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Abstract: Different types of resonators are used to create acoustic metameterials and metasurfaces. 

Recent studies focused on the use of multiple resonators of dipole, quadrupole, octupole and even 

hexadecapole types. This paper considers the theory of an acoustic metasurface, which is a flat 

surface with a periodic arrangement of multiple resonators. The sound field reflected by the 

metasurface is determined. If the distance between the resonators is less than a half the wavelength 

of the incident plane wave, the far field can be described by a reflection coefficient that depends on 

the angle of incidence. This allows to characterize the acoustic properties of the metasurface by a 

homogenized boundary condition, which is a high order tangential impedance boundary condition. 

The tangential impedance depending on the multiple order of the resonators is introduced. In 

addition, we analyze sound absorption properties of these metasurfaces, which are a critical factor 

in determining their performance. The paper presents a theoretical model that accounts for the 

multiple orders of resonators and their impact on sound absorption. The maximum absorption 

coefficient for a diffuse sound field, as well as the optimal value for the homogenized impedance, 

are calculated for arbitrary multipole orders. 

Keywords: acoustic metasurface; impedance; tangential impedance; monopole; dipole;  

linear multipole; reflection coefficient; absorption coefficient; high order impedance boundary 

condition (HOIBC); homogenization 

 

1. Introduction 

Resonators are often used as meta-atoms to create acoustic metamaterials, which are complex 

structures with specific properties. At scales significantly exceeding the sound wavelength the 

acoustic metamaterial behaves like a continuous media described by macroscopic effective 

parameters [1]. In some case the effective parameters have features, which cannot be met in natural 

materials. For example, the acoustic metamaterial with the negative effective density or negative bulk 

modulus are known as well as double-negative media having both parameters simultaneously 

negative [2]. The elastic media with monopole resonators has the negative bulk modulus at certain 

frequency range [3]. The well-known example is liquid with gas bubbles, which are considered as 

isotropic scatterers [4]. The negative effective density can be achieved by dipole resonators [3] 

included into the natural media. The light dipoles in liquid provide very wide frequency range of the 

negative density [5]. One of the simplest double-negative acoustic material is a dispersive composite 

in the form of an elastic porous medium with empty spherical cavities [6]. The similar idea has been 

recently proposed in [7] investigating crack-like inhomogeneities or voids in a multilayer structure. 

Researchers apply different types of the resonators in order to construct metamaterials and 

metasurfaces. The most popular type is monopole resonators like Helmholtz resonators, quarter- and 

half-wave resonators, folded tubes, membranes [8,9]. The resonator should be much smaller than the 

controlled wavelength to apply homogenization [1] for derivation of effective bulk parameters of the 

metamaterials or an equivalent boundary condition for the metasurfaces. An array of identical 

monopole resonators on a rigid backing can be described by an ordinary impedance boundary 

condition [10]. If the resonators’ parameters vary periodically in the array, the gradient phase 
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metasurface is formed [11]. Such surfaces can redirect the incident sound wave in a different way 

with respect to the traditional low of reflection. 

The resonators with higher order of multiplicity are increasingly being used as the meta-atoms. 

The resonator of the next order after the monopole one belongs to the dipole type. The simplest 

physical model of the dipole resonator is a rigid sphere on a spring [12]. Also, the dipole resonator 

can be implemented by a membrane in a ring oscillating at the first eigenmode [12] or a membrane 

embedded in a rigid baffle oscillating at the second eigenmode [13]. Two coupled Helmholtz 

resonators have a mode, for which they oscillate with opposite phases [14], hence two monopole 

resonators can form the dipole one. The meta-atom with monopole and dipole moments proposed in 

[15] provides more benefits for sound field control. Note that a combination of the monopole and 

dipole resonators named monopole-dipole resonators was suggested earlier for noise reduction in 

tubes [16,17]. A regular array formed by the monopole-dipole resonators can totally absorb an 

incident sound wave in free space [18] or in a waveguide [19]. It is important that a surface covered 

by the dipole resonators can not be described by the ordinary acoustic impedance. The special 

boundary condition in form of a tangential impedance is needed for the equivalent surface with 

uniform properties [20]. Alternatively, the dipole-type metasurface can be formed by a set of short 

beams clamped on one side [21]. 

Two coupled dipole resonators give a quadrupole resonator, which is used for a higher-order 

topological insulator [22]. A 2D lattice made of the quadrupole resonators is realized and 

experimentally studied in [23]. An elastic sphere has a lot of eigenmodes [24], the third one provides 

the quadrupole scattering of sound wave. So, the elastic sphere as well as an elastic cylinder can be 

assumed as the quadrupole resonator at certain frequency. Another quadrupole resonator for water 

is composed of a hard cylinder with an elliptical rubber coating [25]. The coupling of two quadrupole 

resonators allows to build an octupole resonator [26], while the coupling of two octupole resonators 

results in an hexadecapole resonator [27]. By repeating this process, we can create resonators of any 

order of multiplicity. Recent reviews [28–30] have shown growing interest in the development of 

metamaterials using higher‐order topological resonators. Following this trend, this paper is 

dedicated to studying the homogenized acoustic properties of the metasurfaces formed by the 

multipole resonators. 

In this study, we investigate the acoustic properties of a rigid surfaces covered by multiple 

resonators. In Section 2 the physical model of a multiple resonator and its characteristic are described. 

In section 3 the sound reflection properties of the surface with a periodic array of the resonators are 

considered and the homogenized boundary condition for the metasurface is introduced. Sound 

absorption properties of the metasurfaces are analyzed in Section 4. In Section 5 the found results are 

discussed. 

2. Linear Multipole 

A multiple sound source can be described by a set of monopole sources. If the monopoles are 

located on a straight line, the multiple source is linear [31]. In the same way a multiple sound scatterer 

can be presented as a system of the monopoles which volume velocities are not independent, but they 

are fitted to yield a specific scattered sound field. Let us combine the monopoles to obtain the multiple 

sound scatterers.  

2.1. Monopole 

The simplest scatterer contains only one monopole with the volume velocity 𝑞 . The sound 

pressure field 𝑃 consists of two components: the first one is the incident field 𝑝 and the second one 

is the own field of the monopole 𝑝0. Due to the superposition principle, we can write 𝑃 = 𝑝 + 𝑝0. 

The impedance of the monopole scatterer is 

𝑍0 = −
𝑃

𝑞
. (1) 
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The motion of the monopole scatterer is excited by sound pressure. In general way the equation 

of motion is given by 

𝑚𝑤̈ + 𝛾𝑤̇ + 𝜅𝑤 = −𝜎𝑃, (2) 

where 𝑚 on the mass of the monopole, 𝜅 is its stiffness, 𝛾 is the friction coefficient, 𝑤 is the 

displacement of the moving part, 𝜎  is the surface of the moving part. The volume velocity is 

connected with the displacement by 𝑞 = 𝜎𝑤̇. From (1) and (2) we can find the monopole impedance 

𝑍0 =
1

𝜎2
(𝛾 − 𝑖𝜔𝑚 (1 −

𝜔0
2

𝜔2
)), (3) 

where 𝜔0
2 = 𝜅 𝑚⁄  is the resonant frequency. 

Note that the impedance 𝑍0 is defined only by own parameters of the scatterer and does not 

depend on radiation conditions. They are usually described by the radiation impedance, which is a 

ratio of the own field to the volume velocity 

𝑅0 =
𝑝0

𝑞
. (4) 

The volume velocity of the monopole scatterer in response to the incident field 𝑝 is found from 

(1) and (4) 

𝑞 = −
𝑝

𝑍0 + 𝑅0
. (5) 

On resonance the volume velocity is maximal. The resonance condition follows from (5) 

Im(𝑍0 + 𝑅0) = 0. (6) 

The condition (6) is well-known: at resonant frequency the image of the resonator impedance 

compensates the image part of the radiation impedance. Commonly the frequency 𝜔0 differs from 

the resonant frequency Ω0 found from the condition (6). Speaking further about resonators, we mean 

that the structure of the resonating scatterer is such that there is a certain frequency at which the 

conditions are met. 

The equations (1-6) are enough to describe the movement of the monopole resonator and its 

interaction with the external sound field. 

2.2. Dipole 

Now we apply the same formalism for the sound scatterers of higher order of multiplicity, which 

is indicated by 𝑁 . The dipole scatterer has the order 𝑁 = 1  and is assumed as a pair on the 

monopoles with the opposite volume velocities at a distance 𝑎 as shown in Figure 1. Both monopoles 

are on the axis 𝑥; the monopoles with the volume velocities +𝑞 and −𝑞 are located at the points 

𝑥 = 𝑎 2⁄  and 𝑥 = − 𝑎 2⁄  respectively.  

The sound field generated by two monopoles is 𝑝1 and the total field is 𝑃 = 𝑝 + 𝑝1. Using (2) 

we obtain two equations of motion 

−𝑞𝑍0 = −𝑃|
𝑥=−

𝑎
2

, (7) 

𝑞𝑍0 = −𝑃|
𝑥=

𝑎
2

. (8) 

Subtracting (8) from (7) we can find 

2𝑍0𝑞 = 𝑃|
𝑥=−

𝑎
2

− 𝑃|
𝑥=

𝑎
2

. (9) 

The dipole moment is 𝑄1 = 𝑎𝑞. Decomposing 𝑃 near 𝑥 = 0 into a Fourier series, we find the 

impedance of the dipole scatterer 

𝑍1 = −
(𝜕𝑃 𝜕𝑥⁄ )𝑥=0

𝑄1
. (10) 
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Formally, the monopole and dipole impedances are connected by the ratio 𝑍1 = 2𝑍0 𝑎2⁄ . But the 

impedance 𝑍1 is determined by the construction of the dipole resonator and can be expressed in 

another way. At the same time equation (10) establishes the universal relationship between the 

forcing acting on the dipole by the sound field given by 𝜕𝑃 𝜕𝑥⁄ , the moment 𝑄1 characterizing the 

movement of the resonator and the impedance  𝑍1  defining the mechanical properties of the 

resonator. 

 

Figure 1. Physical models of the multiple sound scatterers with the orders 𝑁 = 0,1,2,3 presented as 

a set of the monopoles with the volume velocities +𝑞 and −𝑞. 

2.3. Quadrupole 

If 𝑁 = 2 we deal with a quadrupole resonator, which can be presented as an array of four 

monopoles (Figure 2) at a distance 𝑎 from each other. The monopoles with the volume velocities +𝑞 

and −𝑞 are located at the points 𝑥 = − 3𝑎 2⁄ , 𝑥 = 3𝑎 2⁄  and 𝑥 = − 𝑎 2⁄ , 𝑥 = 𝑎 2⁄  respectively. The 

equations of motion for four monopoles are 

𝑞𝑍0 = −𝑃|
𝑥=−

3𝑎
2

, −𝑞𝑍0 = −𝑃|
𝑥=−

𝑎
2

, −𝑞𝑍0 = −𝑃|
𝑥=

𝑎
2

, 𝑞𝑍0 = −𝑃|
𝑥=

3𝑎
2

. (11) 

The length of the quadrupole is 3𝑎, therefore we can introduce the quadrupole moment 𝑄2 =

(3𝑎)2𝑞. From (11) we obtain the impedance of the quadrupole scatterer 

𝑍2 = −
(𝜕2𝑃 𝜕𝑥2⁄ )𝑥=0

𝑄2
. (12) 

The impedance of the monopoles and the quadrupole are related by 𝑍2 = 2𝑍0 3𝑎4⁄ .  

 

Figure 2. An array of linear multiple scatterers near a rigid surface. 

2.4. Multipole 

A linear multipole of an arbitrary order can be built in the same way. Figure 1 shows the octupole 

(𝑁 = 3) consisting of eight monopoles. The multipole of order 𝑁 is formed by 2𝑁 monopoles. Its 

length is 𝑙𝑁 = (2𝑁 − 1)𝑎. The multipole moment is defined as  𝑄𝑁 = (𝑙𝑁)𝑁𝑞, for the monopole we 

have 𝑁 = 0 and 𝑄0 = 𝑞. The impedance of the multiple scatterer is  

Preprints.org (www.preprints.org)  |  NOT PEER-REVIEWED  |  Posted: 15 March 2024                   doi:10.20944/preprints202403.0937.v1



 5 

 

𝑍𝑁 = −
(𝜕𝑁𝑃 𝜕𝑥𝑁⁄ )𝑥=0

𝑄𝑁
. (13) 

where 𝑃 = 𝑝 + 𝑝𝑁  is the total sound field, 𝑝𝑁  is the own field of the scatterer. Its radiation 

impedance is defined in ordinary way 

𝑅𝑁 =
𝑝𝑁

𝑄𝑁
. (14) 

The moment of the scatterer in response to the incident field 𝑝 is 

𝑄𝑁 = −
(𝜕𝑁𝑝 𝜕𝑥𝑁⁄ )𝑥=0

𝑍𝑁 + 𝑅𝑁
. (15) 

The condition of the resonance is 

Im(𝑍𝑁 + 𝑅𝑁) = 0. (16) 

We assume that equation (16) is satisfied at certain frequency Ω𝑁. So, the multiple scatterer is a 

resonator and below we will focus on this specific case. However, equations (13-15) remain valid for 

any scatterer not just those that are resonant, and can be used to describe the multiple scatterers 

regardless of how they are formed. The main goal is to determine the impedance 𝑍𝑁, which is heavily 

influenced by the structure of the scatterer. If the scatterer consists of a linear array of monopoles, 

with an impedance 𝑍0, as in Figure 1, then the impedance of the entire system is 𝑍𝑁 = 𝐶𝑁𝑍0 𝑎2𝑁⁄ , 

where 𝐶𝑁 is a coefficient that depends only by the order 𝑁 of the array. 

It is important to note that the impedances of the multipole scatterer introduced by (13) have 

different dimensions depending on the order 𝑁. 

3. Array of Multipoles 

In this section we consider the acoustic properties of surfaces covered by a periodic array of 

multipole scatterers. These surfaces are named metasurfaces due to their unusual equivalent 

boundary condition. First of all, we find the sound field reflected by the metasuface. Next, we 

introduce a homogenized boundary condition used to describe the far-field behavior of the reflected 

sound. 

3.1. Reflection Coefficient 

The studied metasurface is shown in Figure 2. The scatterers with the order of multiplicity 𝑁 

are located periodically with a distance L near a rigid surface. We consider the two-dimensional 

problem, so the surface coincides with the plane 𝑧 = 0 and the scatterers are at points 𝑥𝑛 = 𝑛𝐿, 

where n is the number of the resonator. Assuming a time-harmonic disturbance in the form of 𝑒−𝑖𝜔𝑡, 

where t is time, 𝜔 is an angular frequency, the sound pressure in the half space 𝑧 ≥ 0 can be given 

as follows 

𝑃 = 𝐴𝑒𝑖𝜉0𝑥−𝑖𝜅0𝑧 + 𝐴𝑒𝑖𝜉0𝑥+𝑖𝜅0𝑧 + 𝑝𝑁, (17) 

where 𝑝𝑁 is the sound field radiated by the array, 𝐴 is an amplitude of the incident plane wave, 

𝜉0 and 𝜅0 are the components of the wave vector. The second term in the right part of (17) is the 

reflected plane wave by the rigid surface. Also, we can use an incidence angle 𝜃, which is related 

with the wave vector components by the equations 𝜉0 = 𝑘sin𝜃 and 𝜅0 = 𝑘cos𝜃, where 𝑘 = 𝜔 𝑐⁄ , 𝑐 

is speed of sound. 

The sound field of the array formed by the monopole scatterers is found in [13] and given by 

𝑝0 = 𝑄0

𝜔𝜌

𝐿
∑

𝑒𝑖𝜉𝑛𝑥+𝑖𝜅𝑛𝑧

𝜅𝑛
𝑛

, (18) 

where 𝜉𝑛 = 𝜉0 + 2𝜋𝑛 𝐿⁄ , 𝜅𝑛 = √𝑘2 − 𝜉𝑛
2, 𝜌 is the density of the medium, 𝑄0 is the monopole 

moment of the scatterer placed at the point 𝑥 = 0. 
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The sound field produced by the array consisting of the 𝑁-pole scatterers can be found by 

differentiation (18) by the coordinate 𝑥 [32]. For arbitrary multipoles we have 

𝑝𝑁 = 𝑄𝑁

(−1)𝑁

𝑁!

𝜕𝑁𝑝0

𝜕𝑥𝑁
= 𝑄𝑁

𝜔𝜌

𝐿

(−𝑖)𝑁

𝑁!
∑ 𝜉𝑛

𝑁
𝑒𝑖𝜉𝑛𝑥+𝑖𝜅𝑛𝑧

𝜅𝑛
𝑛

, (19) 

where 𝑄𝑁 is the multipole moment of the scatterer placed at the point 𝑥 = 0. 

Substituting (19) into (17) and then (17) into (13) we obtain the multipole moment 

𝑄𝑁 = −2𝐴
𝑖𝑁𝜉0

𝑁

𝑍𝑁 + 𝑅𝑁
, (20) 

where the radiation impedance of the multipole is introduced as follows 

𝑅𝑁 =
𝜔𝜌

𝐿𝑁!
∑

𝜉𝑛
2𝑁

𝜅𝑛
𝑛

. (21) 

From (19) and (20) we find the sound field of the array 

𝑝𝑁 = −2𝐴
𝜔𝜌

𝐿(𝑍𝑁 + 𝑅𝑁)𝑁!
𝜉0

𝑁 ∑ 𝜉𝑛
𝑁

𝑒𝑖𝜉𝑛𝑥+𝑖𝜅𝑛𝑧

𝜅𝑛
𝑛

. (22) 

The field (22) is valid for the arbitrary period 𝐿. Further we limit this study by the period 𝐿 <

𝜆 2⁄ , where 𝜆 = 2𝜋 𝑘⁄  is a wavelength. All waves with 𝑛 ≠ 0 are nonuniform and decay along the 

𝑧-axis. So, the array radiates only one plane wave 𝑒𝑖𝜉0𝑥+𝑖𝜅0𝑧. In this case the radiation impedance can 

be written as 

𝑅𝑁 = 𝑅′𝑁 + 𝑖𝑅′′𝑁 =
𝜔𝜌

𝐿𝑁!

𝜉0
2𝑁

𝜅0
− 𝑖

𝜔𝜌

𝐿𝑁!
∑

𝜉𝑛
2𝑁

𝛼𝑛
𝑛≠0

, (23) 

where 𝛼𝑛 = √𝜉𝑛
2 − 𝑘2 . 

At far distances 𝑘𝑧 ≫ 1 the field (17) is 𝑃 = 𝐴𝑒𝑖𝜉0𝑥−𝑖𝜅0𝑧 + 𝐴𝑉𝑒𝑖𝜉0𝑥+𝑖𝜅0𝑧, where 𝑉 is the reflection 

coefficient of the metasurface. Using (22) we find the reflection coefficient 

𝑉 =
𝑍𝑁 + 𝑖𝑅′′

𝑁 − 𝑅′
𝑁

𝑍𝑁 + 𝑖𝑅′′
𝑁 + 𝑅′

𝑁
. (24) 

By means of the incidence angle 𝜃 equation (24) is transformed into 

𝑉 =
𝑍𝑁 cos 𝜃 − sin2𝑁 𝜃

𝑍𝑁 cos 𝜃 + sin2𝑁 𝜃
, (25) 

where 𝑍𝑁 is a dimensionless value given by 

𝑍𝑁 =
𝐿𝑁!

𝜔𝜌
(𝑍𝑁 + 𝑖𝑅′′

𝑁). (26) 

At far distances the sound field reflected by the metasurface is simply a specular reflected plane 

wave. The reflection coefficient is calculated by (24) or (25). Note that for a more detailed analysis of 

the near field equation (22) can be used. 

3.2. Equivalent Boundary Condition 

Equations (17) and (22) yield the sound field in a half-space 𝑧 > 0, however at distances 𝑘𝑧 ≫ 1 

it is enough to know only the reflection coefficient (24) in order to calculate the sound field. It means 

that it is possible to apply a uniform boundary condition for the surface 𝑧 = 0, which provides the 

same far field. In this sense the boundary condition is equivalent to the considered metasurface. The 

homogenization swaps the difficult structure for a simple model convenient to characterize the 

interaction of the sound fields and metasurfaces. If the periodic array shown in Figure 1 consists of 

the monopole scatterers, the usual impedance is the equivalent boundary condition [10]. It has a form 

at 𝑧 = 0 
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𝑍0
′ =

𝑃

𝑣𝑧
, (27) 

where 𝑣𝑧 is the normal velocity of the metasurface. 

In case of the dipole scatterers [13] the equivalent boundary condition is 

𝑍1
′ = −

𝜕2𝑃 𝜕𝑥2⁄

𝑣𝑧
. (28) 

Taking into account (27) and (28) it is possible to assume that the array of the scatterers of the 

order 𝑁 has the following equivalent boundary condition at 𝑧 = 0 

𝑍𝑁
′ =

(−1)𝑁

𝑣𝑧

𝜕2𝑁𝑃

𝜕𝑥2𝑁
. (29) 

Applying the boundary condition (29) for the plane 𝑧 = 0  and using the relation 𝑖𝜔𝜌𝑣𝑧 =

𝜕𝑃 𝜕𝑧⁄ , we can find the reflection coefficient of a plane wave with the incidence angle 𝜃 

𝑉 =
𝑍𝑁

′ cos 𝜃 − 𝜌𝑐𝑘2𝑁 sin2𝑁 𝜃

𝑍𝑁
′ cos 𝜃 + 𝜌𝑐𝑘2𝑁 sin2𝑁 𝜃

. (30) 

Comparing (26) and (30), we can state that the reflection coefficient (25) of the rigid surface 

covered by the multipole scatterers and the reflection coefficient (30) with the uniform impedance 

(29) are the same. The relation of the impedances in (25) and (30) is as follows 

𝑍𝑁
′ = 𝜌𝑐𝑘2𝑁𝑍𝑁. (31) 

Now the physical senses of the values in (31) are clear. 𝑍𝑁  is the dimensionless impedance 

characterizing the metasuface formed by the array of the scatterers at certain frequency 𝜔. Whereas, 

𝑍𝑁
′  is the homogenized boundary condition, which does not depend directly on frequency. The 

impedance 𝑍𝑁
′  is local and can be used for metasurfaces without taking into account the structure. 

For 𝑁 = 0 the impedance 𝑍0
′  is the ordinary impedance, which is a ratio of the sound pressure to 

the normal velocity. For 𝑁 ≥ 1 the motion of the surface is excited by a tangential forcing, therefore, 

the condition (29) can be called the tangential impedance [13,20]. 

Boundary conditions similar to (29) are widely known in electromagnetism [33,34], they belong 

to high order impedance boundary conditions or HOIBC. At the same time in acoustics the HOIBC 

are not often met. 

4. Metasurface Formed by Resonators 

In this section, we analyze the acoustic properties of the metasurfaces with boundary condition 

(29) and assume the scatterers as resonators. We are interested in case when the condition (16) is 

fulfilled. In other words, we consider behavior of the metasurface at resonant frequency of the 

scatterers. According to (16) the impedances 𝑍𝑁  and 𝑍𝑁
′  are real at this frequency as well as the 

reflection coefficient. 

4.1. Reflection Coefficient 

The reflection coefficient from the metasurface with the boundary condition (29) is given by (25) 

and (30). Figure 3 shows the dependence of the reflection coefficient 𝑉 on the incidence angle 𝜃 for 

different values of the dimensionless impedance 𝑍𝑁. The reflection coefficient is calculated for five 

orders of multiplicity. 

For 𝑁 ≥ 1 at normal incidence (𝜃 = 0) the reflection coefficient is 1. It means that the normally 

incident plane wave does not excited motion of the scatterers and the metasurface is rigid. With 

increase the incident angle the reflection coefficient changes from 1 to −1. For all values of 𝑍𝑁 there 

is the incidence angle 𝜃′  at which 𝑉 = 0 , hence the incident wave is totally absorbed by the 

metasurface. The angle 𝜃′ increases with the order 𝑁, and the range of the incidence angles at which 

absorption is effective (|𝑉| ≪ 1) decreases.  
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The surface with the normal impedance (𝑁 = 0) absorbs the normally incident wave at any value 

of 𝑍𝑁, but total absorption at the certain angle is possible only if 𝑍𝑁 ≥ 1. This is the main difference 

between normal and tangential impedances. 

 

Figure 3. The reflection coefficients of the metasurface in dependence on the incidence angle for 𝑍̃𝑁 =

1/5 (a), 𝑍̃𝑁 = 1 (b), 𝑍̃𝑁 = 5 (c) and orders 𝑁 = 0, 1, 2, 4, 10. 

Under the gliding incidence, when 𝜃 → 𝜋 2⁄ , all metasurfaces behave like a soft boundary, 

because the reflection coefficient 𝑉 → −1. As one can see in Figure 3 the function 𝑉(𝜃) at 𝜃 ≈ 𝜋 2⁄  

is the same for any order of the multiplicity 𝑁 and impedance 𝑍𝑁. 

4.2. Diffuse Field Absorption 

Let us consider sound absorption by the metasurfaces. The absorption coefficient of the plane 

wave is 𝛼 = 1 − |𝑉|2  and can be found using (30). The considered metasurface can completely 

absorb the incident wave at a certain angle. In case of a diffuse sound field the absorption coefficient 

should be averaged over angle. So, the diffuse absorption coefficient is 

𝛼𝑑 =
2

𝜋
∫ 𝛼𝑑𝜃

𝜋
2

0

. (32) 

Figure 4 presents the calculation of the diffuse absorption coefficient 𝛼𝑑 for the real values of 

the impedance 𝑍𝑁 and different orders 𝑁. If the impedance is close to zero the absorption coefficient 

is about zero as well. All curves have a maximal, therefore the impedance of the metasurfaces can be 

optimized to provide maximal absorption. After the maximum the absorption coefficient slowly 

decreases with increase of 𝑍𝑁 .The maximums of the curves in Figure 4 are not sharp peaks, so, 

efficiency of sound absorption has values close to maximal one in a wide range of 𝑍𝑁. 

The fundamental difference of the metasurfaces formed by the scatterers of different order 𝑁 is 

that the sound absorption decreases with the increase of the order 𝑁. For example, the absorption 

coefficient is only about 0.2 for 𝑁 = 10. Also, it is clear form Figure 3, where we can notice that the 

reflection coefficient is 𝑉 ≈ 1 for the incidence angles 𝜃 < 𝜋 4⁄ . 

 

Figure 4. The diffuse absorption coefficient of the metasurfaces formed by the resonators with the 

orders 𝑁. 
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4.3. Optimal Impedance 

Figure 4 shows that sound absorption can be maximized. The optimal impedance is found from 

the equation 𝑑𝛼𝑑 𝑑⁄ 𝑍𝑁 = 0, which gives the optimal values 𝑍𝑁,𝑜𝑝𝑡 for the metasurface formed by the 

𝑁-pole resonators. They are shown in Figure 5a. For the monopole resonators the optimal impedance 

is 𝑍0,𝑜𝑝𝑡 = 1.63, whereas for 𝑁 ≥ 1 it has the values 𝑍𝑁,𝑜𝑝𝑡 ≈ 1. This simple approximation can be 

used for rough estimation of absorption provided by the metasurface. 

The maximal absorption coefficient is 𝛼𝑑,𝑚𝑎𝑥 = 𝛼𝑑(𝑍𝑁,𝑜𝑝𝑡), which is shown in Figure 5b. The 

found values 𝛼𝑑,𝑚𝑎𝑥 decrease with the order 𝑁. For 𝑁 ≥ 2 the absorption coefficient is less than 0.5. 

We can state that the sound absorbing properties of the metasurfaces decrease with the order of 

multiplicity.  

 

Figure 5. The optimal impedance (a) and maximum absorption coefficient (b) of the metasurface in 

dependence on the order 𝑁. 

5. Discussion 

The acoustic properties of a rigid surface covered with ae periodic array of linear multiple 

scatterers are analyzed. First of all, the sound field scattered from the surface with the scatterers is 

found analytically. If the distance between the scatterers is less than half of a wavelength, the 

scattered field is just the plane wave whose direction coincides with that of the plane wave reflecting 

from the rigid surface. This means that at far distances a reflection coefficient can be used to calculate 

the sound field and a homogenized boundary condition can be imposed on the surface. The found 

dependence of the reflection coefficient on the incidence angle can not be obtained using an ordinary 

impedance if the order of the multiple scattering is 1 or greater. In this case, a special boundary 

condition is required to match the exact solution, which is a tangential impedance (29) that depends 

on the multiple order. Due to the unusual homogenized boundary condition the surfaces with the 

resonators are referred to metasurfaces. 

The equivalent boundary condition for a metasurface formed by the 𝑁-pole scatterers is the ratio 

of a derivative of the sound pressure of the order 2𝑁 along the metasurface to its normal velocity. 

This type of boundary conditions is known as a high order impedance boundary condition. The 

tangential impedance (29), given in a simple form, can be used to describe surfaces with complex 

microstructures for the study of acoustic metasurfaces. 

Resonant scatterers are of particular interest. If a multipole scatterer is the resonator, there is 

frequency at which a sum of the image parts of its impedance and the radiation impedance is zero, 

and the equivalent impedance is real. This situation is analyzed and the optimal impedance as well 

as the maximum absorption coefficient for a diffuse sound field are found. With increase of the 

multiple order of the resonators the absorption efficiency decreases. It means that the metasurfaces 

made up of the high order multiple resonators are not effective absorbers. 

The proposed high order multiple metasurfaces exhibit interesting acoustic properties that can 

be applied to and studied in various problems. Examples may include the attenuation of sound waves 
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propagating in ducts or enclosed spaces, as well as the control of sound fields scattered by various 

obstacles.  
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