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Abstract: Microplastics and nanoplastics (MNDPs) are becoming an increasingly severe global problem due to
their widespread distribution and complex impact on living organisms. Apart from their environmental
impact, the effects of MNPs on living organisms have also continued to attract attention. The harmful impact
of MNPs has been extensively documented in marine invertebrates and larger marine vertebrates like fish.
However, the research on the toxicity of these particles on mammals is still limited, and their possible effects
on humans are poorly understood. Considering that MNPs are commonly found in food or food packaging,
humans are primarily exposed to them through ingestion. It would be valuable to investigate the potential
harmful effects of these particles on gut health. This review focuses on recent research exploring the
toxicological impacts of micro- and nanoplastics on the gut, as observed in human cell lines and mammalian
models. Available data from various studies indicate that the accumulation of MNPs in mammalian models
and human cells may result in adverse consequences, in terms of epithelial toxicity, immune toxicity, and
disruption of gut microbiota. The paper also discusses the current research limitations and prospects in this
field, aiming to provide a scientific basis and reference for further studies on the toxic mechanisms of micro-
and nanoplastics.
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1. Introduction

Microplastics (MPs) are tiny particles derived from plastics, synthetic or semisynthetic polymers
produced from hydrocarbon or biomass materials. Most plastics are petroleum-derived polymers,
that consists of "molecules of high relative molecular mass, whose structure essentially comprises
multiple repetition of derived units, from molecules of low relative molecular mass”[1]. These
polymers like polypropylene (PP), polyethylene (PE), polyvinyl chloride (PVC), polyethylene
terephthalate (PET) and polystyrene (PS), are non-biodegradable [2].

Plastic is a widely used material in industrial applications and its production has been
consistently increasing over the years. In 2016, the annual plastic production reached 300 million tons.
However, if this trend continues, it is estimated that approximately 25 million tons of plastic waste
will be produced by 2050 [3-7]. Plastic is a key component in a diverse range of industrial and
consumer products, including cosmetics, detergents, paints, synthetic fertilizers, and pesticides,
among others. Unfortunately, microplastics (MPs) have been detected in various food products such
as processed foods, beer, seafood, and sugar-sweetened beverages [8,9].

The widespread plastic contamination, which has been attributed to the limited recycling efforts
and the absence of regulatory frameworks, has had a substantial impact on the aquatic, terrestrial
and atmospheric environments. The issue of plastic pollution has become a pressing concern as it is
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now present in almost all the water bodies, including oceans, seas, rivers and lakes, thereby posing a
significant threat to biodiversity and public health [10].

Plastic waste, once discarded in nature, is exposed to different factors, including physical (e.g.
ultraviolet radiation and temperature), chemical (e.g. salinity, pH and corrosive agents), and
biological (e.g. bacteria, microalgae, and plankton). These factors decompose plastic waste into
particles of different sizes and ecological impact. Three main classification groups are commonly used
to describe plastic waste based on its particle size: macro (>25 mm), meso (between 5 and 25 mm),
and microplastics (MP < 5 mm). Additionally, intentional production and further degradation of
microplastics can generate smaller waste particles, known as nanoplastics (<1 pum) [11].

Microplastics are categorized by their origin. "Primary" microplastics are intentionally created
at the microscale, while "secondary" microplastics come from the fragmentation of larger plastics [12].

Microplastic pollution is widespread in soil environments, including agricultural soils,
greenhouses, coastal, industrial and floodplain soils. This type of pollution is a result of the
inappropriate management and unsustainable use of plastic waste and agricultural processes[13,14].
Microplastic pollution is also a significant issue in aquatic environments, such as the marine
environment, where plastic debris can be found on the sea floor, surface, and shoreline [15]. It has
been estimated that 80% of plastic pollution in oceans and seas comes from land [16]. Microplastics
have also been detected in freshwater, including lakes, rivers, and groundwater. These particles
mainly come from urban pollution, shipping, fishing, tourism, oil and gas platforms, wastewater
treatment plants, discharged personal care products, textiles, and packaging[17]. Furthermore,
microplastics have been found in atmospheric fallout in both megacities and sparsely populated
areas[18-22], and suspended atmospheric microplastics have also been repeatedly detected in indoor
air [23,24].

The wide distribution of microplastics and nanoplastics (MNPs) promotes contamination by
different animal species, especially by integumentary exposure, inhalation and ingestion[25-27].
Specifically for mammals and humans, inhalation of nanomaterials and ingestion of contaminated
water, sea salt and seafood are the main routes of exposure to these plastic particles[28].

Although previously considered safe and inert materials, the negative biological impact of the
contamination of microplastics and nanoplastics has been demonstrated recently[27,29,30]. As a
result, the smallest particles (such as 10 pm and 2.5 pum) can penetrate organs like lungs and intestines
as well as cells like enterocytes and macrophages. These particles are recognized as foreign elements
that stimulate immune response and oxidative stress[30,31]. Due to their difficulty in being cleared
biologically, particles can accumulate and result in chronic inflammation, potentially leading to the
development of tumors[30,32,33]. In addition, microplastics and nanoplastics pose a high
toxicological risk, as they contain hazardous additives like plasticizers, flame retardants, stabilizers,
dyes, antistatic agents, lubricants, sliding agents, curing agents, foaming agents, and biocides[34]. It
is worth noting that microplastics have the potential to adopt a fibrous form, which is commonly
referred to as "microplastic fibers" [35]. The contamination of environments with microplastic fibers
probably is as much or even more than that caused by microplastic particles[36,37]. Because of their
elongated shape, microplastic fibers have a higher potential for bioaccumulation and can cause direct
harm to organisms or lead to adverse effects[38].

It is currently not feasible to conduct clinical studies that analyze the health risks of MNPs in
humans due to ethical concerns. As a result, we do not have a clear understanding of the health
impact of MNPs on humans. We are unaware of the extent to which humans can absorb and
accumulate MNPs, and the pharmacokinetics and pharmacodynamics mechanisms associated with
them [39].

However, it is still a major concern that MNPs could have toxicological effects on the entire
intestinal system, especially through ingestion, which remains one of the main exposure mechanisms
of these particles.

This paper aims to present an objective overview of the potential impacts that these polymers
could have on the intestinal system by highlighting the toxicological effects related to MPs or NPs for
in vivo mammalian and in vitro human cell studies found in the literature. This review focuses
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specifically on the toxicological effects of MNPs on the gut and the complex immunological system
related to it, examining the various interrelationships that these particles have with the gut
microbiota. These studies cannot provide clinical data. However, they can lay an important
foundation for future research by providing an overview of these issues.

2. Main Pathogenetic Mechanisms of MNPs-Induced Cell Toxicity

Experimental models have revealed that mechanisms of membrane damage, oxidative stress,
immune response, and genotoxicity contribute to the toxicity of MNPs.

Among them, the cytotoxicity of MNPs was mainly attributed to membrane damage and
oxidative stress [40]. Particles can damage the plasma membrane, which is often observed with
cationic particles [41,42]. Polyethylene nanoparticles have been found to penetrate the hydrophobic
milieu of the bilayer of the plasma membrane and cause structural changes [43]. Endocytosed
particles can permeabilize the endosomal and lysosomal membrane and interact with intracellular
organelles[44,45].

Reactive oxygen species (ROS) can be generated during plastic polymerization and particle
processing and, upon interaction with the bioenvironment, cause cellular stress[46]. On the other
hand, direct or indirect impairment of DNA through translocation of particles or ROS into the nucleus
and damage to the DNA replication or repair mechanism may contribute to the genotoxicity of
particles [47,48].

In mammalian cells, MNPs can cause nuclear membrane disruption, oxidative stress, release of
damage-associated molecular patterns, and downstream activation of inflammatory and apoptotic
and necrotic pathways[45,49].

Absorption of micro- or nanoplastics can lead to loss of integrity of plasma, endosomal, and
nuclear membranes, causing pore formation in membranes and subsequent generation of ROS from
mitochondria. Elevated levels of intracellular ROS can cause mitochondrial damage due to increased
mitochondrial Ca2+, concomitant mitochondrial membrane depolarization, release of pro-apoptotic
factors from mitochondria, the reduction of ATP, release of damage-associated molecular patterns
(DAMPs) from mitochondria or other organelles, resulting in the production of pro-inflammatory
cytokines, and finally activation of cell death pathways leading to apoptosis or necrosis [39]

3. MNPs and the Intestinal System

The main source of exposure to microplastic and nanoplastic particles (MNP) is through
ingestion of food or water that is contaminated with these particles. Plastics inevitably find their way
into the food chain and carry contaminants that can affect intestinal homeostasis. Studies have found
the presence of microplastics and nanoplastics in many types of foods, including fruits, vegetables,
marine products, livestock (such as chickens), and drinking water [50-54]. Other foods such as sugar,
honey, beer, cow's milk, and sea salt have also been found to contain microplastics [9,53,55-57]. These
particles have even been found in the gastrointestinal contents of more than 220 different marine
species, such as mussels, oysters, clams, and common shrimp, as well as in various seafood products
[58-60].

The most commonly detected polymers in food and drinking water are polyethylene (PE),
polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC), and polyethylene terephthalate
(PET). Polyamide (PA), acrylic or acrylic related compounds, polyesters, and PMMA are also
detected, but less frequently[61].

It is uncertain whether the ingestion of MNPs poses a significant risk to the intestinal system,
given the conflicting data on human exposure and biodistribution of these particles. It has been
observed that human adults can potentially ingest up to 458,000 microplastic particles per annum
through tap water and 3,569,000 microplastic particles per annum through bottled water [62].
However, there exists a considerable variation in the estimates of human exposure to microplastics
due to differences in the type of plastic and experimental methodologies employed in various
studies[9]. In a recent study, Schawabl et al. endeavored to estimate human contamination by
measuring the amount of microplastics in the feces of eight healthy volunteers. The study established
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an average of 20 microplastic particles per 10 grams of feces, ranging in size from 50 to 500 pum, and
belonging to nine types of plastics, with PP and PET being the most prevalent [63,64].

The distribution of micro- and nanoplastics after ingestion is not well understood. Due to the
stability of plastic materials, enzymatic or chemical degradation is challenging, especially since
mammalian intestines lack specialized enzymes for plastic degradation. This means that plastic
particles are not significantly degraded during digestion. Larger microplastics (> 150 um) remain
attached to the intestinal mucus layer, directly contacting the apical part of intestinal epithelial cells.
Smaller particles (< 150 pm), however, can cross the intestinal mucus layer. The uptake of micro- and
nano-plastics depends on their size and occurs through various mechanisms, including transcytosis
through microfold cells, endocytosis through enterocytes, persorption (which is the passage through
crevices at the end of the villus, following the loss of enterocytes), and paracellular uptake [65-68].

When micro- and nanoplastics (MNPs) are ingested, most of them are excreted through
feces[69,70] while a small portion stays in the intestine for several days[69]. In the gut, MNPs can
cause damage and inflammation by entering the bloodstream, spreading to other tissues, and
persisting for prolonged periods[71]. The bioavailability of MNPs after oral intake depends on
intestinal translocation. In a study of three intestinal cell models[72] it was observed that the size and
surface chemistry of the particles influenced translocation, with 50-nm nanoparticles having a higher
translocation rate than 100-nm NPs. The translocation of MNPs is influenced by various factors,
including the characteristics of plastic particles and animal behavior and development[73].

Despite the low rate of intestinal absorption, exposure to significant amounts of micro- and
nanoparticles could lead to systemic toxicity, as their small size allows them to penetrate deep into
organs. Specifically, a study by Walczak et al. investigating the impact of in vitro gastrointestinal
digestion on the protein crown of PS-NPs revealed that, after digestion, translocation was 4 times
higher for positively charged NPs and 80 and 1.7 times higher for two different types of negatively
charged NPs. In vitro digestion also reduced the presence of higher molecular weight proteins,
shifting the protein content of the corona toward lower molecular weight proteins [74].

Comprehensive studies of the 55 most widely used polymer types developed a model for
ranking the hazard of each polymer, according to the monomer chemicals that formed the polymer.
The most hazardous polymers were those produced from carcinogenic, mutagenic or both
monomers. Hazard classification data were mainly taken from Annex VI of the EU Classification,
Labelling and Packaging (CLP) regulation which is based on the UN Globally Harmonized System
(GHS). However, while this approach determined a high ranking for polyurethanes, epoxy resins,
polyvinylchloride and styrene polymers, no hazard classification was available for many of the listed
substances, such as suspected endocrine disruptors, due to the lack of safety data [68,75].

3.1. Toxicity of Micro/Nanoplastics in the Intestine

The effects of MNDPs on intestinal system and gut microbiota in mammals and humans and
associated mechanisms, are still not fully understood. Figure 1 summarizes the main postulated
toxicological effects of MNPs on the intestinal system.
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Figure 1. Main potential mechanisms of MNPs toxicity on the intestinal system.

Studies have shown that microparticles have a harmful impact on the intestines of invertebrates
and vertebrates like fish. For instance, research conducted on Caenorhabditis elegans, Artemia
parthenogenetica zooplankton larvae and Eisenia fetida earthworm has revealed that intestinal oxidative
damage is a significant mechanism in microplastic toxicity. Moreover, exposure to microparticles was
found to be associated with the progression of cellular deformations and enterocyte
decomposition[76-78]. Further evidence comes from studies that involved oral exposure to
microplastics in aquatic vertebrates such as rainbow trout, juvenile intertidal fish Girella laevifrons,
juvenile large yellow croaker Larimichthys crocea, or Oryzias melastigma. Overall, these studies have
found that PS microbeads and nanoparticles cause a decrease in digestive enzyme activity (lipase,
trypsin, and lysozyme)[79,80], induce goblet cell enlargement and increased mucus secretion[79,81],
secretion of proinflammatory cytokines like TNF a (Tumor Necrosis Factor at), IFN 7y (Interferon v),
and IL-6 (Interleukin-6) [79], leukocyte infiltration, hyperemia, and loss of villi and crypt cells[82].
Interestingly, the intestinal levels of oxidative stress enzymes were found to be modified in opposite
ways between nano- and microparticles[81].

The toxic effects of microplastics on gut have been assessed in several aquatic species, pointing
out inflammation, genotoxicity and oxidative stress responses [83]. Several studies have been
conducted to investigate the effects of PS on the intestines of zebrafish. Exposure to PS beads resulted
in an increase in the secretion of proinflammatory cytokines such as IL1a, IL1 and IFN. This
exposure also enhanced the activity of enzymes that respond to excessive oxidative stress. It was
observed that exposure to PS was associated with reduced levels of antioxidant enzyme diamine
oxidase and of D-lactate, which could indicate an increased intestinal permeability[84]. Furthermore,
single-cell analysis revealed a dysfunction of intestinal cell populations, a decrease in
detoxification/antioxidant capacity of enterocytes and a decrease in cell chemotaxis of secretory cells.

It appears that the impact of microplastics on the intestinal epithelium not only depends on the
size of the particles but also on their shape. In fact, when exposed to microplastic fibers, the volume
of mucus in the intestine of zebrafish declined sharply. Additionally, both microplastic fibers and
fragments led to a decrease in intestinal D-lactate, caused inflammation in the intestine, and increased
the activity of superoxide dismutase [85]. Exposure to PVC induced histological alteration in the
intestine of European sea bass Dicentrarchus labrax L [86], increasing globet cell number, villus
thickness and expression of intestinal nuclear factor E2-related factor 2 (Nrf2). On the other side,
exposure to irregulary shaped high-density PE and PS particles, determined an epithelial
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detachment, increase in neutrophil count and decrease in globet cell count int the intestine of
zebrafish [87].

Notwithstanding the available evidence, the data from in vitro and in vivo studies in
mammalian models are comparatively restricted and conflicting (Table 1).

Table 1. Major studies investigating the potential effects of MNPs on the intestinal system in human
cell lines and mammalian models.

PS particles between

H 1 2
. tman coon S0 and 0(.) nm ata Absence of cellular ~ Abdelkhaliq
Nanoplastics Human adenocarcinoma Caco-2 concentration of 250 .
L . toxicity 2018 [88]
cell, in vitro design ~ mg/mL for 10 to 120
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100 nm PE
terephthalate particles
. Hum? n colon ata concentration No evidence of increased Magri 2018
Nanoplastics Human adenocarcinoma Caco-2  between 1 and 30 .
L. . inflammatory factors [89]
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; of 500 mg/kg for 28
design days Increased abundance of
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Parabacteroides
MP: microplastic; NP: nanoplastic; MNPs: micro- and nanoplastics; PS: polystyrene; PE: polyethylene; PET:
polyethylene terephthalate;

In 2018, Abdelkhaliq et al. showed no cytotoxicity of polystyrene (PS) particles (50 nm and 200
nm) on Caco-2 cells at the concentration of 250 mg mL for 10 to 120 minutes of exposure [88].
Accordingly, with 1 to 30 mg mL~ laser-ablated approximately 100 nm PET particles, no impact on
Caco-2 cell viability and no inflammation was measured up to 24h of incubation [89]. Similarly,
Hesler et al in 2019 showed the absence of toxicity at concentration below 100 mg mL-1PS particles
(between 40-52 nm and 457-477 nm) after 24 h of incubation [90]. A significant decrease of Caco-2 cell
viability was only measured at very high concentrations of 4-10 um PS particles (1x10"8 particles per
mlL) after 48h of incubation. Furthermore, in investigating the effect of PS particles on macrophage
cell line THP-1, no effect on cell polarization was detected after particle exposure[92]. According to a
recent study, when HRT-18 and CMT-93 epithelial cell lines were exposed to PS microparticles (with
a diameter of 4.8-5.8 um, a concentration of Img ml -1, and a time between 6 and 48 hours), it resulted
in a significant increase in cytotoxicity in both cell lines. However, only CMT-93 cells showed an
increase in oxidative stress activity [93]. Moreover, after being tested at various concentrations for 48
hours, polyethylene (PE) microplastics between 30 and 140 um caused a significant reduction in Caco-
2 cell viability at high concentrations (1000 mg/L) [91]
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Notably, a recent comparative systematic analysis monitored the influence of small
microplastics, of size 50-100 nm, on human colon cells, human colon organoids and in vivo in a mouse
model. According to the authors, the viability of colon organoids decreased by over 20% when
exposed to concentrations of 5mg/mL of MPs. This exposure also led to an increase in the expression
of genes linked to inflammation, apoptosis, and immunity. Additionally, in vivo data from a murine
model indicated that 50 nm MPs accumulated in several mouse organs, including the colon, after 7
days of exposure [99].

Several studies in mice exposed to PS microspheres have shown a transcriptional decrease in
major genes related to mucin expression, such as mucin 1 (Muc 1) and Klf4 [94,95], and to ion
transport, such as cystic fibrosis transmembrane conductance regulator (Cftr), Na-K-2Cl
cotransporter 1 (Nkccl), Na+/ H+ exchanger 3 (Nhe3), anoctamin 1 (Anol), solute carrier family 26
member 6 (Slc26a6) [94]. In a research study conducted on mouse models, it was found that exposure
to a mixture of microplastics ranging from 1 um to 10 pm in size, at a volume of 10 ml per kg body
weight, and for a total of one dose for three weeks did not lead to any evidence of intestinal
inflammation.[92].

Accordingly, in a recent study, mice were fed with 5 um pristine and fluorescent polystyrene
MP for 6 weeks [94]. The results revealed that PS-MPs were observed in the intestine of mice, and
reduced the intestinal mucus secretion, thus causing damage to the intestinal barrier function.
Similarly, male mice exposed to polystyrene MP from 0.5 and 50 um at 1000 ug/L for 5 weeks
exhibited decreased intestinal mucus secretion following oral exposure [95]. On the other hand, when
mice were exposed to different amounts of polyethylene microplastics, it led to histological
inflammation in their colon and duodenum. Specifically, exposure to PE-MP (10-150 um) at various
concentrations (2, 20, and 200 ug/g for 5 weeks) resulted in increased secretion of proinflammatory
cytokines and higher levels of toll-like receptor 4 (TLR4), c-Jun, and interferon regulatory factor 5
[96].

Virgin polyethylene spheres with a size between 45 and 53 pm and a concentration of 0.2 g/L
(1.5 x 10 5 particles/L) after 30 days of exposure, have been found to cause impaired intestinal
permeability in mouse models [97]. Another study on mammals confirms that exposure to MNPs
may cause adverse effects on the intestinal system. When exposed to PS-NP and PS-MP (50 nm, 500
nm, and 5000 nm at a concentration of 20 mL/kg body weight for 28 days), there was a combined
exposure that caused intestinal barrier dysfunction by apoptosis of epithelial cells through ROS
production in the mouse model [98]

In terms of toxicity, a mention must be made of the ability of MPs to transport pollutants and
plasticizers. In this review, considering the focus of this paper; we will only refer to pollutants and
plasticizers having the greatest potential to harm the gut system.

Chemical compounds called plasticizers can expose humans through occupational exposure,
product use, or transfer from plastic packaging [108,109]. Exposure to these compounds can occur
through ingestion, inhalation, and skin contact[110]. Among the various plasticizers, phthalates
(PAEs) are known to be harmful to human health according to several studies. This group of
chemicals is a major concern as they have been identified as endocrine-metabolic disruptors, which
can affect the reproductive system based on available evidence from human epidemiological studies
[111]. Numerous reports have found high levels of phthalate contamination in drinking water and
various foods, including meat, oil, fats, dairy products, and even infant formula[112-114]. This
suggests that these substances can easily enter the food chain, and ingestion may be the primary route
of exposure[115,116]. Research has shown that the ingestion of various phthalates can lead to
different health problems, such as reproductive, hepatic, cardiac, and neurodevelopmental disorders
[117-120]

Although little research exists on how phthalates directly affect the intestinal system, these
harmful substances are commonly found in contaminated food and water, making it highly likely
that they negatively impact the gastrointestinal tract and gut microbiota.

Exposure of female CD-1 mice to phthalates at doses ranging from 0.2-200 mg/kg for 10-14 days
caused colonic damage and inflammation. This was due to the dysregulation of the tight junction
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gene (Zo-3), cell cycle regulatory gene (Ccnbl) and cytokine levels (SICAM-1 and TNF-a) [121].
Additionally, Xiong et al. (2020) and Fu et al. (2021) observed elevated serum LPS levels in mice
exposed to PAEs, indicating epithelial barrier disruption and intestinal permeability[122,123].
Similarly, Deng et al. (2020) also reported reduced serum diaminoxidase (DAQO) activity in CD-1 mice
exposed to PAEs, which is an important indicator of impaired intestinal function[97]. Lastly, recent
evidence suggests that gut microbiota, due to its complex interaction with the intestinal epithelium
and barrier, may play a significant role in influencing the local and systemic toxicity of these
molecules[124].

It is widely acknowledged that PAEs and other plasticizers, including Bisphenol A, have the
potential to negatively impact human health. In light of this, the European Food Safety Authority
(EFSA) has recently advised lowering the acceptable daily intake (TDI) of such substances to safer
levels [125,126].

Micro and nanoplastics can also act as vectors for toxic heavy metals or other pollutants that can
be released[127] into the environment and lead to health risks [128].

One example is chromium, which has a greater potential to adsorb on microplastics than other
heavy metals. Microplastics can carry 19-7970 ng of Cr per g of microplastics [127]. When Cr (IV)
enters the body, it causes DNA damage in various tissues at high acute doses or with chronic oral
exposure [129]. To study the effect of ingestion of adsorbed Cr on microplastics, ~150 u PE, PP, PVC
and PS MP contaminated with Cr at concentrations commensurate with water Cr-MP levels were
prepared[127]. Using an in vitro method to model the entire digestive system, the researchers found
that Cr (IV) availability was high for PLA in the stomach, small intestine and large intestine. However,
the risk quotients for adults and children calculated from bioavailability did not raise concerns about
carcinogenicity.

3.2. MNPs Gut Immunological Impact

The immune system present in the intestine is continuously exposed to external antigens, which
are derived from food and non-pathogenic microorganisms that need to be tolerated
immunologically. However, the intestinal immune system also needs to be prepared to respond to
pathogenic microorganisms and external toxins. This balance is maintained by the equilibrium
between pro- and anti-inflammatory stimuli, which involves innate lymphocytes, myeloid cells, T-
and B-lymphocytes residing in the lamina propria of the gut epithelium and draining in the
mesenteric lymph nodes[130].

After being exposed to magnetic nanoparticles (MNDPs), immune cells trigger a significant
modulation at the transcriptional level, affecting enzyme levels and cytokine release. Several studies,
both on invertebrates and vertebrates revealed an immune-toxic effect caused by nano- and micro-
plastics on the intestinal immune system.

Exposure to PS nanoparticles has been found to cause higher hemocyte counts in Daphnia magna,
while also decreasing the total antioxidant capacity and increasing DNA damage in mussels
[131,132]. Amino-modified PS nanoparticles, on the other hand, have been shown to induce hemocyte
changes in mussels, depending on the duration of exposure [133,134]. Additionally, exposure to PS
microbeads or nanoparticles has been found to increase production of oxygen reactive and nitrogen
species, result in higher hemocyte mortality, and modify several enzymes related to the immune
system, such as acid phosphatase, alkaline phosphatase, lysozyme, and phenoloxidase, depending
on the duration and dose of exposure [135-139]. Studies have also shown that PS nanoparticles cause
more damage than PS microparticles[138,139].

Studies on vertebrates have revealed some interesting findings. Exposure to PS nanoparticles led
to a dose-dependent increase in myeloperoxidase activity and the release of neutrophil extracellular
traps in fathead minnows Pimephales promelas. Similarly, polycarbonate microplastics dose-
dependently disrupted neutrophil functions[140]. Exposure to PE microparticles in carp impaired the
activity of the complement system and immunity-related enzymes[141]. Furthermore, in zebrafish,
exposure to PE and PS particles reduced the liver transcript levels of two immune genes, leukotriene
B4 receptor (Itb4r), and interferon-induced transmembrane protein (ifitm1) [87]. Furthermore,
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microplastics in the gastrointestinal tract have been found to upregulate the expression of T cell
receptors (3 and d (TCRP and TCRd) and IgM in the spleen of Scyliorhinus canicula[142].

Lehner et al. (2020) developed a 3D in vitro intestinal model comprising human intestinal
epithelial cell lines Caco-2 and HT29-MTX-E12 to study the effects of ingested MPs, such as 50-MP
polymer of 500 um representing tire wear and polyolefins at the concentration of 823.5-1380.0
pg/cm2. Although the results showed some changes in the levels of inflammatory cytokines (IL-8,
TNFa and IL-1f) and barrier integrity, these changes were not significant [100]. In contrast, other
forms of MPs, polypropylene MPs (50-500 um) have been shown to induce immune responses by
triggering the production of proinflammatory cytokines such as IL-6 and TNF alpha in a size- and
concentration-dependent manner [101].

A study on mice models has shown that exposure to PE microparticles, can cause changes in the
levels of certain proteins such as IL1a and granulocyte colony-stimulating factor (G-CSF) in the
blood, a decrease in the count of regulatory T-lymphocytes, and an increase in the proportion of Th17
cells in the spleen[96]. In this study, it was found that high concentrations (600 ug/day) of PE-MPs
(10-150 pm) caused inflammatory reactions by increasing the expression of TLR4, AP-1, and IRF5.
The exposure to MP also led to a significant increase in the serum level of IL-1a and a decrease in
Th17 and Treg cells in CD4+ T cells[96]. Additionally, PE microplastic exposure (40-48 pum per
dosing volume of 200 puL/day for 90 days) can lead to an increase in the number of blood neutrophils
and immunoglobulin IgA levels in female mice and an alteration of spleen lymphocytes in both dams
and offspring[102].

While there is evidence of the effects of MNPs on the immune system, most studies have focused
solely on the innate immune response, and the impact of MNPs on the adaptive immune response
remains unclear.

A recent study[143] found that there is a connection between microplastics (MPs) in feces and
inflammatory bowel disease (IBD). The study discovered that the fecal concentration of MPs in IBD
patients was significantly higher (41.8 items/g dm) than in healthy individuals (28.0 items/g dm),
including 15 different types of MPs. Among the MPs found, polyethylene terephthalate (22.3-34.0%)
and polyamide (8.9-12.4%) were the most dominant types. The researchers observed that the primary
shapes of the detected MPs were sheets and fibers[143]. Additionally, the study showed that there is
a positive correlation between the concentration of MPs and the activity level of IBD, suggesting that
MP exposure may be related to the disease process, or that IBD could promote the retention of MPs.

Indeed, further recent evidence in mouse models confirms these suspicions. It was observed that
PS-NPs aggravate inflammation and intestinal injury in mice with chronic colitis[103]. Specifically,
mice subjected to sodium dextran sulfate (DSS) exposures were subsequently fed via gastric tube
with water containing 100 nm polystyrene nanospheres (PS-NPs, at concentrations of 1 mg/kg, 5
mg/kg and 25 mg/kg) for 28 consecutive days. The results showed that PS-NPs exacerbated intestinal
inflammation by activating the MAPK signaling pathway and also aggravated inflammation and
oxidative stress in mice with chronic colitis.

These findings show that the intestinal immune system is altered by exposure to microplastics;
however, further studies, especially in species more closely related to humans, are warranted.

3.3. MINPs Effects on Gut Microbiota

The human gut is home to numerous communities of microorganisms, collectively referred to
as "gut microbiota". This microbiota comprises over 250 species of viruses, fungi, bacteria, and
archaea and is a dynamic system that changes over the course of a human's life. The relationship
between gut microbiota and the host is mutually beneficial, as the former plays a crucial role in
several physiological and pathological pathways of human life[144]. Human gut microbiota is
primarily composed of five bacterial phyla: Firmicutes (60% to 80%), Bacteroidetes (20% to 40%),
Verrucomicrobia, Actinobacteria, and a lesser extent of Proteobacteria; and one Archea phyla, the
Euryarchaeota[144]. The gut microbiota is a crucial component of the gut ecosystem that plays a vital
role in human health. It helps in the formation and maturation of immunity, acts as a barrier against
pathogens, facilitates the absorption of nutrients and drugs, and regulates metabolic intake[145].
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When there is an imbalance in the gut microbiota, it can lead to various gastrointestinal and
extraintestinal disorders[145]. As a result, several therapeutic approaches, such as fecal microbiota
transplantation[146], are increasingly being investigated for the treatment of microbiome-based
disorders.

There is a lack of data concerning the effects of MNPs on gut microbiota in humans. However,
studies conducted on mammals have shown that both short and long-term exposure to MNPs can
cause modifications in microbial communities. Dysbiosis, or an imbalance in gut microbiota, is a
common finding in murine mole studies, with reduced alpha- and beta-diversity, and a loss of
resilience. This can lead to frequent outbreaks of pathogens and metabolic disorders, both locally and
systemically [94,96]. Particularly, at the phylum level, exposure to PS particles caused changes in the
abundance of Bacteroidetes, Firmicutes, Actinobacteria, and Proteobacteria. At the genus level,
variations in the abundance of Staphylococcus, Clostridium, and Bacteroides were observed when
compared to animals that were not exposed to PS particles. In addition, up to 15 types of bacteria
were affected by exposure to MPs in particular, Bifidobacterium, Prevotella, Veillonella, Actinobacteria,
and Ruminococcus.

Discrepancies were found regarding the abundance of Proteobacteria. In 2019, Lu et al reported
a decrease or increase in its abundance, while Jin et al discovered a relative reduction in the
abundance of Proteobacteria after PS microparticles exposure [94,95].

Conversely in the same year, Luo et al. (2019) discovered that Actinobacteria abundance
increased while the abundance of Proteobacteria and Firmicutes remained unchanged in mice that
were exposed to PS-MPs (0.5 pm and 5 um) at a concentration of 100 ug/L and 1000 pug/L during their
gestation and lactation period[104].

On the other hand in 2021, Jiang et al. (2021) noted, following a 33-day period of the ingestion of
0.1mg/kg MPs (5 pum), a shift in the relative abundance of bacterial taxa in mice models [105].
Specifically, there was a significant increase in the presence of Proteobacteria, while Bacteroides and
Marvinbryantia exhibited a marked decrease. Additionally, Bifidobacterium also exhibited an
increase. Qiao et al. confirmed mice exposed to PS-MNPs (70 nm, 5 um in diameter) at a concentration
between 2 mg and 0.2 mg kg-1 for 28 days experienced an increase in the relative abundance of
Proteobacteria and Verrucomicrobia, while the major SCFA-producing genera decreased in
abundance [106].

In a study conducted by Liu et al. in 2022 [107] female mice were exposed to polyethylene
terephthalate (PET) microplastics (ranging from 2 pm to 631 um) at a concentration of 500 mg/kg for
a period of 28 days. The study reported a decrease in the abundance of Bacteroidetes and an increase
in the abundance of Firmicutes, which was accompanied by an increase in the abundance of
Lactobacillus and a decrease in the abundance of Parabacteroides.

Two different studies focusing on PE microplastics exposure in mice, respectively found an
increase in the abundance of Firmicutes and Melainabacteria phyla and Staphylococcus genus, with
a decrease in the abundance of the Bacteroidetes phylum and the Parabacteroides genus[96], and an
increase in the abundance of the Actinobacteria phylum and Lactobacillus, Adlercreutzia, Butyricimonas
and Parabacteroides genera[97].

It is important to note that exposure to MNPs has been shown to reduce the abundance of
bacteria that are known to promote tight junction functions. This reduction may have additional
indirect toxic effects due to dysbiosis of the gut microbiota[106].

Although plastic particles are inert to biodegradation due to their hydrophobic nature, high
molecular weight and long polymer chain, some microorganisms ingest these polymers and convert
them into environmentally friendly carbon compounds[147-149].

Polymer biodegradation is a process that occurs due to microorganisms present in three domains
of life, namely Bacteria, Archaea, and Eukarya. Among the different kingdoms, fungi and bacteria are
the most vital players in biodegradation processes in natural environments. The effectiveness of
microorganisms in degrading a specific type of plastic depends on the environmental conditions and
the plastic typologies[150,151]. Arthrobacter, Bacillus, Micrococcus, Pseudomonas, Corynebacterium,
Streptomyces, and Nocardia are the most commonly studied bacteria for their ability to degrade various
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types of plastics [152-154]. Besides free-living microorganisms in the environment, gut microbiota is
an important driver of MNPs degradation, with most of the attention focused on insects and their
larvae [155]. Indeed, several studies showed that MPs biodegradation does not occur after antibiotic
treatment in mealworms, thus suggesting a crucial role played by gut microbiota [156].

However, little is known about microbial degradation capacity in mammals, probably due to
lack of appropriate high-resolution analytical methods to quantify small MPs and NPs and chemical
intermediates in animal and human feces. Similarly, research regarding microbial degradation of
MPs and human gut microbiota is still scarce; however, numerous plastic-degrading bacteria
described in insects or larvae are part of the core of human gut microbiota: particularly, several
potentially pathogenic Proteobacteria, such as Enterobacteriaceae, Enterococcaceae, Listeria,
Pseudomonas e Klebsiella, but also Lactococcus [157,158].

5. Conclusions

Annually, the global production of plastic waste amounts to millions of tons, a considerable
quantity of which disintegrates and accumulates in the form of minute particles that pollute and
disseminate throughout terrestrial environments. Ingestion is a prevalent means of exposure of
animals and humans to micro- and nanoplastics that can accumulate in the intestinal system to a
degree and manner that remain incompletely understood.

Studies conducted in vitro on human cell lines have shown conflicting results regarding toxicity
of MNPs on the intestinal system. The discrepancies could be due to the different dosages of particles
used in each study. Additionally, the various treatment periods and particle concentrations employed
could also contribute to the conflicting nature of the findings. Furthermore, the studies cited only
assess the short-term effects of MNPs on different endpoints, while possible long-term effects remain
unexplored.

In contrast, studies conducted on mammals suggest that MNPs may have adverse effects in
terms of intestinal cells toxicity, immunotoxicity, and dysbiosis. Nonetheless, the use of various study
designs generates a degree of unclearness, and the absence of a definitive classification system for
plastic waste based on parameters such as size, shape, physical and chemical properties, further
complicates the issue. Additionally, the toxicological studies cited in this context do not account for
the impact of realistic environmental exposure nor do they consider the possible interactions between
plastics and other pollutants.

Thus, we understand how these studies are not yet robust enough to determine their intestinal
toxicity on mammals and humans with any degree of certainty. To gain a better understanding of the
impact of MNPs ingestion on human gut health, it is essential to introduce validated and shared
analytical methods. These arrangements will allow animal and cell studies to understand
toxicological effects and will allow reference values to be generated to assess dietary intake and help
stratify dietary risk. Observational and biomarker-based studies, on the other hand, will be able to
help us unravel the real adverse effects of these particles on human gut health.

In conclusion, further studies and analytical methodologies are needed to characterize the real
toxicological effects of MPNs on the intestinal human system and the precise role of gut microbiota
as a potential key player in this context.
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