PFE. But it is known that PFE is equivalent to
the functional equation for the Riemann zeta-function {(s), [15], which naturally implies that ETF is
also a consequence of RHB correspondence. Indeed, Rademacher himself [16] developed the integral
transform method to prove ETF prior to Hecke’s discovery of RHB correspondence and his method
was used by many subsequent authors [17-21], et al. all of whom used Rademcaher’s method not RHB
correspondence. Iseki [22] seems to be the first who revived Rademacher’s method [16] to prove the
functional equation, which was extended to the case of Lambert series by Apostol [23]. Both used the
gamma transform (56) of the Estermann type zeta-function but RHB correspondence does not seem to
be perceived.

Thus the real starter of the proper use of RHB correspondence is [24],which cites [5] and proves
the general ETF from the generating zeta-function satisfying the ramified (Hecke) functional equation.
[25], a sequel to [24] treats a more general eta-function on a totally real field of degree n by similar
argument based on RHB correspondence. On the other hand, [26] adopted RHB correspondence,
streamlining [20] and [21].

© 2024 by the author(s). Distributed under a Creative Commons CC BY license.
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Our main aim is to elucidate the (Hecke) modular relation structure involved in earlier works
by Rademacher, Dieter, Schoenberg et al. and make further developments. In this paper we confine
ourselves to the case of Lambert series but as we will see, there appear the Koshlyakov transforms
which are used recently, cf. [27].

Notation and symbols. Let

=) 2mnx
O5(x) :2 , o0>1,xeR orImx>0,5s€C

n=1

be the Lerch zeta-function and

[ee)
C(x, x) 0<x<1
Z (n+x)° -
the Hurwitz zeta-function, respectively. For x = 1 (and o > 1), they reduce to the Riemann zeta-

function
(o]
1
Z = Res > 1.
= n

We make use of the vector space structures in the scone variable x of both these functions for
which we refer to [28-30]. Let C(s) = {a(n)} be the vector space of all periodic arithmetic functions
with period c(€ N) and let D(c) be the corresponding space of Dirichlet series f(s) = Yo" 4 ”1(1':)
both of dimension c. It is shown that one basis of C(c) is the set of characters and the other is their
orthogonality relation, which yields the bases of D(c): {¢s(¥)|v =1, ,c}and {{(s, %) v =1,--- ,c},
respectively. One of the base change formulas

£, (%) =c é iy (z, )c\> 1)

will play an important role.
¢1(x) is not defined at integer points x and needs separate consideration. E.g. its odd part

%(41 (x) — (4(1 —5)) = —1iBy () 2)

is discontinuous at integer points x but has the value 0. The same applies to {o(x).
Another important vector space is the space K's of Kubert functions which are periodic functions
with period 1 satisfying the Kubert relation (;):

cf., Milnor [31]. Ks is of dimension 2 and is spanned by /;(x) and /5(1 — x) for s # negative integers
while by ((s,x) and {(s,1 — x) for s # non-negative integers. The Kubert relations

Z€S<x1—y) :cl_sﬂs(x), 0<x<1 (3)
u=1
C
Z @(s,x:y) =c75(s,x), 0<x<1
u=1

hold for s € C except for singularities.

d0i:10.20944/preprints202403.0963.v1
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Since every element of K; is a linear combination of these two zeta-functions, we write

fls,x) < 8(s,x), 8(s,x) < £s(x)

to mean that f(s, x) is of Hurwitz zeta-type resp. g(s,x) of Lerch zeta-type satisfying the same
conditions as {(s, x) resp. {s(x) does. This in particular applies to their even and odd parts.

Define gab " -
Y U ) L) M

(4) is Estermann’s type of Dedekind sum whose concrete case will appear in the second proof of
Theorem 1. We substitute the functional equation

F1—w,x) =

(e‘li g(w,x) +e? wg(w,l - x))

g1—2zx) = (1;(7:))2 (e_l f(z,1—x) +en7izf(z,x)>.

as the case may be to deduce

- w,x)g(1—2,y) = "V (- F w2 a1~ 2)g(z,) ®

(zn)w—i-z
+e% 43 f(w, x)g(z,1—y) +e % @79 f(w, x)(2,y)
+e  F@ D f(w,1 - x)g(z,1 - y))

This will appear in §5.

It is Mikolas [32] who first introduced the transcendental generalization of the Dedekind sums in
which instead of (4), the f, f-type zeta functions are considered as with almost all preceding papers. In
the second proof of Theorem 1, we will reveal that the Estermann type zeta-functions makes things
simpler.

2. The Rademacher-Apostol Case

In this section we illustrate the elucidation of Rademacher’s integral transform method by showing
the functional equation for the zeta-function and the general ETF as developed in Rademacher [16]
(for eta function) and also by Apostol [17] (for Lambert series). The residual function in Theorem 1 is
the corrected form of that of [17] in the form nearest to Apostol’s. This corrected form was first proved
by Mikolés [33][p.106] and shortly thereafter by Iseki [14], both of whom treated the case p > 1. Then
as stated above, [22] proved the Hecke functional equation in the case p = 1 and Apostol [23] used the
same method to treat the case p > 1, without mentioning RHB correspondence.

Toward the end we shall briefly explain the case of Kritzel [34].

Letc € N, p > 1 be an odd integer and let /1 be an integer such that (1,¢) = 1. Define the
Rademacher-Apostol zeta-function

)= 5 e et 0
ny=
Let

iz+ 1
gp(x) =gp (ezm h) =5 /(7) T (s)Zy(s, h)c ™t (2mez) 5 dis, )

be the Hecke gamma transform of Zp(s, h) as in [16][(1.14)], where v > 1.
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Theorem 1. The zeta-function Z,(s, h) satisfies the Hecke functional equation
_g_p1 sp 2ol =
(27c) TI(s)Zp(s,h) = (2mc)" 2 (=1) T T(=5)Zy(1 —p—s,H), 8)
where H is an integer such that
hH = —1 mod c. )
. The Lambert series (7) satisfies the transformation formula
iz jiz”1
g (2 =g, (ezm C+H> +P,(2), (10)
where
Py(z) = Ress—_yp,... 01T (5)Zy(s, h)c™P (2mmcz) " (11)

1 (2mz\” (1= f27\?

__ -1 [(2mz =D 2 f2m\T

_2(p+1)!< c ) BP+1+2(p+1)!< c ) z Bpn
—i(27i)P 1 1 =

+2(p)!Spll(C,h)+25P,110ga+2<1—(—1) 2 )g(p)

1 = (@)
20p+1—r)tP"

(c,h),

r!

Po(—1)
+) (=1) (272)
r=2
and where 6,1 is the Kronecker symbol.
Proof. We combine the Hurwitz formula (12) and the base change formula (13) with f = x;, to

deduce (14): The Hurwitz formula (i.e., the functional equation for the Hurwitz zeta-function): for
c>10<x<1,

{(1—s,x)= (I;(;))s (e_nTis ls(x) + 3 ls(1 — x)) (12)

The base change—linear combination expression—formula reads

£ ame(o2) =ptea = L £ e (2) o

where 4(n) is the DFT (discrete Fourier transform) of a(n). Choosing a(n) = x,(n), xp being the
characteristic function of y, we see that its DFT is the character, which implies (1).
Combining (12) and (1), we deduce

By B 2
¢(s %) =ra ) e (14)
C C
X | sin Es cos 271AV§<1 —s,/\> + cos Es sin zm\‘u@(l —s,A) .
2 = c c 2 = c c

Substituting (14) in (6) and using



Preprints.org (www.preprints.org) | NOT PEER-REVIEWED | Posted: 18 March 2024 d0i:10.20944/preprints202403.0963.v1

50f13
¢ 27mihuv 2 /\ ¢ 2 I’l 2 /\
Ze = cos T _ Zcos Ty cos AR (15)
— c — [ c
p=1 p=1
C . 2mitp 27TA ¢ 27th 27TA
Ze o sin ﬂy:Zsin nyvsin ny,
p=1 p=1 ¢

we conclude that

[

o s 2mthuv 2Ap 1 A v
Zy(s,h) = ¢~ (2mc) (A,E1COS o cos — cos%sg 1=s, C(p-l—s,c) (16)

C

. 2rmthpv . 2mAp 1 A v
+ Z sin —— sin C(l—s,c>§(p+s,c)>.

inZ&
At c sings

Changing s by 1 — p — s and u by Hu, where H is as in (9), then the second factor remains unchanged
—1
up to the additional factor (—1) 2" Hence

Zy(1—p—s,H) = (2nc)17p725(—1)p771zp(s,h),

which is (8).
Substituting (16) in (7), we derive that
1
sr(x) = oo (17)
< 2 2 1 1 A
X Z cos v cos n/\yi‘/ = C(l—s,)C(s-l—P,V)Z_Sds
A=t c ¢ 27 J(y) COS 58 c c
< 27th 2Au 1 1 A
+ ) sin Y Gin ny—,/ — §<1—s,>§(s+p,v>zsds>,
Ao c ¢ 27 J(y) sin 58 c c
oV

which is ([16](1.27)).

Shifting the integration path to ¢ = 1 — p — < and applying (8), we conclude [16][(1.29)], which is
(10).

Incorporating the residual function found in [17] with correction calculated in [27], we arrive at
the general transformation formula, entailing ETF ([16](1.45)), completing the proof.

Second proof.
We may give a more lucid proof of (8) using the Estermann type Dedekind sum

R R T AT C) B

2w {2 ) () +iwre:

Estermann [35][(19)] established the functional equation

£ (s,5) = —2(2m)2 7212 (1 —5) (cos(ms) €L (1 — 5,1 —5) = EM(1=5,1=5)),  (19)
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which is a special case of the more general functional equation
2T (w)I'(2)
b1 - — ) =
EP(1-—w,1-2z2) = )it (20)
X (cos g(w +5)EY (2, w) + cos g(w —5)EL (2, w))

We consider the sum slightly more general than (6):

posh= B e i) = Sele ) LTl e

uv=1

The inner sum on the right of (21) is ¢*/, ( ) in view of the base change formula (1) becomes

C
bz = Y oo 8)e (") = e, @)
u=1
which becomes
Zy(s,h) = Lp(s,s + p,h) = ¢TPEM (5,5 + p), (23)

on specifying w = s, z — p + s. Hence, substituting (20) in (22), we deduce that

2I(1—w)T(1 —z)

Iy(w,z,h) = ¢ e (24)
X (— cos g(w+s)€;h'1(l —z,1—w)+ cos g(w —5)EM(1—2,1- w))
Specifyingw = s,z — p + s, (24) reads
2y(5,1) = ty(s,5-+ p ) = et 2GR = @)
X (—cosg(Zs +p) &M —p—s51-5) +cosgp€f'l(1 —p—s,1 —s)).
Taking oddness of p into accout, this reduces to
Zy(s,h) = ar (2;))1;(_117_25 —9) (—1)ps1 sin 7ts&; hl(l —p—s1—5s),
whence
[(s)Zy(s, h) = c””m(—l)pslgc’“(l —p—s1—5s). (26)

Now let H be as in (9). Then
EMA—p—s51-5)=EMHA1-p—s51-35)= clfSZp(l —p—s,H)
by (23). Substituting this in (26) proves (8).

Third proof. We may restore the argument of [16] (and [17]) to prove (10) and the proof entails the
proof of (8)., cf. [27]. O
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3. The Kritzel Case

[34] deals with a generalization (38) of the eta-function which depends on the Hecke gamma
transform of the zeta-function

R !

where a, b are natural numbers, (a,b) = 1. Z,;(s) satisfies the Hecke functional equation

Za.h (S> :

[(8)Zas(s) = T(=8)Zp,a(—s). (28)

Kritzel’s method is essentially that of Rademacher although he does not refer to [16] and we give a
brief account on this point.

Theorem 2. The Kritzel-Rademacher method yields the modular relation (28) as well as the transformation
formula

ﬂu,b(x) = x_azbnb,u<1)- (29)

X

Proof. For the moment, we work with (Rex > 0 and |argz| < )

o a—1 . b
fap(x) =TT T1 (1 - ez”’”f‘“(‘l")n”h), (30)
m=1v=1

- 2v+
2701 =]

where €3, 11(4a) = e * . Then for » > 3, we have by the Hecke gamma transform

“‘i <2niei2%1> B (27txb> “ds. (31)

v=1

log s () =~ [ T0)2(s-+ 12 ()

Now the sum becomes

= singes
Hence (31) becomes
. 1 sin s b p) S
log 77,,(x) = — 5.0 /(%) r(s)sin%s (s+ 1)§(as) (27rx ) ds. (32)

Now we apply the functional equation only to one factor {(s + 1):

(s +1) = —(2n)' g (=), 33)

T
s+1)sinZs

Substituting (33) in (32), we obtain

~ . 1 F(s) b b\ S
log Wﬂ,b(x) - ﬁ () rwmgzsﬂg(—S)g(as> (x ) ds. (34)
Note that the factor r(rs(ij)nds being %ds remains invariant under the change of variable s — as, so that

(34) becomes as in Kratzel,

~ _ 1 F(S) ab S
log #7,,p(x) = i /(%1) r(s+1—)smg5”§(—“5)g(b5)<x b) ds, (35)

where 55 > % These two are the main ingredients of Krétzel and corresponds to Rademacher’s (17).
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Changing the variable s — abs, (35) becomes
log 7, 5(x) = — [ T6)Zapls) ds (36)
og 77a,b - 21 (22) a,b ’

i.e., the Hecke gamma transform of Z, ,(s), where s, > a. As usual, shifting the integration path to

= —m < — a, we encounter poles and we are to find residues. The resulting integral is the same

as (36) with x changed by - Krétzel writes [34][p. 116] “Then under the substitution s — —s, the

functional equation (28) follows on symmetry grounds” meaning that he proves (28) at this stage.
Krétzel treats (35) and shifts the line to —3r < —% finding the sum of residues

1 1 ab
—Yap(x )+'m< )+2( —0)10g27r—7x, (37)

Yap(x) = Z(—b)xb-

s 2 a

where

Hence defining
Hap(x) = (271) T €T (), (38)
we conclude (29). O

4. Unification of Rademacher and Dieter Cases

In this section we prove the modular relation structure of the zeta-functions and the general ETFs
contained in [16-18]. We work in the framework of Dieter with slight modifications. Let p, d, f, a, 8 be
integers satisfying the conditions p > 1 being odd, (h,¢) =1, f > 1,0 < a < f. f works as a fixed
aixiliary modulus and d = —h in §2. In Dieter’s case, a, § # 0 mod f is also assumed. Then the Dieter
zeta-function is defined by

fup(5:%) = fpap (s, 25 ) = Y Z AL <,};+Cﬂ})€(s+p,;}>/ (39)

u=0v=1

where L
1w —p) = —(wp), 7 =10 p) =L (40)

We assume y(—a, —) = y(a, B) for o, = 0 mod f, which we abbrviate y(0,0). We also assume that
pvaries 1,- - -, c in the case of y(0,0). Then (39) with p = 1 amounts to (6). In almost all susequent
researches after Rademacher, it is necessary to consider the even part [18][(2,11)], which is

8u,B (s,x) fzx (s, x) —i—f,,xr,ﬁ(s,x). (41)
One speculated reason for this is stated in [27].
Let 1
- 27lez+h _ -1 —s
Gp(x) = Gp( ) =5 /(7) T(s)gap(s, x)(cf)  (27mmcz)*ds, (42)

be the Hecke gamma transform, where y > 1.

Theorem 3. Rademacher’s transform yields the transformation formula

+h jiz”1+H
Gp,w,ﬁ( i ) = Gpap (6271'1 o

) +P(2), (43)
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where

P(z)= Y Res[(s)gup(s x)(cf) " (2mmcz) " (44)
s=p,,0,1

as well as the Hecke functional equation for the even part g, g(s, x) of the Dieter zeta-function

-1

(27f) T T(S)gpap(s,x) = et T (<1) T T = p—s)gpwp(1—p—sx), (45

)= 5)5)

Proof. We give a proof verbatim to that of Theorem 1. We employ (14) as

where H is an integer as in (9) and
The theoem also covers Theorem 1.

g(s,i‘ n C”}) —-T(1 —s)(znczf)ls<sin7zts)\ilc052n)x<}: n C"})g(1 —s,c/>> (47)

+cos7;s§sin2n/\(lz—|—Co}>§<1—s,c)}>>.

Substituting (14) in (8), we find that

c(27cf) " (s) fu,p(s, x) (48)

fC c—1 hpv+yv 1
_ Z 262711—?‘:’7 cos 27T ﬁ+£ - 175,1 g P+S,£
A1 \ =0 c cf)cos%s cf cf
hpv+yv

c—1
27t c'y 1 E ﬁ 1 _ i L
+P;)e SanN/\(c+cf>sin72Ts€(1 s,cf)§<p+s,cf)>.

To proceed further with the non-degenerated (48) we need a counterpart of (15) and for this we
need to consider the even part [18][(2,11)], which is (41).
Then we are to incorporate

c—1 Chuv+yv c—1 Lhyv—yv
Z Q2 cos27r)\<y + a) + Z i cos27‘f)\<y - a) (49)
) c cf = c cf
c—1 T I ® c—1 o i =y 2 ©
= Zem c cosZn)t<+>+Zem c cosan\(+>
/=0 c cf =0 c cf
c—1 huv+yv
= 2(2 Re(ezm e > COSZ7‘[)\<‘u + DC))
= c cf
= w4y pooa
=2 ZcosZn 052n<)\+)
p=0 cf
and
c—1 > hpv+qv U o c—1 ) hyuv—yv u o
) e sinznA< + ) + ) e sin27TA< — ) (50)
= c cf =0 c cf

d0i:10.20944/preprints202403.0963.v1
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Substituting in (48), we obatin
c(2mef)°T(s)gn,p(s, %) (51)
= 2;”,21;,21 cosZﬂhH v cosZn(Alz + f) coslzsg<1 —s, :})é(p +s5, Cl})
—ZzAVZ:lyistnhy Rl 27t<)xy 0}) sml SC(l—s,C/})C(P-Fs,:})

Changing sby 1 — p —s and u by Hu, where hH = —1 mod ¢, then the right-hand side of (51) is

rp-1
changed into the one with the factor (—1) 2 and with the new pair of parameters «’, f’. Hence

c@nef) P (1) T T~ p- 5)gap (5, %) = c(27cf) °T(s)84,p(s, %),

which is (45).
Shifting the integration path in (42) to o = 1 — p — <y and applying (8) establishes the assertion.
The residual function (44) may be found on [18][p. 48].

The degenerate case of (48) leads to a generalization of Rademacher’s functional equation. Indeed,
(48) with f =1, 7(0,0) reads

c(27te) "°T(s) fo0(s, x) (52)
€. 2mibpy 2nAp 1 A v
A;1<Ze ¢ cos — Cosgs§<1—s,c>§<p+s,c)

& omimw  27tAu 1 A v
+VZ:1€ sin — Sl ( >C(p+s,c)>.
Substituting (15) in (52) proves Rademacher-Apostol case [36]:

@re) T T()Z, (s, 1) = (2me) T (~1) T T(=8)Zy(1 - p s, H), (53)

where

- £ i)

nv=1
(53) reduces to (8) forp =1. O

Other papers dealing with generalizations of the eta-function use

- £ ().

nyv=1

instead of (6) and are feasible for description in the form of the Hecke correspondence. We hope
to return to the study of this aspect and more general Dedekind sums including one with Kubert
functions elsewhere. But we shall mentions one type of Estermann type in the nect section.

5. The Schoenberg Case

This section is concerned with [20], which is reproduced in [21][pp. 184-202, Chapter VIII]. On
[21][p. 184] it is stated that the transition is made from Hecke’s Eisenstein series of weight —2 [21][p.
164] to a linearly equivalent system containing non-analytic function G,.

d0i:10.20944/preprints202403.0963.v1
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We stick to [20][p. 5 ], which is directly related to (5).
In particular,
Z(s,a)ls 1 (B) = ﬂ( —e (=5, 1— B 5(w) (54)
e sin 7ts ’ 1=s
+e™ (=5, B)li—s(1 —a) +{(—s,1 = p)l1s(1 —a)
— (s, /3)61,5(04)).
We write & = ¢2"F and define the Lambert series [20][(20)]
U(x;a,p) =Y, é —(mranx 55, (55)
n>0
m>—u
Then [20][(26)] considered the gamma transform of the Estermann type zeta function
0 B) = L —x
Ul f) = 5 [ IO )1 (Ble ds (56)

where s¢ > 1. If we substitute (54) into (56), then the integral is hardly tractable. This is why Schoenberg
deduced only an asymptotuc formula for U(x;«, B).
Let

a=(a,a;) € 72, a= a(a) = m + o B =pB(a)=2¢, (57)

where
2m(ﬁ+¥> ,
(;rr —¢ , a7 =aap +cap. (58)

Then we consider
_ _ ) _ L U
X(a) = X(a1,a2) = U(x;0,B) = U(chx, N + C,C,). (59)

But what is needed eventually is an expression for the even part X (ay,a,) + X(—ay, —az) ([20, p.
8]) and we prove the following theorm for the zeta-function of the even part.

Theorem 4. For
Z(s,a,B) = ¢(s,a)ls1(B) +4(s,1 — )b (1 - B)
and
Z(s,a,8) = {(s,1 = B)lsya(a) +{(—s,B)l1—s(1 —a)
the functional equation
Z(s,a, ) = 2(2m)* Z(—s,a, ) (60)
holds.

Proof. On [20][p. 7], Schoenberg defined

27T ,;‘zi+ﬂ
cize"’( %) (61)
and noted

&=z, (62)
Hence

a(—a)=1-a(a), p(-a)=1-p(a)
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X(—a)=U(x;1—a,1-p). (63)

It follows that when substituting from (54) in X(a) + X(—a), the sums with the third and the fourth
terms vanish and we sum only first two terms of (54) and the sine function cancels. Hence the
zeta-function Z (s, «, B) of X(a) + X(—a) is

Z(s, &, B) (64)

. 2
— _1.(27-[) ’ (_efm's +enis)
s 7ts

(2(=s1 = (@) fr-s(~a(a)) + L(~s,B(a) 15 ((a)))
= 2027 (6(=s, 1= B)f1-(2) + (=5, B)f1-<(1— a)),
which proves (60). O

Hence what comes out is the Hecke gamma transform of a tractable function and the process
onwards is verbatim to that of the preceding sections and we do not go into details.
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