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Abstract: We present the use of interconnected optical mesh networks for early earthquake detection and
localization, exploiting existing terrestrial fiber infrastructure. Employing a Waveplate model, we integrate
real ground displacement data from seven earthquakes, magnitudes ranging from four to six, to simulate the
strains within fiber cables and collect large set of light’s polarization evolution data. These simulations help to
enhance a Machine-Learning model that is trained and validated to detect Primary waves arrivals that precede
earthquakes’ destructive Surface waves. The validation results show that the model achieves over 95% accuracy.
The Machine-Learning model is then tested against an M4.3 earthquake, exploiting three interconnected mesh
networks as a smart sensing grid. Each network is equipped with a sensing fiber placed to correspond with three
distinct seismic stations. The objective is to confirm earthquake detection across the interconnected networks,
localize the epicenter coordinates by a triangulation method and calculate fibers to epicenter distance. This setup
allows early warning generation to municipalities close to epicenter location, and progressing to those further
away. The model testing shows 98% of accuracy in detecting primary wave and one-second of detection time,

affording nearby areas 21-seconds to take countermeasures, and an extended 57-seconds in more distant areas.

Keywords: earthquakes; polarization; machine-learning; early-warnings; optical-networks; sensing; waveplate-

model

1. Introduction

Earthquakes represent one of the greatest natural disaster risks facing humanity. According to
plate tectonics theory, the earth’s lithosphere is divided into plates by seismic zones that move relative
to each other. The majority of earthquakes occur along these plates” boundaries, with seismogenic
faults being the geological origins of destructive earthquakes [1]. However, predicting earthquakes is a
common scientific challenge for researchers globally. Much of this difficulty stems from the lack of
reliable precursory indicators that meet the sufficient and necessary conditions of their occurrence,
which is often considered the primary cause of failure in earthquake prediction efforts in earth science
research. Monitoring these seismic events is an essential part in trying to predict them, and that
employs range of different methods. For instance, absolute measurement of geostress to assess the
stress characteristics of significant faults [2], as seen in the San Andreas Fault Observatory at Depth
(SAFOD) project [3]. Li Siguang, a pioneer of earthquake prediction in China, pointed out that an
earthquake is a process of accumulation of stress on seismogenic faults. Real time monitoring of
geostress using tools like stress gauges can be leveraged to track changes in fault lines, providing
insights into the release of seismic energy [4]. Crustal strain monitoring through strain gauges and GPS
technology have been developed for seismic research and prediction as well [5,6]. Additionally, infrared
monitoring method, as the infra-sound signal in the far field is found to be strong within two to eleven
days before an earthquake with a magnitude of M7.0 or higher struck, and its spectral characteristics
are apparently different from other natural events [7]. Unfortunately, in 1988, seismologists in United
States deployed a dense network of monitoring stations focused mainly on "Surface Strain Monitoring",
in addition to tracking geo-magnetic, geo-electric, ground-water level, and hydro-chemistry data, to
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predict an M6 earthquake occurring in the Park-field near the San Andreas fault. Yet, the anticipated
earthquake didn’t occur until 2004, 16 years later than expected, and the monitoring equipment
failed to pick up any anomalies or precursors [8]. Similarly, in 1995, an M7 earthquake struck in
Hanshin, Japan, killing more than 6500 people, where the high density GPS network in place did
not capture warning signals. Consequently, the scientific community become increasingly skeptical
about earthquake prediction. In March 1997, Robert J. Geller published a paper titled, "Earthquakes
cannot be predicted" in Science magazine, which reflected the prevailing opinion on earthquake
prediction in the work [9]. Therefore, it is crucial to address this challenge differently by adopting
novel methods for widely distributed early detection systems capable of rapidly identifying the event
to activate different mitigation strategies and minimize humanitarian and economic impact. According
to the International Association of Seismology and Physics of the Earth’s Interior (IASPEI), one of
the main potential earthquake precursors is changes in strain rates which are the rates at which
the Earth’s crust stretches or compresses[10]. This is because such changes are indicative of stress
accumulation in the Earth’s crust, potentially pointing towards upcoming seismic event. Consequently,
as optical fiber cables are buried underground, they too experience stretching or compression in
response to the strain rate change caused by seismic waves. The mechanical and optical properties
of an optical fiber, as well as the physical properties of the light wave propagating inside it, change
due to applied mechanical stresses and external disturbances. This trend opens the perspective of
using the optical networks as a wide distributed network of sensors for environmental sensing, such
as earthquake detection or anthropic activities monitoring [11,12]. Essentially, there are two types of
seismic waves, body waves (Primary, P waves and Secondary, S waves) that propagate through the
earth’s interior, and Surface waves that propagate along the earth’s surface. Surface waves carry the
greatest amount of energy and are usually the primary cause of destruction [13]. Detecting P waves
that precede earthquake’s destructive waves allows swift initiation of emergency plans. Therefore,
we have witnessed recently the rise of distributed fiber optic sensors that offer the possibility of
measuring a slow varying environmental variable at any location along the fiber length within a
given sharp spatial resolution. This approach has been developed in last decade to monitor dynamic
strain variations induced by external perturbations using optical fibers. Distributed optical fiber
sensors utilize the natural scattering processes arising in optical fibers, including Brillouin, Raman, and
Rayleigh scattering. Rayleigh scattering combined with Optical Time-Domain Reflectometry (OTDR)
or Optical Frequency Domain Reflectometry (OFDR) has allowed the development of Distributed
Acoustic Sensing (DAS) [14,15]. DAS employs optoelectronic interrogator, which send short light
pulses into the fiber cable and then measure the optical perturbations in the light that scatters back,
thereby deriving strain-rate signals proportional to the amount of physical stress impacting the fiber.
These systems require dedicated "dark" fibers (i.e., optical fibers used solely for sensing without any
communication channels) to operate [16,17,18]. Thus, limiting the overall data carrying capacity in
the network. Moreover, these sensing techniques are incompatible with inline optical amplifiers that
are commonly found along optical fibers’ path, and this is because the optical isolators inside the
amplifiers block the backscattered DAS signals. Although these amplifications could be removed
along dark fibers, which would lead to rampant signal attenuation. It is worth mentioning as well,
that the usable range of this technology is less than 100 km and requires powerful computational,
storage, and processing capabilities that are generally only available in high-cost systems [19,20].
Frequency metrology interferometric techniques came to overcome DAS usable range limitations.
These techniques can measure femtoseconds delay experienced by the light of an ultrastable low phase
Fabry-Pérot laser cavities traveling in the fiber at micrometer scale over several thousands of kilometers
for fiber length [21], but still interferometric techniques considered to be using dedicated and expensive
hardware. In this manuscript, we present a novel technique that employs light polarization sensing.
Unlike DAS and interferometric systems, State-of-Polarization (SOP) sensing based on Machine
Learning (ML), analyze the integrated polarization alterations of the modulated light traveling through
traffic-carrying optical fibers [22]. Our approach aim to leverage interconnected terrestrial optical mesh
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networks as a whole smart sensing grid to produce early anomaly warnings by identifying the arrival
of earthquake’s P wave without adding expensive equipment to the network, ensuring long-range
measurements, and without requiring dedicated dark fibers. Thanks to the centralized design of our
smart sensing grid optical network approach, which we detail in this work.

Due to applied mechanical stress, the local refractive index of the fiber core changes and give rise
to birefringence. Birefringence leads to different propagation speeds of the optical wave along the x
and y axes of the fiber core [23] that results in light’s polarization change. Hence, SOP variations are
dependent on disturbances applied to the fiber and can advantageously be used for sensing purposes,
particularly because optical fiber communication networks have become pervasive infrastructure and
widely deployed around the globe. In this paper, we aim to exploit optical networks beyond their
conventional use, integrating real ground displacement data from seven earthquakes struck in the
Modena region in Italy, with magnitude values ranging from four to six, to train and validate an
ML model. The purpose is to then test the model against an earthquake within the same range of
magnitude, utilizing interconnected optical mesh networks in three distinct municipalities that will
confirm the arrival of its P wave, particularly through three sensing optical fibers placed precisely
where three seismic stations originally positioned for data collection in these distinct areas. In Section
II, we detail the methodology behind SOP data collection leveraging a Waveplate model. Section
III, introduces the ML model training and validation, to be followed by Section IV, which presents
the seismic network architecture and ML model testing results. Furthermore, we aim to showcase in
Section V the triangulation methodology employed by the network controller overseeing all connected
networks for accurate epicenter localization and fiber-to-epicenter distance. Section VI concludes the
study.

2. Waveplate Model

In an ideal optical fiber, which is typically circular in shape, the silica glass of which it is made
is isotropic. In the weakly guiding approximation, such an optical fiber supports the propagation of
two degenerate orthogonal polarization modes. In general, the theoretical polarization characteristic
of an optical pulse is represented by these two distinct modes. However, in reality, optical fibers are
often birefringent due to construction imperfections that disrupt the fiber’s cylindrical symmetry,
thus affecting the polarization. This means that, in a fiber section small enough, the perturbation
or the internal birefringence stemming from construction imperfections can be assumed spatially
uniform [24,25]. Seismic waves are another form of disturbances that cause external birefringence on
the fiber and can also affect the polarization. To isolate and study the external disturbances on the
light’s polarization within the fiber, it is crucial to understand the influence of internal birefringence.
Here, adopting the Waveplate model is essential to well define the effect of internal behaviour by
dividing the fiber into numerous small segments, referred to as ‘plates’ to ensure a uniform internal
perturbed medium across each section [26]. Hence, the effect on light’s polarization is well defined
and can be quantitatively described by 27 divided by the polarization beat length Lp, which is the
amount of internal birefringence defined as the propagation length over which the optical path length
of the two polarization eigenmodes differs by exactly one wavelength [24,25]. Consequently, any
deviations from this established internal behaviour can be attributed to external perturbations, as they
would introduce unexpected changes in the state of polarization of light. Without considering any
external effect, when linearly polarized light is injected at 45-degrees angle with respect to the linear
polarization eigenmodes, the light acquires after one quarter of Lg a phase shift of 7 transforming the
linear input polarization into a circular one, and after one half of Ly a phase shift of 77, as depicted in
Figure 1. The Waveplate model theory is described in Appendix A.
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Figure 1. Schematic Representation of Fiber Sections, each of Uniform Internal Birefringence.

However, by nature, these plates have random orientations, which can not be controlled, adding
complexity to the analysis of external effects. Basically, each plate is assigned with two random angles,
Ellipse of polarization or the major axis angle, and the Eccentricity of the ellipse. For simplicity
purposes, in this paper we consider only the major axis angle which we present in Appendix A. In
[26], the author presented the complete theory. Despite the random orientations of the plates causing
varying polarization evolution, the data should contain invariant information linked to a specific
earthquake. To overcome this complexity, a large amount of polarization evolution for a given seismic
event is collected, where each SOP evolution corresponds to a different set of random plates” angles as
in Figure 2, carrying out a Montecarlo simulation over these different random orientations’ realizations.
The goal is to train an ML model that leverage this dataset to identify and understand the patterns of
polarization changes that occur with the arrival of Primary earthquake waves in order to early detect
the arrival of Surface waves.

— Real. #2
—— Real #7

—— Real #8
—— Real #28

0 1 2 3 4 5 6 7
Time [s]

Figure 2. Four SOP Evolution for the same Seismic Event with different set of Plates” Angles.

This is where the ML model becomes valuable. Instead of analysing the changes in the three
stokes presented for each SOP evolution (51, S2, S3) and to reduce computational time, we propose to
calculate for each SOP evolution from their stokes representations, the State of Polarization Angular
Speed (SOPAS) [27], which we detail in Appendix B. Thus, analyzing one variable instead of three.
Moreover, one of the main functions of the python based Waveplate Model we have developed, is to
convert earthquake ground displacement values into nanostrain values coupled to the fiber according
to the conventional iDAS conversion presented in [28], where each 116 nm of ground displacement
corresponds to 11.6 nanostrain of fiber’s deformation.

3. Machine Learning Model Training and Validation

Through the Italian National Institute of Geophysics and Volcanology (INGV) [29], we extracted
real ground displacement data from seven local earthquakes recorded in the Modena region. The
earthquakes magnitudes chosen were M4, M4.3, M4.5, M4.7, M5.1, M5.3 and M5.8. The objective is to
integrate strain values caused by these displacements into fiber cables, 10 km each, simulated with the
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aforementioned Waveplate model. A 45-degrees polarized light was injected into the model to conduct
50 simulations for each earthquake, where each simulation is assigned to random plates” orientations.
The evolution of the SOP was captured for each file and subsequently converted into SOPAS values,
resulting in a total of 350 simulation files used for training and validating ML algorithm across all
earthquakes. A Temporal Fusion Attention Network (TFAN) based on neural network architecture
is utilized for ML modeling, in which we combine the Temporal Convolution Network (TCN) [30],
Long Short - Term Memory (LSTM) [31], and attention mechanism. The term "temporal” in the model’s
name indicates the focus on temporal data, capturing patterns and dependencies over time. "Fusion"
represents features from both TCM and LSTM layers. As for "Attention", it highlights the utilization of
attention mechanisms to dynamically weigh the importance of different steps.

As shown in Figure 3, the model architecture is structured to process time series data, followed
by TCN layer designed to capture temporal patterns. An LSTM layer is incorporated for long term
dependencies, with attention mechanism to focus on significant time steps. The output layer facilitates
multi-class classification with softmax activation. ML model training involves categorical cross-entropy
loss, Adam optimization, and early stopping to mitigate over-fitting.

5 wave

xt-l arrival

g_ ;‘ Earthquake ¥

X =
t [, | 7:‘ Early \

o Detection P wave
Xt+1 5 arrival i
MY
L Output

TCN network  LSTM + Attention
network

Figure 3. ML Model Architecture.

Almost 60% of the SOPAS data used for training, 20% for validation and 20% for testing. Figure 4,
shows the model training and validation accuracy. The graph displays the accuracy over a sequence of
epochs. The blue line represents the training accuracy, which increases rapidly, indicating effective
initial training. Meanwhile, the orange line signifies the validation accuracy, assessing the model’s
performance on new unseen data. The close alignment of these curves indicates that the model
has been well-generalized with minimal risk of over-fitting. As epochs progress, both curves reach
noticeable accuracy rates, implying that further training is unlikely to yield significant improvements.
The model shows promising predictive precision, with training and validation accuracy exceeding
95%.
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Figure 4. ML Model Training and Validation Accuracy.

4. Smart Sensing Grid Approach: Seismic Network Implementation

To manage the challenges of swiftly evolving traffic patterns, optical networks are evolving
towards dynamically re-configurable, autonomous systems. These systems are managed by a cen-
tralized Optical Network Controller (ONC), which interacts with Network Elements (NEs) by means
of Application Programming Interfaces (API). The ONC leverages various metrics tracked by each
NE, constituting the streaming telemetry paradigm for network management purposes. This setup
facilitates the provision of varied services to the higher network layers. We propose to expand the
streaming telemetry paradigm to integrate earthquake early detection service into the existing network.
The streaming telemetry paradigm entails continuous data transmission from NEs to the ONC to assist
network management and control. Devices like Re-Configurable Add/Drop Multiplexers (ROADM)
and amplifiers include crucial information like power levels and variations in temperature, whereas de-
vices like coherent transceivers (TRX) capture alterations in phase and SOP of optical signals. External
stress affects the phase and SOP of the transmitted signal, thereby, SOP changes carry environmental
data that can be leveraged for sensing applications [32,33]. Furthermore, a post-processing agent
within the NEs filters only the crucial information to the ONC, and analyze the data by leveraging
machine learning algorithms. Coherent transceivers are inaccessible due to vendor lock, yet Intensity
Modulated-Direct Detected (IM-DD) TRXs are still popular in metro and access segments with lower
data rates or functioning as slower as Optical Supervisory Channels (OSCs) that terminate at every
amplification site [34]. Thanks to the polarized nature of OSCs, that facilitates the identification of OSC
SOP alterations induced by external stress. This could be achieved by extracting a minor portion of
power to supply a polarimeter or a simple Polarization Beam Splitter (PBS).

4.1. Case Scenario

For testing the model, we used the M4.3 earthquake struck in the region of Modena on the 23rd of
may, 2012. The objective is to leverage three interconnected terrestrial optical mesh networks in the
region as a smart sensing grid driven by the aforementioned trained ML model, where we extracted
the real ground motion data recorded by three seismic station (T0821 - 23.14 km far from the epicenter,
MNTV - 47.88 km far from the epicenter and MNTV - 61.45 km far from the epicenter) as in Figure 5.
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Figure 5. M4.3 Earthquake Origin Time: 2012-05-23 21:41:18 (UTC) | Region: MODENA
and corresponding Interconnected Sensing Grid in the Modena Region.

Displacement values were then converted into strain values coupled along three sensing fibers
positioned to correspond with seismic stations” geographical coordinates in the three distinct areas,
where each fiber was divided into 2500 waveplates with 4 meters spatial resolution. NEs in each
network will continuously send information to the ONC overseeing all mesh networks. We aim to
confirm the event from three sensing areas, localize the epicenter and determine the epicenter to
station/fiber-substitute distance, by applying triangulation method that we detail in next section, to
generate early warning accordingly. The ONC will confirm the event and issue early warnings after
the third confirmation.

According to the Central Italian Apennines (CIA) Velocity model [35], the time window between
the Primary wave and the arrival of Surface wave increases by the increase of distance from the
epicenter, similarly for the Primary wave arrival time. The earthquake struck at 21:41:18 UTC, where
the P wave arrives at T0821 after 24 seconds, 28 seconds at MNTV and 30 seconds at ZCCA as shown
in Figure 6. Consequently the P wave arrival time at T0821 is 21:41:42 UTC, and 21:41:46 UTC at MNTV
and 21:41:48 UTC at ZCCA. The time window between the arrival of P and Surface waves at T0821 is
28 seconds (52-24), 38 seconds at MNTV (66-28) and 58 seconds at ZCCA (88-30). Thus, the arrival
time of Surface wave at T0821 is 21:42:10 UTC, 21:42:24 UTC for MNTYV and 21:42:46 UTC for ZCCA.

0.0020 T0821 Fiber Average Strain Over Time (0 to 300] seconds) MNTV Fiber Average Strain Over Time (0 to 300] seconds)
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0.0015 .
> Selected Peaks A Selected Peaks
_ om0 L _ oo
Sa Allil il s 5 : i 1 66.
& B 50000 | AL - 1 & g Surface wae arrival atGG 00s
°c & Secondary wave peak at: 36.00s o @ 0.0000 AR AR T R
S g —0.0005 il | H g Secondary wave peak at: 42,00 s
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-0.0015 ‘ | ‘ | —-0.0050 M ‘ I
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Figure 6. Strain Evolution over T0821 Fiber - Left, MNTYV Fiber - Middle, and ZCCA Fiber - Right.
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We introduce detailed numbers to mention that the time available for early warning in each area
is as follows:
(We denote ML P-wave Detection Time as MLDT and Time Difference as TD)

In T0821 Area (seconds):
Time (seconds) = 21 : 42 : 10 — (21 : 41 : 42 + T0821prpr + (P-wave TD with ZCCA — T0821yypr) + ZCCAvipr) (1)

In MNTV Area (seconds):
Time (seconds) = 21 : 42 : 24 — (21 : 41 : 46 + MNTWpr + (P-wave TD with ZCCA — MNTWupr) + ZCCAmipr)  (2)

In ZCCA Area (seconds):
Time (seconds) = 21 : 42 : 46 — (21 : 41 : 48 + ZCCAmipT + Zero knowing that ZCCA is the Reference Station ) (3)

It is good to note that the time difference of Primary wave arrivals between T0821 and ZCCA is 6
seconds (30-24), and 2 seconds (30-28) between MNTV and ZCCA.

4.2. ML Model Testing Results
An example of one simulation for each sensing fiber substituting each seismic station is shown in
Figure 7. SOPAS data on all fibers was utilized to test the trained ML model.

MNTV SOP Angular Speed Example

T0821 SOP Angular Speed Example
30 —— SOPAS 3.0 —— SOPAS
~ 25 ~ 25
@ @
B 20 B 20
E 15 5 15
G L0 g 10
0 0
0.5 0.5
0.0 0.0
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (s) Time (s)

ZCCA SOP Angular Speed Example
2.0 —— SOPAS

15

SOPAS (rad/s)
=1
o

Time (s)

Figure 7. SOPAS Evolution over T0821 Fiber - Left, MNTYV Fiber - Middle, and ZCCA Fiber - Right.

We detail in this section the ML findings. We present in Figure 8, the Confusion matrices for each
fiber substitute, that show a table to visualize the performance of a classification model, or seismic

event classification system.
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Figure 8. Confusion Matrices over T0821 Fiber - Left, MNTV Fiber - Middle, and ZCCA Fiber - Right.

Each matrix is a measure of accuracy for predicting four categories: NO EQ (No Earthquake),
P wave(Primary wave), S wave (Secondary wave) and Surface wave. For T0821 fiber substitute,
presented left of Figure 8, show that the system accurately detects 'No EQ’ most of the time with 1048
correct detections, 19 wrong detected as P wave, 0 as S wave and 4 as Surface wave. For P wave, it
correctly identified 538 instances, missing only one as 'No EQ’ and one as S wave. Following this
analysis into all matrices, 538 correct P wave detection out of 540 events for T0821 fiber substitute, 358
out of 360 detection for MNTYV fiber substitute (middle of Figure 8) and 1758 out 1760 for ZCCA fiber
substitute (right Figure 8). Consequently, the system modeling shows low false positive rates and high
level of efficiency with 98% of accuracy rate in detecting P waves, an essential component in early
earthquake detection and seismic analysis.

As mentioned earlier, the ML model utilizes SOPAS data as metrics for detecting and visualizing
the presence of a seismic event. Employing one SOPAS example for T0821 fiber substitute, two for
MNTV and two for ZCCA, we show in Figure 9, the results of ML fitting over SOPAS data that
demonstrate one-second of ML detection time over all fiber upon direct P waves arrivals, which means
that if the P wave starts at t = 0, the detection will occur at t = 1. This implies that TO821yypr =
MNTWptr = ZCCAMmiDT = 1. As a result, Equation 1, 2 and 3 will become for T0821, MNTV and
ZCCA respectively:

Time (seconds) =21:42:10 — (21:41:42+7) 4)
Time (seconds) =21 :42:24 — (21 :41:46 +3) (5)

Time (seconds) =21:42:46 — (21:41:48+1) (6)
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Figure 9. ML Detection time of P Waves Using SOPAS Data Across Three Seismic Stations/Sensing-
Fibers, T0821 - Left, MNTV - Middle and ZCCA - Right).

Consequently, the time available for T0821 area to take countermeasures is 21-seconds, 35-seconds
for MNTV area and 57-seconds for ZCCA area.

5. Triangulation Method for Localization Purposes

This method employed by the ONC to pinpoint the earthquake’s epicenter and determine the
station-Fiber distance from the epicenter to generate early warning according to the nearest area from
the epicenter and progress to those further away. The simulator uses measurements of seismic wave
arrival times at different stations and their geographical coordinates to estimate the most probable
epicenter location by minimizing the differences between expected and observed arrival times. The
simulator defines the speed at which the seismic wave propagate through the Earth’s crust, and
specify the coordinates and the exact time the wave was detected at each station. The simulator then
transforms the wave arrival at each station into seconds relative to the first recorded arrival, to employ
a residual function after, that calculate the discrepancies between measured and theoretical expected
arrival times. This is done by measuring the distance of each station from a hypothetical epicenter,
converting these distances to expected times based on the seismic wave velocity, and then summing
the squared differences to create an objective function for optimization. The simulator assume an
initial epicenter positioned at the centroid of the triangle formed by the three stations. A minimization
function is then utilized to minimize the calculated residual sum.

Table 1 presents a comparative analysis between the actual seismic data recorded by INGV
and theoretical detection from the Triangulation Simulator. The simulator shows almost identical
measurements for both epicenter latitude and longitude. Furthermore, the distances from seismic
stations (T0821, MNTV and ZCCA) to the estimated epicenter location show small discrepancies, and
this is due to the fact of minor error in picking up the peaks from the graphs, and could also be from
displacement to strain conversion that affect determining the arrival times of P waves at each station.
Although, the triangulation method show efficiency in its estimation. Consequently, T0821 area is the
first to be notified by the ONC for the upcoming seismic event with 21 seconds time-lag for emergency
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response before the Surface wave struck, followed by MNTV area with 35 seconds time lag and then
ZCCA with 57 seconds.

Table 1. Comparison of epicenter locations and distances from seismic stations.

Epicenter Location Station to Epicenter Distance (km)

Longitude Latitude MNTV ZCCA T0821
INGV Recording 11.251 44.868 47.88 61.45 23.14
Triangulation Simulator 11.2846 44.8705 49.59 63.08 20.48

6. Conclusions

In conclusion, this study shows the efficiency of using interconnected fiber optic mesh networks as
a smart sensing and localization grid, leveraging machine learning for early earthquake detection. By
integrating real displacement data from seven earthquake events of varying magnitudes recorded by
the INGV in Modena region, Italy. This research showcase how existing terrestrial fiber infrastructure
can be utilized for accurate, real-time earthquake monitoring. The machine learning model, developed
and validated through this study, not only improves the accuracy of earthquake detection and local-
ization but also manage the distribution of early warning generation. These capabilities represent a
significant advancement in Geo-sciences era and earthquake response strategies, potentially reducing
the impact on affected communities by providing critical response time.
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Abbreviations
SAFOD  San Andreas Fault Observatory at Depth
GPS Global Positioning System

IASPEI  International Association of Seismology and Physics of the Earth’s Interior
P waves Primary waves

Swaves Secondary waves

ML Machine Learning

OTDR Optical Time Domain Reflectometer

OFDR Optical Frequency Domain Reflectometry

DAS Distributed Acoustic Sensing

sor State of Polarization

SOPAS  State of Polarization Angular Speed

INGV National Institute of Geophysics and Volcanology
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CIA Central Italian Apennines

ONC Optical Network Controller

API Application Programming Interface
NE Network Element

ROADM  Re-configurable Optical Add-Drop Multiplexer
TRX Transceiver

osC Optical Supervisory Channel
IM-DD Intensity Modulated-Direct Detected
PBS Polarization Beam Splitter

LSTM Long Short - Term Memory

UTC Coordinated Universal Time

Appendix A. Waveplate Model Theory

A long telecommunication fiber is to a good approximation, equivalent to a concatenation of
polarization waveplates with random orientation and random external birefringence. In a frequency
interval in which the first order approximation for the state of polarization is valid, any fiber section or
waveplate is characterized by jones matrix.

—u ; u i.: out
where f is a quantity not essential for the calculation of the SOPs.
Md — DIAG (eijT/Zl e—ijT/Z)

Where w represents the difference between the generic frequency of the optical signal and the central
frequency wy, and AT is the Differential Group Delay (DGD) of the fiber and could be described as:

on AL;
AT = Lh(1+dz)dz )

where ZL—Z is the internal birefringence presented earlier, and AL; is the external birefringence corre-
sponding to the nanostrain value induced by an earthquake.

M, represents a rotation around a fixed axis through an angle equal to wAT. R, and Royt are matrices
depending on the state of polarization and described as:

cosf —sinf
Rin = (sin 6 cosf ) ®)
cosf —sinf
Rout - . (4)
sinf cosf

The angle 6, is the major axis angle that we consider in our model and the eccentricity of the ellipse is
neglected. In [26], the full matrices representation was mentioned.
The matrix U(w) of the cascade of two waveplates, described by U; and Uy, is

U = (Up, Uy) = (R, o (M) (Rin2)) (R Ly (Mgt ) (Ri ). (G))

As more segment the fiber into waveplates as better, to ensure small sections and consider uniform
internal birefringence at each section. Consequently, the polarization at the output of the fiber is
calculated as

Sout = U X Sin (6)
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Appendix B. State of Polarization Angular Speed (SOPAS) Theorem

The state of polarization is the rise of the stokes parameters samples taken at discrete time instants,
represented by the vector k with components (S1[k], S2[k], S3[k]). The discrete State of Polarization
Angular Speed (SOPAS), denoted by w[k], and the sampling period T are given by the following
relationship where (S, Sx_1) is the dot product between the Stokes vectors at time k and at time k — 1.
This computation is analogous to the discrete-time derivative of an angle, and the SOPAS is denoted
by w(k], where wlk] is:

(Sk . Skfl) > 1
wlk] = I
[ ] arCCOS(HSkmsle Ts (7)
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